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A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was
investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the
development of two zones within the cell volume. The oxidation reaction occurred on the bottom
electrode (anode) and the reduction reaction on the top electrode (cathode). The electrodes were dis-
charged galvanostatically at different currents and the two electrodes were able to recover their initial
voltage value due to their red-ox reactions. Anode and cathode apparent capacitance was increased after
introducing high surface area activated carbon embedded within the electrodes. Peak power produced
was 1.20 + 0.04 mW (2.19 + 0.06 mW ml~') for a pulse time of 0.01 s that decreased to 0.65 + 0.02 mW
(118 +0.04 mW ml~') for longer pulse periods (5s). Durability tests were conducted over 44 h with
=~2600 discharge/recharge cycles. In this relatively long-term test, the equivalent series resistance
increased only by 10% and the apparent capacitance decreased by 18%.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

Self-powered

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Energy and water availability are two major problems that hu-
mankind will face in the next decades [1—3]. Recently, a completely
new field named water-energy nexus was created with the purpose
of optimising the existing technologies and reducing the con-
sumption of water and energy for a more sustainable world [4,5].
For example, water is related to power for cooling, minerals mining,
fuel production, emission controls, etc. [6]. In parallel, power is
consumed for cleaning water, pumping, aeration, final distribution
[7.8].

Bioelectrochemical systems (BES) are among the most inter-
esting water-energy nexus technologies because of their capability
to treat pollutants, clean the water and also produce electricity
simultaneously or valuable added products (VAP) [9—12]. The main
idea is to use the wastewater or the waste product as a fuel for the

* Corresponding author.
** Corresponding author. Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-
Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK.
E-mail addresses: carlo.santoro@uwe.ac.uk, carlo.santoro830@gmail.com
(C. Santoro), ioannis.ieropoulos@brl.ac.uk (1. leropoulos).

https://doi.org/10.1016/j.electacta.2019.03.194

system [13,14]. The common point among all the BESs is the pres-
ence of electroactive bacteria that form a biofilm on the anode
electrode transforming organics into electrons, protons, smaller
molecules and carbon dioxide. The electrons are transported to the
anode electrode through direct or mediated electron transfer [15].
Electrons move to the external circuit and, in the case of a microbial
fuel cell (MFC), generate electricity whilst an oxidant is reduced at
the cathode [9—11]. In the case of a microbial electrolysis cell
(MEC), a small external power source is applied to push the desired
reaction forward with production of valuable products such as
methane, alcohols, acetate, hydrogen [12,16,17]. A wide variety of
wastewater types have been investigated successfully indicating
that electroactive bacteria within BESs can be versatile for treating
diverse pollution sources [18,19]. Diverse oxidants have also been
used at the cathode with the preference of oxygen due to its high
redox potential and natural availability at no cost and no weight
[20,21].

Despite the idea of MFCs being quite promising, several chal-
lenges and drawbacks hinder their large-scale commercialisation
[22—24]. However, numerous advancements have been achieved in
understanding the electron transfer mechanisms within the anodic
biofilm and in advancing the anode and cathode materials and their
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optimum design for energy/power harvesting [9—11] for practical
applications. Particularly, the electron transfer mechanism occurs
directly through membrane cytochromes or nanowires to the solid
electrode or through catabolites or mediators [25—28].

Anode materials have been significantly advanced in terms of
increase in the interface bacteria/electrode for enhancing the
electron transfer. Anode electrodes need to be electrically
conductive, have mechanical strength and be resistant to pollutant-
containing environments [29—33]. Moreover, the anode materials
have to be low-cost in order to be scaled-up without influencing
the overall cost. Carbonaceous-based materials and stainless steel
have been identified as the most promising anode electrodes
[9,10,34—36] even if recently these materials have been extended
also to other metals [37,38].

Cathode electrodes have been significantly improved in terms of
the air-breathing cathode structure and catalyst selection. Oxygen
reduction reaction (ORR) occurring in neutral media has several
limitations due to the sluggish kinetics occurring in neutral media
where the concentrations of reactants such as H" and OH™ is
limited to 1077 M [39—42]. In order to accelerate the reaction, a
catalyst is usually added into the cathode structure. These catalysts
can be based on platinum group metals (PGMs) [43—45] or
carbonaceous materials [46—48] or platinum group metal-free
(PGM-free) with transition metals (e.g. Fe, Mn, Co and Ni)
[49—52]. Platinum-based catalysts are expensive and non-durable
within wastewater environments due to pollutants that deacti-
vate their catalytic centers [53—55]. A rapid decrease in activity has
been reported with anions containing sulfur, chlorine and nitrogen
[53—55]. Carbonaceous materials such as graphene [56,57], carbon
nanotubes [58,59], modified carbon black [60—62], carbon nano-
fibers [63] and activated carbon [64,65] are largely used as cathode
catalyst. Activated carbon seems to be the right choice since it is
cost-effective, commercially available and durable over long terms
operations [66,67]. In the past decade, PGM-free catalysts based on
transition metals have also gained attention worldwide due to
higher catalytic activity compared to both platinum and carbona-
ceous catalysts [68,69]. Large-scale production and relatively high
costs still prevent its commercial implementation [54].

Hundreds of designs have been exploited with different shapes
and volumes including cylindrical, rectangular, squared and flat
shapes [70—74]. The volume of the reactors varies between mi-
croliters and hundreds of liters depending on the application and
the purpose [75—78]. The common point widely agreed is that in
order to increase the power output and the organic removal, the
surface to volume ratio has to be optimised in order to avoid “dead
volume” in which antagonistic reactions such as fermentation and
methanogenesis might occur without producing useful electricity
[75—78]. Generally, smaller reactors obtain higher power density
due to the higher surface to volume ratio [75—79].

Due to the sluggish anodic and cathodic reactions in neutral
media and also due to the low organics concentration and the
relatively low operating temperatures, the power obtained from
MFCs is quite low, which makes it difficult, but not impossible, to
harvest for practical applications [10]. In order to improve the
quality of the power output, MFCs are connected with external
supercapacitors that are able to boost the current/power and
deliver it under pulsed mode on demand [80,81]. A detailed review
on the topic has recently been reported [82]. Diverse successful
examples about deployment of practical applications have also
been presented [83—86]. Moreover, it was shown that intermittent
MFC operations were able to increase the current/power output
compared to the continuous operation [87,38].

In the past few years, supercapacitive biological fuel cells, both
microbial [89—93] and enzymatic [94—97], were also presented
and widely studied. In the case of MFCs, the anode and the cathode

electrodes of the MFCs were considered as the negative and posi-
tive electrodes of an internal supercapacitor. Galvanostatic dis-
charges were presented and, due to redox reactions occurring on
the two electrodes, the electrodes were also self-recharged.
Following this line of work, in this study, a self-stratified MFC fed
in continuous flow with urine was studied and considered like an
internal supercapacitor. This type of membraneless MFC was
developed in order to scale-up the technology with minimal per-
formance losses [98—100]. With this particular MFC concept, it was
shown before that self-stratifying MFCs could be scaled in width
and length, from milliliter to liter scale, without decrease in power
output and treatment efficiency [99,100]. Recently, the same design
was shown to be scalable in height between 3.5cm and 11.5cm
total MFC height [101]. This scalability relies in the fact that whilst
the size of the reactor increases, the areal density of the electrode
reactions remains constant. In other words the density of the re-
action sites/surfaces is independent from the size, in the width and
length dimensions, provided that the diffusion distances are kept
minimal and constant. This type of MFC, developed for practical
applications, has been taken out from laboratory trial [99] to field
trial under real conditions of use [84].

Once the parameters of interest during the discharge were
collected utilising anode and cathode materials of the MFC,
equivalent series resistance (ESR) was then diminished and overall
apparent capacitance was increased integrating supercapacitive
features into the negative and the positive electrode by the use of
an activated carbon layer. These variations allowed increasing the
overall performance and time for full discharge significantly.

2. Materials and method
2.1. Electrodes materials

In the case of the control experiments, the anode (negative
electrode) was composed by carbon veil (20 g m~2) with dimension
of 2 x5 cm that was wrapped several times into a rectangular
shape and wrapped through a stainless steel wire. The projected
area was 0.8 cm? (0.8 x 1.0cm) and corresponded to a weight of
0.020 g. The cathode (positive electrode) was instead composed by
a mixture of activated carbon (AC, 800 m? g, SK1 P75, CPL Carbon
Link, UK) and polytetrafluoroethylene (PTFE) blended and pressed
over a stainless steel mesh 316 (#18/0.45 mm g wire). The thickness
of the AC/PTFE material was roughly 1 mm (included the mesh), the
projected area was 0.8 cm? and the AC/PTFE mixture had a weight
of 0.228 g. AC/PTFE loading was 0.101 + 0.002 g cm 2. The control
experiment was named SC-MFC-control.

In the case of capacitive negative electrode experiment, the SC
was named as SC-MFC-CapNE, the carbon veil was then decorated
adding a thin layer of AC/PTFE with a dimension of 2.5 x 2 cm by a
thickness of 50 um and weight 0.033 g, prepared separately. The
thin film was then inserted into the carbon veil once it was wrap-
ped and folded giving a total weight of 0.053 g.

In order to investigate the effect of the capacitive materials for
the positive electrode, two identical air breathing cathodes (double
geometric area compared to SC-MFC-control) were inserted into
the electrochemical cell and the SC was named SC-MFC-CapPE.

2.2. Supercapacitor set up and operations

A plastic cell with dimensions of 30 x 30 x 10 mm (height-
length-depth) was used to accommodate the electrodes. The
schematic and the image of the cell used during this investigation
are showed in Fig. 1. The empty volume of the cell was 550 puL
(including the electrodes). The urine displacement volume was
400 uL (including the electrodes) probably because 150 puL of
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Fig. 1. Schematic of the SC-MFC and an image of the SC-MFC.

electrolyte was retained within the porous electrodes. The cell
featured a planar configuration: the negative electrode (NE) (anode
of the MFC) was fixed in the lower part of the electrochemical cell
while the positive electrode (PE) (cathode of the MFC) was instead
fixed in the upper part of the cell (Fig. 1). No separator was used.
The distance between the negative and the positive electrode was
1 mm.

The SC-MFC (supercapacitive MFC) operated with aqueous
electrolyte that in this case was human urine collected from
anonymous male donors. The electrolyte had relatively constant
solution conductivity and pH over time that were 28.1 mScm ™' and
9.2 respectively. The SC-MFC was operated in continuous flow as
fresh solution without recirculation using a peristaltic pump
(205CA cassette, Watson-Marlow Inc, UK) at a flow rate of
0.041 mLmin~' that remained constant during the entire opera-
tions. The liquid level was fully immersing the negative electrode
and partially (roughly %) the positive electrode that was in part
exposed to air (the remaining '). It was previously shown that this
configuration was the best performing in SSM-MFCs [102]. After
leaving the cell in open circuit, the electrodes were connected with
an external resistor of 3kQ in order to stimulate the biofilm
growing on the negative electrode like in the case of a microbial
fuel cell. After the cell voltage was constant, the MFC was electro-
chemically studied like a supercapacitor (SC).

2.3. Electrochemical measurements

Galvanostatic discharges (GLV) were done using a Biologic SP-50
at different current pulses (ipuises) and different time (tpuise). A
three electrode configuration was used for GLVs. The negative
electrode was used as counter, the positive electrode as working
and Ag/AgCl 3 M KCI was used as reference.

The cell was left in rest (Vmax,oc), the self-stratification within
the cell was able to charge negatively and positively the two elec-
trodes named as positive electrode (PE) and negative electrode
(NE) without the support of external voltage. Then ipuise Was
applied for a certain tpuse, the cell self-recharged itself going back
to the initial value in rest conditions (Vmax,oc)-

After the SC-MFC was left in rest, the GLV discharge was carried
out at ipuise and initially a vertical voltage drop (AVonmic) can be
observed. The ohmic losses of the SC-MFC system named as
equivalent series resistance (ESR) that includes the ohmic resis-
tance of the two electrodes and the electrolyte can be calculated
according to eq. (1):

EsR — 2Vohmic (1)
lpulse

During the GLV discharges, the profiles of the single electrode
were also recorded by inserting the reference electrode (RE) be-
tween NE and PE. The RE was inserted exactly in the middle of the
chamber at equal distance between NE and PE in order to share
equally the ohmic resistance of the electrolyte. Therefore eq. (1) can
be rewritten as below:

ESR = Rng + Rpg (2)

where Ryg and Rpg are the electrode resistances of the negative
electrode and the positive electrode that also includes the ohmic
term from the electrolyte. Ryg and Rpg can be calculated knowing
the initial potential drop of the negative and positive electrode
respectively as shown in eq. (3) and eq. (4):

Rng = AV;)hmicNE (3)
pulse

RPE _ Aviohmic,PE (4)
pulse

After the vertical drop, the voltage reaches a new voltage point
named as Vipax and afterwards, the voltage continues to decrease
during the electrostatic discharge of the self-polarised electrodes.
The apparent capacitance of the SC-MFC (Csc) can be measured
knowing the ipuise and the variation of the voltage (excluding the
initial vertical drop) named as AVcapacitive during the discharge
time (tpuise) as shown in eq. (5):

i i
_ ‘pulse __ ‘pulse
Ge="av, = 5 (5)
dt

with ‘s’ indicating the slope of the voltage over time. In this specific
case, not only electrostatic discharge is taking place but redox re-
actions occurring at the electrodes might contribute and different
impact on the voltage trend over time depending on current rates.
Therefore the term apparent capacitance describes better the
mixed regime occurring in this case, that gives rise to the linear
voltage decrease during galvanostatic pulses.

In order to increase tpyise and the power/energy output, AVc,.
pacitive Should be minimized and in parallel Csc should be maxi-
mized. The electrode potential profiles were measured over time by
introducing the reference electrode. This enabled evaluation of the
apparent capacitance of the single electrodes according to eq. (6)
and eq. (7):
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i ulse
Cng = % (6)
dt
Cop — ipulse (7)
PE = %
dt

Csc is related to the apparent capacitance of negative (Cng) and
positive (Cpg) electrodes through eq. (8):

1 1\!
G- () ®
3¢ Cne  Cpe
Power and energy are very important parameters to consider
when evaluating the electrochemical performance of the SC-MFC.
The energy during a pulse, named as Epyse, can be calculated
from the area below the voltage profile over time between the Vipax

and the final voltage point (Vfinal, pulse) multiplied by ipuise as
shown in eq. (9):

t

Epulse = ipulse Jth (9)
0
The power produced during a pulse, named as Ppyise, Was

consequently the ratio between Epyise and the tyyise as shown in eq.
(10):

Epu
Ppulse = tpu = (10)
pulse

In this current work, tpuise 0f 0.01s, 0.1s, 0.5, 1s and 5s were
used for evaluating Ppyjse.

3. Results and discussion
3.1. Self-stratification and self-charging

Supercapacitors are usually fabricated with similar materials.
The two identical electrodes of the supercapacitors are charged
through the utilisation of an external power supply. Therefore, the
external power supply allows the two electrodes to become posi-
tively and negatively charged. In the current case, both negative
and positive electrodes are composed of carbonaceous materials as
described in detail in Section 2.1. The difference to a traditional
supercapacitor is the presence of bacteria within the liquid elec-
trolyte and the electrodes arrangement (Fig. 1) that allow the
generation of two regions within the electrolyte due to the self-
stratification of the electrolyte [100—102]. In fact, the electrolyte
is exposed to air on the upper part and oxygen is consumed going in
depth until an anaerobic zone is created. Therefore, the bottom part
of the cell, where the negative electrode is located, is completely
anaerobic, while the upper part, where the positive electrode is
located instead, is at least partly aerobic. The generation of these
two different regions allows the selections of a diverse bacterial
consortium within the lower and the upper parts. Once these two
regions are created, the negative electrode is negatively polarised
and the positive electrode is positively polarised. On the negative
electrode, the electroactive biofilm colonises the electrode and is
capable of oxidising organics while on the positive electrode, the
biofilm composed of bacteria tolerant to oxygen or alternative
oxidised ions (e.g. nitrate, sulfate, etc) is capable of carrying out the
reduction reaction. The same principle was shown previously in
self-stratifying membraneless microbial fuel cells (SSM-MFC)

where similar systems were able to run in continuous flow, fed with
human urine under a constant load [100,102]. Once fresh food was
provided and oxygen was present, the SSM-MFC was capable of
running continuously for over 30 days [102]. In these two regions,
different microorganisms are present and diverse redox potential
levels are also created.

Therefore, if the supercapacitive features of the two electrodes
are considered, the SC-MFC is self-powered due to the two redox
reactions occurring at the two electrodes. In this work, the elec-
trodes of the system are considered as electrodes of an internal
supercapacitor that is self powered through the two redox re-
actions occurring at the two electrodes and is capable of storing
electrostatic charges from the electrolyte and discharge them with
high and fast current pulses. The negative electrode (on the bottom
of the SC-MFC) is negatively charged and therefore it will electro-
statically attract the opposite charges (positive) from the electro-
lyte. In parallel, the positive electrode is positively charged
attracting negative charges from the surrounding solution. During
the galvanostatic discharges, the counter-ions are released into the
electrolyte. Once the discharge is completed, the electrodes are
self-polarised due to their redox reactions occurring on the elec-
trode and therefore will attract back the counter-ions from the
electrolyte. Theoretically, if the two redox reactions self-polarise
the electrodes, the discharge/self-recharge process could occur
indefinitely, as long as fuel/substrate is provided to the microflora
thriving in the system.

3.2. Characterisation of the control supercapacitor

The SC-MFC-control fabricated with carbon veil as negative
electrode and AC/PTFE pressed over a SS mesh as positive electrode
was left in rest and Vmax,oc was recorded. NE had a measured po-
tential value of —599 + 19 mV (vs Ag/AgCl) and PE had a potential
value of +150 + 3 mV (vs Ag/AgCl). Those values can be explained
by the two red-ox reactions occurring on the anode and a cathode
of an MFC operating with urine as previously shown [102]. Vinax,0c
of the control supercapacitor was 749 + 22 mV. Complete galva-
nostatic discharges were then carried out at different ipuises and the
voltage profile of the supercapacitor (Fig. 2a) and the single elec-
trode (Fig. 2b and 2.c) are presented. ESR and apparent capacitance
can be extrapolated from these measurements. ESR was calculated
to be 63 + 4 Q and the contribution of the NE and PE was 20 + 3 Q
and 43 + 2 Q, respectively. NE corresponded to the 30% of the ESR
while PE was the 70% of the ESR. The lower the ipyise, the higher was
the time of complete discharge (tdischarge). Complete discharge
occurred after 5.30+0.12s,1.20+ 0.20s, 0.36 +0.05s, 0.13 + 0.03 s
and 0.05+0.01s for ipuise of 1mA, 2mA, 3mA, 4mA and 5mA
respectively.

Apparent capacitance of the overall SC-MFC-control (Csc)
increased with lower ipuise. In fact Csc increased from
0.84 +£0.16 mF (ipyise Of 5mA) to 8.20 + 0.54 mF (ipuise 0of 1 mA).
Once again, the single electrode profiles helped to separate the
single contribution. Cng measured 9.66 + 0.67 mF, 5.49 + 1.05 mF,
3.10 £ 0.41 mF, 1.99 £ 0.35 mF and 1.30 £ 0.22 mFat ipyise Of 1 mA,
2mA, 3mA, 4 mA and 5 mA, respectively. In parallel, Cpg measured
542+29mF 211+57mF, 89+22mF, 41+16mF and
2.3 + 0.6 mFat ipuise of 1 mA, 2 mA, 3 mA, 4mA and 5 mA, respec-
tively. These values indicated that the apparent capacitance of the
negative electrode is much lower compared to Cpg, in turn affecting
the Csc. The complete discharge curves indicated that PE had higher
ohmic resistance but also higher apparent capacitance. The fact that
pulses were short was mainly due to the poor apparent capacitance
of the NE.
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Fig. 2. Overall (a), positive electrode (b) and negative electrode (c) complete dis-
charges for the SC-MFC-control at different current pulses.

3.3. Strategy for improving anode apparent capacitance

Despite the NE having a lower ohmic resistance compared to the
PE, the very low apparent capacitance of the NE allowed for only

short discharges to be achieved. Therefore, a capacitive electrode
composed by AC/PTFE pressed over a SS mesh (described in section
2.1) was embedded within the existing carbon veil wrapped elec-
trode with the intention of increasing the NE apparent capacitance
and elongating the tpuise for the overall discharge. The complete
discharges at different ipuise for the SC-MFC-CapNE with improved
anode were carried out and the overall profile (Fig. 3a) as well as
the profiles of the single electrode (Fig. 3b and 3.c) are presented.
Overall and single electrode complete discharge with ipyise of 1 mA
was reported in the Supporting Info (Fig. S1).

Compared to the SC-control, in rest condition, NE had a higher
potential value of —468 + 2 mV (vs Ag/AgCl). PE had similar po-
tential measuring +153 + 5 mV (vs Ag/AgCl). This means that the
reduction in NE potential was roughly 150 mV corresponding also
to a reduction in the Viax,oc of the SC-MFC-CapNE with capacitive
anode that was 620 + 6 mV. The change in NE potential might be
due to the presence of PTFE, which is the hydrophobic agent used
for binding the AC particles to the SS mesh. Hydrophobic materials
such as PTFE are well know to discourage bacterial attachment on
the electrode and therefore probably less bacterial biomass was
attached to the electrode and the anaerobic zone was difficult to
establish as previously shown [62,103—105].

ESR was evaluated through eq. (1) and was quantified as 58 +
2 Q, which was slightly lower but similar to the ESR of the SC-MFC-
control. NE had an ohmic resistance of 17 + 1Q while PE had the
Rpg of 41 + 1Q. The main goal of the addition of the capacitive
electrode within the negative electrode was to enhance the
apparent capacitance of the electrode and therefore of the overall
SC-MFC. Once again, the overall apparent capacitance increased
with the decrease of the ipuise. Among the range of ipuse investi-
gated (between 1 mA and 6 mA), Csc varied between 0.09 + 0.00 mF
(iputse of 6 mA) to 283.0 + 7.7 mF (ipuise of 1 mA). The recording of
each electrode separately allowed estimation of the negative and
positive electrode apparent capacitance. Cyg had an apparent
capacitance of 870 + 52 mF, 240 + 18 mF, 59 + 13 mF, 13.5 + 3.4 mF,
1.82 +£0.50 mF, and 0.33 + 0.07 mFat ipuise of 1 mA, 2mA, 3 mA,
4mA, 5 mA and 6 mF, respectively. In parallel, at the same ipuise, CpE
measured 420.4 +4.2 mF, 87.3 + 0.6 mF, 21.5+ 1.9 mF, 5.7 + 0.8 mF,
0.83 +£0.07 mF and 0.12 +0.01 mF. It can be concluded that the
strategy of adding a capacitive electrode within the NE was suc-
cessful allowing the substantial increase in the Cyg that became
higher compared to Cpg. As a consequence of the increase in overall
Csc, and despite similar ESR, the time of total discharge increased
substantially; in fact the discharges were completed after
1481 +4.15,141+0.15s, 1.85+0.27 s, 0.27 +0.05 s, 0.021 +0.003 s
and 0.0014 + 0.0001 s for ipuise of 1 mA, 2 mA, 3 mA, 4mA, 5mA
and 6 mA, respectively.

3.4. Strategy for lowering cathode ESR

The increase in apparent capacitance within the negative elec-
trode enhanced the performance with longer time necessary for
discharging completely the SC-MFC. The positive electrode still
suffered from high ESR and after the actuation of the first strategy,
the Cpg was lower compared to Cng. Therefore, a second capacitive
electrode was added into the plastic cell in contact with the PE.
Complete galvanostatic discharges of the SC-MFC-CapPE were then
carried out and overall (Fig. 4a) and single electrode (Fig. 4b and.c)
profiles were recorded. Full discharge (overall and single electrode)
for ipuise of 1 MA is shown in the Supporting Information (Fig. S2).
Vmax,oc and the potentials of the single electrodes remained con-
stant compared to the previous case of study measuring
629 + 6 mV, —471 + 2 mV (vs Ag/AgCl) (NE) and +156 + 5 mV (vs
Ag/AgCl) (PE), respectively. With the addition of the second PE, the
ESR dropped to + 48 + 1 Q. This value was =10 Q lower compared
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Fig. 3. Overall (a), positive electrode (b) and negative electrode (c) complete dis-
charges for the SC-MFC-CapNE with improved anode at different current pulses.

to the previous supercapacitors. While Ryg remained practically
constant (16 + 1 Q), the contribution of the positive electrode (Rpg)
measured 32 + 1 Q with a reduction of 25% compared to the control
SC. Despite the decrease, Rpg corresponded to the 65% of the ESR
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Fig. 4. Overall (a), positive electrode (b) and negative electrode (c) complete dis-
charges for the SC with improved anode and double cathode at different current
pulses.

and Rng contributed for 35% of ESR. Hence, also the SC-MFC-CapPE
apparent capacitance increased substantially varying from
1.64 + 0.22 mF (ipuise 7 MA) to 551 + 36 mF (ipuise 1 MA). As can be
seen from Fig. 4.a, the decrease in potential after the ohmic drop is
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similar for both NE and CE indicating similar apparent capacitance.
Time for the total discharge increased even more and was
measured to be 307 +19s, 453 +4.3s, 9.91+0.335s, 2.71 +0.125s,
0.86+0.015,0.19+0.02 s and 0.04 + 0.01 s for ipyise Of 1 MA, 2 mA,
3 mA, 4mA, 5mA, 6 mA and 7 mA, respectively.

The Ragone plots reported in Fig. 5 compared the energy and
power performance of the three cells studied at different current
densities corresponding to different discharge times. The plots
show that for fast discharges the SC-MFC-control is the best per-
forming cell followed by SC-MFC-CapPE and SC-MFC-CapNE. For
discharges lasting more than 5 s, the trend changes and the addi-
tion of capacitive features into negative and positive electrodes is
beneficial with the SC-MFC-CapPE outperforming the other SC-
MEFCs. These trends can be explained considering Viax, ESR and
Csc. Indeed, at shorter times, Vipax is the key parameter that mainly
affects power delivered and SC-MFC-control is the cell with the
highest initial voltage. Instead, in the case of longer discharge time,
given that capacitance shapes the voltage trend over time, power
delivered is largely and mainly affected by the apparent capacitance
rather than Vpax therefore SC-MFC-CapNE and SC-MFC-CapPE
outperform the control. SC-MFC-CapPE had higher power output
compared to SC-MFC-CapNE due to its lower ESR.

3.5. Power curves

Another important parameter to consider is the power pro-
duced by the supercapacitors at different tpuise previously
described in eq. (10). The tpyise considered were 0.01s, 0.1s, 0.5,
1s and 5s. The power curves obtained by the galvanostatic dis-
charges are presented in Fig. 6. The maximum value of Ppyse for
each tpyse is presented in Table 1. As expected, the larger tpyise, the
lower was the power produced due to the voltage decrease over
time during the discharge. Considering the three different SC-MFCs,
at long tpyise (5s), the maximum power obtained by the SC-MFC-
control was 0.21+0.01 mW (0.38+0.02mWml~") and it was
lower than the one produced by SC-MFC-CapNE (0.40 + 0.01 mW or
0.73+0.01mWml~!) and the one produced by SC-MFC-CapPE
(0.65 +0.02 mW or 1.18 +0.04 mW ml~"). At shorter tpuise (0.5 ),
the maximum power recorded by the SC-MFC-control was
0.59 + 0.01 mW (1.07 + 0.03 mW ml~') while SC-MFC-CapNE had a
peak of power of 0.63 +0.01 mW (1.15+0.01 mWml~') and SC-
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Fig. 5. Ragone plots of SC-MFC-control, SC-MFC-CapNE and SC-MFC-CapPE. Dash lines
indicate characteristic discharge time.
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MFC-CapPE had the higher value of power peak (0.89 + 0.01 mW
or 1.63 + 0.02 mW ml~'). Interestingly, at the shortest investigated
tputse Of 0.01's, SC-MFC-CapPE had the higher peak of power pro-
duced of 1.20 + 0.04 mW (2.19 + 0.06 mW ml~!) that was also the
highest value recorded in this current work. SC-control had a
slightly lower peak power of 1.18 + 0.01 mW (2.15 + 0.01 mW ml~ 1)
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Table 1
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Maximum values of Ppys. for different t,yise represented in terms of overall power produced (mW) and volumetric power (mW ml ).

Time SC-MFC-control SC-MFC-CapNE SC-MFC-CapPE SC-MFC-control SC-MFC-CapNE SC-MFC-CapPE
s mw mwW mwW mW ml™! mW ml™! mW ml™!

5 0.21 +0.01 0.40 +0.01 0.65 +0.02 0.38 +£0.01 0.73 £0.01 1.18 +£0.04

1 0.44+0.01 0.58 +0.01 0.81+0.02 0.79 +£0.02 1.05+0.01 1.47 +£0.04

0.5 0.59 +0.01 0.63 +0.01 0.90 +0.01 1.07 +0.03 1.15+0.01 1.63 +0.02

0.1 0.89+0.03 0.73 £0.02 1.00 +0.02 1.61 +0.05 1.33+0.03 1.83 +£0.04
0.01 1.20+0.03 0.85+0.02 1.19+0.05 2.19+0.06 1.54 +0.03 2.16 +£0.08

and SC-MFC-CapNE had the lowest power produced of
0.85 +0.02 mW (1.53 + 0.04 mW ml~!) for the tpuise Of 0.01 s.

The addition of a capacitive negative electrode in the SC-MFC-
CapNE led to a decrease in the Vipax,oc of roughly 150 mV despite
the ESR being similar. The results indicated that for short-term
pulse (<0.1s), the addition of a capacitive negative electrode did
not produce any advantage; in fact SC-MFC-control outperformed
SC-MFC-CapNE. The addition of the capacitive positive electrode in
the SC-MFC-CapPE still led to a decrease of =150 mV in the Viaxoc
but also a reduction of 25% of the ESR. The decrease in ESR allowed
for a slight increase in the power output compared to SC-MFC-
control also for short pulses. For longer pulses (>1s), the
improved apparent capacitance with the addition of capacitive
negative and positive electrodes within the SC-MFC, influences
substantially the power output despite lower Vimaxoc.

3.6. Long term operations

SC-MFC-CapPE was then discharged and self-recharged for
roughly 2 days (44 h) that was equivalent to =2600 discharge/
recharge cycles. Overall and single electrode profiles are
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represented in Fig. 7.a and Fig. 7.b respectively. The discharge had a
tpulse Of 2 s and ipyise 0f 2 mA. The time of self-recharge selected was
60 s. A close-up of two discharge and self-recharge cycles is shown
after =27 h operations in Fig. 7.c and Fig. 7.d.

In order to better understand the trend, the initial discharge and
the discharges after 5h, 11h, 22h, 33h and 44h were plotted
separately and analysed. The overall discharges are presented in
Fig. 8.a and the profiles of the NE and PE are presented in Fig. 8.b.
The trend of parameters of interest such as Viax, resistance and
apparent capacitance during the 44 h operations are presented
separately in Fig. 8.c, Fig. 8.d and Fig. 8.e respectively. Vmax oc tends
to decrease over time measuring 647 mV initially, 608 mV after 5 h,
589 mV after 11 h and then the decrease continued slowly until a
Vmax,oc of 561 mV after 44 h (Fig. 8c). Vmax pg remained stable over
the 44 h experiment measuring between +160 and + 165 mV (vs
Ag/AgCl) (Fig. 8c). Furthermore, VmaxNg Sshowed a continuous
decrease in potential value starting from —494 mV (vs Ag/AgCl)
initially, —458 mV (vs Ag/AgCl) at 5h, —439mV (vs Ag/AgCl) at
11 h, —428 mV (vs Ag/AgCl) at 22 h and it stabilised around —407
mV (vs Ag/AgCl) after 33 h and 44 h (Fig. 8c). As the experiments
were conducted in continuous flow, lack of fuel was not an
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explanation for the decrease in the NE potential. The only possible
explanation is the fact that 60 s time for self-recharge was sufficient
for the PE to recover its initial Vimax pe but was not long enough for
the NE to restore its initial potential. ESR increased over time until
22 h followed by a plateau (Fig. 8d). In particular, the initial ESR was
47 Q and increased to 49 Q and 50.5 Q after 5 hand 11 h. At 22 h, the
ESR stabilised at =53 Q (Fig. 8d). Ryg initially was 17 Q but after 5 h
stabilised to =19 Q. Rpg was initially 30 Q and increased steadily up
to 35Q at the end of the experiments (Fig. 8d). In addition, the Csc
decreased over time with initial values of 16.5 mF, 14.6 mF after 22 h
and 13.5 mFat the end of the operation (Fig. 8e). It must be noted
that the apparent capacitance values here presented are lower
compared to the apparent capacitance calculated from the full
discharges presented in Section 3.4. Cnyg was higher than Cpg as can
be seen in Fig. 8.b. Cng decreased from the initial value of 39.6 mF
(0 h) to 34.5 mF in the middle of the experiment (22 h) and 32.3 mF
after 44h (Fig. 8e). Cpg also decreased, varying from 28.6 mF
initially to 23.0 mF after 44 h (Fig. 8e).

3.7. Outlook and future developments

In this work, a self-stratified microbial fuel cell fed with urine
and operating in supercapacitive mode has been fabricated and
investigated for the first time. The electrolyte volume was 0.55 mL.
The specific design showed in Fig. 1 allowed developing self-
stratification within the chamber with the lower part consuming
oxygen and generating an anaerobic zone while the upper part
exposed to air generated an aerobic zone. The two regions within
the chamber create a reducing environment — degrading organics
under anaerobic conditions - on the bottom and an oxidising
environment — reacting with oxygen - on the top [99]. The two
carbonaceous electrodes were then self-charged without the uti-
lisation of an external power source. The oppositely charged elec-
trodes, were then able to attract counter-ions from the electrolyte
composed of human urine, therefore operating as supercapacitor
electrodes. Human urine is rich in dissolved salts as previously
identified and has been shown to be an excellent fuel for BES
[106—108]. The electrodes were then discharged at high current

pulses. Once the discharge was completed, the two red-ox reactions
at the two electrodes helped restore the electrochemical double
layer on each electrode. A control SC-MFC was tested using the
electrode materials previously identified for SSM-MFC [100]. The
tests showed high Vmaxoc but very low apparent capacitance
especially due to the poor capacitive features of carbon veil. The
apparent capacitance of the negative electrode was then increased
with the addition of a capacitive electrode incorporated into the
electrode itself. This strategy allowed for increasing the apparent
capacitance and the tpyse Of discharge but negatively affected the
Vmax,oc that decreased by 150 mV. Once the negative electrode
apparent capacitance was enhanced, the ohmic resistance of the
positive electrode still accounted for 70% of the total ESR, moreover,
after the application of the first strategy, Cpg was lower than the
Cne- A second strategy was then pursued to overcome these limi-
tations and a second positive electrode, identical to the first one,
was introduced in the chamber. ESR was diminished and Csc was
further increased. These two strategies allowed increasing the tpyise
during complete discharge and increasing substantially the power
produced especially for long tyuise periods. Durability tests were
also conducted on the most performing SC-MFC during a period of
time of 44h in which =2600 discharge/recharge cycles were
recorded. These cycles consisted of a discharge with 2 mA ipyjse at
tputse Of 2 s followed by a self-recharge period of 60s. The results
showed a decrease in the overall electrochemical performance
mainly due to the negative electrode behaviour. In fact, while 60 s
recharge time was enough for the positive electrode to recover its
initial potential, this time was not sufficient for the negative elec-
trode, which continued to progressively increase its potential. A
more careful decision of recharge time should be selected for
practical applications.

This work showed the possibility of creating a supercapacitor by
using the self-stratification of the environment that self-charges
the electrodes. Self-powered supercapacitors operating in munic-
ipal wastewater were previously presented successfully
[89—93,109]. In these previous examples, the power density ach-
ieved in supercapacitive microbial fuel cells was in the range of
0.1-0.5mW mL™! [88—92,107] while in the present work the peak
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of power was above 1 mW mL™". It was shown before that inter-
mittent mode operation increases the power output [86,87,110].
Continuous mode operation allowed for a performance of the order
0f 0.01-0.1 mWmL~" [111], which is one order of magnitude lower,
compared to the intermittent mode operation. Also concerning the
utilisation of human urine in MFCs, the pulsed power output was
much higher compared to the previously reported examples
[98—102].

This specific work indicates the possibility of SCs operating in
other types of wastewater. To the best of the authors’ knowledge,
this is the first self-powered supercapacitor operating with human
urine. In contrast with municipal wastewater, human urine is much
more conductive and has higher concentration of dissolved ions
with solution conductivity measured above 20 mS cm~ L In fact, low
electrolyte conductivity is often an enormous limitation in bio-
electrochemical systems [112,113], therefore urine seems to alle-
viate this occurring problem. Once the limitation of the systems is
identified, strategies dedicated to overcome the problems were
undertaken to increase the performance. The best performing SC-
MFC had a power pulse of 120+0.04mW or
219+006mWmL™! at 00ls and 0.65+002mW or
118 £0.04mWmL™! at 5s. This single SC seems to be limited
mainly by its own potential difference that was below 0.75 V. For
practical applications, a number of SC should be connected in series
to boost the voltage to a level that can be practically utilised.
Further investigation should consider the implementation of this
self-powered supercapacitor for other wastewaters, other reduc-
tive/oxidative environments and into scaled-up system.

4. Conclusions

In this work, a self-powered supercapacitive microbial fuel cell
(SC-MEFC) operating with human urine was investigated. The redox
reaction occurring on both electrodes allowed for self-charging of
the electrodes. Electrochemical double layer was then formed on
each electrode and counter-ions were attracted. Galvanostatic
discharges were conducted at different current pulses. The control
SC-MFC suffered from high positive electrode resistance and low
apparent capacitance of the negative electrode. Supercapacitive
features were improved adding activated carbon materials and ESR
was reduced. The higher power pulses achieved were
1.20 + 0.04 mW (219 +0.06 mW mL™1) at 0.01s and
0.65+0.02mW (1.18+0.04mWmL™!) at 55 time pulses. Long-
term tests were conducted with discharges at 2mA for 2s and
60 s self-recharge times. ESR tended to increase over time while the
apparent capacitance tended to decrease. The main losses were
related to the negative electrode potential not able to fully recover
its initial potential. For optimisation purposes, the discharge pa-
rameters should be tailored to specific application requirements,
resulting in better performance.
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