
Computer Physics Communications 263 (2021) 107908

l
M

a
h
t
m
l
n
d
t
t
e

c

✩

C
s

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

MCNNTUNES: Tuning ShowerMonte Carlo generators withmachine
earning✩,✩✩

arco Lazzarin a, Simone Alioli b, Stefano Carrazza a,∗

a TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy
b Dipartimento di Fisica, Università degli Studi di Milano Bicocca and INFN Sezione di Milano Bicocca, Milan, Italy

a r t i c l e i n f o

Article history:
Received 16 October 2020
Received in revised form 22 January 2021
Accepted 3 February 2021
Available online 20 February 2021

Keywords:
Event generator tuning
Machine learning

a b s t r a c t

The parameters tuning of event generators is a research topic characterized by complex choices: the
generator response to parameter variations is difficult to obtain on a theoretical basis, and numerical
methods are hardly tractable due to the long computational times required by generators. Event
generator tuning has been tackled by parametrization-based techniques, with the most successful
one being a polynomial parametrization. In this work, an implementation of tuning procedures based
on artificial neural networks is proposed. The implementation was tested with closure testing and
experimental measurements from the ATLAS experiment at the Large Hadron Collider.
Program summary
Program Title: MCNNTUNES
CPC Library link to program files: https://doi.org/10.17632/dmkydsxgd3.1
Developer’s repository link: https://github.com/N3PDF/mcnntunes
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: Shower Monte Carlo generators introduce many parameters that must be tuned
to reproduce the experimental measurements. The dependence of the generator output on these
parameters is difficult to obtain on a theoretical basis.
Solution method: Implementation of a tuning method using supervised machine learning algorithms
based on neural networks, which are universal approximators.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Shower Monte Carlo (SMC) event generators are tools that
pply shower algorithms to simulated collisions of particles at
igh energies. They introduce many parameters, mainly due to
he usage of phenomenological models, like the hadronization
odel or the underlying event model, needed to describe the

ow-energy limit of quantum chromodynamics (QCD) which is
ot easily calculable from first principles. These parameters are
ifficult to obtain on a theoretical basis, so they must be carefully
uned in order to make the generators reproduce the experimen-
al measurements. The procedure of estimating the best value for
ach parameter is called event generator tuning.
This tuning procedure is made more difficult by the high

omputational cost of running a generator, so it requires methods

✩ The review of this paper was arranged by Prof. Z. Was.
✩ This paper and its associated computer program are available via the
omputer Physics Communication homepage on ScienceDirect (http://www.
ciencedirect.com/science/journal/00104655).
∗ Corresponding author.

E-mail address: stefano.carrazza@unimi.it (S. Carrazza).
ttps://doi.org/10.1016/j.cpc.2021.107908
010-4655/© 2021 Elsevier B.V. All rights reserved.
to study the dependence between a generator output and its
parameters. Moreover, since the observables considered while
analysing the generator output play a pivotal role in determining
the tuning, one needs to model this dependence for different
observables at the same time.

The current state-of-the-art tuning procedure is based on a
polynomial parametrization of the generator response to param-
eter variations, followed by a numerical fit of the parametrized
behaviour to experimental data. This is the procedure which is
implemented in Professor [1], the primary tool for SMC event
generator tuning at the Large Hadron Collider (LHC). However,
the assumption that the dependence of the generator output on
its parameters is polynomial is not always justified.

This paper investigates new tuning procedures based on ar-
tificial neural networks. Artificial neural networks are universal
function approximators [2–4], providing accurate predictive mod-
els with a finite number of parameters, as shown in early at-
tempts [5]. Two different tuning procedures are presented, called
Per Bin and Inverse from now on. The former follows the same
approach of Professor, but with a different parametrization
model made of fully-connected neural networks and a different

https://doi.org/10.1016/j.cpc.2021.107908
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.107908&domain=pdf
https://doi.org/10.17632/dmkydsxgd3.1
https://github.com/N3PDF/mcnntunes
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:stefano.carrazza@unimi.it
https://doi.org/10.1016/j.cpc.2021.107908


M. Lazzarin, S. Alioli and S. Carrazza Computer Physics Communications 263 (2021) 107908

i

m
T
f
p
T
a
P
g
T
e

t
d
a

2

t
s
d

2

t
t
o

p
t
i
t
a
u
c

p
d
n
v
e

b

a
s

g
l
t
v
t
T
p
c
l

χ

m
t
f
t
t

2

i
r
i
m
f
a
a
t
t
i
n
c

Fig. 1. An illustration of the parametrization of the generator response as
mplemented in the Per Bin model.

inimization algorithm: the evolutionary algorithm CMA-ES [6].
he latter takes a completely different approach: by using a
ully-connected neural network, it learns to predict directly the
arameters that the generator needs to output a given result.
hese two procedures were implemented in the Python pack-
ge MCNNTUNES [7] and then tested with the event generator
YTHIA8 [8]. Two different datasets of Monte Carlo runs were
enerated, with three and four tunable parameters respectively.
he procedures were tested with closure tests and with real
xperimental data taken from the ATLAS experiment [9,10].
A description of the procedures and their technical implemen-

ation is presented in Section 2, while Section 3 contains the
etails of the testing phase. Finally, the conclusion of this work
nd future development directions are presented in Section 4.

. Implementation

MCNNTUNES implements two different strategies for genera-
or tuning, both based on feedforward neural networks. In this
ection these two strategies are presented in detail, along with a
escription of their technical implementation.

.1. Per Bin model

The first strategy is a parametrization-based method similar
o Professor [1]. The work cycle is divided in three consecu-
ive steps: dataset generation, parametrization of the generator
utput, and the actual tuning step.
At first, a dataset of Monte Carlo runs is generated by sam-

ling parameter configurations from the parameter space, and
hen running the generator with each configuration. This step
s identical to the one in Professor. A standard choice for
he distributions used to sample the parameter configurations
re uniform distributions within some intervals chosen by the
ser. The boundaries reflect the user’s prior belief about the best
onfiguration.
Then, the generator response to parameter variations is

arametrized one bin at a time, using the previously created
ataset. The parametrization is tackled by feedforward neural
etworks, which take the parameters as input and return the
alue of a single bin. An independent neural network is used for
ach bin1 (see Fig. 1 for an illustration). The models are trained

with a gradient-based algorithm, as usual for feedforward neural
networks, with mean squared error as loss. The details of the

1 The hyperparameters are the same for each bin, only the parameters of the
iases and the kernels are different.
2

Fig. 2. An illustration of the Inverse model strategy.

rchitecture, the choice of the optimization algorithm and its
ettings are all configurable by the user.
Finally, the tuning step exploits the parametric model of the

enerator to define a surrogate loss function for the tuning prob-
em. In fact, the parametrization step creates a model h(i)(p) of
he generator, where p is the vector of parameters and h(i) the
alue of the ith bin of the output. It enables the prediction of
he generator output given a generic parameter configuration.
he quality of the prediction will depend on the quality of the
arametrization. The optimization problem underlying the tuning
an then be solved (approximately) by minimizing a surrogate
oss function, e.g.

2(p) =

N∑
i=1

(
h(i)(p) − h(i)

exp

)2

σ 2
(i)

(1)

The possibility of weighting each bin differently in the χ2 is also
implemented. Then, the minimization of this χ2 is performed
with the CMA-ES algorithm, which is a stochastic optimization
method for non-linear non-convex functions. The values of the
parameters that minimize the χ2 determine the best tune. The
inimization task can be carried out also with gradient-based op-

imizers. This possibility is implemented as an optional feature. A
irst test showed it performed worse than CMA-ES, but additional
ests with a careful tuning of the hyperparameters may change
his result.

.2. Inverse model

The previous strategy involved models with parameters as
nput and histograms as output: given a set of parameters, it
eturns the histograms related to some observables. This is the
nput/output structure of a generator. In contrast, the Inverse
odel tries to learn the inverted model of a generator, using a

eedforward neural network with the bin values as input layer
nd with the generator parameters as output layer (see Fig. 2 for
n illustration). In case of success, the model is able to predict
he parameters used for the generator given its results. Then,
uning the generator consists in feeding the experimental data
nto the model and inferring the parameters that the generator
eeds to reproduce them. The uncertainties of the predictions are
omputed in three steps:

1. At first, the experimental data are resampled many times
by using a multivariate Gaussian centred around the ac-
tual measurement, with a diagonal covariance matrix that
includes the data uncertainties:

norm · exp

⎛⎝−
1
2

Nbins∑
j=1

(
(xj − hj,exp)2/σ 2

j,exp

)⎞⎠
2. This set of histograms is fed into the neural network.
3. The output of the network is a distribution of predictions

for each parameter, and the uncertainties are computed as
the standard deviations of these distributions.



M. Lazzarin, S. Alioli and S. Carrazza Computer Physics Communications 263 (2021) 107908

2

(
b
m
a
r
b
e
e

d
σ
l
n
e
r

2

d
u
p
d
r
o
t
d
m
t
r

L

d
a
a

w

S
(
(

3

c
r
t
s
b
a
f

s
p
r

3

s
v
s
t
t
L

.3. Data augmentation

During the training of the Inverse model the output variables
the parameters) are exact, but the input variables (the histogram
ins) have a known uncertainty. In order to exploit this infor-
ation, the training with jitter [11] method was implemented as
n optional feature: at each training epoch, the entire dataset is
esampled following the data uncertainty. More precisely, let X
e the dataset matrix where each row is a Monte Carlo run, and
ach column is the value of a bin, and let σij be the corresponding
rror for each element Xij of X. Then, the training is done by

replacing Xwith X such that each element X ij is a random variable
istributed according to a Gaussian with mean Xij and variance
2
ij . X is resampled at each epoch. This resembles a Gaussian noise
ayer applied to the input layer, but here the σ of the Gaussian
oise is different for each node of the input layer, and for each
lement of the training set. This method can be seen as a form of
egularization, as proven in [11].

.4. Performance assessment

The program implements a performance assessment proce-
ure based on closure tests. A single closure test consists in
sing one Monte Carlo run as the experimental data, and then
erforming the tune; in this way, the obtained tunes can be
irectly compared with the real parameters used to generate that
un. Notice that run must be excluded from the training set,
therwise the result does not measure the ability of the procedure
o generalize to new examples. The user can provide two different
atasets of Monte Carlo runs: a training set, used to train the
odel, and a validation set, used to perform closure tests. Once

he model has been trained, a closure test is performed for each
un in the validation set, and a loss function defined as

=

∑
i

|ptruei − ppredi |

ptruei
(2)

is computed. The average of the losses of all closure tests is
used as validation loss. This loss could be interpreted as an
estimator of the accuracy of the tuning procedure, even though
it is unsatisfactory: the experimental data and the Monte Carlo
runs are not identically distributed nor generated by the same
data-generating underlying process. In fact, the generator may be
unable to represent the experimental data at all. However, this
loss could be used to tune the hyperparameters of the model, or
to compare different models.

2.5. Hyperparameter tuning

MCNNTUNES features a hyperparameter search procedure im-
plemented with Hyperopt [12,13]. Hyperopt is a library ded-
icated to the hyperparameter optimization of machine learning
algorithms. In particular, it takes care of scalar-valued functions
whose arguments are defined over a search space with a po-
tentially complicated structure: some arguments could be real-
valued (e.g. learning rates), others could be discrete (e.g. the
choice of the optimization algorithm), and the search space could
be tree-structured, i.e. some variables are defined only when
other parent variables take on a specific value (e.g. the number
of hidden layers and the number of units of each hidden layer).

The implementation of Hyperopt requires the definition of a
search space and the definition of the function to minimize (the
objective function). The search space is provided by the user in
the configuration of MCNNTUNES, using the format specified in the
documentation of Hyperopt.

The objective function must receive the sampled hyperpa-
rameters as input, create a model with these hyperparameters,
 a

3

train it, and evaluate the validation loss of that model, or at
least some sort of performance measurement with the ‘‘lower is
better’’ format. MCNNTUNES computes the performance measure-
ment presented in Section 2.4 as validation loss, provided that a
valid validation set of Monte Carlo runs is available. Specifically, it
trains the model on the training set, then performs a closure test
for every run in the validation set, computes the loss in Eq. (2) for
each of them, and finally returns the average of these losses as
validation loss. Hyperopt implements two different algorithms:
a random search, and a Sequential Model-Based Optimization
(SMBO) algorithm called Tree-structured Parzen Estimator [14].
MCNNTUNES uses the latter.

Moreover, MCNNTUNES supports the parallel search as imple-
mented in Hyperopt.

2.6. Technical details

The program is written in Python. The Monte Carlo runs
(histograms) are loaded with the YODA library [15], which is the
efault histogram format of Rivet [16]. The basic operations
re implemented with NumPy [17], while the machine learning
spects use Keras [18], with the TensorFlow framework [19]

as backend. It uses the pycma package [20] for the CMA-ES
algorithm. The procedures are implemented in the mcnntunes
script. The script accepts a configuration runcard in YAML format,
hich contains all program settings. This is the basic work cycle:

1. mcnntunes preprocess loads the Monte Carlo runs and
the experimental data, transforms the training set so that
each input or output has mean 0 and variance 1, computes
some useful statistics and saves all the data for future use.

2. mcnntunes model trains the model specified in the run-
card, and saves it for future use.

3. mcnntunes tune performs the tune with the experimental
data, and generates an HTML report with some information
about the whole tuning process.

ome additional features are useful for performance assessment
mcnntunes benchmark) and hyperparameter tuning
mcnntunes optimize).

. Results

This section presents the testing phase of MCNNTUNES. The
hoice of the generator, the parameters with their variation
anges, the process and the observables on which performing the
unes were chosen following the AZ tune [9] as reference. This
hould be considered only as a study of the efficiency and relia-
ility of the MCNNTUNES approach for some specific observables
nd data and not as an attempt to devise a new exhaustive tune
or the LHC.

The generation of some datasets of Monte Carlo runs is pre-
ented in Section 3.1; a systematic performance assessment is
resented in Section 3.2; finally, an AZ-like tune that tries to
eproduce some results of [9] is presented in Section 3.3.

.1. Datasets

The generation of the datasets followed the procedure pre-
ented in [9]. The Monte Carlo runs were generated with PYTHIA
ersion 8.240 [8], interfaced with the Rivet [16] package, ver-
ion 2.7.0. Two different analyses were performed: one involved
he measurement of the Z/γ ∗ boson transverse momentum dis-
ribution pZT in pp collisions at

√
s = 7 TeV [9] (analysis AT-

AS_2014_I1300647), the other involved the measurement of
ngular correlation φ⋆ [10] (analysis ATLAS_2012_I1204784),
η



M. Lazzarin, S. Alioli and S. Carrazza Computer Physics Communications 263 (2021) 107908

T
P

i
α

M
n
c
o
a
s

t
t
i

o
b

M
i
t
e
t
t
t
d
r

3

f
l
f
s
r
r
e
c

able 1
YTHIA8 setup and variation ranges.
Parameter Dataset 3P Dataset 4P

Primordial kT [GeV] 1.0–2.5 1.0–2.5

ISR αS (m2
Z ) 0.120–0.140 0.120–0.140

ISR prefT ,0 [GeV] 0.5–2.5 0.5–2.5

MPI prefT ,0 [GeV] 2.18 (fixed) 1.9–2.2

PYTHIA8 base tune Tune 4C [21] Tune 4C [21]
Number of events 4 · 106 4 · 106

Number of runs 512 1280

which probes the same physics of pZT but with higher experimen-
tal resolution. Thus, the activated process was f f → Z/γ ∗. The
nvestigated parameters are the primordial kT , the parton shower
S(m2

Z ) and the parton shower damping factor for the lower pT
cut-off (both for the initial state radiation, ISR from now on), and
the damping factor for the lower pT cut-off for the multiparton
interaction. Two different datasets were generated: one, the most
similar to [9], fixes the multiparton interaction parameter, while
the other does not. The former will be the dataset 3P from now
on, while the latter will be called 4P. Each parameter is sampled
uniformly within a range. The variation ranges and the setup of
PYTHIA8 are presented in Table 1.

The tunes in this section rely in the reconstruction of the
vector boson properties by combining dressed leptons, as defined
in the aforementioned Rivet analyses. We limit ourselves to
consider only distributions inclusive in rapidity. The tunes are
performed only for pZT < 26 GeV and φ⋆

η < 0.29, unless ‘‘all bins’’
is specified. Three different sets of measurements are selected:
one with only pZT measurements, another with φ⋆

η measurements,
and one using only the muon channel pZT measurement and the
electron channel φ⋆

η measurement.

3.2. Performance measurements

This subsection presents some performance measurements
on Professor and MCNNTUNES. The procedure is described as
follows.

At first, the dataset is split in training (80%), validation (10%)
and test set (10%).

Then, a hyperparameter optimization of the model is per-
formed by training each hyperparameter configuration on the
training set and selecting the configuration with the best loss
computed on the validation set. The loss function is the one pre-
sented in Section 2.4. For Professor, the hyperparameter search
consisted in a grid search for the polynomial order. In practice, the
best order was obtained by trying polynomials with degree from
one to seven. The other options were kept at their default values,
except the options -s 2 --scan-n=100 for prof2-tune. For
CNNTUNES, the hyperparameter search was performed by run-
ing Hyperopt, feeding it with the validation loss. The Hyperopt
onfigurations were the one in Table 2 plus another one focused
n the architecture only, presented in Table 3. Whether using data
ugmentation or not, instead, was chosen by performing a grid
earch on top of the Hyperopt scan.
Finally, the best model is retrained on both the training and

he validation set, and its performance is evaluated by closure
esting on the test set. A schematic view of the workflow is shown
n Fig. 3.

The results are presented in Table 4, for the Inverse model
nly. The performance of MCNNTUNES turns out to be slightly
etter than Professor, on average. Results are however lim-

ited to this particular benchmark, and may change with differ-
ent random seeds, losses, datasets, parameters and observables.
4

Table 2
Hyperopt configuration for the Inverse model - broad search.
Hyperparameter Variation range

# hidden layers 2–5
Units per layer 2–20
Activation function tanh, relu, sigmoid
Optimizer Various Keras optimizers
Epochs 250–10000 in discrete steps
Batch size 100, 200, 300, 400, 500

Number of trials 1000

Table 3
Hyperopt configuration for the Inverse model - architecture only.
Hyperparameter Variation range

# hidden layers 3–4
Units per layer 10–50 in step of 2
Activation function Sigmoid
Optimizer Adam [22]
Optimizer learning rate Default value
Initializer Glorot uniform [23]
Epochs 2500–15000 in steps of 500
Batch size 128

Number of trials 1000

Fig. 3. Illustration of the performance assessment procedure.

oreover, this benchmark uses Monte Carlo runs, and not exper-
mental data, so this performance measurement will not estimate
he real tuning precision with real experimental data, because
xperimental data and Monte Carlo runs are not drawn from
he same underlying data-generating distribution function. Due
o computation time constraints, performance measurements for
he Per Bin model were limited to restricted observables and
atasets, without validation-test split, but they showed solid
esults (see Table 5).

.3. Tunes

Finally, the datasets 3P and 4P were used to perform some
inal tunes. The hyperparameter configurations are the ones se-
ected in the hyperparameter tuning step of Section 3.2, except
or the Per Bin model for which the hyperparameters were cho-
en manually. The whole datasets were used for training. The
esults are presented in Tables 6 and 7 for the 3P and 4P dataset
espectively. Tunes obtained with the Per Bin model have no
rrors because no proper error estimation is implemented. A few
omments on these tunes may be made:

• Professor and the Per Bin model give similar results,
usually compatible with each other.



M. Lazzarin, S. Alioli and S. Carrazza Computer Physics Communications 263 (2021) 107908

T
T
p

able 4
est errors - Inverse model against Professor (polynomial order inside
arentheses).
Observables Inverse (%) Professor (%)

φ⋆
η , 3P 3.7 ± 0.5 4.8 ± 0.7 (3)

pZT , 3P 2.6 ± 0.3 3.1 ± 0.5 (3)
φ⋆

ηp
Z
T , 3P 3.2 ± 0.4 3.6 ± 0.5 (3)

φ⋆
η , 3P, all bins 4.4 ± 0.6 4.2 ± 0.7 (3)

pZT , 3P, all bins 2.5 ± 0.3 2.6 ± 0.4 (3)
φ⋆

ηp
Z
T , 3P, all bins 3.1 ± 0.4 3.1 ± 0.5 (3)

φ⋆
η , 4P 3.5 ± 0.2 4.6 ± 0.3 (5)

pZT , 4P 2.71 ± 0.16 3.28 ± 0.18 (5)
φ⋆

ηp
Z
T , 4P 3.2 ± 0.2 3.8 ± 0.3 (4)

φ⋆
η , 4P, all bins 3.7 ± 0.2 4.0 ± 0.3 (4)

pZT , 4P, all bins 2.89 ± 0.15 3.2 ± 0.2 (4)
φ⋆

ηp
Z
T , 4P, all bins 3.0 ± 0.2 3.4 ± 0.2 (4)

• The Inverse model sometimes gives different results: the
agreement with Professor is usually good for primor-

dial kT and αISR

S (m2
Z ) parameters, with some exceptions. The

5

Table 5
Validation losses (with smaller datasets). The hyperparameter search space was
similar to the one of Table 2 but without configurations with five hidden
layers.
Observables Per bin (%) Professor (%)

φ⋆
η , 3P 3.1 ± 0.5 3.6 ± 0.6

φ⋆
η , 4P 4.0 ± 0.3 4.0 ± 0.3

other parameters are harder to analyse and will be discussed
in the next points.

• The estimation of the MPI parameter by the Inverse model
does not work: the model predicts always a parameter near
the midpoint of the variation range, i.e. it is a trivial predic-
tor. This did not prevent the Inverse model to perform better
than Professor on closure testing, which means that both
algorithms fail, and the trivial prediction is just the way the
learning algorithm found to minimize the training loss.

• The choice of the variation ranges used to generate the
dataset strongly affects the quality of the procedure, because
the extrapolation outside them may be unreliable. Unfor-
tunately, many results suggest that the best value for ISR
Table 6
Tunes using dataset 3P.
Professor

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.77 ± 0.04 1.80 ± 0.04 1.77 ± 0.04
ISR αS (m2

Z ) 0.1232 ± 0.0002 0.1236 ± 0.0002 0.1236 ± 0.0002

ISR prefT ,0 [GeV] Left bound Left bound Left bound

MCNNTUNES, Per Bin model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.75 1.76 1.74
ISR αS (m2

Z ) 0.1233 0.1236 0.1236

ISR prefT ,0 [GeV] Left bound Left bound Left bound

MCNNTUNES, Inverse model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.75 ± 0.05 1.81 ± 0.05 1.77 ± 0.04
ISR αS (m2

Z ) 0.1249 ± 0.0006 0.1233 ± 0.0004 0.1241 ± 0.0005

ISR prefT ,0 [GeV] 0.9 ± 0.2 0.24 ± 0.18 0.8 ± 0.2
Table 7
Tunes using dataset 4P.
Professor

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.76 ± 0.05 1.80 ± 0.05 1.79 ± 0.04
ISR αS (m2

Z ) 0.1233 ± 0.0003 0.1237 ± 0.0002 0.1236 ± 0.0002

ISR prefT ,0 [GeV] Left bound Left bound 0.5 ± 1.9

MPI prefT ,0 [GeV] 2.11 ± 0.06 2.13 ± 0.07 Right bound

MCNNTUNES, Per Bin model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.70 1.76 1.76
ISR αS (m2

Z ) 0.1233 0.1237 0.1236

ISR prefT ,0 [GeV] Left bound Left bound Left bound

MPI prefT ,0 [GeV] 1.95 Right bound Right bound

MCNNTUNES, Inverse model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.69 ± 0.07 1.69 ± 0.04 1.60 ± 0.06
ISR αS (m2

Z ) 0.1246 ± 0.0007 0.12345 ± 0.00018 0.1238 ± 0.0007

ISR prefT ,0 [GeV] 0.9 ± 0.2 0.29 ± 0.09 0.6 ± 0.2

MPI prefT ,0 [GeV] 2.0468 ± 0.0011 2.0431 ± 0.0009 2.0450 ± 0.0009



M. Lazzarin, S. Alioli and S. Carrazza Computer Physics Communications 263 (2021) 107908
Table 8
Tunes using dataset 3P, all bins.
Professor

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.82 ± 0.05 1.79 ± 0.04 1.74 ± 0.04
ISR αS (m2

Z ) 0.1252 ± 0.0003 0.12370 ± 0.00017 0.1244 ± 0.0002

ISR prefT ,0 [GeV] 1.27 ± 0.16 Left bound 0.80 ± 0.14

MCNNTUNES, Per Bin model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.79 1.75 1.75
ISR αS (m2

Z ) 0.1251 0.1238 0.1246

ISR prefT ,0 [GeV] 1.18 0.54 0.89

MCNNTUNES, Inverse model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.87 ± 0.04 1.79 ± 0.03 1.75 ± 0.05
ISR αS (m2

Z ) 0.1256 ± 0.0003 0.12363 ± 0.00016 0.1244 ± 0.0003

ISR prefT ,0 [GeV] 1.36 ± 0.14 0.61 ± 0.08 0.85 ± 0.14
Table 9
Tunes using dataset 4P, all bins.
Professor

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.80 ± 0.05 1.75 ± 0.04 1.69 ± 0.04
ISR αS (m2

Z ) 0.1253 ± 0.0003 0.12370 ± 0.00018 0.1241 ± 0.0003

ISR prefT ,0 [GeV] 1.33 ± 0.14 Left bound 0.5 ± 0.4

MPI prefT ,0 [GeV] 2.00 ± 0.06 2.01 ± 0.04 2.05 ± 0.04

MCNNTUNES, Per Bin model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.79 1.73 1.66
ISR αS (m2

Z ) 0.1252 0.1237 0.1241

ISR prefT ,0 [GeV] 1.32 Left bound Left bound

MPI prefT ,0 [GeV] 1.90 1.99 2.01

MCNNTUNES, Inverse model

Parameter pZT φ⋆
η pZT φ⋆

η

Primordial kT [GeV] 1.79 ± 0.05 1.90 ± 0.06 1.72 ± 0.04
ISR αS (m2

Z ) 0.1250 ± 0.0003 0.1231 ± 0.0002 0.1238 ± 0.0003

ISR prefT ,0 [GeV] 1.12 ± 0.15 0.526 ± 0.016 0.83 ± 0.13

MPI prefT ,0 [GeV] 2.0473 ± 0.0005 2.04411 ± 0.00016 2.0460 ± 0.0004
prefT ,0 is somewhere outside the left bound of its variation
range. This is easy to observe for two-steps methods like
Professor and the Per Bin model: they model the genera-
tor behaviour in the parameter space, more precisely in the
hyperrectangle populated by the dataset, while the tunes
are found by a minimization algorithm that explores this
hyperrectangle. When the tunes seem outside of the varia-
tion ranges the algorithm finds a minimum at the boundary
of the parameters hyperrectangle. The minimizers can ex-
trapolate the results outside of the variation ranges, but
there the models may be unreliable. For the Inverse model
it is more complicated, because the bounds are not hard-
coded into the model. Moreover, it is difficult to understand
if the experimental data are near some Monte Carlo runs,
so that the prediction is reliable: the envelopes are not
useful because they show only whether the experimental
data are inside the bounding box of the Monte Carlo runs in
histograms space, but the runs do not populate this bound-
ing box uniformly. This happens because the user has no
direct control over the distribution of the runs in histogram
space but only over the distribution of the parameters used
to generate the runs, that are the output of the model. A
6

different choice of the latter will affect the predictions, but
the link between the distribution of the parameters of the
dataset and the reliability of the predictions is less clear.
When Professor suggests a value outside the variation
range, the behaviour of the Inverse model varies: sometimes
it directly predicts a value outside the variation range, some-
times a value near the left bound, sometimes a value further
away. When Professor founds a value inside the variation
range, the corresponding value for the Inverse model is
compatible with it (this happens in tunes performed over
all bins, shown in Tables 8 and 9).

4. Outlook

A deep learning approach to event generator tuning was
presented by introducing two different procedures, called Per
Bin strategy and Inverse strategy respectively. The former is a
variation of the Professor tuning procedure, that improves over
it by relaxing the assumption of a polynomial dependence of the
generator response to variations of the parameters. The latter is
a novel and completely different approach. The procedures were

tested with closure tests and real experimental data, though in



M. Lazzarin, S. Alioli and S. Carrazza Computer Physics Communications 263 (2021) 107908

l
t
b
s

ow dimensional parameter spaces. The Per Bin model closure
esting was very limited, due to computational time constraints,
ut showed solid results. The test with real experimental data
howed a behaviour similar to the one of Professor. The Inverse
model closure testing presented slightly better performances
than the ones of Professor, while the test with real experimen-
tal data showed some differences from the other procedures.

In addition to the fact that the parametrization is not bound
to polynomials anymore, already mentioned, another advantage
of MCNNTUNES is that the models can learn highly non-linear
functions with a limited number of parameters thanks to non-
linear activation functions, at least in principle. This can be of
support to the Inverse model strategy: a two-step method of
parametrization and minimization is replaced by a single-step
one, which is conceptually simpler, but the function to learn is
more complicated.

On the other hand, the procedure brings all the difficulties that
are typical of deep learning algorithms: the complexity of the
training step, the dependence of the performance on the choice
of the hyperparameters, the difficulty in the interpretation of the
behaviour of the trained model, the overfitting problem. More-
over, the hyperparameter tuning is computationally expensive,
especially for the Per Bin model, and this prevents the models to
reach their full potential. Finally, the Inverse strategy introduces
some practical problems, e.g. the error estimation and the reli-
ability of the predictions when the experimental measurements
have no Monte Carlo runs near them.

The behaviour of the procedures with a wider set of experi-
mental data is still unclear, and requires more in-depth studies.
In addition, whether the procedures scale well with the number
of parameters is still to be determined. Future investigations
may involve studying their performances in high dimensional
parameter spaces. Finally, further developments may solve the
practical problems highlighted above.

Nevertheless, this is a first attempt to bridge the power of
machine learning algorithms into the complexity of SMC tun-
ing. We auspicate that the greater flexibility allowed by this
tool will facilitate the tuning efforts inside the experimental
collaborations.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231. S.C. is supported by the European Research
Council under the European Union’s Horizon 2020 research and
innovation Programme (grant agreement number 740006). The
work of S.A. is supported by the ERC Starting Grant REINVENT-
714788. He also acknowledges funding from Fondazione Cariplo,
7

Italy and Regione Lombardia, Italy, grant 2017-2070 and by the
Italian MIUR through the FARE grant R18ZRBEAFC.

References

[1] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern, Eur. Phys. J. C
65 (2010) 331–357, http://dx.doi.org/10.1140/epjc/s10052-009-1196-7.

[2] K. Hornik, Neural Netw. 4 (2) (1991) 251–257, http://dx.doi.org/10.1016/
0893-6080(91)90009-T.

[3] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Neural Netw. 6 (6) (1993)
861–867, http://dx.doi.org/10.1016/S0893-6080(05)80131-5.

[4] Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, in: I. Guyon, U.V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.),
Advances in Neural Information Processing Systems, Vol. 30, Curran As-
sociates, Inc., 2017, pp. 6231–6239, URL http://papers.nips.cc/paper/7203-
the-expressive-power-of-neural-networks-a-view-from-the-width.pdf.

[5] A. Andreassen, B. Nachman, Phys. Rev. D 101 (9) (2020) 091901, http:
//dx.doi.org/10.1103/PhysRevD.101.091901, arXiv:1907.08209.

[6] N. Hansen, He CMA evolution strategy: A tutorial (2016), 2016, arXiv:
1604.00772.

[7] S. Carrazza, M. Lazzarin, N3pdf/mcnntunes: mcnntunes 0.1.0, 2020, http:
//dx.doi.org/10.5281/zenodo.4071125.

[8] T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Comm. 191 (2015)
159–177, http://dx.doi.org/10.1016/j.cpc.2015.01.024.

[9] ATLAS collaboration, J. High Energy Phys. 09 (2014) 145, http://dx.doi.org/
10.1007/JHEP09(2014)145.

[10] ATLAS collaboration, Phys. Lett. B 720 (1–3) (2013) 32–51, http://dx.doi.
org/10.1016/j.physletb.2013.01.054.

[11] W.M. Czarnecki, I.T. Podolak, in: K. Saeed, R. Chaki, A. Cortesi, S. Wierzchoń
(Eds.), Computer Information Systems and Industrial Management, CISIM
2013, in: Lecture Notes in Computer Science, vol. 8104, Springer, Berlin,
Heidelberg, 2013, http://dx.doi.org/10.1007/978-3-642-40925-7_35.

[12] J. Bergstra, D. Yamins, D. Cox, Proceedings of the 30th International
Conference on Machine Learning, in: PMLR, 28, 2013, pp. 115–123, (1).

[13] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D.D. Cox, Comput. Sci. Discov.
8 (1) (2015) 014008, http://dx.doi.org/10.1088/1749-4699/8/1/014008.

[14] J.S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, in: J. Shawe-Taylor, R.S.
Zemel, P.L. Bartlett, F. Pereira, K.Q. Weinberger (Eds.), Advances in
Neural Information Processing Systems, Vol. 24, Curran Associates, Inc.,
2011, pp. 2546–2554, URL http://papers.nips.cc/paper/4443-algorithms-
for-hyper-parameter-optimization.pdf.

[15] YODA, https://yoda.hepforge.org/.
[16] A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lönnblad, J. Monk,

H. Schulz, F. Siegert, Comput. Phys. Comm. 184 (12) (2013) 2803–2819,
http://dx.doi.org/10.1016/j.cpc.2013.05.021.

[17] T.E. Oliphant, A Guide to NumPy, Trelgol Publishing USA, 2006.
[18] F. Chollet, et al., Keras, 2015, https://keras.io.
[19] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow:
Large-scale machine learning on heterogeneous systems, 2015, software
available from tensorflow.org. URL https://www.tensorflow.org/.

[20] N. Hansen, Y. Akimoto, P. Baudis, CMA-ES/Pycma on Github, Zenodo, 2019,
http://dx.doi.org/10.5281/zenodo.2559634.

[21] R. Corke, T. Sjöstrand, J. High Energy Phys. (3) (2011) 32, http://dx.doi.org/
10.1007/JHEP03(2011)032.

[22] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014),
2014, arXiv:1412.6980.

[23] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of Machine Learning Research,
JMLR Workshop and Conference Proceedings, Chia Laguna Resort, vol .
9, Sardinia, Italy, 2010, pp. 249–256, URL http://proceedings.mlr.press/v9/
glorot10a.html.

http://dx.doi.org/10.1140/epjc/s10052-009-1196-7
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://dx.doi.org/10.1103/PhysRevD.101.091901
http://dx.doi.org/10.1103/PhysRevD.101.091901
http://dx.doi.org/10.1103/PhysRevD.101.091901
http://arxiv.org/abs/1907.08209
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
http://dx.doi.org/10.5281/zenodo.4071125
http://dx.doi.org/10.5281/zenodo.4071125
http://dx.doi.org/10.5281/zenodo.4071125
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://dx.doi.org/10.1007/JHEP09(2014)145
http://dx.doi.org/10.1007/JHEP09(2014)145
http://dx.doi.org/10.1007/JHEP09(2014)145
http://dx.doi.org/10.1016/j.physletb.2013.01.054
http://dx.doi.org/10.1016/j.physletb.2013.01.054
http://dx.doi.org/10.1016/j.physletb.2013.01.054
http://dx.doi.org/10.1007/978-3-642-40925-7_35
http://refhub.elsevier.com/S0010-4655(21)00044-8/sb12
http://refhub.elsevier.com/S0010-4655(21)00044-8/sb12
http://refhub.elsevier.com/S0010-4655(21)00044-8/sb12
http://dx.doi.org/10.1088/1749-4699/8/1/014008
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://yoda.hepforge.org/
http://dx.doi.org/10.1016/j.cpc.2013.05.021
http://refhub.elsevier.com/S0010-4655(21)00044-8/sb17
https://keras.io
https://www.tensorflow.org/
http://dx.doi.org/10.5281/zenodo.2559634
http://dx.doi.org/10.1007/JHEP03(2011)032
http://dx.doi.org/10.1007/JHEP03(2011)032
http://dx.doi.org/10.1007/JHEP03(2011)032
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html

	MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning
	Introduction
	Implementation
	Per Bin model
	Inverse model
	Data augmentation
	Performance assessment
	Hyperparameter tuning
	Technical details

	Results
	Datasets
	Performance measurements
	Tunes

	Outlook
	Declaration of competing interest
	Acknowledgements
	References


