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SUBGROUPS, HYPERBOLICITY AND COHOMOLOGICAL

DIMENSION FOR TOTALLY DISCONNECTED LOCALLY

COMPACT GROUPS

S. ARORA, I. CASTELLANO, G. COROB COOK, AND E. MARTÍNEZ-PEDROZA

Abstract. This article is part of the program of studying large-scale geomet-
ric properties of totally disconnected locally compact groups, TDLC-groups,

by analogy with the theory for discrete groups. We provide a characterization
of hyperbolic TDLC-groups, in terms of homological isoperimetric inequali-

ties. This characterization is used to prove the main result of the article:

for hyperbolic TDLC-groups with rational discrete cohomological dimension
≤ 2, hyperbolicity is inherited by compactly presented closed subgroups. As a

consequence, every compactly presented closed subgroup of the automorphism

group Aut(X) of a negatively curved locally finite 2-dimensional building X is
a hyperbolic TDLC-group, whenever Aut(X) acts with finitely many orbits on

X. Examples where this result applies include hyperbolic Bourdon’s buildings.

We revisit the construction of small cancellation quotients of amalgamated
free products, and verify that it provides examples of hyperbolic TDLC-groups

of rational discrete cohomological dimension 2 when applied to amalgamated

products of profinite groups over open subgroups.
We raise the question of whether our main result can be extended to locally

compact hyperbolic groups if rational discrete cohomological dimension is re-
placed by asymptotic dimension. We prove that this is the case for discrete

groups and sketch an argument for TDLC-groups.

1. Introduction

A locally compact group G is said to be totally disconnected if the identity is its
own connected component. For an arbitrary locally compact group, the connected
component of the identity is always a closed normal subgroup with a totally discon-
nected quotient. Therefore, in principle, the study of locally compact groups can
be reduced to the study of the two subclasses formed by connected locally compact
groups and totally disconnected locally compact groups. By the celebrated solution
to Hilbert’s fifth problem, connected locally compact groups are inverse limits of
Lie groups. However, such a thorough understanding has not been achieved for the
totally disconnected counterpart.

Hereafter, we use TDLC-group as a shorthand for totally disconnected locally
compact group. The class of TDLC-groups has been a topic of interest in the last
three decades since the work of G. Willis [40], and of M. Burger and S. Mozes [11].

Large-scale properties of a TDLC-group G can be addressed by investigating a
family of quasi-isometric locally finite connected graphs which are known as Cayley-
Abels graphs of G; see § 3.1 for the definition and further details. Therefore, the
theory of TDLC-groups becomes amenable to many tools from geometric group
theory (see [4, 6, 35] for example) and the notion of hyperbolic group carries over
to the realm of TDLC-groups.

The motivation for this work is to gain a better understanding of the interac-
tion between the geometric properties of the TDLC-group G and its cohomological
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properties by analogy with the discrete case. An investigation of this type was
initiated in [17, 15] where the rational discrete cohomology for TDLC-groups has
been introduced and the authors have shown that many well-known properties that
hold for discrete groups can be transferred to the context of TDLC-groups (in some
cases after substantial work).

For a TDLC-group G, the representation theory used in [17] leans on the notion
of discrete Q[G]-module, that is a Q[G]-module M such that the action G×M →M
is continuous when M carries the discrete topology. In the case that G is discrete,
any Q[G]-module is discrete. Because of the divisibility of Q, the abelian category

Q[G]dis of discrete Q[G]-modules has enough projectives. As a consequence, the
notions of rational discrete cohomological dimension, denoted by cdQ(G), and type
FPn can be introduced for every TDLC-group G in the category Q[G]dis (see §2.3 for
the necessary background). This opens up the possibility of investigating TDLC-
groups by imposing some cohomological finiteness conditions.

The main result of this article is a subgroup theorem for hyperbolic TDLC-groups
of rational discrete cohomological dimension at most 2.

Theorem 1.1. Let G be a hyperbolic TDLC-group with cdQ(G) ≤ 2. Every com-
pactly presented closed subgroup H of G is hyperbolic.

This theorem generalizes the following two results for discrete groups:

• Finitely presented subgroups of hyperbolic groups of integral cohomological
dimension less than or equal to two are hyperbolic. This is a result of
Gersten [22, Theorem 5.4] which can be recovered as a consequence of the
inequality cdQ( ) ≤ cdZ( ).
• Finitely presented subgroups of hyperbolic groups of rational cohomological

dimension less than or equal to two are hyperbolic. This is a recent result
in [3] which is the analogue of Theorem 1.1 in the discrete case.

We remark that Brady constructed an example of a discrete hyperbolic group of
integral cohomological dimension three that contains a finitely presented subgroup
that is not hyperbolic [9]. Hence the the dimensional bound on the results stated
above is sharp.

In the discrete case, a class of hyperbolic groups of rational cohomological di-
mension two is given by groups admitting finite presentations with certain small
cancellation conditions. This is also the case for TDLC-groups for small cancela-
tion quotiens of amalgamated products of profinite groups. We refer the reader to
Section 7 for details on the following result.

Theorem 1.2. Let A ∗C B be the amalgamated free product of the profinite groups
A,B over a common open subgroup C. Let R be a finite symmetrized subset of
A ∗C B that satisfies the C ′(1/12) small cancellation condition. Then the quotient
G = (A ∗C B)/〈〈R〉〉 is a hyperbolic TDLC-group with cdQ(G) ≤ 2.

In the framework of discrete groups, it is a result of Gersten that type FP2 (over
Z) subgroups of hyperbolic groups of integral cohomological dimension at most two
are hyperbolic [22, Theorem 5.4]. We raise the following question:

Question 1. Does Theorem 1.1 remain true if H is of type FP2 but not compactly
presented?

It is well known that if X is a locally finite simplicial complex then the group
of simplicial automorphisms Aut(X) endowed with the compact open topology is
a TDLC-group [13, Theorem 2.1]. If, in addition, X admits a CAT (−1) metric
and Aut(X) acts with finitely many orbits on X, then Aut(X) is a hyperbolic
TDLC-group with cdQ(Aut(X)) ≤ dim(X).
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Corollary 1.3. Let X be a locally finite 2-dimensional simplicial CAT (−1)-complex.
If Aut(X) acts with finitely many orbits on X, then every compactly presented closed
subgroup of Aut(X) is a hyperbolic TDLC-group.

A discrete version of Corollary 1.3 was proved in [26, Corollary 1.5] using com-
binatorial techniques. There are different sources of complexes X satisfying the
hypothesis of Corollary 1.3 and such that Aut(X) is a non-discrete TDLC-group.
For example:

• Bourdon’s building Ip,q, p ≥ 5 and q ≥ 3, is the unique simply connected
polyhedral 2-complex such that all 2-cells are right-angled hyperbolic p-
gons and the link of each vertex is the complete bipartite graph Kq,q. These
complexes were introduced by Bourdon [8]. The natural metric on Ip,q is
CAT (−1) and Aut(Ip,q) is non-discrete.

• For an integer k and a finite graph L, a (k, L)-complex is a simply connected
2-dimensional polyhedral complex such that all 2-dimensional faces are k-
gons and the link of every vertex is isomorphic to the graph L. A result of
Świ

‘
atkowski [38, Main Theorem (1)] provides sufficient conditions on the

graph L guaranteeing that if k ≥ 4 then Aut(X) is a non-discrete group for
any (k, L)-complex X. It is a consequence of Gromov’s link condition, that
a (k, L)-complex admits a CAT (−1)-structure for any k sufficiently large.

In order to prove Theorem 1.1, we follow ideas from Gersten [22]. We introduce
the concept of weak n-dimensional linear isoperimetric inequality for TDLC-groups,
which is a homological analogue in higher dimensions of linear isoperimetric inequal-
ities. Profinite groups are characterized as TDLC-groups satisfying the weak 0-
dimensional linear isoperimetric inequality: see Section 4. The weak 1-dimensional
linear isoperimetric inequality is called from here on the weak linear isoperimetric
inequality. The following result generalizes for TDLC-groups a well-known charac-
terization of hyperbolicity in the discrete case [22, Theorem 3.1].

Theorem 1.4. A compactly generated TDLC-group G is hyperbolic if and only if
G is compactly presented and satisfies the weak linear isoperimetric inequality.

The property of satisfying the weak n-dimensional linear isoperimetric inequality
is inherited by closed subgroups under some cohomological finiteness conditions.

Theorem 1.5. Let G be a TDLC-group of type FP∞ with cdQ(G) = n + 1 that
satisfies the weak n-dimensional linear isoperimetric inequality. Then every closed
subgroup H of G of type FPn+1 satisfies the weak n-dimensional linear isoperimetric
inequality.

The major part of the paper is devoted to the proof of Theorem 1.5. Our strategy
borrows ideas from [3, 22, 27]. Some remarks:

• In the case that G is discrete, Theorem 1.5 is a consequence of [3, Theorem
1.7].

• The arguments in [3], where the authors replace some topological tech-
niques from [22, 27] with algebraic counterparts, carry over the TDLC case
only under the stronger assumption that the subgroup H is open, see Re-
mark 5.2.

• Currently, for TDLC-groups, there is no well studied notion of n-dimensional
homological Dehn function as the definitions available in the discrete case,
see for example [2, 27]. In contrast to the arguments in [3], we avoid the
use of these objects and provide a more straight forward argument.

It is a simple verification that Theorem 1.1 follows by Theorems 1.5 and 1.4.
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Proof of the Theorem 1.1. Since G is hyperbolic, Theorem 1.4 implies that G sati-
sfies the weak linear isoperimetric inequality. By Theorem 1.5, H also satisfies
the weak linear isoperimetric inequality. We can then apply Theorem 1.4 again to
conclude the proof. �

Locally compact hyperbolic groups. The monograph [18] by de Cornulier and
de la Harpe laid out the foundations of the study of locally compact groups from the
perspective of geometric group theory. In this context, a locally compact group is
hyperbolic if it has a continuous proper cocompact isometric action on some proper
geodesic hyperbolic metric space [14]; this generalizes the classical definition in the
discrete case as well as the definition in the class of totally disconnected locally
compact groups used in the present article. By analogy with the discrete case,
the asymptotic dimension provides a quasi-isometry invariant of locally compact
compactly generated groups. The question below suggests a posible generalization
of Theorem 1.1 for the larger class of locally compact hyperbolic groups.

Question 2. Let G be a locally compact hyperbolic group such that asdimG ≤ 2.
Are compactly presented subgroups of G hyperbolic?

We conclude the introduction of the article by verifying that the the above ques-
tion has a positive answer for discrete hyperbolic groups. The argument provides a
blueprint to answer the question in the positive in class of hyperbolic TDLC-groups
using Theorem 1.1.

Theorem 1.6. Let G be a discrete hyperbolic group such that asdimG ≤ 2. Then
every finitely presented subgroup of G is hyperbolic.

Proof. The main result of [3] states that if cdQG ≤ 2, then any finitely presented
subgroup of G is hyperbolic. Therefore it is enough to verify the inequality

cdQG ≤ asdimG.

This inequality relies on important work of Buyalo and Bedeva [12] and Bestvina
and Mess [7] as explained below.

It is a result of Buyalo and Lebedeva, [12, Theorem 6.4], that the asymptotic
dimension of every cobounded, hyperbolic, proper, geodesic metric space X equals
the topological dimension of its boundary at infinity plus 1,

asdimX = dim ∂∞X + 1.

On the other hand, for a compact metrizable space Y , there is a notion of
cohomological dimension dimR Y over a ring R. It is known that if dimY < ∞
then

dimQ Y ≤ dimZ Y = dimY,

see [7] for definitions and references.
Let ∂∞G denote the Gromov boundary of G. Recall that ∂∞G is a compact

metrizable space with finite topological dimension, see for example [29]. It follows
that

dimQ ∂∞G ≤ dim ∂∞G.

The work of Bestvina and Mess [7, Corollary 1.4] implies that if cdQG <∞ then

(1.1) cdQG = dimQ ∂∞G+ 1.

Since discrete hyperbolic groups admit finite dimensional models for the universal
space for proper actions (Rips complexes with large parameter, see [33] or [28]), it
follows that cdQG <∞. Therefore cdQG ≤ asdimG. �
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Remark 1.7. We expect a positive answer to Question 2 for hyperbolic TDLC-
groups. Indeed, to obtain a positive answer it is enough to verify the following
statement generalizing work of Bestvina and Mess [7, Corollary 1.4]:

- Let G be a hyperbolic TDLC-group. If cdQG <∞ then cdQG = dimQ ∂∞G+ 1,
where cdQG is the rational discrete cohomological dimension.

Then the proof of Theorem 1.6 works in the TDLC case by using Theorem 1.1 and
that hyperbolic TDLC-groups have finite rational discrete cohomological dimension,
see Proposition 3.7. An attempt to generalize the work of Bestvina and Mess in [7]
for TDLC-groups is currently work in progress by the second author, F.W. Pasini
and T. Weigel. In the generality of locally compact groups, the authors are not
aware of a cohomology theory for locally compact groups that allow to persuade
the techniques of this article.

Organization. Preliminary definitions regarding TDLC-groups and rational dis-
crete modules are given in Section 2. Then Section 3 consists of definitions and
some preliminary results on Cayley-Abels graphs, compact presentability and hy-
perbolicity for TDLC-groups. Section 4 introduces the weak n-dimensional linear
isoperimetric inequality. Section 5 is devoted to the proof of Theorem 1.5. Finally,
Section 6 relates hyperbolicity and the weak linear isoperimetric inequality and
contains the proof of Theorem 1.4.
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Sciences and Engineering Research Council of Canada, NSERC.

2. TDLC-groups and rational discrete G-modules

Throughout this section G always denotes a TDLC-group. Note that a TDLC-
group is Hausdorff. Discrete groups are TDLC-groups. Profinite groups are pre-
cisely compact TDLC-groups [37, Proposition 0]. A fundamental result about the
structure of TDLC-groups is known as van Dantzig’s Theorem:

Theorem 2.1 (van Dantzig’s Theorem, [39]). The family of all compact open
subgroups of a TDLC-group G forms a neighbourhood system of the identity element.

Note that every Hausdorff topological group admitting such a local basis is neces-
sarily TDLC. Hence the conclusion of van Dantzig’s Theorem characterizes TDLC-
groups in the class of Hausdorff topological groups.

For example, the non-Archimedean local fields Qp and Fq((t)) admit, respec-
tively, the following local basis at the identity element:

(1) {pnZp | n ∈ N}, where Zp = {x ∈ Qp | |x| ≤ 1} = {x ∈ Qp | |x| < p} is
compact and open;

(2) {tnFq[[t]] | n ∈ N}, where the norm is defined by q−ord(f).

2.1. Rational discrete G-modules. Let Q denote the field of rational numbers,
and let Q[G]mod be the category of abstract left Q[G]-modules and their homomor-
phisms. A left Q[G]-module M is said to be discrete if the stabilizer

Gm = {g ∈ G | g ·m = m},
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of each element m ∈ M is an open subgroup of G. Equivalently, the action G ×
M →M is continuous when M carries the discrete topology. The full subcategory
of Q[G]mod whose objects are discrete Q[G]-modules is denoted by Q[G]dis. It
was shown in [17] that Q[G]dis is an abelian category with enough injectives and
projectives.

2.2. Permutation Q[G]-modules in Q[G]dis. Let Ω be a non-empty left G-set.
For ω ∈ Ω let Gω denote the pointwise stabilizer. The G-set Ω is called discrete
if all pointwise stabilizers are open subgroups of G, and Ω is called proper if all
pointwise stabilizers are open and compact.

The Q-vector space Q[Ω] - freely spanned by a discrete G-set Ω - carries a
canonical structure of discrete left Q[G]-module called the discrete permutation
Q[G]-module induced by Ω.

Note that a discrete permutation Q[G]-module in Q[G]dis is a coproduct

Q[Ω] ∼=
∐
ω∈R

Q[G/Gω],

in Q[G]dis, where R is a set of representatives of the G-orbits in Ω, and Ω is a
discrete G-set.

A proper permutation Q[G]-module is a discrete Q[G]-module of the form Q[Ω]
where Ω is a proper G-set.

A proper permutation Q[G]-module is a projective object in Q[G]dis; see [17].
The arguments of this article rely on the following characterization of projective
objects in Q[G]dis, a non-trivial result that in particular relies on Maschke’s the-
orem on irreducible representations of finite groups, and Serre’s results on Galois
cohomology.

Proposition 2.2 ([17, Corollary 3.3]). Let G be a TDLC-group. A discrete Q[G]-
module M is projective in Q[G]dis if, and only if, M is a direct summand of a proper
permutation Q[G]-module in Q[G]dis.

Throughout the article, we only consider resolutions consisting of discrete per-
mutation Q[G]-modules, and we refer to this type of resolutions as permutation
resolutions in Q[G]dis. Analogously, a resolution that consists only of proper per-
mutation modules is called a proper permutation resolution in Q[G]dis. When the
category is clear from the context, we will omit the term “in Q[G]dis”.

2.3. Rational discrete homological finiteness. Following [17], we say that a
TDLC-group G is of type FPn (n ∈ N) if there exists a partial proper permutation
resolution in Q[G]dis

(2.1) Q[Ωn] // Q[Ωn−1] // · · · // Q[Ω0] // Q // 0

of the trivial discrete Q[G]-module Q of finite type, i.e., every discrete left G-set
Ωi is finite modulo G or equivalently Q[Ωi] is finitely generated. Type FPn in
this paper will always mean over Q, though the definition generalizes to finite type
proper permutation resolutions over discrete rings other than Q, where the proper
permutation modules are no longer projective in general – see for example [16]. The
group G is of type FP∞ if it is FPn for every n ∈ N. Notice that having type FP0

is an empty condition for a TDLC-group G. On the other hand, having type FP1

is equivalent to be compactly generated (see [17, Proposition 5.3]) and compact
presentation implies type FP2.

The rational discrete cohomological dimension of G, cdQ(G) ∈ N ∪ {∞}, is de-
fined to be the minimum n such that the trivial discrete Q[G]-module Q admits a
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projective resolution

(2.2) 0 // Pn
∂n // Pn−1

// · · · // P0
// Q // 0

in Q[G]dis of length n. The rational discrete cohomological dimension reflects struc-
tural information on a TDLC-group G. For example, G is profinite if and only if
cdQ(G) = 0.

By composing the notions above, one says that G is of type FP if

(i) G is of type FP∞, and
(ii) cdQ(G) = d <∞.

For a TDLC-group G of type FP , the trivial left Q[G]-module Q possesses a pro-
jective resolution (P•, ∂•) which is finitely generated and concentrated in degrees 0
to d. It is not known whether (P•, ∂•) can be assumed to be a proper permutation
resolution of finite length.

2.4. Restriction of scalars. Let H be a closed subgroup of the TDLC-group G.
It follows that H is a TDLC-group and in particular the category Q[H]dis is well
defined. The restriction of scalars from Q[G]-modules to Q[H]-modules preserves
discretness. In other words there is a well defined restriction functor

(2.3) resGH( ) : Q[G]dis→ Q[H]dis,

obtained by restriction of scalars via the natural map Q[H] ↪→ Q[G]. The restriction
is an exact functor which maps projectives to projectives. Indeed, for every proper
permutation Q[G]-module Q[Ω], the discrete Q[H]-module resGH(Q[Ω]) is still a
proper permutation module in Q[H]dis. To simplify notation, for a discrete Q[G]-

module M , we may write M for resGH(M) when the meaning is clear.

3. Cayley-Abels graphs, Compact presentability and Hyperbolicity

3.1. Compactly generated TDLC-groups and Cayley-Abels graphs. In
this article a graph is a 1-dimensional simplicial complex, hence graphs are undi-
rected, without loops, and without multiple edges between the same pair of vertices.

A locally compact group is said to be compactly generated if there exists a com-
pact subset that algebraically generates the whole group.

Proposition 3.1. [30, Theorem 2.2] A TDLC-group G is compactly generated if
and only if it acts vertex transitively with compact open vertex stabilizers on a locally
finite connected graph Γ.

A graph with a G-action as in the proposition above is called a Cayley-Abels
graph for G. In [30] these graphs are referred to as rough Cayley graphs but the
notion of Cayley-Abels graph traces back to Abels [1].

As soon as the compactly generated TDLC-group G is non-discrete, the G-action
on a Cayley-Abels graph is never free. That is to say, the action always has non-
trivial vertex stabilizers . Nevertheless, these large but compact stabilizers play
an important role in the study of the cohomology of G: they give rise to proper
permutation Q[G]-modules.

A consequence of van Dantzig’s Theorem is the following.

Proposition 3.2. For a TDLC-group G the following statements are equivalent:

(1) G is compactly generated.
(2) There exists a compact open subgroup K of G and a finite subset S of G

such that K ∪ S generates G algebraically.
(3) There exists a finite graph of profinite groups (A,Λ) with a single vertex,

together with a continuous open surjective homomorphism φ : π1(A,Λ,Ξ)→
G such that φ|Av is injective for all v ∈ V(Λ).
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Proof. Note that if C is a compact set generating G and K is a compact open
subgroup of G then there a finite subset S ⊂ G such that the collection of left
cosets {sK|s ∈ S} covers C. Hence, by van Dantzig’s Theorem, (1) implies (2). To
show that (2) implies (3), consider the graph of groups with a single vertex and an
edge for each element of S. The vertex group is K, and each edge group is K ∩Ks

with morphisms the inclusion and conjugation by s: see [17, Proposition 5.10, proof
of (a)]. That (3) implies (1) is immediate since G is a quotient of the compactly
generated TDLC-group π1(A,Λ,Ξ). �

Note that in the terminology of the third statement of the above proposition,
a Cayley-Abels graph for G can be obtained by considering the quotient of the
(topological realisation as a 1-dimensional simplicial complex of the) universal tree
of (A,Λ) by the kernel of φ.

3.2. Quasi-isometry for TDLC-groups and Hyperbolicity. The edge-path
metric on a Cayley-Abels graph Γ of a TDLC-group G induces a left-invariant
pseudo-metric on G, by pulling back the metric of the G-orbit of a vertex of Γ. In
the following proposition, we denote this pseudo-metric by distΓ.

Following [18], an action of a topological group G on a (pseudo-) metric space
X is geometric if it satisfies:

• (Isometric) The action is by isometries;
• (Cobounded) There is F ⊂ X of finite diameter such that

⋃
g∈G gF = X;

• (Locally bounded) For every g ∈ G and bounded subset B ⊂ X there is a
neighborhood V of g in G such that V B is bounded in X; and

• (Metrically proper) The subset {g ∈ G : distX(x, gx) ≤ R} is relatively
compact in X for all x ∈ X and R > 0.

The following version of the Švarc-Milnor Lemma is a consequence of work by
Cornulier and de la Harpe on locally compact groups; see [18, Corollary 4.B.11 and
Theorem 4.C.5].

Proposition 3.3. Let G be a TDLC-group, let X be a geodesic (pseudo-) metric
space, and let x ∈ X. Suppose there exists a geometric action of G on X. Then
there is a Cayley-Abels graph Γ for G such that the map between the pseudo-metric
spaces

(G,distΓ)→ (X,distX), x 7→ gx

is a quasi-isometry.

This proposition implies the following result from [30, Theorem 2.7].

Corollary 3.4. The Cayley-Abels graphs associated to a compactly generated TDLC-
group are all quasi-isometric to each other.

This quasi-isometric invariance of Cayley-Abels graphs allows us to define geo-
metric notions for compactly generated TDLC-groups such as ends, number of
ends or growth, by considering quasi-isometric invariants of a Cayley-Abels graph
associated to G.

Definition 3.1. A TDLC-group G is defined to be hyperbolic if G is compactly
generated and some (hence any) Cayley-Abels graph of G is hyperbolic.

For an equivalent definition of hyperbolic TDLC-group using (standard) Cayley
graphs over compact generating sets see [5] for details.
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3.3. Compactly presented TDLC-groups. A locally compact group is said to
be compactly presented if it admits a presentation 〈K | R〉 where K is a compact
subset of G and there is a uniform bound on the length of the relations in R.
Observe that being compactly presented implies being compactly generated. There
are also an equivalent definition of compact presentation [17, § 5.8] based on van
Dantzig’s Theorem in the context of Proposition 3.2.

Corollary 3.5. [18] A TDLC-group G is compactly presented if and only if

(1) there exists a finite graph of profinite groups (A,Λ) with a single vertex
together with a continuous open surjective homomorphism φ : π1(A,Λ,Ξ)→
G such that φ|Av

is injective for all v ∈ V(Λ), and
(2) the kernel of φ is finitely generated as a normal subgroup.

Proof. Note that the if direction is immediate since π1(A,Λ,Ξ) is compactly pre-
sented. Indeed, a group presentation of π1(A,Λ,Ξ) has as generators the formal
union of the vertex group and a finite number of elements corresponding to the
edges of the graph. The set of relations consists of the multiplication table of the
vertex group and the HNN-relations; note that all these relations have length at
most four. Since the kernel of φ is finitely generated as a normal subgroup, it
follows that G is compactly presented.

For the only if direction, since G is compactly presented, in particular it is
compactly generated and hence there is a finite graph of profinite groups (A,Λ)
with the required properties for (1). It remains to show that the kernel of φ is
finitely generated as a normal subgroup. By [17, Proposition 5.10(b)], ker(φ) is a
discrete subgroup of π1(A,Λ,Ξ). Since π1(A,Λ,Ξ) is compactly generated and G is
compactly presented, [18, Proposition 8.A.10(2)] implies that ker(φ) is compactly
generated as a normal subgroup; by discreteness it follows that ker(φ) is finitely
generated as a normal subgroup. �

Proposition 3.6. A TDLC-group G is compactly presented if and only if there
exists a simply connected cellular G-complex X with compact open cell stabilizers ,
finitely many G-orbits of cells of dimension at most 2, and such that elements of G
fixing a cell setwise fixes it pointwise (no inversions).

A G-complex with the properties stated in the above proposition is called a
topological model of G of type F2.

Proof of Proposition 3.6. The equivalence of compact presentability and the exis-
tence of a topological model for F2 follows from standard arguments. That compact
presentability is a consequence of the existence of the topological model follows
directly from [10, I.8, Theorem 8.10]; for compact presentability implying the exis-
tence of such a complex see for example [16, Proposition 3.4]. �

The following result is well known for discrete hyperbolic groups. The proof
in [10, III.Γ Theorem 3.21] carries over for hyperbolic TDLC-groups by considering
the Rips complex on a Cayley-Abels graph instead of the standard Cayley graph.

Proposition 3.7. Let G be a hyperbolic TDLC-group. Then G acts on a simplicial
complex X such that:

(1) X is finite dimensional, contractible and locally finite;
(2) G acts simplicially, cell stabilizers are compact open subgroups, and there

are finitely many G-orbits of cells.
(3) G acts transitively on the vertex set of X.

In particular, the topological realization of the barycentric subdivision of X is a
topological model for F2, and hence G is compactly presented.
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For a topological model X of G of type F2, by standard techniques we may add
cells to kill higher homotopy, and get a contractible G-complex X ′ on which G acts
simplicially with compact open stabilizers . Then the assumption on cell stabilizers
implies that the collection of i-cells of X ′ is a proper G-set and hence Ci(X

′,Q)
is a proper permutation Q[G]-module. Since X ′ is contractible, the augmented
chain complex (C•(X

′,Q), ∂•) is a projective resolution of Q in Q[G]dis and, since

X ′(2) = X(2) has finitely many orbits of cells, the chain complex is finitely generated
in degrees 0, 1 and 2. In particular compactly presented TDLC-groups have type
FP2 in Q[G]dis.

4. Weak n-dimensional isoperimetric inequality

4.1. (Pseudo-)Norms on vector spaces. Given a vector space V over a subfield
F of the complex numbers, a pseudo-norm on V is a nonnegative-valued scalar
function ‖ ‖ : V → R+ with the following properties:

(N1) (Subadditivity) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V ;
(N2) (Absolute Homogeneity) ‖λ · v‖ = |λ| ‖v‖, for all λ ∈ F and v ∈ V .

A pseudo-norm ‖ ‖ on a vector space V is said to be a norm if it satisfies the
following additional property:

(N3) (Point-separation) ‖v‖ = 0, v ∈ V ⇒ v = 0.

Let f : (V, ‖ ‖V )→ (W, ‖ ‖W ) be a linear function between pseudo-normed vector
spaces. We say that f is bounded if there exists a constant C > 0 such that
‖f(v)‖W ≤ C ‖v‖V for all v ∈ V . In such a case, we write ‖ ‖W �f ‖ ‖V when

the constant C is irrelevant. Two different norms ‖ ‖ and ‖ ‖′ on V are said to
be equivalent, ‖ ‖ ∼ ‖ ‖′, if ‖ ‖ �id ‖ ‖′ �id ‖ ‖. From here on the relation �id

will be denoted as �.

4.2. `1-norm on permutation Q[G]-modules. Let Q[Ω] be a permutation Q[G]-
module. In particular, Q[Ω] is a Q-vector space with linear basis Ω. Therefore, the
nonnegative-valued function

(4.1) ‖ ‖Ω1 : Q[Ω]→ Q+, s.t.
∑
ω∈Ω

αωω 7→
∑
ω∈Ω

|αω|,

defines a norm on Q[Ω]. As usual, we shall refer to ‖ ‖Ω1 as the `1-norm on Q[Ω].

Notice that ‖ ‖Ω1 is G-equivariant.

Proposition 4.1. Let φ : Q[Ω] → Q[Ω′] be a morphism of finitely generated per-

mutation Q[G]-modules. Then ‖ ‖Ω
′

1 �φ ‖ ‖
Ω
1 .

Proof. This is a consequence of the G-invariance of the `1-norm and the fact that
the modules are finitely generated. Indeed, the morphism φ is described by a finite
matrix A = (aij) with entries in Q[G]. Consider the `1-norm ‖ ‖1 on Q[G] and let

C = max ‖aij‖. Then ‖φ(x)‖Ω
′

1 ≤ C ‖x‖
Ω
1 for every x ∈ Q[Ω]. �

The above proposition will be used for discrete permutation modules over Q[G].

4.3. Filling pseudo-norms on discrete Q[G]-modules. Let M be a finitely
generated discrete Q[G]-module. Since Q[G]dis has enough projectives, there exists
a finitely generated proper permutation Q[G]-module Q[Ω] mapping onto M , that

is, Q[Ω]
∂
� M and G acts on Ω with compact open stabilizers and finitely many

orbits. The filling pseudo-norm ‖ ‖∂ on M induced by ∂ is defined as

(4.2) ‖m‖∂ = inf{‖x‖Ω1 | x ∈ Q[Ω], ∂(x) = m}.



11

One easily verifies that ‖ ‖∂ is subadditive and absolutely homogeneous. Note that

(4.3) ‖ ‖∂ �
∂ ‖ ‖Ω1 .

It is an observation that an `1-norm on a finitely generated discrete permutation
G-module Q[Ω] is equivalent to a filling norm.

Proposition 4.2. Morphisms between finitely generated discrete Q[G]-modules are
bounded with respect to filling pseudo-norms.

Proof. Let f : M → N be a morphism of finitely generated discrete Q[G]-modules.
Since M and N are both finitely generated in Q[G]dis, there exist morphisms

Q[Ω1]
∂1
� M and Q[Ω2]

∂2
� N such that each Q[Ωi] is a finitely generated proper

permutation module. By the universal property of Q[Ω1] as a projective object,
there is φ : Q[Ω1]→ Q[Ω2] such that the following diagram commutes:

Q[Ω1] Q[Ω2]

M N

φ

∂1 ∂2

f

For any m ∈ M and any ε > 0, let xm ∈ Q[Ω1] such that ∂1(xm) = m and

‖xm‖Ω1

1 �∂1 ‖m‖∂1 + ε. Since f(m) = ∂2(φ(xm)), one has

‖f(m)‖∂2 �∂2 ‖φ(xm)‖Ω2

1 by (4.3),

�φ ‖xm‖Ω1

1 by Proposition 4.1,
�∂1 ‖m‖∂1 + ε.

Since ε is arbitrary, we deduce ‖ ‖∂2 �
f ‖ ‖∂1 . �

By considering the identity function on a finitely generated discrete Q[G]-module
M , the previous proposition implies:

Corollary 4.3. Let G be a TDLC-group. Any two filling pseudo-norms on a finitely
generated discrete Q[G]-module M are equivalent.

In particular, all the filling pseudo-norms on a finitely generated proper permu-

tation Q[G]-module Q[Ω] are equivalent to ‖ ‖Ω1 , and therefore they are all norms.

The former implies that each finitely generated discrete Q[G]-module M admits
a unique filling pseudo-norm up to equivalence. Therefore, by abuse of notation,
we denote by ‖ ‖M any filling pseudo-norm of M and we refer to ‖ ‖M as the
filling pseudo-norm of M .

4.4. Undistorted submodules. Let M be a discrete Q[G]-module with a norm
‖ ‖ and let N be a finitely generated discrete Q[G]-submodule of M . Then N is
said to be undistorted with respect to ‖ ‖ if the restriction of ‖ ‖ to N is equivalent
to a filling norm on N . In the case that M is finitely generated and N is undistorted
with respect to the filling norm ‖ ‖M we shall simply say that N is undistorted in
M .

We note that in general it is not the case that finitely generated submodules of
M are undistorted; we refer the reader to Section 6 for counter-examples.

Proposition 4.4. Let G be a TDLC-group. The filling pseudo-norm ‖ ‖P of a
finitely generated projective discrete Q[G]-module P is a norm. Moreover, if P is
a direct summand of a finitely generated proper permutation module Q[Ω], then P
is undistorted in Q[Ω].
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Proof. Let Q[Ω] be a finitely generated proper permutation module such that P is
a direct summand of Q[Ω]; see Proposition 2.2. Let ι : P → Q[Ω] be the inclusion
and let π : Q[Ω] � P be the projection such that π ◦ ι = idP . Proposition 4.2

implies ‖ ‖Ω1 �ι ‖ ‖P and ‖ ‖P �π ‖ ‖
Ω
1 on P . The former inequality implies

that ‖ ‖P is a norm, and both of them imply that ‖ ‖P ∼ ‖ ‖
Ω
1 on P . �

More generally, this argument shows that a direct summand of any finitely gen-
erated discrete Q[G]-module, with the filling norm, is undistorted.

We conclude the section with a technical result about bounded morphisms that
will be used later and relies on the proof of the previous proposition.

Proposition 4.5. Let G be a TDLC-group and H a closed subgroup of G. Let
M be a finitely generated and projective Q[G]-module in Q[G]dis with filling norm
‖ ‖M . Regard M as a Q[H]-module via restriction, and suppose that N is a finitely
generated direct summand of M in Q[H]dis. Then N is an undistorted Q[H]-module
of M with respect to the norm ‖ ‖M .

Proof. The Q[H]-module N is projective since the restriction of M is projective
and hence N is a direct summand of a projective Q[H]-module.

By Proposition 4.4, M can be assumed to be a finitely generated proper permu-
tation Q[G]-module Q[Ω]. Note that the restriction of Q[Ω] is a proper permutation
Q[H]-module.

Since N is finitely generated, there exists an H-subset Σ of Ω such that Σ/H is
finite and N is a Q[H]-submodule of Q[Σ]. Since N and Q[Σ] are direct summands
of Q[Ω] as Q[H]-modules, it follows that N is a direct summand of the finitely
generated proper permutation Q[H]-module Q[Σ].

Proposition 4.4 implies that the pseudo-norm ‖ ‖N is a norm and ‖ ‖N ∼ ‖ ‖
Σ
1

on N . Since ‖ ‖Σ1 = ‖ ‖Ω1 on Q[Σ], it follows that ‖ ‖N ∼ ‖ ‖
Ω
1 on the elements

of N . �

4.5. Weak n-dimensional linear isoperimetric inequality. Let G be a TDLC-
group of type FPn+1. Then there exists a partial proper permutation resolution

(4.4) Q[Ωn+1]
δn+1 // Q[Ωn]

δn // · · · // Q[Ω1]
δ1 // Q[Ω0] // Q // 0

of finite type, i.e. it consists of finitely generated discrete Q[G]-modules. We say
that G satisfies the weak n-dimensional linear isoperimetric inequality if ker(δn) is
an undistorted submodule of Q[Ωn]. The special case for n = 1 is referred as the
weak linear isoperimetric inequality.

Note that, by Proposition 4.2, ‖ ‖Ωn

1 �ı ‖ ‖ker(∂n) where ı : ker(∂n) → Q[Ωn]

is the inclusion. Hence, the weak n-dimensional linear isoperimetric inequality is

equivalent to the existence of a constant C > 0 such that ‖ ‖ker(∂n) ≤ C ‖ ‖
Ωn

1 on

ker(∂n).
The proof of the following proposition is an adaption of the proof of [27, Theorem

3.5] that we have included for the reader’s convenience.

Proposition 4.6. For a TDLC-group G of type FPn+1, the property of satisfying
the weak linear n-dimensional isoperimetric inequality is independent of the choice
of the proper permutation resolution of finite type in Q[G]dis.

Proof. Let (Q[Ωi], ∂i), (Q[Λi], δi) be a pair of proper permutation resolutions of Q
which contain finitely generated modules for degrees i = 0, . . . , n + 1. Suppose G
satisfies the weak n-dimensional linear isoperimetric inequality with respect to the
resolution (Q[Λi], δi). Hence there is C > 0 such that

(4.5) ‖x‖ker(δn) ≤ C ‖x‖
Λn

1 .
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for all x ∈ ker(δn).
Since any two projective resolutions of Q are chain homotopy equivalent, there

exist chain maps f : (Q[Ωi], ∂i)→ (Q[Λi], δi)) and g : (Q[Λi], δi)→ (Q[Ωi], ∂i), and
a 1-differential h : (Q[Ωi], ∂i)→ (Q[Ωi], ∂i) such that

(4.6) ∂i+1 ◦ hi + hi−1 ◦ ∂i = gi ◦ fi − Id.

Diagrammatically, one has

(4.7) · · · // Q[Ωn+1]
∂n+1

//

fn+1

��

Q[Ωn]
∂n

//

fn

��

hn

ww
Q[Ωn−1]

fn−1

��

hn−1

ww
// · · ·

· · · // Q[Λn+1]
δn+1

//

gn+1

OO

Q[Λn]
δn

//

gn

OO

Q[Λn−1]

gn−1

OO

// · · ·

Since gn+1, fn and hn are morphisms between finitely generated discrete Q[G]-
modules, Proposition 4.2 applies and, therefore, the constant C defined above can
be assumed to satisfy:

(D1) ‖gn+1(λ)‖Ωn+1

1 ≤ C ‖λ‖Λn+1

1 , for all λ ∈ Q[Λn+1];

(D2) ‖fn(ω)‖Λn

1 ≤ C ‖ω‖Ωn

1 , for all ω ∈ Q[Ωn]; and

(D3) ‖hn(ω)‖Ωn+1

1 ≤ C ‖ω‖Ωn

1 , for all ω ∈ Q[Ωn].

We prove below that that there is a constant D > 0 such that for any α ∈ ker(∂n)
and ε > 0

‖α‖ker(∂n) ≤ D‖α‖Ωn
1 +Dε.

Then it follows that G satisfies the weak n-dimensional linear isoperimetric inequal-
ity with respect to the resolution (Q[Ωi], ∂i) by letting ε→ 0.

Let α ∈ ker(∂n) and ε > 0. By the diagram (4.7), it follows that fn(α) ∈
ker(δn) = δn+1(Q[Λn+1]). Since Q[Λn+1] is finitely generated, we can consider the
filling-norm ‖ ‖ker(δn) to be induced by δn+1. Therefore, by the definition of the

filling norm ‖ ‖ker(δn) there is β ∈ Q[Λn+1] such that δn+1(β) = fn(α) and

(4.8) ‖β‖Λn+1

1 ≤ ‖fn(α)‖ker(δn) + ε.

By evaluating α in Equation 4.6, we can write

α = gn(fn(α))− ∂n+1(hn(α))(4.9)

= gn(δn+1(β))− ∂n+1(hn(α))

= ∂n+1 (gn+1(β)− hn(α)) .

Hence

‖α‖ker(∂n) ≤ ‖gn+1(β)− hn(α)‖Ωn+1

1 by (4.9) and definition of filling norm

≤ ‖gn+1(β)‖Ωn+1

1 + ‖hn(α)‖Ωn+1

1

≤ C‖β‖Λn+1

1 + C‖α‖Ωn
1 by inequalities (D1) and (D3)

≤ C‖fn(α)‖ker(δn) + Cε+ C‖α‖Ωn
1 by inequality (4.8)

≤ C2‖fn(α)‖Λn
1 + C‖α‖Ωn

1 + Cε by inequality (4.5)

≤ C3‖α‖Ωn
1 + C‖α‖Ωn

1 + Cε by inequality (D2). �

4.6. Weak 0-Dimensional Linear Isoperimetric Inequality and Profinite
Groups. As previously mentioned, a group is profinite if and only if it is a compact
TDLC-group [37, Proposition 0]. The following statement is a simple application
of the definitions of this section.
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Proposition 4.7. Let G be a TDLC-group. Then G is compact if and only if
it is compactly generated and satisfies a weak 0-dimensional linear isoperimetric
inequality.

The only if direction of the proposition is immediate. Indeed, if G is a compact
TDLC-group, then the trivial G-module Q is projective in Q[G]dis. In this case,
one can read the weak 0-dimensional isoperimetric inequality from the resolution
0→ Q→ Q→ 0.

For the rest of the section, suppose that G is a TDLC-group satisfying a weak
0-dimensional linear isoperimetric inequality. Let Γ be a Cayley-Abels graph of G,
let dist be the combinatorial path metric on the set of vertices V of Γ, and let E
denote the set of edges of Γ. In order to prove that G is profinite, it is enough to
show that V is finite.

Choose an orientation for each edge of Γ and consider the augmented rational
cellular chain complex of Γ,

Q[E]
δ→ Q[V ]

ε→ Q→ 0.

Since Γ is Cayley-Abels graph, this is a partial proper permutation resolution.
Following ideas in [19], define a partial order � on Q[E] as follows. For ν, µ ∈

Q[E], ν =
∑
e∈E tee and µ =

∑
e∈E see, then ν � µ if and only if t2e ≤ tese for

every e ∈ E. Observe that if ν � µ then ‖µ‖E1 = ‖µ − ν‖E1 + ‖ν‖E1 ; in particular
‖ν‖E1 ≤ ‖µ‖E1 . An element ν ∈ Q[E] is called integral if te ∈ Z for each e. Define
analogously � on Q[V ].

Lemma 4.8. Suppose that µ ∈ Q[E] is integral and δ(µ) = m(v−u) where u, v ∈ V
and m is a positive integer. Then there is an integral element ν ∈ Q[E] such that
δ(ν) = v − u and ν � µ and ‖ν‖E1 ≥ dist(u, v).

Sketch of the proof. Suppose µ =
∑
e∈E see. Consider a directed multigraph Ξ

(multiple edges between distinct vertices are allowed) with vertex set V and such
that for each e ∈ E if se ≥ 0 then there are |se| edges from a to b where δ(e) = b−a;
and if se < 0 then there are |se| from b to a. The degree sum formula for directed
graphs implies that u and v are in the same connected component of Ξ. It is an
exercise to show that there is a directed path γ from u to v in Ξ that can be assumed
to be injective on vertices. The path γ induces an element ν ∈ Q[E] such that if
ν =

∑
e∈E tee then te = ±1 and ν � µ. Moreover γ induces a path in Γ from u to

v and hence ‖ν‖E1 ≥ dist(u, v). �

Suppose, for a contradiction, that V is an infinite set. Fix v0 ∈ V . For every
n ∈ N, let vn ∈ V such that dist(v0, vn) ≥ n. Note that such a vertex vn always
exists since Γ is locally finite and connected. Let αn = vn − v0 and observe that
αn ∈ ker(ε) and ‖αn‖V1 = 2. We will show that ‖αn‖ker(ε) ≥ n for every n, and
hence G cannot satisfy a weak 0-dimensional linear isoperimetric inequality. Fix
n ∈ N, and let µ =

∑
e∈E see ∈ Q[E] such that δ(µ) = αn = vn − v0.Then there is

m ∈ N such that mµ is integral. Since δ(mµ) = m(vn−v0), Lemma 4.8 implies that
there is ν1 ∈ Q[E] such that δ(ν1) = vn − v0 and ν1 � mµ and ‖ν‖1 ≥ dist(v0, vn).
Let µ1 = mµ− ν1 and note that µ1 is integral, δ(µ1) = (m− 1)(vn − v0), and

‖mµ‖E1 = ‖µ1‖E1 + ‖ν1‖E1 ≥ ‖µ1‖E1 + dist(v0, vn).

An induction argument on m then proves that ‖mµ‖E1 ≥ m dist(v0, vn) and hence
‖µ‖E1 ≥ dist(v0, vn). Since µ was an arbitrary element such that δ(µ) = αn, it
follows tha that ‖αn‖kerδ ≥ dist(v0, vn) ≥ n.
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5. Proof of Subgroup Theorem

The proof of the theorem relies on the following lemma. Let G be a TDLC-group
of type FPn and H a closed subgroup of G of type FPn.

Lemma 5.1. There are partial proper permutation resolutions

Q[Ωn]
δn−→ Q[Ωn−1]→ · · · → Q[Ω0]→ Q→ 0,

Q[Σn]
∂n−→ Q[Σn−1]→ · · · → Q[Σ0]→ Q→ 0

of Q in Q[H]dis and Q[G]dis respectively, satisfying the following properties.

(1) Ω0, . . . ,Ωn are finitely generated H-sets;
(2) Σ0, . . . ,Σn are finitely generated G-sets;
(3) restricting the G-action on each Σi to H, Ωi is an H-subset of Σi via

ιi : Ωi → Σi;
(4) the diagram

ker(δn) //

��

Q[Ωn]
δn //

Q[ιn]

��

· · · // Q[Ω0]
δ0 //

Q[ι0]

��

Q // 0

ker(∂n) // Q[Σn]
∂n // · · · // Q[Σ0]

∂0 // Q // 0

of Q[H]-modules commutes;
(5) coker(ker(δn)→ ker(∂n)) is a projective Q[H]-module.

Proof. Take a partial proper permutation resolution

Q[Σn]
∂n−→ Q[Σn−1]→ · · · → Q[Σ0]→ Q→ 0

of Q in Q[G]dis. We construct the required resolution

Q[Ωn]
δn−→ Q[Ωn−1]→ · · · → Q[Ω0]→ Q→ 0

in Q[H]dis by induction on n. So suppose we have already constructed a diagram

ker(δn−1) //

��

Q[Ωn−1]
δn−1 //

Q[ιn−1]

��

· · · // Q[Ω0]
δ0 //

Q[ι0]

��

Q // 0

ker(∂n−1) // Q[Σn−1]
∂n−1 // · · · // Q[Σ0]

∂0 // Q // 0

satisfying the conditions for n− 1 (this is trivial for the base case n = 0).
Write ι for the induced map ker(δn−1)→ ker(∂n−1); by hypothesis, there is a map

π : ker(∂n−1) → ker(δn−1) such that πι is the identity on ker(δn−1). Since H has
type FPn, ker(δn−1) is finitely generated; pick a finite generating set x1, . . . , xk and

pick a preimage yi of each element xi in Q[Σn], via the map Q[Σn]
∂n−→ ker(∂n−1)

π−→
ker(δn−1). Each yi is a finite sum

∑ji
j=1 aijαij with αij ∈ Σn and aij ∈ Q. Now

let Ωn be the (finitely generated) H-subset of Σn generated by the αij . We get an
induced map π∂nQ[ιn] : Q[Ωn] → ker(δn−1) extending the commutative diagram
as required; it only remains to check condition 5.
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To see this, consider the following commutative diagram in Q[H]dis

0

��

0

��

0

��
0 // ker(δn)

ι′

��

// Q[Ωn]

Q[ιn]

��

δn // ker(δn−1) //

ι

��

0

0 // ker(∂n) //

��

Q[Σn]
∂n //

��

ker(∂n−1) //

��

0

0 // coker(ι′) //

��

coker(Q[ιn]) //

��

coker(ι) //

��

0

0 0 0.

Note that the diagram consists of exact rows and exact columns. Since Q[ΩHn ] is a
direct summand of Q[ΣGn ] in Q[H]dis, it follows that each coker(Q[ιn]) is projective;
coker(ι) is projective by hypothesis. Then exactness of the bottom row implies that
coker(ι′) is projective. �

Remark 5.2. In Q[G]dis, it is possible to develop a homological mapping cylin-
der argument analogous to [3, Proposition 4.1] that yields a similar conclusion to
Lemma 5.1 but only for open subgroups of G. This argument was developed in a
preliminary version of this article.

Proof of Theorem 1.5. SinceG andH have type FPn, we may use the partial proper
permutation resolutions described in Lemma 5.1; we keep the notation from there.
Because G has type FPn+1 and cdQ(G) = n + 1, ker(∂n) is finitely generated (in

Q[G]dis) and projective; because H has type FPn+1 and coker(ι′) is projective,
ker(δn) is a finitely generated (in Q[H]dis) summand of ker(∂n). So:

(1) ‖ ‖ker(δHn ) ∼ ‖ ‖ker(∂G
n ) on the elements of ker(δHn ), by Proposition 4.5;

(2) ‖ ‖Ω
H
n

1 ∼ ‖ ‖Σ
G
n

1 on the elements of Q[ΩHn ], because Ωn is a subset of Σn;

(3) ‖ ‖ker(∂G
n ) ∼ ‖ ‖

ΣG
n

1 on the elements of ker(∂Gn ), because G satisfies the
weak n-dimensional linear isoperimetric inequality.

Therefore ‖ ‖ker(δHn ) ∼ ‖ ‖
ΩH

n
1 on the elements of ker(δHn ), i.e. H satisfies the weak

n-dimensional isoperimetric inequality. �

6. Weak linear isoperimetric inequality and hyperbolicity

The notion of linear isoperimetric inequality was used to characterise discrete
hyperbolic groups by Gersten [21]. Different generalizations of Gersten’s result
have been presented by various authors; see for example [25], [34] and [27]. In
particular, Manning and Groves [25] reformulated Gersten’s argument to provide a
homological characterization of simply connected hyperbolic 2-complexes by means
of a homological isoperimetric inequality. Here we use results from [25] to provide
an analogue characterization of hyperbolic TDLC-groups.

Let X be a complex with i-skeleton denoted by X(i). Consider the cellular chain
complex (C•(X,Q), ∂•) of X with rational coefficients. Each vector space Ci(X,Q)
is Q-spanned by the collection of i-cells σ of X. An i-chain α is a formal linear
combination

∑
σ∈X(i) rσσ where rσ ∈ Q. The `1-norm on Ci(X,Q) is defined as

‖α‖X,i1 =
∑
|rσ|,
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where | | denotes the absolute value function on Q.

Definition 6.1 ( [25, Definition 2.18] Combinatorial path). Let X be a complex.
Suppose I is an interval with a cellular structure. A combinatorial path I → X(1)

is a cellular path sending 1-cells to either 1-cells or 0-cells. A combinatorial loop
is a combinatorial path with equal endpoints.

From here on, to simplify notation, the 1-chain induced by a combinatorial loop
c in X is denoted by c as well.

Definition 6.2 ([25, Definition 2.28] Linear Homological isoperimetric inequality).
Let X be a simply connected complex. We say that X satisfies the linear homological
isoperimetric inequality if there is a constant K ≥ 0 such that for any combinatorial
loop c in X there is some σ ∈ C2(X,Q) with ∂(σ) = c satisfying

(6.1) ‖σ‖X,21 ≤ K‖c‖X,11 .

Definition 6.3. Let G be a compactly presented TDLC-group. There exists a
simply connected G-complex X with compact open cell stabilizers, the 2-skeleton
X(2) is compact modulo G, the G-action is cellular and an element in G fixing a
cell setwise fixes it already pointwise. The group G satisfies the linear homological
isoperimetric inequality if X does.

The above definition is independent of the choice of X as a consequence of
Proposition 4.6, the fact that a compactly presented TDLC-group has type FP2,
and the following statement.

Proposition 6.1. Suppose G is a compactly presented TDLC-group and X is a
topological model of G of type F2. Then G satisfies the weak linear isoperimetric
inequality if and only if X satisfies the linear homological isoperimetric inequality.

Proof. The augmented cellular chain complex (C•(X,Q), ∂•) of X is a proper par-
tial permutation resolution of Q of type FP2. The module Ci(X,Q) is a proper
permutation module and we can take as its filling norm ‖ ‖Ci

the `1-norm induced
by G-set of i-cells.

The weak linear isoperimetric inequality means that the filling norm ‖ ‖Z1
of

Z1(X,Q) is equivalent to the restriction of ‖ ‖C1
to Z1(X,Q). Hence there is a

constant C > 0 such that ‖ ‖Z1
≤ C ‖ ‖C1

on Z1(X,Q). To prove the linear
homological isoperimetric inequality is enough consider non-trivial combinatorial
loops, the inequality is trivial otherwise. Let c be a non-trivial combinatorial loop
and let µ ∈ C2(X) such that ∂µ = c and ‖µ‖C2

≤ ‖c‖Z1
+1. In particular, ‖µ‖C2

≤
‖c‖Z1

+‖c‖C1
, since ‖c‖C1

is a positive integer. It follows that ‖µ‖C2
≤ (C+1) ‖c‖C1

for any non-trivial combinatorial loop.
Conversely, suppose that X satisfies the linear homological isoperimetric inequal-

ity for a constant C. Let γ ∈ Z1(X,Q). Then the filling norm on γ ∈ Z1(X,Q) is
given by ‖γ‖Z1

= inf{‖µ‖C2
: µ ∈ C2(X,Q), ∂µ = γ}. There is an integer m such

that mγ is an integer cycle. Then mγ = c1 + c2 + · · ·+ ck where each ci is a cycle
induced by a combinatorial loop, and ‖mγ‖C1

=
∑
‖ci‖C1

, see [23, Lemma A.2].

Then there are 2-cycles σi ∈ C2(X,Q) such that ∂σi = ci and ‖σi‖C2
≤ C ‖ci‖C1

.
It follows that

‖mγ‖Z1
≤

∥∥∥∥∥∑
i

σi

∥∥∥∥∥
C2

≤
∑
i

‖σi‖C2
≤ C

∑
i

‖ci‖C1
= C ‖mγ‖C1

.

Since both ‖ ‖Z1
and ‖ ‖C1

are homogeneous (see (N2) in Section 4), the previous

inequality implies that ‖ ‖Z1
≤ C ‖ ‖C1

on Z1(X,Q). On the other hand, since

the inclusion Z1(X,Q) ↪→ C1(X,Q) is bounded, there is another constant C ′ such
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that ‖ ‖C1
≤ C ′ ‖ ‖Z1

on Z1(X,Q). Therefore the norms ‖ ‖Z1
and ‖ ‖C1

are

equivalent on Z1(X,Q). �

Below we recall a characterization of hyperbolic simply connected 2-complexes
from [25].

Proposition 6.2. [25, Proposition 2.23, Lemma 2.29, Theorem 2.30 ] Let X be a
simply connected 2-complex.

(1) If X(1) is hyperbolic, then X satisfies the linear homological isoperimetric
inequality.

(2) If there is a constant M such that the attaching map for each 2-cell in X
has length at most M , and X satisfies a linear homological isoperimetric
inequality; then X(1) is hyperbolic.

Proof of Theorem 1.4. Let G be a compactly generated TDLC-group. Suppose
that G is hyperbolic. By Proposition 3.7, G is compactly presented and there is
a topological model X of G of type F2. By Proposition 3.3, the 1-dimensional
complex X(1) is quasi-isometric to a Cayley-Abels graph of G. It follows that X(1)

is hyperbolic. Hence, Propositions 6.1 and 6.2 imply that G satisfies the weak linear
isoperimetric inequality.

Conversely, suppose that G is compactly presented and satisfies the weak linear
isoperimetric inequality. Proposition 3.6 implies that there is a topological model X
of G of type F2. By Proposition 6.1, X satisfies the linear homological isoperimetric
inequality. Since the G-action on the 2-skeleton X(2) has finitely many G-orbits
of 2-cells, there is a constant M such that the attaching map for each 2-cell in X
has length at most M . Then Proposition 6.2 implies that X(1) is hyperbolic. By
Proposition 3.3, the Cayley-Abels graphs of G are hyperbolic. �

7. Small cancellation quotients of amalgamated products of
profinite groups

This section relies on small cancellation theory over free products with amal-
gamation as developed in Lyndon-Schupp textbook [31, Chapter V, Section 11].
Before we state the main result of the section, we recall some of the terminology.

Let A and B be groups, and let C be a common subgroup. A reduced word1 is
a sequence x1 . . . xn, n ≥ 0, of elements of A ∗C B such that

(1) Each xi belongs to one of the factors A or B.
(2) Successive xi, xi+1 belong to different factors.
(3) If n > 1, no xi belongs to C.
(4) If n = 1, then x1 6= 1.

A sequence x1 . . . xn is semi-reduced if it satisfies all the above items with (2) re-
placed by

(2’) The product of successive xi, xi+1 does not belong to C.

Every element of A ∗C B can be represented as the product of the elements in a
reduced word. Moreover, if x1 . . . xn, n ≥ 1 is a reduced word, then the product
x1 · · ·xn is not trivial in A ∗C B (see [31, Theorem 2.6]). A reduced word w =
x1 . . . xn is cyclically reduced if n = 1 or if xn and x1 are in different factors of
A ∗C B. The word w is weakly cyclically reduced if n = 1 or if xnx1 /∈ C.

A subset R of words in A ∗C B is symmetrized if r ∈ R implies r is weakly
cyclically reduced and every weakly cyclically reduced conjugate of r±1 is also in
R. A symmetrized subset R is finite if all elements represented by words in R
belong to a finite number of conjugacy classes in A ∗C B. Let R be a symmetrized

1In [31, Section V Chapter 11] this is also called normal form.
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subset of A∗CB. A word b is said to be a piece (relative to R) if there exist distinct
elements r1 and r2 of R such that r1 = bc1 and r2 = bc2 in semi-reduced form.

C ′(λ): If r ∈ R has semi-reduced form r = bc where b is a piece, then |b| < λ|r|.
Further, |r| > 1/λ for all r ∈ R.

Theorem 7.1. Let A ∗C B be the amalgamated free product of the profinite groups
A,B over a common open subgroup C. Let R be a finite symmetrized subset of
A ∗C B that satisfies the C ′(1/12) small cancellation condition. Then the quotient
G = (A ∗C B)/〈〈R〉〉 is a hyperbolic TDLC-group with cdQ(G) ≤ 2.

Since the rational discrete cohomological dimension of a TDLC-group G is less
or equal to the geometric dimension of a contractible G-CW-complex acted on by
G with compact open stabilizers (see [16, Fact 2.7] for example), in order to prove
the theorem, we construct a contractible cellular 2-dimensional G-complex X with
compact open cell stabilizers, and such that its 1-skeleton is hyperbolic. The 1-
skeleton is obtained as a quotient of the Bass-Serre tree of A ∗C B, and then X is
obtained by pasting G-orbits of 2-cells in one to one correspondence with conjugacy
classes defined by R.

Recall that there exists a unique group topology on A ∗C B with the following
properties (see [18, Proposition 8.B.9] for example): the natural homomorphisms
A→ A∗CB, B → A∗CB, and C → A∗CB are topological isomorphisms onto open
subgroups of A ∗C B. Moreover, A ∗C B is a TDLC-group, and in particular, all
open subgroups of C form a local basis at the identity of compact open subgroups
of A ∗C B.

Proof. Let T be the Bass-Serre tree of A ∗C B. Observe that T is locally finite,
the action of A ∗C B on T is cobounded and it has compact open stabilizers. In
particular, the action of A∗C B on T is geometric and hence A∗C B is a hyperbolic
TDLC-group.

Let N denote the normal closure of R in A ∗C B. By Greendlinger’s lemma [31,
Ch. V. Theorem 11.2], the natural morphisms A → G and B → G are monomor-
phisms. It follows that the subgroup N does not intersect A, B and C. Thus the
action of N on the tree T is free, and as a consequence N is discrete. Hence N is
closed in A ∗C B, and G is a TDLC-group.

Let X(1) denote the quotient graph T/N . Since N was acting freely and cellularly
on T , the quotient map ρ : T → X(1) is a covering map. Since T is locally finite,
X(1) is locally finite. Since the quotient map A ∗C B → G is open, the action of
A ∗C B on T induces an action of G on X(1) which is cobounded and has compact
open stabilizers.

Let x0 be a fixed vertex of T that we consider as the base point from now
on. Since T is simply connected, there is a natural isomorphism from N to the
fundamental group π1(X(1), ρ(x0)). Specifically, for each g ∈ N , let αg be the

unique path in T from x0 to g.x0. Let γg = ρ ◦ αg be the closed path in X(1)

induced by αg based at ρ(x0). Thus, the isomorphism from N to π1(X(1), ρ(x0)) is
defined by g 7→ γg.

We are ready to define X. For g ∈ G and h ∈ N , let g.γh be the translated
closed path without an initial point, i.e., these are cellular maps from S1 → X.
Consider the G-set Ω = {g.γr | r ∈ R, g ∈ G} of closed paths in X(1). Let X be
the G-complex obtained by attaching a 2-cell to X(1) for every closed path in Ω. In
particular, the pointwise G-stabilizer of a 2-cell of X coincides with the pointwise
G-stabilizer of its boundary path and, therefore, compact and open. Then X is a
discrete G-complex of dimension 2. Observe that the natural isomorphism from N
to π1(X(1), ρ(x0)) implies that X is simply connected. Moreover, since R is finite,
X is a cobounded 2-dimensional discrete G-complex.
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We observe that X is a C ′(1/6) complex and in particular the one-skeleton of X
is a Gromov hyperbolic graph with respect to the path metric, this is a well known
consequence, see [24]. Let R1 and R2 be a pair of distinct 2-cells in X such that the
intersection of their boundaries contains an embedded path γ. We can assume, by
translating by an element of G, that the base point of X is either the initial vertex
of γ or the second vertex of γ. Let γ′ be the sub-path of γ with initial point the
base point of X; observe that |γ| ≤ |γ′| + 1. Consider the boundary paths of R1

and R2 starting at the base point and oriented such that γ′ is an initial sub-path
of both of them. Consider the lifts of the chosen boundary paths of R1 and R2 in
the tree T starting from the base point. They intersect along the lifting of the path
γ′. Let us call this path γ̂. Then the reduced word in A ∗C B corresponding to γ̂
is a piece, and hence its length is bounded by 1

12 |∂Ri|, for i = 1, 2. We have the
following inequality

|γ| ≤ |γ′|+ 1 = |γ̂|+ 1 ≤ 1

12
|∂Ri|+

1

12
|∂Ri|, for i = 1, 2.

Hence X is a C ′(1/6) complex.
We conclude that the complex X is contractible by using a well known argument

of Ol′shanskĭı [36]. By a remark of Gersten [20, Remark 3.2], if every spherical
diagram in X is reducible, then X has trivial second homotopy group, and therefore
X is contractible because it is simply connected. Let S → X be a spherical diagram,
and suppose that it is not reducible. Consider the dual graph Φ to the cellular
structure of S, specifically Φ is the graph whose vertices are the two cells of X
and there is an edge between two vertices for each connected component of the
intersection of the boundaries of the corresponding 2-cells. Observe that Φ is planar.
Since X is a C ′(1/6) complex, the boundary paths of 2-cells are embedded paths
and the intersection of the boundaries of any pair of 2-cells is connected, and hence
Φ is simplicial. Also since X is C ′(1/6), every vertex of Φ has degree at least
6. Since a finite planar simplicial graph has at least one vertex of degree at most
5, we have reached a contradiction and therefore the diagram S → X has to be
reducible. The above sketched argument can be found in [32, Proof of Theorem
6.3] in a different framework. �
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