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Abstract 
 Drylands are among the most sensitive areas to current climate change and their cover 
is expected to  increase in the next decades. Terrain has a key role in the distribution of water 
and nutrients in drylands and in shaping their composition. These environments are generally 
composed by a two-phases mosaic of vegetation and bare soil, many times colonized by 
biocrusts (i.e. topsoil communities formed by mosses, lichens, liverworts, algae, and 
cyanobacteria), which are expected to suffer compositional changes that will reduce their 
richness and functioning. In this context, remote sensing has been highlighted several times as 
an important tool for dryland monitoring. It is one of the most cost-effective approaches to 
identify biodiversity hotspots and to monitor changes in their composition, and to evaluate the 
relationships these changes have with the surrounding terrain. 

Two main image analyses can be used for monitoring of dryland environments. While 
object-based image analysis (OBIA) works well in landscapes with heterogeneous 
compositions (e.g. scattered communities of vegetation in drylands), pixel-based image 
analysis excels in environments where the differentiation between components is not that 
obvious (e.g. drylands where developed communities of biocrust appear in plant interspaces). 
However, until recently, most of the methodologies to map well differentiated two-phased 
drylands have not been so successful when all these components appear together and mixed. 
Nevertheless, the raise of new hardware and software platforms promise to solve this, while 
improving our knowledge of drylands. The miniaturization of sensors, the ease of use of 
Unmanned Aerial Vehicles (UAVs) and the new methodologies developed in the last years 
(e.g., Structure-from-Motion (SfM), which allows to reconstruct the terrain by using digital 
photogrammetry) permit to study relationships in the ecosystems that not so long ago were 
only possible to be studied by expensive field work campaigns. Furthermore developments in 
hyper- and multispectral imaging sensors have increased the potentially retrieved spectral 
information, which has been proved to contain functional and phylogenetic components of 
biodiversity. In addition, thermal infrared imagery (TIR) has been successfully used to estimate 
soil moisture content in drylands with homogeneous surfaces. However, most studies using 
these tools have been focused on superior plants in environments different to drylands or in 
drylands where biocrusts do not appear. For this reason, applying these techniques in drylands 
and not only in vegetation but also in biocrusts is key to understanding their applicability in 
these environments. This would greatly improve existing dryland restoration and monitoring 
programs. 
 The main aim of this dissertation was to study how dryland composition and 
functioning are affected by the terrain using remote sensing at close range and mid range in 
combination with complementary methods. For this purpose, data from very high spatial 
resolution RGB, thermal infrared (TIR), multi- and hyperspectral imagery, retrieved in the 
laboratory and in the field using airborne, UAV and stationary platforms were used, and the 
following specific objectives were addressed: i) evaluating whether SfM techniques can be 
used in drylands with complex and heterogeneous surfaces to derive their terrain from UAV 
imagery; ii) developing a reproducible technique to relate human actions to changes in the 
health of dryland scarce vegetation communities by using object-based image analysis; iii) 
testing whether the spectral heterogeneity of lichens can be used to estimate their α-diversity 
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using hyperspectral imagery; iv) developing a methodology to evaluate the control that terrain 
has on dryland biocrusts’ distribution using information solely retrieved from UAV; v) testing 
if TIR imagery can be used to estimate soil moisture content in drylands.  
 Results provided evidence of the effectiveness of multi-source remotely sensed data to 
map dryland constituents. However, these results also pointed out the complexity of the link 
between dryland diversity and its terrain and the growing need to integrate different remotely 
sensed products to obtain an unambiguous interpretation of remote sensing data in drylands. In 
particular, results showed that:  

i) SfM-based workflows should apply product validation by check points and 
considerations regarding camera calibration should be carefully accounted for in 
drylands, where vegetation and bare soils appear mixed  and their identification is 
hampered by similar optical properties; 
ii) OBIA is a successful methodology to monitor scattered vegetation patches in 
drylands and its use allows to relate human activities to health changes of this 
vegetation;  
iii) spectral diversity can be used to retrieve α-diversity of biocrust-forming lichens in 
the laboratory, under controlled conditions and using hyperspectral imagery; 
iv) biocrusts respond differently to specific microhabitats created by terrain attributes 
depending on their composition, and typical biocrust development models should be 
revisited since they can not be generalized to all drylands; 
v) TIR can successfully be used to estimate soil moisture content in dryland 
heterogeneous surfaces, even when covered by biocrusts. 

 
The innovation of this study comprises an evaluation of the SfM techniques at different 

scales and its applicability to study the effect of the terrain on water redistribution in drylands. 
It also comprises a novel methodology to monitor scattered vegetation in a ground-water 
dependent ecosystem, where the health of these individuals is key for a correct maintenance of 
the ecosystem’s functioning. Moreover, the application of close-range hyperspectral imagery 
allowed to estimate the  α-diversity of biocrust-forming lichens using their spectral diversity. 
This led to a better understanding of the spectral behaviour of biocrusts depending on their 
composition and allowed to develop a methodology to produce accurate maps of land cover in 
a dryland ecosystem of heterogeneous composition. 

Throughout this dissertation, remote sensing demonstrates to be an effective tool to 
monitor dryland biodiversity and to better understand its functioning. Further research in this 
direction constitutes a high priority for improving understanding of the functioning of dryland 
components and their response to global change. 
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Introduction 
1.1. Drylands and their importance worldwide 

Drylands include arid, semi-arid and dry subhumid regions and are by definition areas 
where precipitation is scarce and typically unpredictable, with high rates of evapotranspiration 
(Middleton and Thomas, 1997). These environments constitute the largest biome on Earth, 
cover more than 47% of land surface (Koutroulis, 2018) and host over 40% of the global human 
population (Reynolds et al, 2007). However, drylands are among the most sensitive areas to 
current climate change and some form of land degradation takes place in 10-20% of these lands 
(Reynolds et al., 2007). Furthermore, due to reduced carbon sequestration and enhanced 
regional warming, drylands are expected to increase their extension over 23% by the end of 
the century under the worst global change models (Huang et al., 2015). These changes are 
estimated to affect in the next decades more than 250 million people, and climate projections 
expect that warmer and drier conditions will increase in drylands worldwide (Cayan et al., 
2010; Cook et al., 2015), resulting in further degradation of these environments (Huang et al., 
2017, 2016). This will not only have strong implications in the economies of drylands 
(Adhikari and Nadella, 2011), but will also affect dryland biodiversity (e.g., Ladrón de 
Guevara, 2018; Berdugo et al., 2020). For this reason, understanding the components that affect 
the most dryland composition is key for a right understanding of these environments’ 
functioning. 

 
1.2. Importance of terrain attributes in drylands’ composition 

 Climate patterns control drylands’ composition worldwide (Bowker et al., 2016; 
Berdugo et al., 2020), but soil and terrain attributes can generate deviations from these patterns 
at ecosystem scale (e.g., Williams et al., 2013; Bowker et al., 2016; Durham et al., 2018; 
Rodríguez-Caballero et al., 2019). This can create specific microclimatic conditions, different 
from the ones observed at wider scales, and offer refugia for species (Suggit et al., 2018). 
Terrain attributes in drylands condition redistribution of rainfall water (Puigdefábregas et al., 
1999) by modifying moisture (Epstein et al., 2006) and characteristics of bare soil surfaces 
(Eldridge et al., 2000; Maestre et al., 2002). However, rainfall precipitations in drylands are 
scarce, and spatial heterogeneities of soil nutrients and organic matter are ultimately affected 
by the terrain, which modifies soil water content and fluxes of nutrients (Puigdefábregas and 
Sánchez, 1996; Manzoni et al., 2006). Thus, availability of nutrients and resources in drylands 
is driven by water availability, subsurface flows, runoff and infiltration (e.g., Aguiar and Sala 
1999; Puigdefábregas et al. 1999; Puigdefábregas, 2005). All this affects not only vegetation 
distribution but also other components that might appear in plant interspaces in drylands 
(Rodríguez-Caballero et al., 2019). Therefore, developing reproducible methods that allow to 
understand the effect that terrain has on dryland constituents is key to improving actual and 
current conservation programs in these environments. 

 
1.3. Biocrusts and their importance in drylands 

Most drylands worldwide present a two-phase mosaic structure composed by 
vegetation patches with different sizes and shapes among ecosystems (Aguiar and Sala, 1999) 
and, in plant interspaces, away from the competition of grasses and bushes, mycrophitic crusts 



 2 

(Belnap et al., 2001). These crusts are also called biological soil crusts or, more commonly, 
biocrusts (Weber and Hill, 2016). Biocrusts are communities formed by photoautotrophic 
(algae, lichens, cyanobacteria, liverworts, and bryophytes) and heterotrophic (bacteria, fungi, 
protozoa, and nematodes) organisms that live on the soil surface and cover a large part of the 
non-vegetated surface in drylands worldwide (Belnap and Lange, 2003). These communities 
are critical for maintaining the multiplicity of dryland ecosystem services they provide 
(Rodríguez-Caballero et al., 2018) by influencing fundamental ecosystem processes 
including—but not limited to—nutrient cycling, soil respiration, and runon-runoff dynamics 
(Weber et al., 2016). Attributes of biocrust communities, such as their cover, composition, and 
diversity largely modulate their impacts on multiple ecosystem functions simultaneously 
(Bowker et al., 2011; Bowker et al., 2013), and thus have been suggested as indicators of 
ecosystem functioning in drylands (Tongway and Hindley, 2004; Bowker et al., 2010). As 
biocrusts contribute to ecosystem multifunctionality (e.g. Weber et al., 2016; Maestre et al., 
2015; Bowker et al., 2016; Delgado-Baquerizo et al., 2016), changes in their composition, 
cover and diversity could lead to a reduction of the capacity of drylands to provide essential 
ecosystem services such as atmospheric gases sequestration (Weber et al., 2015) and soil 
fertility maintenance. Multiple lines of evidence suggest that ongoing climate change can 
dramatically affect biocrust communities (Rodríguez-Caballero et al., 2018) by reducing their 
cover and diversity (e.g., Reed et al., 2016; Ladrón de Guevara et al., 2018). Rodríguez-
Caballero et al. (2018) estimated a global reduction of biocrust cover by 40% within the next 
65 years, and quick reductions in their cover have already been observed in experiments 
simulating climate change (Ferrenber et al., 2015; Maestre et al., 2015; Ladrón de Guevara et 
al., 2018). For these reasons, developing methodologies to monitor biocrust compositional 
changes in space and time in drylands is key for the maintenance of these environments.  

 
1.4. Remote sensing of drylands 

In the last decades, remote sensing has been highlighted as an important tool for 
biodiversity monitoring and conservation (e.g., Nagendra, 2001; Turner et al., 2003; Pettorelli 
et al., 2014; Rose et al., 2015). It offers the possibility of spatializing studies from field data, 
avoiding many drawbacks and difficulties related to time and costs to develop standardized 
procedures for reproducible data gathering (Palmer et al., 2002). Remote sensing is one of the 
most cost-effective approaches to identify biodiversity hotspots and to predict changes in 
species composition, potentially providing repeated measurements and making it possible to 
study temporal changes in biodiversity (Gillespie et al., 2008). However, dryland remote 
sensing presents challenges not typically encountered in other regions, mainly related with 
sparse vegetation and the observed spectral signal, which can be a mixture of bare soil, 
biocrusts and vascular plants (Smith et al., 2019). Dryland vegetation has portions of green and 
dry material depending on the phenology of each species, which hampers its differentiation 
when based solely in spectral information (Escribano et al., 2010). Furthermore, biocrusts that 
might appear in plant interspaces can present similar spectral properties to soil or vegetation 
depending on water content (Weber and Hill, 2016; Smith et al., 2019). Thereby, there is a 
growing need to develop dryland-specific remote sensing methodologies able to monitor and 



 3 

to distinguish between vegetation and non-vegetated surfaces, particularly when covered by 
biocrusts.  

RGB imagery allows to distinguish between vegetation and surrounding soil when their 
spectral signatures are substantially different, as in drylands with sparse vegetation (e.g. 
Guirado et al., 2018; Laliberte et al., 2004, 2012). However, spectral differences between 
biocrusts and bare soil or dry vegetation are subtle (Escribano et al., 2010) and variations in 
soil characteristics and biocrust dominance hamper using RGB imagery for their 
differentiation. Nevertheless, multispectral and hyperspectral imagery allow to exploit the 
subtle differences in the spectral signatures between biocrusts and vegetation or soil (Weber 
and Hill, 2016). This kind of imagery has allowed biocrusts to be mapped in several drylands 
worldwide (e.g., Weber et al., 2008; Rodríguez-Caballero et al., 2014; Panigada et al., 2019). 
 
1.4.1. Image analysis for dryland mapping 

Vegetation in drylands is relatively simple to identify using medium and high spatial 
resolution imaging sensors (e.g., Guirado et al., 2017; Silver et al., 2019), particularly when 
plant interspaces are not dominated by biocrusts and plants have rounded shapes (e.g., Laliberte 
and Rango, 2009; Laliberte et al., 2012; Hellesen and Matikainen, 2013; Guirado et al., 2019). 
Pixel-based image analysis techniques work well when objects are not used as the underlying 
unit of the classification or the pixels are smaller than the objects (Blaschke, 2010), like in 
surfaces dominated by scattered patches of bare soil and biocrusts. A commonly used algorithm 
for pixel-based image analysis are support vector machines (SVMs; Vapnik, 2005). This 
methodology has been used to identify main ecosystem units in a dryland landscape including 
biocrusts (Rodríguez-Caballero et al., 2014), proving its success when used to differentiate 
similar spectral classes (Plaza et al., 2009). Nevertheless, dryland vegetation is composed of 
different proportions of green and dry material depending on the phenological moment 
(Escribano et al., 2010), and very high spatial resolutions increase the detail of vegetation 
characterization in these images. This increased spectral resolution increases the retrieved 
spectral traits and makes it difficult to establish spectral margins between not only dry and 
green vegetation (Escribano et al., 2010), but also between bare soil and biocrusts. Spatial 
information together with spectral information can increase the accuracy of discrimination 
between objects with similar spectral traits (Blaschke, 2010), and object-based image analysis 
(OBIA) uses this spatial information together with spectral information. OBIA consists of two 
phases: first, the segmentation of the image in homogeneous objects and, second, their 
classification based on similarities of spectral information, contextual information and their 
shape (Blaschke, 2010). Using the combined spectral information of each pixel with its spatial 
context (Deblauwe et al., 2008; Kéfi et al., 2007), OBIA has been used in drylands for the 
detection of scattered vegetation, yielding accurate results on its monitoring to evaluate its 
structure and functioning (e.g., Burnett and Blaschke, 2003; Hellesen and Matikainen, 2013; 
Guirado et al., 2017; Silver et al., 2019). Nevertheless, applying the correct image analysis 
technique depending on the study case and the available imagery is key for a successful 
characterization of the evaluated environment and potential ecosystem functioning information 
derived from this identification. 
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1.4.2. Spectral diversity to estimate α-diversity 

In addition to categorical maps, which are static representations of the environment, the 
retrieval of continuous variables allow to gain more insights about the functional composition 
of ecosystems (Coops and Wulder, 2019). As biochemical and structural vegetation traits 
modify the spectral response of vegetation (Ollinger, 2011), variations in the optical spectrum 
retrieved by using spectroscopic or imaging sensors can be used to estimate variations in 
vegetation traits (e.g. Carlson et al., 2007; Schweiger et al., 2017; Van Cleemput et al., 2019). 
Thus, evaluation of spectral variations has allowed to study not only variations in vegetation 
traits but also in ecosystem composition (Schweiger et al., 2020). One of the most tested 
hypotheses exploiting spectral information to estimate the biodiversity of an environment is 
the spectral variation hypothesis (SVH). The SVH proposes that the larger the spectral 
heterogeneity of an environment is, the higher the number of species found here will be (Palmer 
et al., 2002). This hypothesis has been validated several times using α-diversity metrics with 
vascular vegetation (Schäfer et al., 2016; Wang et al., 2016; Aneece et al., 2017; Wang et al., 
2018a, b). Even though measures of spectral diversity based on spectral dispersion have shown 
good correlations with the richness, diversity, evenness, and composition of vascular plants 
(e.g. Wang et al., 2018b; Rocchini et al., 2010; Gholizadeh et al., 2018), its application over 
biocrust surfaces remains unstudied. Producing estimations of the α-diversity of biocrusts 
would advance and improve actual conservation programs in drylands, helping to assess the 
impacts of ongoing climate change in these environments. 
 
1.4.3. Thermal infrared imagery to estimate soil moisture in drylands 

In addition to dryland composition, other variables, such as soil moisture content, can 
be studied using remote sensing imagery. Soil thermal conductivity changes with fluctuations 
on moisture level (Minacapilli et al., 2009), and thermal inertia can be used as a soil moisture 
estimation. Thus, materials with high thermal inertia have more uniform surface temperatures 
throughout the day and night than materials with low thermal inertia. But thermal inertia cannot 
be estimated using remote sensing, and apparent thermal inertia (ATI) is used instead as an 
approximation to be related with soil moisture (e.g. Tramutoli et al., 2000; Clapas and 
Laguardia, 2004; Van doninck et al., 2011). Maps of ATI can be obtained using estimates of 
the diurnal temperature cycle and estimates of co-albedo. While the surface temperature 
difference between the maximum and the minimum needed to obtain the diurnal temperature 
cycle can be obtained using multitemporal thermal infrared (TIR; the optical region of the 
spectrum ranging from 300-1400 nm) imagery, the co-albedo can be derived from multispectral 
visible-near infrared (VIS-NIR) imagery. In drylands, ATI has been found to be related with 
soil moisture (Van doninck et al., 2011). However, the coupling between ATI and soil moisture 
is not straight forward and ATI might be only directly related to soil moisture in areas with 
limited extent, where only a single soil or land cover type is present (van Doninck et al., 2011). 
Therefore, using ATI as an indicator of soil moisture is difficult in heterogeneous surfaces, 
such as bare soils mixed with biocrusts in drylands, and still remains a challenge to understand 
if this relationship can be used to estimate soil moisture in dryland soils covered by biocrusts. 
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1.4.4. UAVs for dryland mapping and terrain characterization 
While satellite imagery (e.g., Karnieli and Soar, 1995; Qin et al., 2006; Panigada et al., 

2019) has been used to monitor drylands in the last decades, the spatial resolution that can be 
achieved with these platforms is not enough to distinguish between sparse vegetation, bare soil 
and biocrusts when they appear mixed. An increased spatial resolution can be achieved using 
airborne imagery (e.g., Weber et al., 2008; Rodríguez-Caballero et al., 2014), but the cost of 
using these products is very high in most drylands’ conservation and monitoring programs, and 
the spatial resolution is still not enough in many cases. In the last years, unmanned aerial 
vehicles (UAVs) have been demonstrated to be an ideal candidate to overcome these problems 
(Anderson and Gaston, 2013) and have facilitated the acquisition of data in drylands worldwide 
(e.g., Cunliffe et al., 2016, 2020; Sankey et al., 2017; Milling et al., 2018). The relative ease of 
use of UAVs and the miniaturization of imaging sensors has  increased the range of information 
available, providing exciting new opportunities not only for dryland mapping, but also for 
digital reconstruction of the terrain (e.g., Niethammer et al., 2012; James and Robson, 2014). 
In this context, SfM-based techniques allow to create digital terrain models (DTMs) and 
orthophotos from matching features in images taken from different viewpoints (Westoby et al., 
2012). SfM computer vision techniques have experienced a great upsurge recently (Micheletti 
et al., 2015; Smith et al., 2015; Westoby et al., 2012) and have been successfully applied in a 
wide range of applications in ecology and physical geography (Anderson and Gaston, 2013). 
Developments of this technique in the last decades (Chandler, 1999), the introduction of 
commercial software packages (such as Agisoft Photoscan (http://www.agisoft.ru) and 
Pix4UAV (http://pix4d.com; Vallet et al., 2012)) and the increase in computing power, have 
made SfM-based approaches available for UAV users. Doing this, representations of the terrain 
with subdecimetrical resolutions have allowed to evaluate the effect that terrain attributes have 
on vegetation (Lucier et al., 2014), spatialising studies that not so long ago were restricted to 
plot level. 

 
1.4.5. Mapping biocrusts in drylands 

Detailed maps of vegetation and biocrusts could help up-scaling the local effect of 
terrain and soil components on drylands’ functioning when using coarser satellite imagery at 
higher spatial scales. So far, the use of optical remote sensing of biocrusts has mainly focused 
on mapping their distribution (Karnielli, 1997; Chen et al., 2005; Weber et al., 2008; 
Rodríguez-Caballero et al., 2014; Rozenstein and Karnieli, 2015; Panigada et al., 2019). 
However, biocrusts have proved to be difficult to monitor due to confounding factors such as 
water content and their tridimensional structure, which might hinder their spectral 
characterization in comparison to bare soil and vegetation (Weber and Hill, 2016). Due to the 
small size biocrusts present, works focused in biocrusts’ identification have tried to exploit 
their hyperspectral properties (e.g., Karnieli et al., 1997; Chen et al., 2005; Hill et al., 2008; 
Ustin et al., 2009), but maps based on airborne platforms have not provided finer spatial 
resolutions than 1.5 m/pixel (Weber et al., 2008; Rodríguez-Caballero et al., 2014). However, 
due to the miniaturization of sensors onboard UAVs (Aasen et al., 2019) and the low altitudes 
they can fly at, the spatial resolution of these maps could be potentially increased to reach sub-
decimetrical resolutions. 
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All chlorophytic biocrusts present an absorption feature at ~680 nm (Weber and Hill, 
2016) related to chlorophyll-a and, to better exploit this feature, several authors (Rodríguez-
Caballero et al., 2014; Weber and Hill, 2016; Rodríguez-Caballero et al., 2017; Lehnert et al., 
2018; Panigada et al., 2019; Román et al., 2019) have proposed using the continuum removal 
(CR) algorithm (Clark and Roush, 1984). Since the CR quantifies absorption features at 
specific wavelengths by normalizing the reflectance spectra to a common baseline, 
comparability of biocrusts’ absorption due to chlorophyll-a is ensured. Most multispectral 
sensors used onboard drones [e.g., MicaSense Parrot Sequoia and RedEdge(-) (MicaSense, 
USA) and MAIA (SAL. Engineering, Italy)] and satellites (e.g., Sentinel-2, Sentinel-3) present 
a band at this wavelength and this absorption feature  has been detected in most studies 
characterizing biocrusts spectrally (e.g., Karnieli et al., 2003; Chamizo et al., 2012; Rodríguez-
Caballero et al., 2014; Román et al., 2019). For this reason, using the CR at ~680 nm could 
help to identify biocrusts in drylands at ecosystem or landscape level and track spatio-temporal 
changes in their composition. 

 
2. Research gaps and justification 

Drylands cover over ~45% of emerging lands, are vulnerable to climate change and 
land degradation and their cover is expected to increase in the next decades. In these 
environments, soil and terrain properties can generate deviations from climate control on 
biocrusts and vegetation distribution. For these reasons, understanding these controls at 
ecosystem level is key for developing proper management and restoration programs in 
drylands. Given that remote sensing is one of the most cost-effective tools for ecosystem and 
biodiversity monitoring, developing reproducible methodologies for studying terrain control 
on dryland functioning is a key step forward for dryland conservation. In this context, several 
research gaps were found and addressed during this thesis. 

I. Terrain attributes have a key role in nutrients and water redistribution in drylands, 
shaping its composition and functioning (e.g., Aguiar and Sala 1999; Puigdefábregas et 
al. 1999; Puigdefábregas, 2005). SfM techniques allow to digitally model the terrain 
and its properties when the surface to reconstruct is homogeneous (Westoby et al., 
2012). However, it still remains a challenge to evaluate if this analysis can be 
successfully applied in drylands with complex terrains covered by dense vegetation, 
which hamper this reconstruction of the terrain. For this reason, evaluating whether 
complex drylands’ terrain attributes can be extracted using SfM is a priority for dryland 
ecohydrology. 

II. Drylands are among the most affected environments affected by anthropogenic actions 
(Koutroulis, 2018). However, due to their specific carbon and water fluxes (Haughton 
et al., 2018), methodologies used in other ecosystems can not be easily applied in these 
environments. For this reason, developing methodologies to evaluate changes in their 
vegetation communities and to relate them with human activities using remote sensing 
techniques are a top priority for dryland monitoring and conservation. 

III. Lichen-dominated biocrusts are expected to greatly suffer changes in their composition 
from global change in the next decades (Ladrón de Guevara et al., 2018). Thus, it is 
needed to develop reproducible and feasible methodologies for their monitoring in 
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drylands. Spectral diversity as a tool of α-diversity monitoring has been used several 
times with vascular plants (e.g., Aneece et al., 2016; Schäfer et al., 2016; Wang et al., 
2016), using it also to estimate vegetation functional traits (Schweiger et al., 2018). 
However, even though lichens are key for dryland multifunctioning (Delgado-
Baquerizo et al., 2015), spectral diversity has never been used to estimate dryland 
lichens’ α-diversity. Understanding whether spectral diversity can be used to estimate 
lichens’ composition is key for evaluating how climate change may impact these 
communities and the myriad of ecosystem functions and services that rely on them. 

IV. Biocrusts have a key implication in maintaining dryland functioning (e.g., Bowker et 
al., 2013; Maestre et al., 2015). For this reason, having accurate representations of their 
distribution in drylands is key to evaluate their role in dryland multifunctioning and to 
up-scale their local effects to regional levels. Even though methodologies to identify 
biocrusts have been developed in the last decades (e.g., O’Neill, 1994; Weber et al., 
2008; Rodríguez-Caballero et al., 2014), a lack of spatial resolution is still missing. In 
this context, identification of biocrusts could be greatly benefitted by using 
multispectral sensors onboard UAVs. The enhanced identification offered by using 
multispectral imaging sensors together with the increased spatial resolution offered by 
low-flying UAVs could improve discrimination of dryland biocrusts when surrounded 
by surrounding vegetation and bare soil. Henceforth, developing methodologies to 
accurately represent all dryland elements is key to up-scaling local effects to larger 
scales. 

V. TIR imagery has been already used to estimate soil moisture content in drylands, but 
only in homogeneous surfaces (e.g., Van doninck et al., 2011). Even though soil 
moisture in drylands is key for vegetation and biocrust development, its estimation 
through TIR imagery in surfaces covered by different land cover types, such as bare 
soils mixed with biocrusts, still remains a challenge and has never been evaluated. 
Using UAVs would allow higher frequency of TIR measurements together with 
increased spatial and temporal resolution (Aubrechet et al., 2016). This increased 
availability of TIR data could benefit studies monitoring soil moisture content, key to 
understanding the effects of the current global warming scenario in drylands, which 
expected to experience great changes (Reynolds et al., 2007). For this reason, testing if 
TIR imagery can be used to estimate soil moisture in drylands could greatly benefit 
studies in these environments. 

 
3. Objectives 

 The main aim of this research thesis was to exploit optical and thermal remotely sensed 
imagery to determine the relationship of dryland components (i.e. vegetation and biocrusts) 
with the terrain where they appear. To achieve this main goal and to close the acknowledged 
research gaps, I focused on using multi-source imagery from airborne and UAV platforms and 
hyperspectral close-range imaging sensors by addressing the next specific research objectives: 
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- to investigate how digital photogrammetry can be used at different scales to capture 
characteristics of terrain and vegetation using SfM techniques (Research gap I, 
addressed in Chapter 1); 

- to evaluate the potential of object-based image analysis to infer structural changes in 
communities of plants in drylands (Research gap II, addressed in Chapter 2); 

- to explore whether spectral diversity can be used to capture biocrust-forming lichens’ 
α-diversity (Research gap III, addressed in Chapter 3); 

- to evaluate the effect that terrain attributes have on biocrusts’ distribution using solely 
UAV-retrieved data (Research gap IV, addressed in Chapter 4); 

- to investigate if soil moisture can be estimated in dryland heterogeneous surfaces using 
TIR imagery (Research gap V, addressed in Chapter 4). 

 

4. Thesis outline 

 This PhD thesis is structured as a collection of scientific papers, where each chapter is 
an article with its own introduction, material and methods, results, discussion and conclusion. 
The scientific activity of this PhD project has been mainly based on two characteristic dryland 
environments: the Cabo de Gata-Níjar Natural Park (Spain) and the Aranjuez Experimental 
Station (Spain). 
 In Chapter 1, using Chandler et al. (1991) as a discussion point, the changes that digital 
photogrammetry has experienced in the last two decades and how, at the same time, many 
drawbacks are still present are discussed. Here I present how digital photogrammetry has 
evolved thanks to new software and workflows, in particular SfM photogrammetry, and the 
implications of using UAVs. Finally, three examples are exposed to support the discussion, 
showing the potential that SfM photogrammetry offers at different scales and systems: at 
micro-scales for monitoring micro-geomorphological changes, at meso-scales for hydrological 
modelling and for the reconstruction of vegetation canopies. My particular contribution to this 
work was the evaluation of SfM in the context of dryland hydrology, together with the 
discussion of other results and the general structure of the work. This chapter has been 
published as a scientific publication in Progress in Physical Geography. 
 In Chapter 2, I present a methodology to evaluate changes in the health of a 
groundwater-dependent dryland ecosystem in Spain during a 60-years long period. Using 
object-based image analysis and digital terrain models derived from LiDAR data, changes in 
the number and shape of plant individuals of this ecosystem are related with human actions. 
Specifically, the effect of groundwater uptake from the aquifer that feeds this ecosystem, 
causing seawater intrusion, and the sand extractions that took place decades ago are evaluated. 
The effects of these actions in relation with the number and changes in the shape of the plant 
individuals are discussed. My particular contribution to this work was the design of the 
experiments, collection of data, implementation of codes and models, analysis of the results 
and writing of the first and final versions of the manuscript. This chapter has been published 
as a scientific publication in Remote Sensing. 
 In Chapter 3, I present a methodology developed in the laboratory to capture the α-
diversity of biocrust-forming lichens that could potentially be applied in the field. I took 
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hyperspectral images of samples of biocrust with different compositions collected in Aranjuez 
(Spain) and used a support vector machine algorithm to characterize their composition. I 
calculated several traditional α-diversity metrics (i.e. species richness, Shannon’s, Simpson’s, 
and Pielou’s indices) using lichens’ fractional cover data derived from their classifications. 
Spectral diversity was calculated as the coefficient of variation and as the standard deviation 
of the continuum removal algorithm at different wavelength ranges of the reflectance spectra 
of lichens. The relationship between α-diversity of lichens and their spectral diversity is 
evaluated. This chapter has been published as a scientific publication in Remote Sensing. 
 In Chapter 4, I present a methodology to use UAV-derived RGB, multispectral and TIR 
imagery to map dryland ecosystems and to study the effect of terrain attributes on biocrusts’ 
distribution. RGB imagery was used to calculate terrain attributes using a SfM-based workflow 
and their variability is related to changes of soil properties in the study area. Multispectral 
imagery was used to map vegetation, bare soil and the main surface covers of biocrusts and to 
estimate the fractional cover of each. TIR imagery was used to evaluate the soil moisture 
content by creating maps of apparent thermal inertia. Using the fractional cover data and the 
terrain attributes, relationships between biocrusts and the terrain attributes were evaluated.  
 Chapter 5 concludes this thesis with the discussion and conclusions of the results of 
previous chapters. This chapter includes the main findings of this thesis and suggestions for 
future works. 
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Chapter 1 
 
Two decades of digital photogrammetry: Revisiting Chandler’s 1999 paper 
on “Effective application of automated digital photogrammetry for 
geomorphological research” – a synthesis 
 
D. Fawcett, J. Blanco-Sacristán, P. Benaud 
Published in Progress in Physical Geography: Earth and Environment 43 (2), 299-312 

Abstract 

Digital photogrammetry has experienced rapid development regarding the technology 
involved and its ease of use over the past two decades. We revisit the work of Jim Chandler 
who in 1999 published a technical communication seeking to familiarise novice users of 
photogrammetric methods with important theoretical concepts and practical considerations. In 
doing so, we assess considerations such as camera calibration and the need for photo-control 
and check points, as they apply to modern software and workflows, in particular for structure-
from-motion (SfM) photogrammetry. We also highlight the implications of lightweight drones 
being the new platform of choice for many photogrammetry-based studies in geosciences. 
Finally, we present three examples based on our own work, showing the opportunities that SfM 
photogrammetry offers at different scales and systems: at the micro-scale for monitoring 
geomorphological change, and at the meso-scale for hydrological modelling and the 
reconstruction of vegetation canopies. Our examples showcase developments and applications 
of photogrammetry which go beyond what was considered feasible 20 years ago and indicate 
future directions that applications may take. Nevertheless, we demonstrate that, in-line with 
Chandler’s recommendations, the pre-calibration of consumer-grade cameras, instead of 
relying entirely on self-calibration by software, can yield palpable benefits in micro-scale 
applications and that measurements of sufficient control points are still central to generating 
reproducible, high-accuracy products. With the unprecedented ease of use and wide areas of 
application, scientists applying photogrammetric methods would do well to remember basic 
considerations and seek methods for the validation of generated products. 
 
1. Introduction 

 In his technical communication published in 1999, Jim Chandler (1999) identified and 
compiled key considerations for the application of digital photogrammetry in geomorphology. 
Indeed, his paper was written when automated techniques implemented in readily available 
software were enabling the application of digital photogrammetry by non-experts for the first 
time, at a relatively low financial cost, with great potential to deliver “primary data necessary 
for morphological representation at all scales, using the digital elevation model” (Chandler, 
1999: 51). Observing this development, Chandler published recommendations to guide non-
expert users towards successful application of the method, recognising that tie points identified 
from images had the potential to provide a much higher sampling rate than can be achieved 
realistically from conventional methods such as total stations or digital tacheometers. 
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Chandler’s recommendations include a number of basic considerations that are applicable to 
photogrammetry at any scale, such as the importance of camera calibration and understanding 
its effect on the result, as well as the need for control points to constrain the results to a desired 
reference coordinate system, and the necessity for check points to evaluate accuracy. He also 
presented effective solutions for using oblique-view imagery captured from a proximal ground-
based system. 
 Since Chandler’s paper in 1999, there have been considerable developments in the 
discipline of digital photogrammetry, first among which is the operational implementation (and 
now the subsequent widespread application) of structure-from-motion with Multi-View 
Stereopsis photogrammetry (SfM–MVS, often abbreviated to just “SfM”). SfM 
photogrammetry represents a more flexible approach to photogrammetric scene reconstruction, 
as, unlike conventional stereo photogrammetry, the camera pose and position can be derived 
using image data alone, without the explicit need for reference points of known three-
dimensional (3D) position in the imaged scene (Westoby et al., 2012). 
 Despite recent developments in photogrammetry, and as evidenced through this special 
issue, no less, there are still a great number of Chandler’s (1999) original considerations and 
recommendations that remain highly relevant to scientists seeking to apply photogrammetric 
methods today. The purpose of this short paper is to “revisit” some of Chandler’s key points 
and to demonstrate their relevance to the contemporary digital SfM photogrammetry workflow. 
There are certainly some difficulties highlighted by Chandler (1999), which have now been 
addressed effectively by advancements in software, computing capacity and algorithms; 
however, we argue that there are other challenges identified by Chandler (1999) that have been 
accentuated by the very same developments. Importantly, the short format of this “classics 
revisited” paper does not permit an in-depth analysis of the complexities of new developments 
in photogrammetry for the geosciences – for such matters, we redirect readers to the contents 
of this special issue, and to the excellent syntheses that already exist (see Micheletti et al., 2015; 
Smith et al., 2015; Westoby et al., 2012). Instead, we focus on a few specific aspects of 
Chandler’s (1999) work to show, through the lens of recent application areas, the considerable 
recent advancements that have benefited physical geography. This includes the application to 
systems for which these methods may have originally seemed unsuited. Our discussion begins 
with Chandler (1999), but we chart progress beyond geomorphology, demonstrating how many 
of Chandler’s points of consideration still hold relevance, across a broad suite of disciplines. 

2. Photogrammetric considerations today 

Advancement of photogrammetric workflows and especially the shift towards the usage 
of SfM photogrammetry for applications provides the motivation to reassess Chandler’s (1999) 
recommendations for non-expert users. In the following, we seek to highlight a number of key 
recommendations from his original work in the context of contemporary applications from the 
peer-reviewed literature. 
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2.1. Automated camera calibration 

The rise in popularity of photogrammetric methods in the recent past can, in part, be 
attributed to the low cost of equipment needed; with consumer-grade camera systems and 
affordable software able to generate satisfactory results. The cameras used for many 
photogrammetric applications today are far removed from the calibrated, “metric” camera 
systems regarded as a necessity for accurate measurements by Chandler (1999); in fact, 
Chandler himself later revealed the potential of using consumer-grade camera systems for 
close-range photogrammetry, given appropriate calibration (Chandler et al., 2005). This is 
simplified by automated camera calibration using self-calibrating bundle adjustment (SCBA) 
being refined and today handled internally by the software with minimal to no input required 
by the user. However, care must be taken to understand the influence of sub-optimal image 
networks on self-calibration and associated uncertainties (James and Robson, 2014). For weak 
image networks and limited camera positions, as is the case for stationary ground-based 
acquisitions, pre-calibration using targets may be necessary (Eltner et al., 2017). While the 
basic requirements for the types of sensors feasible for data acquisition for photogrammetric 
workflows are low, the accuracy of the acquired results can still be greatly influenced by this 
choice. Users should, therefore, be aware of considerations for the selection of suitable cameras 
and settings for their applications (discussed in detail by O’Connor et al., 2017). We point to 
the important issue that has arisen from the streamlining of photogrammetric workflows, which 
is that current systems are increasingly “black box” and so it is easy for users to overlook the 
need for fine-tuning available parameters to optimise results or reporting results without proper 
validation. As with all remote or proximal sensing workflows, validation should be considered 
a critical element of the practice. 

2.2. The drone and software revolution in photogrammetry 

Besides the development of software options and the use of low-cost sensors, what has 
driven a recent upsurge and essentially led to a democratisation of structural data acquisition 
is the emergence of lightweight drones with on-board computers as autopilots, enabled by the 
miniaturisation of critical sensor systems (e.g. inertial measurement unit). Chandler (1999) may 
not have foreseen the rise of drones as the platform of choice for photogrammetric surveys, 
however, his advice of “start simple, start small” is still highly pertinent in an age when drones 
facilitate the collection of terabytes of finely resolved image data, which can be processed 
without requiring much prior technical knowledge. Even with increased computational 
resources and storage, generating dense point clouds and gridded products (e.g. surface 
models) from image data requires considerable processing time and handling of large datasets. 
Inexperienced users should, therefore, acquire a prior understanding of the quality level options 
used by “black box” softwares and critically evaluate which one is adequate for their project – 
for example, by initially working on subsets and assessing intermediate products to avoid 
investing time into the generation of sub-optimal results. Indeed, it is important to highlight 
the great diversity of SfM photogrammetry software products now available. Table 1 shows a 
snapshot of the most widely used options, along with the number of results returned by 
scientific search engines. The choice of software is often motivated by availability, ease of use 
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and integration in larger processing pipelines, but users should be aware that many of these 
softwares implement subtly different methods for tie-point detection and bundle adjustment 
(mostly proprietary and confidential but usually based on scale invariant feature transform and 
Bundler) and product generation. While some cross-comparisons exist (Eltner and Schneider, 
2015; Fraser and Congalton, 2018; Turner et al., 2014), they are case-specific and there remains 
an important need to clarify the advantages of each software – for example, for micro- and 
meso-scale geomorphology and vegetation-focused studies. 

Table 1. Popular SfM photogrammetry software packages and the number of publications referring to 

them. The date of this search was 16 December 2018 and the keywords used were “[name of software] 

+ photogrammetry” to avoid including names used in a different context. Table modified following 

Eltner and Schneider (2015). 

 

2.3. The importance of control-points 

For traditional photogrammetric applications, Chandler (1999) discussed how the 
importance of photo-control (now, in the context of drone and airborne photogrammetry, this 
is usually termed ground-control point (GCP)) was a necessity for the determination of camera 
exterior orientation parameters, even in automated workflows, arguing for the need for high-
quality control information for accurate result generation. In contrast, the SfM photogrammetry 
workflow can be completed without GCPs or camera-locations as input, yielding relative 
height information only. GCPs are required in order to register the output accurately to real-
world coordinates, and it has been shown that few well-placed markers can be sufficient to 
achieve this (Tonkin and Midgley, 2016). GCPs also add constraints that can mitigate 
systematic errors in the derived point cloud, provided GCP locations are measured with 
sufficient accuracy (James et al., 2017a). Due to the scale, resolution and desired precision of 
most current photogrammetric applications, the utilisation of natural features as control points, 
recommended as an alternative to pre-marked points by Chandler (1999), is not advisable for 
drone-based surveys. Instead, current applications rely on the appropriate placement of 
sufficient GCP markers within the scene. By using available flight-planning software, desired 
GCP locations can be easily pre-determined and should favour the boundaries of the surveyed 
area (James et al., 2017a). Furthermore, the development of an on-board, real-time kinematic 
(RTK) Global Positioning System (GPS) for drones is leading towards precise direct 
georeferencing of aerial image data (Fazeli et al., 2016) and may at some point eliminate the 
need for GCPs entirely. This is a drone development that SfM photogrammetry users 
worldwide are no doubt watching with intent, and it will be interesting to see in the future the 
extent to which this streamlines or revolutionises the workflow. 

A drawback of current SfM photogrammetry workflows is that metrics relating to the 
quality of results are limited (James and Robson, 2012), and Chandler’s (1999) key concern 
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regarding the unquestioning application of the methodology by novice users may prove more 
current than ever, as SfM photogrammetry software packages become increasingly user-
friendly (e.g. Pix4D), while their quality reports are either brief or difficult to interpret. As 
Chandler (1999) states, there may be a dangerous presumption that accurate data are being 
generated due to the application of sophisticated, automated techniques, today reinforced by 
appealing point cloud and textured mesh visualisations which can be of millimetre grain, and, 
thus, deceptive. Numerous influencing factors originating from flexible constraints can lead to 
SfM-based reconstructions being less accurate than conventional photogrammetric outputs 
(James and Robson, 2012), which means that while limited GCP or on-board RTK–GPS 
information may appear to generate plausible results, independent validation measurements or 
“check points” are highly recommended for validation (linking to our earlier point in Section 
II relating to the choice of software and its unknown influence on output data quality). Ideally, 
check points should be marked unambiguously within the scene, identical to GCPs in order to 
quantify error in all dimensions. As the deployment, collection and measurement of markers is 
time-intensive, a common method to provide supplemental product quality information for 
generated digital terrain models is the measurement of a large number of height validation 
points localised only using high-precision differential GPS information (Cunliffe et al., 2016). 
Control and validation measurements, therefore, remain an integral part of photogrammetric 
survey workflows today and researchers should dedicate adequate resources in order to 
guarantee high accuracy and reliability, even if direct georeferencing becomes commonplace. 

3. Multi-scale applications in physical geography 

Chandler (1999) highlighted the unique strength of the photogrammetric method as 
opposed to other survey techniques in its ability to deliver height information at multiple scales, 
ranging from micro- over meso- to macro-scale applications. While no explicit definition of 
these scales is provided in his original work, it becomes clear that micro-scale corresponds to 
extents typically covered by data from proximal sensors, meso-scale from airborne sensors and 
macro-scales from space-borne sensors. As foreseen by Chandler himself, at meso- and macro-
scales the acquisition of robust elevation data has predominantly become the domain of 
airborne laser scanning (ALS) and synthetic-aperture radar (SAR) satellite missions (e.g. 
TerraSar-X/TanDEM-X, SAR interferometry), respectively (James and Robson, 2012; Zink et 
al., 2017). While photogrammetric methods are still used at these scales as low-cost alternatives 
enabling more frequent surveys (e.g. Bühler et al., 2015), the bulk of their application in the 
geosciences has increasingly shifted to smaller scales with the advent of drone-based 
photogrammetry, where accuracies have been shown to be comparable to ALS- and terrestrial 
laser scanning (TLS)-based studies (Kolzenburg et al., 2016; Wallace et al., 2016). Following 
Chandler’s scale definition, common drone-based studies fall on the boundary between upper 
micro- and lower meso-scale, their spatial extent limited by maximum flying altitude, battery 
life and line-of-sight restrictions. Furthermore, proximal ground-based photogrammetry using 
consumer-grade digital cameras has also become common as a low-cost alternative to TLS or, 
at very small scales, where laser pulse density would prove insufficient and edge effects occur 
(Eltner et al., 2017; Hänsel et al., 2016; Rose et al., 2015). 
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In the following two sections, we shed a spotlight on three applications of 
photogrammetry from two scales (micro and meso) derived from our own experiments in the 
fields of (a) micro-scale soil erosion science, (b) landscape hydrology and (c) vegetation 
science. In doing so, we hope to provide some more detailed insights into the methodological 
developments and constraints associated with them, and reflect also on Chandler’s (1999) 
recommendations. 

3.1. Micro-scale digital photogrammetry for monitoring geomorphological change 

Micro-scale soil erosion studies are essential for developing scientific understanding of 
soil erosion processes and potential magnitudes of soil loss. Traditionally, the quantification of 
soil erosion rates in laboratory and field environments has been resource intensive and heavily 
reliant on expert knowledge and/or specialist equipment (Armstrong et al., 2011; Berger et al., 
2010; Jester and Klik, 2005). With the potential to capture fine-resolution temporal and spatial 
information, photogrammetry and its recent developments present an exciting platform for 
monitoring the evolution of soil surfaces during erosion events. Using a metric camera and 
rotating photo control, Chandler was able to produce a ca. 10 mm digital surface model (DSM) 
in a micro-scale application, as shown in Figure 1. In similar micro-scale applications (≤3 m 
from sensor to surface) modern non-metric digital SLR cameras, with image resolutions in 
excess of 18 megapixels, are capable of delivering data with sub-millimetre ground sampling 
distances. However, as discussed by Chandler (1999), camera calibration models and photo 
control influence the precision and accuracy of photogrammetry-derived surface models, 
ultimately limiting the final (DSM) resolution. Therefore, understanding their role in the 
context of modern methodologies is of particular importance when monitoring 
geomorphological change at the micro-scale, where reduced precision and accuracy has a 
negative impact on the magnitude of change that can be detected confidently. 

 
Figure 1. DSM produced by Chandler (1999, Figure 4, p.61, reprinted by permission from John Wiley 

& Sons, Inc.). 

 
Adequate camera calibration models can be achieved through the standard SfM 

photogrammetry SCBA process for meso-scale and macro-scale applications, where the 
number of frames are typically in the hundreds and, thus, easily meet the criteria set out by 
Chandler (≥40 photo control in a minimum of four frames). However, in micro-scale 
applications, a single frame from two to three cameras can provide sufficient overlap and detail 
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within the area of interest, reducing the computational resources required for processing. To 
demonstrate how pre-calibration, employing a modern SCBA process, can improve model 
quality, we used a stereo camera setup fitted with three Canon 600D 18-55 mm III over a 0.5 
× 0.3 m experimental soil plot, with 54 coded control markers around the periphery, as detailed 
in Benaud (2017). The tie-point precision, using the presented method by James et al. (2017b), 
was used to quantify the precision of the SfM model. 

Figure 2 presents a wire-frame visualisation of a 2 mm DSM produced using only the 
experimental imagery, along with a raster of interpolated “z” axis tie-point precision estimates. 
By contrast, Figure 3 represents the same outputs produced using an identical workflow, but 
with camera calibration parameters derived for each camera from 30 frames of a control area 
and processed using the software’s SCBA prior to the experiment, permitting a 0.5 mm DSM. 
Whilst both SfM photogrammetry approaches produced sub-millimetre models, without 
obvious distortions and similar checkpoint root-mean-squared error values, there was an order 
of magnitude difference in the precision of the tie points in each (relative precision of 1:720 
vs. 1:3080, respectively) and, thus, the resolution of the DSM that could be confidently 
produced. The difference in tie-point precision also had an impact on the level of change in the 
“z” axis that could be detected; that is, surface changes between models must exceed the 
precision of the tie points. This example has illustrated that pre-calibrating cameras, in micro-
scale applications, can increase the level of change that can be confidently detected using SfM 
photogrammetry-derived models. Accordingly, the guidelines provided by Chandler (1999) 
regarding the number of frames required for adequate camera calibration are still applicable 
for micro-scale applications today, although given the “black-box” nature of SfM 
photogrammetry software, it would be sensible to use far greater than four frames from each 
camera for pre-calibration. Pre-calibration of non-metric cameras is also an option for meso-
scale applications with limited image network flexibility (James and Robson, 2014; Shahbazi 
et al., 2015). 
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Figure 2. 2 mm wire-frame DSM produced without pre-calibration plotted above a 10 mm gridded 

interpolation of the median tie-point z-axis precision estimates. 

 

 
Figure 3. 0.5 mm wire-frame DSM produced with pre-calibration plotted above a 10 mm gridded 

interpolation of the median tie-point z-axis precision estimates. 
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3.2. Meso-scale digital photogrammetry for landscape characterisation 

3.2.1. Hydrological applications 

The application of digital photogrammetry can provide insights into the processes that 
modify terrain, not only at micro-scales but also at the landscape level, where it allows 
improved studies of geomorphological, hydrological and biological processes. By providing 
finely resolved Digital Terrain Models (DTM) for the derivation of topographic attributes (e.g. 
slope, aspect, flow length, watershed area), the previously discussed advances in 
photogrammetry enable the creation of landscape-scale hydrological models at low costs and 
high frequency, making it possible to study the effects of micro-topography (Lucieer et al., 
2014), and the impact of changing terrain on the landscape’s hydrology. This also allows the 
study of different components of hydrological systems, such as surface and subsurface flows, 
which are key to understanding nutrients and sediments transport in the landscape (Stieglitz et 
al., 2003). 

However, a number of detrimental effects can limit the quality of photogrammetry-
based DTMs. A common issue that arises are holes which require interpolation due to the 
terrain being obscured at particular camera view angles. It is, therefore, helpful if convergent 
images are acquired to ensure that these gaps are minimised (Nouwakpo et al., 2016). By doing 
so, surfaces that are occluded by the terrain or different objects (e.g. rocks or vegetation) at 
nadir may be visible from other angles and the derived DTM will be more complete. While 
Chandler (1999) listed considerations and the processing steps to be followed by the user 
working with oblique imagery, off-nadir views are much simpler to include in modern SfM 
photogrammetry workflows, especially when camera orientation per image is provided. 

A further issue in the same vein for deriving terrain information by applying 
photogrammetric methods is vegetation cover. Unlike ALS, only limited information on the 
obscured ground below the vegetation canopy can be derived (Chandler, 1999). Depending on 
the required spatial resolution of the derived products, vegetation above a certain size threshold 
should, therefore, be removed from the previously generated point clouds or DSMs. To enable 
the filtering of vegetation, point cloud classification software such as CANUPO (Brodu and 
Lague, 2012) can be easily applied but such approaches require extensive fine tuning to achieve 
the best results. This filtering is key for ecohydrological studies, especially when the aim is to 
generate digital terrain/surface and hydrological models automatically. 

We demonstrate the recreation of a stream network of a semi-arid landscape in central 
Spain (Aranjuez) using a DTM created by applying SfM photogrammetry to drone image data. 
This area of varying elevation and slope is covered predominantly by shrubs of different sizes 
and shapes. A Phantom 4 (DJI, China) quadcopter was used to acquire a total of 132 images 
with 75% overlap. These include two acquisitions with the camera pointing to nadir for the 
first and tilted by 45° for the repeat acquisition, as recommended by Cunliffe et al. (2016). The 
dense point cloud was created using Agisoft Photoscan (V. 1.4.0, Agisoft, St Petersburg, 
Russia) and the sparse vegetation was removed from the point cloud using the CANUPO plugin 
(Brodu and Lague, 2012), implemented in CloudCompare (V. 2.9.1, 
http://www.danielgm.net/cc/). This open-source software, originally designed to work with 
LiDAR data, allows the automatic classification of point clouds into desired classes, which, for 
this study, were vegetation and bare ground. Once the vegetation was removed from the point 
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cloud, the resulting gaps were interpolated in Agisoft Photoscan using inverse distance 
weighting during DTM creation (1.5 cm/pixel spatial resolution). The DTM was then used to 
calculate the stream network of the study area (Figure 4) using the D8 flow direction algorithm 
(O’Callaghan and Mark, 1989), implemented in the TauDEM toolbox (V. 5.3.7, 
http://hydrology.usu.edu/taudem/taudem5/index.html). 

Figure 4. Detail of the orthomosaic of the study area (left) and the corresponding stream network (blue 

lines), created using the D8 flow direction algorithm (right). 

It is evident that areas where vegetation is dense and subsequently removed from the point 
cloud will show a decreased level of topographic detail in the resulting interpolated DTM. This 
can lead to likely errors in the representation of the stream network and subsequent calculations 
(e.g. long segments of identical flow directions, as visible in Figure 4). 

Therefore, like Chandler (1999), we argue that although digital photogrammetry-
generated DTMs show potential for hydrological products, care must be taken when working 
with very high-resolution terrain models and interpreting their results, since slight errors can 
propagate within the hydrological model and yield results that do not align with reality (see 
Fisher and Tate (2006) for the possible consequences of DTM uncertainties), especially 
considering parameters such as flow-path length, which are central to sediment transport 
(Goulden et al., 2016). For this reason, creating adequate methodologies for removing 
vegetation and other objects that might influence generated digital models are a priority in 
order to create reliable products. While the reconstruction of the surface beneath these objects 
can be facilitated by acquiring images at different angles, it should be carefully assessed at 
which level of vegetation cover and desired spatial resolution canopy-penetrating methods such 
as laser scanning become a necessity. 

3.2.2 Study of vegetation 

While for geomorphology- and hydrology-focused applications vegetation has always 
presented an issue, as identified by Chandler (1999), pioneering work by Dandois and Ellis 
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(2010) has given rise to photogrammetry being increasingly used for studies on vegetation 
structure. The motivation for this is the same as in the previously presented fields and is related 
to financial cost and increased flexibility, which drone-based acquisitions offer. While missing 
ground information (e.g. from ALS) limits the applicability of photogrammetry-derived 
information for vegetation surveys, it has been shown that simple metrics derived from SfM 
photogrammetry point clouds can be successfully related to key parameters of interest such as 
canopy height, leaf-area index and biomass (Cunliffe et al., 2016; Dandois and Ellis, 2010, 
2013; Mathews and Jensen, 2013). The ability to include arbitrary oblique-angle views of 
vegetation canopies in the image network has greatly improved the possibilities both for the 
description of canopies, moving from 2.5D closer to true 3D representations of the scene. This 
has been exploited by Cunliffe et al. (2016) to derive shrub canopy volumes and improve the 
SfM photogrammetry-derived DTM information. 

Going further, the agility of drone platforms could be fully exploited to retrieve 
increasingly complete descriptions of single vegetation canopies. Figure 5 presents a study of 
a single oak tree canopy imaged by a consumer-grade, gimballed camera on a drone (DJI 
Inspire with Zenmuse X3, DJI, China) from many angles and high overlap using a 
hemispherical flight pattern. The waypoints and camera orientations were generated based on 
freely available code by Burkart et al. (2015) by specifying the radius and focus height above 
ground and imported into flight-planning software for a fully automated acquisition with a 
duration of approximately 10 min. The point cloud of the canopy was generated from 672 
images using Agisoft Photoscan (V. 1.3.4, Agisoft, Russia) and was co-registered to a TLS 
point cloud of the same canopy, acquired from four positions around the tree using a Leica 
ScanStation P16 (Leica, Germany), for comparison. The average cloud-to-cloud distance of 
the SfM photogrammetry-based point cloud to the closest TLS points was 6.5 cm as computed 
in CloudCompare (V. 2.9.1, http://www.danielgm.net/cc/). Providing control points for an 
internal coordinate system as well as very small angular differences between acquisitions are 
crucial for a coherent and geometrically accurate reconstruction. Due to dealing with a non-
metric camera with considerable lens distortion, this is also needed for reliable SCBA. 

 

Figure 5. Left: RGB image of lone standing oak tree (Quercus robur); middle: hemispherical flight 

plan to be executed by drone displayed over high-resolution satellite imagery (Google Earth); right: 

RGB dense point cloud derived from the multi-angle drone-based images. 
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While the internal structure of this tree could only ever be captured by active laser 
scanning methods, the acquisition of image data from a drone platform is, by contrast, rapid 
and the reconstruction demonstrates the techniques’ capability to deliver information on 
canopy shape, volume and stem information. The opportunities opened up by the agility of 
small aerial drone platforms coupled with the SfM photogrammetry methodology are only 
starting to be explored, and while the angular coverage as presented in this example can be 
difficult to achieve in a natural environment, it may be a viable alternative where the use of 
TLS is limited due to the inaccessibility of the study area. 

One of the reasons that photogrammetry has previously only found fringe application 
for vegetation is due to the 3D complexity and instability of identified features as caused by 
wind conditions for many types of vegetation canopies (Duffy et al., 2017). The errors and 
noise within the resulting point clouds can be expected to greatly exceed those of rigid surfaces. 
Quantifying uncertainties is, therefore, highly important before drawing conclusions from 
derived information. Similar to the above example, this can be achieved by comparing results 
to those derived from laser scanning (ALS or TLS) point clouds (Ota et al., 2015; Wallace et 
al., 2016). Where such data are unavailable, uncertainty can be assessed by acquiring replicate 
acquisitions (Dandois et al., 2015). Complete replicate surveys are not addressed by Chandler 
(1999) (instead encouraging analysis of differences between single stereo pairs), presumably 
in part due to the cost and data volume required. The acquisition of sufficient replicates remains 
a limitation to resource allocation for photogrammetry-based studies, and efforts should be 
made seeking to employ the same methodology for deriving precision estimates developed for 
geomorphological applications, as presented in the previous section (James et al., 2017b). 

4. Summary 

Formulated as cautionary considerations when first software packages were 
contributing to the automation of the photogrammetric workflow, we showed that Chandler’s 
(1999) advice regarding product validation by check points, the influence of inaccurate camera 
calibrations and processing high volumes of data remains relevant to the growing community 
of non-expert photogrammetry users. Practitioners should familiarise themselves with the 
importance of control and check points and know for which studies it is necessary to pre-
calibrate the cameras used. Being aware of these considerations while making use of the wealth 
of new tools available ensures high-quality outputs capable of providing new insights in diverse 
areas of physical geography. Three such example applications spanning different areas and 
scales were presented, where developments in photogrammetry and acquisition methods open 
up new opportunities in micro-scale erosion modelling, landscape hydrology and the study of 
vegetation canopies. Although digital photogrammetry has advanced considerably since the 
publication of Chandler’s (1999) seminal paper, many of the principles and precautions he 
advocates are as relevant in contemporary workflows as they were 20 years ago at the time of 
his publication. 
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Shrub Cover Changes in Drylands 
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Abstract 

Climate change and human actions condition the spatial distribution and structure of 
vegetation, especially in drylands. In this context, object-based image analysis (OBIA) has 
been used to monitor changes in vegetation, but only a few studies have related them to 
anthropic pressure. In this study, we assessed changes in cover, number, and shape of Ziziphus 
lotus shrub individuals in a coastal groundwater-dependent ecosystem in SE Spain over a 
period of 60 years and related them to human actions in the area. In particular, we evaluated 
how sand mining, groundwater extraction, and the protection of the area affect shrubs. To do 
this, we developed an object-based methodology that allowed us to create accurate maps 
(overall accuracy up to 98%) of the vegetation patches and compare the cover changes in the 
individuals identified in them. These changes in shrub size and shape were related to soil loss, 
seawater intrusion, and legal protection of the area measured by average minimum distance 
(AMD) and average random distance (ARD) analysis. It was found that both sand mining and 
seawater intrusion had a negative effect on individuals; on the contrary, the protection of the 
area had a positive effect on the size of the individuals’ coverage. Our findings support the use 
of OBIA as a successful methodology for monitoring scattered vegetation patches in drylands, 
key to any monitoring program aimed at vegetation preservation. 

1. Introduction 

 A fundamental fact of ecological observation is that most living organisms do not show 
random distributions. In fact, environmental controls and anthropogenic impacts are 
determinants of the spatial patterns of these organisms. This implies that it is possible to know 
the performance of ecosystems through the study of the spatial distribution patterns of the 
organisms that live in them (Tilman and Kareiva, 2018; Maestre et al., 2005). This is 
particularly important in drylands where, as a result of water scarcity and edaphic limitations, 
vegetation appears to form isolated patches of one or more plant individuals (Ludwig et al., 
2005; Thompson et al., 2011). In these ecosystems, it has been observed that the spatial pattern 
of these patches determines key aspects of ecosystem functioning such as primary production 
(Aguiar and Sala, 1999), water and nutrient cycles (Puigdefábregas, 2005), and biotic 
interactions (Reynolds et al., 1999; Berdugo et al., 2019). Tools to produce accurate vegetation 
maps at the appropriate spatial scale over time could be very useful for gaining knowledge 
about the health and dynamics of dryland ecosystems.  

Remote sensing has proven to be the most useful tool for monitoring changes in 
vegetation, as it is cost-effective, allows repeated mapping, and produces information on a 
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large scale (Zhang et al., 2003; Tsai et al., 2018; Minasny et al., 2018). Within this technique, 
pixel-based methods are the most commonly used. However, these methods show several 
limitations for producing accurate maps of vegetation patches or plant individuals in drylands. 
First, pixel-based methods do not consider the spatial context in which the pixels are framed, 
making it difficult to identify isolated image elements. Second, they often result in a final 
overlap of such elements from automatic classifications, when the analysis is based on high 
spatial resolution images (Schiewe et al., 2001). In drylands, the land surface is characterized 
by scattered vegetation in a matrix of bare soil and scattered shrubs, so contextual information 
is very useful for image classification (Zheng et al., 2017). Both characteristics limit the 
possibility of identifying and classifying patches of vegetation and individual plant elements. 

Several methods have emerged as an alternative to pixel-based methods for mapping 
individuals or vegetation patches. For example, in the case of forests, light detection and 
ranging (LiDAR) and very high frequency (VHF) synthetic aperture radar (SAR) images allow 
the characterization of various attributes of individual trees from their three-dimensional 
structure (e.g., Hallberg et al., 2005; Maksymiuk et al., 2014; Hamraz et al., 2017). However, 
this method is difficult to use when vegetation shows reduced aerial volume such as in 
drylands. In these cases, object-based image analysis (OBIA) can be a good solution for 
mapping patches of vegetation and individual plants (Blaschke, 2010), particularly because 
there is currently a wide variety of freely available high spatial resolution orthoimages. OBIA 
can provide a more accurate and realistic identification of scattered vegetation in drylands 
because of the combined spectral information of each pixel with the spatial context (Deblauwe 
et al., 2008; Kéfi et al., 2007). This method has yielded good results in the monitoring of spatial 
patterns, patterns, functioning, and structure of vegetation in these environments (Burnett and 
Blaschke, 2003; Hellesen et al., 2013). 

OBIA may be particularly useful for assessing the dynamics of populations of long-
lived plants of conservation concern. In this case, it is difficult and costly to assess the 
environmental controls of population dynamics due to their high persistence and sometimes 
low rate of regeneration, which requires very long-term studies (Kallio, 1971; Eriksson, 1996). 
It has been proposed that the maintenance of long-lived plant populations is the result of a 
balance between regeneration (replacement of individuals by recruiting new recruits) and 
persistence (maintenance of individuals in space, physically and temporarily), or a combination 
of both strategies (Bellingham and Sparrow, 2000; Bond and Midgley, 2001), depending on 
abiotic stress and biotic competition (García and Zamora, 2003). Monitoring populations of 
persistent individuals over time is complicated, as there are continuous disturbances in the 
environment that can alter their performance (Bellingham and Sparrow, 2000). However, the 
availability of the analysis of historical aerial orthophotographs and high spatial resolution 
satellite images with OBIA provides a good opportunity to reconstruct the interannual 
dynamics of long-lived plant populations over long periods of time, thus enabling the 
evaluation of changes experienced by these shrub populations. 

Ziziphus lotus (L.) Lam, a long-lived shrub from Mediterranean drylands (Rey et al., 
2018), shows characteristics for a multi-temporal analysis of the spatial distribution in its 
populations with OBIA. This shrub species depends on groundwater (Guirado et al., 2018), 
forms fertility islands, and is considered an engineering species (Tirado, 2009) of an ecosystem 
of interest for conservation at the European level (Directive 92/43/CEE). The main European 
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population of the shrub species is located in a flat coastal area surrounded by greenhouses in 
the Cabo de Gata-Níjar Natural Park, Spain. This population has been affected by several 
threats for many decades, including sand mining (Martínez-Lage, 1999; Tirado 2009), reducing 
the amount of sand available to develop the Z. lotus fertility islands; urban pressure (Daniele 
et al., 2010), which has reduced the potential distribution of Z. lotus; and the expansion of 
intensive agriculture (Cancio et al., 2016; Martín-Rosales et al., 2007), responsible for the 
decline in the level of the aquifer’s water table, which may have caused the seawater intrusion 
(García García 2003; Mendoza-Fernández, 2015). Since 1944, several studies have evaluated 
this community of Z. lotus. Shrub patterns to identify groundwater dependence (Guirado et al., 
2018), the formations of shrubs in dunes (Rivas Goday, 1944) , shrub spatial aggregation and 
consequences for reproductive success (Tirado and Pugnaire, 2003), and mutual positive 
effects between shrubs (Pugnaire et al., 2011) have been researched. Yet, the monitoring of the 
shrub population dynamics has never been studied. Despite most of the shrub population being 
located within the protected area, its temporal dynamics could be affected by several human-
induced disturbances. However, due to the slow growth of shrubs and the inertia in the 
extinction of individuals, it is difficult to assess such dynamics without considering the 
population structure of the shrub species over the last several decades. This work proposes the 
use of remote sensing methods to map the spatial distributions of shrubs and to analyze their 
size and shape as a means of identifying anthropic disturbances. Our guiding hypothesis was 
that Z. lotus, phreatophytic shrubs, were affected by soil loss and seawater intrusion that 
decreased their cover area. On the contrary, after the legal protection of the area in 1987, the 
shrubs increased their cover area. Within this framework, the objectives of this work were as 
follows: (i) to make precision maps of scattered shrubs from historical remotely sensed images 
using OBIA and (ii) to extract information on changes in the shape, size, and spatial distribution 
of shrubs, and thus infer their relationships with human disturbances over a period of 60 years 
(1956–2016). 

2. Materials and Methods 

2.1. Study case 
 We used a reliable and reproducible methodology to monitor structural changes in 
scattered vegetation of a dryland coastal zone using very high spatial resolution images and 
OBIA. The temporal dynamics of the Ziziphus lotus (L.) Lam population in a semi-arid coastal 
zone was evaluated to infer the effects of human disturbances on the shape and size of 
individuals over a period of 60 years. Two human disturbances were evaluated: (i) the 
extraction of coastal sands in the 1970s (Martínez-Lage, 1999), which eliminated the aeolian 
sands found in the upper layer of the soil using heavy equipment and created roads and dirt 
tracks in the area, and (ii) the seawater intrusion in the mid-1980s caused by groundwater 
withdrawals for greenhouse irrigation. The withdrawals resulted in the water table of the main 
aquifer dropping by 30 m (García García, 2003). In addition, we evaluated the impacts of the 
protection of the area in 1987 in the shrub species. 

The study area is located on a coastal aeolian plain in the Cabo de Gata-Níjar Natural 
Park, Spain (36º49’46.3’’N, 2º17’37.1’’W; Fig. 6). This area is one of the driest in Europe, 
with a mean annual precipitation, temperature, and potential evapotranspiration (PET) of 200 
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mm, 19 °C, and 1390 mm, respectively (Oyonarte et al., 2012). The area is a hydrogeological 
complex located between two wadis with numerous fractures (Goy and Zazo, 1986; Sola et al., 
2007) and shows the typical landscape of arid areas with bare soil and patches of shrubs 
dominated by Z. lotus shrubs (Tirado and Pugnaire, 2003; Rivas Goday and Bellot, 1944). This 
vegetation is supported by a shallow, unconfined coastal aquifer composed of gravel and sand 
deposits located in the discharge zone at the end of the two wadis. A major fault hydrologically 
separates this aquifer from the main regional one (Hornillo-Cabo de Gata, Daniele et al., 2010). 
Consequently, inflows to the aquifer come mainly from scarce local rainfall. 

 

Figure 6. Upper images: the distribution of Ziziphus lotus priority habitat 5220* in the Mediterranean 

area. Lower image: Dashed line shows the study area under urban and intensive agricultural pressure 

in 2016. UTM projection Zone 30N; WGS 1984 Datum. Map data: Google, Maxar. 

 The scattered shrubs of Ziziphus lotus in SE Spain form the largest population of this 
shrub species in Europe. This population is protected by the Habitat Directive (5220* habitat, 
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92/43/CEE) and the Water Framework Directive (WFD) in Europe (Tirado, 2009). In this area, 
Z. lotus forms intricate structures of 1–3 m tall, accumulating sand under its cover called 
nebkas. This forms favorable microclimatic conditions under its cover with respect to the 
outside and increases the water availability due to hydraulic lift (Pugnaire et al., 2011), carbon 
exchanges, and energy cycles (Tirado and Pugnaire, 2003), creating islands of fertility (Tirado 
et al., 2015), which increases the diversity of animal and plant species. For this reason, Z. lotus 
is considered an ecosystem engineering species in this environment (Tirado, 2009; Cancio et 
al., 2016). 

2.2. Datasets and Ground Truth 

 Eight orthoimages from two sources were used, namely, six orthoimages from the 
Andalusian Environmental Information Network (REDIAM) with a spatial resolution of 1 
m/pixel from 1956 and 1977 (panchromatic images) and 0.5 m/pixel from 1984, 1997, 2004, 
and 2008 (multispectral images), and two Google Earth orthoimages from 2013 and 2016, with 
a resolution of 0.5 m/pixel (multispectral images). To work with the same spatial and spectral 
resolution, we homogenized the images to the lowest spatial resolution (i.e., 1 m/pixel) and 
transformed them into panchromatic images (1 band) from the three spectral band images with 
QGIS software v. 3.8 (manufacturer, city, state abbreviation, country). For sand mining 
mapping, we used airborne LiDAR data with 1 m point spacing obtained in 2011. A summary 
of the dataset is shown in Table 2. 

Table 2. Data sources, spatial resolution, band numbers and year of the data used in the object-based 

shrub mapping and sand extraction estimation from airborne laser scanning (light detection and ranging 

(LiDAR)). 

 

Two hundred perimeters of Z. lotus and 200 points of bare soil with scarce vegetation 
were randomly taken as the ground truth. A submeter precision GPS (Leica GS20 Professional 
Data Mapper; Leica, Wetzlar, Germany) was used. To do this, 12 longitudinal transects along 
the coast with a separation of 150 m between them were followed. The perimeter was taken 
with a distance of 1 m between nodes and the bare soil points were taken with a separation of 
at least 2 m from the nearest shrub. In addition, 200 shrub perimeters were digitized in each 
historical image with a distance of 1 m between nodes coinciding with the pixel size of the 
orthoimages in QGIS software v. 3.8. 
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2.3. Object-Based Image Analysis 

OBIA consists of two phases, namely, the segmentation of the image into almost 
homogeneous objects and its subsequent classification based on similarities of shape, spectral 
information, and contextual information (Blaschke, 2010). In the segmentation phase, it is 
necessary to establish an appropriate scale level depending on the size of the object studied in 
the image (Aksoy et al., 2015); for example, low values for small vegetation and high values 
for large constructions (Benz et al., 2004; Drägut et al., 2014). During the classification, the 
segmented objects are classified to obtain cartographies of the classes of interest using 
algorithms such as nearest neighbor (Kavzoglu et al., 2017). The success of the classification 
depends on the accuracy of the previous segmentation (Zhan et al., 2005). 

2.3.1. Image Segmentation 

To segment the images, we used the multiresolution segmentation algorithm 
implemented in eCognition v. 8.9 software (Definiens, Munich, Germany). This algorithm 
depends on three parameters: (i) Scale, which controls the amount of spatial variation within 
objects and therefore their output size; (ii) Shape, which considers the form and color of 
objects; if it is set to high values, the form will be considered and if it is close to 0, the color 
will be considered instead; (iii) Compactness, a weighting to represent the smoothness of 
objects formed during the segmentation; if it is set to high values, the compactness will be 
considered complex and if it is set to values close to 0, the smoothness will be considered as 
simple (Tian and Chen, 2007). To obtain the optimal value for each segmentation parameter, 
we used a ruleset in eCognition v8.9 that segmented the image by systematically increasing the 
Scale parameter in steps of 5 and the Shape and Compactness parameters in steps of 0.1 
(Kavzoglu and Yildiz, 2014). The Scale ranged from 5 to 50, and the Shape and the 
Compactness ranged from 0.1 to 0.9. A total of 6480 shapefiles were generated with possible 
segmentations of Z. lotus shrubs in a computer with a Core i7-4790K, 4 GHz and 32G of RAM 
memory (Intel, Santa Clara, CA, USA). To evaluate the accuracy of all segmentations, we 
developed an R script to calculate the Euclidean Distance v.2 (ED2; (Liu et al., 2012) ; Equation 
(1)), measuring the arithmetic and geometric discrepancies between the 200 reference polygons 
of Z. lotus and the corresponding segmented objects: 

 

ED2 optimizes geometric and the arithmetic discrepancies with the “Potential Segmentation 
Error” (PSE; Equation (2)) and the “Number-of-Segments Ratio” (NSR; Equation (3)), 
respectively. According to Liu et al. (2012), values of ED2 close to 0 indicate good arithmetic 
and geometric coincidence, whereas high values indicate a mismatch between them: 
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where rk is the area of the reference polygon and si is the overestimated area of the segment 
obtained during the segmentation; 

 

where NSR is the arithmetic discrepancy between the polygons of the resulting segmentation 
and the reference polygons and abs is the absolute value of the difference of the number of 
reference polygons, m, and the number of segments obtained, v. 

2.3.2. Classification and Validation of Segments  

We used the k-nearest neighbors algorithm to classify the best segmentations (lowest 
ED2 values)in two classes, that is, (i) Ziziphus lotus shrub (Z) and (ii) Bare soil with sparse 
vegetation patches (S). In order to train the classification algorithm, 70% of the ground-truth 
samples (140 Z and 140 S) and the features of greatest separability (J) between them, obtained 
using the separability and threshold (SEaTH) algorithm, were used (Nussbaum and Menz, 
2008; Gao et al., 2011). The remaining 30% of the ground-truth samples (60 Z and 60 S) were 
used as the validation set (Dobrowski et al., 2008; Wang et al., 2015), and the accuracy of the 
classifications was evaluated using error and confusion matrices, extracting Cohen’s kappa 
index of accuracy (KIA) (Cohen, 1968) and the overall accuracy (OA) of them. Finally, errors 
in shrub segmentation were evaluated by estimation of the root-mean-square Error (RMSE) 
and the mean bias error (MBE) between reference polygons and segments classified as Z. lotus 
shrubs. 

2.4. Sand Extraction Curvature Analysis  

The evaluation of areas affected by sand extraction within the study area in the 1970s 
was performed using a geomorphometric analysis of the land surface (Jordan, 2003). The 
analyses were based on a LiDAR-derived digital elevation model (DEM) dataset, generated 
using an ArcGIS toolbox for multiscale DEM geomorphometric analysis. This toolbox allows 
the generation of a number of curvature-related land surface variables (Rigol-Sánchez, 2015), 
including plane, profile, mean, minimum profile, maximum profile, tangential, non-sphericity, 
and total Gaussian curvature; positive and negative openness; and signed average relief. 
Several maps were derived for each curvature variable at different spatial scales. The sizes of 
the analysis window ranged from 3 × 3 m to 101 × 101 m with a 14 m interval. Univariate and 
bivariate statistics were calculated for variables related to curvature (Jordan, 2003; Evans, 
1972).  

A window size of 61 m was selected for the geomorphometric analysis of the curvature 
of the surface, which provided a good compromise between the size of land surface depressions 
resulting from sand mining operations and spatial generalization. The sand extraction areas 
were located and digitized on a final map and validated with a field survey. In addition, an 
estimation of the volume of soil loss resulting from sand extractions was performed. To 
calculate the volume of soil loss, a new digital surface model was generated without the soil 
loss zones extracted with the previous curvature analysis. Then, the difference was applied to 
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the initial surface model with the areas identified as soil loss and to the digital surface model 
without soil loss, obtaining the volume of the previously identified soil loss areas 

2.5. Shrub Area and Shape Dynamics  

Variations in the size and number of shrubs were determined by calculating the number 
of shrubs lost and differences in shrub cover area between consecutive image pairs. To 
calculate losses and gains in the coverage of the individuals, we assumed that a resulting 
negative area meant a loss of surface coverage, whereas a positive area meant a gain of 
coverage. To determine the edge effect and the health indicator on shrubs (Collinge and Palmer, 
2002), the round shape index was calculated as the ratio between the cover area and the 
perimeter of each shrub in different years (Schumaker, 1996). In order to evaluate whether the 
shrub cover reduction that occurred between 1956 and 1977 was related to sand extraction, the 
average minimum distance (AMD) and average random distance (ARD) between shrubs and 
sand extraction areas were calculated using PASSaGE v.2 software (The Biodesign Institute, 
Arizona State University, Tempe, AZ, USA; Rosenberg and Anderson, 2011) with 999 
permutations. We assumed that the shrubs in the 1956 image rather than the 1977 image were 
removed during sand mining, and those that reduced their cover were affected during this 
process. To evaluate whether the shrub population was affected by seawater intrusion between 
1977 and 1984, the AMD and the ARD between the shrubs and the coastline were calculated 
as previously. Shrubs affected by sand extractions (those appearing in the 1956 image but not 
in the 1977 one) were not included in this analysis. When calculating the AMD, the shrubs that 
showed a reduction in cover over the corresponding period were used, whereas for the 
calculation of the ARD simulated shrubs were used. In order to evaluate the effects of 
protecting the shrubs within the Natural Park in 1987, reduction in shrub cover and number of 
shrubs in the 1984–2016 period was determined. 

3. Results  

3.1. Segmentation Accuracy  

The average values of the Scale and the ED2 were 25 and 0.45, respectively (Table 3). 
The most precise segmentations were from 1977 and 2016, with a Scale of 20 and an ED2 of 
0.35 in both. The least accurate segmentations were the ones of 1956 and 2004, with ED2 
values of 0.59 and 0.51, respectively. The lowest RMSE was obtained in the image of 2016, 
with a value of 46.38 m2 and an MBE of −6.36 m2, overestimating the cover area of the shrubs. 
The highest RMSE was up to 120.64 m2, and in 5 of the 8 years (1956, 1977, 1997, 2004, and 
2008) the area of the shrubs was underestimated as indicated by the MBE.With a computation 
time of 20 s per segmentation, we spent 36 h for a total of 6480 segmentations. 
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Table 3. Parameters used for the segmentation and their accuracies. RMSE, root-mean-square 
error; MBE, mean bias error; ED2, Euclidean Distance v.2. Lower (better) values of RMSE 
and ED2 are highlighted in bold type. 

 

3.2. Classification and Characteristics of Ziziphus lotus Shrubs  

The analysis of class separability and threshold with the SEaTH algorithm showed that 
the best features for discriminating between classes (i.e., those with the highest separability) 
were mainly related to texture (i.e., the family of features related to the Gray-Level Co-
Occurrence Matrix (GLCM)) and brightness of objects (Table 4). 

Table 4. Features used in the classifications and separability between them using the separability and 

threshold (SEaTH) algorithm. In bold, the two features for each year with the highest separability used 

to classify the images 

 

All the classifications were highly accurate, with values of OA and KIA close to 1 
(Table 5). The most accurately segmented image (OA = 0.98; KIA = 0.97) was the image of 
2004, whereas the worst one was the image of 1956 (OA = 0.89; KIA = 0.79). 
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Table 5. Error matrix of all the classified images in the study. Z, Ziziphus lotus; S, Bare soil with sparse 

vegetation patches; Uncl., Unclassified; Prod., Producer’s accuracy; User, User’s accuracy; Held, 

Helden; KIA-c, KIA per class; AO, Overall accuracy; KIA, Kappa index of agreement. Highest (best) 

KIA values for Z (Z. lotus) and S (Bare soil) classes are highlighted in bold type. 

 

 

3.3. Shrub Number, Area, and Shape Dynamics  

During the 60-year period evaluated, the number of shrubs decreased by 742. The 
moment of highest shrub population was 1977, with 2625 shrubs. Conversely, the lowest 
number of shrubs was detected in 2016, with 1883 shrubs (Table 6). However, the total shrub 
area between 1956 and 2016 increased by 3692 m2. In addition, we observed an increase in the 
maximum cover area value of shrubs after 1997. Finally, the most circular shrubs appeared in 
1956 (i.e., the lowest values of the round shape index) and the high values of the round shape 
index increased over the years (Table 6). 
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Table 6. The number of shrubs detected each year and their cover-related average statistics. The highest 

number of bushes, the maximum area, the total cover area, and the lowest (best) round shape index are 

highlighted in bold type. 

 

In general, the cover area of shrubs between pairs of years showed an increase, with a 
trend of smaller individuals to lose more cover area than larger shrubs. In the period 1984–
1997, 1423 shrubs reduced their cover area. In the period 1977–1984 (Table 7), 1650 shrubs 
increased their cover area. 

Table 7. Change of cover and frequency of the difference in Ziziphus lotus area in the studied years 

(1956–2016). The negative and positive areas are the result of the subtraction between the year and its 

predecessor. The highest lost area, the largest positive area, the balance between greater areas, the 

positive frequency and the negative frequency of shrubs are highlighted in bold type. 

 

3.4. Sand Extraction Mapping and Curvature Analysis  

The results of the analyses indicated that more than 187 m3 of sand were extracted in 
the study area (4.2 km2). According to (Martínez-Lage, 1999), a visual analysis of resulting 
maps also suggested that sand extractions were distributed spatially following a connected 
network and following existing roads in the area (Figure 7). 
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Figure 7. Sand extraction areas and differences of cover areas of Ziziphus lotus shrubs in the 1956–

1977 period, when massive sand extractions took place in the study area. In red are shown negative 

areas, in green, positive areas, and in black, shrub loss. Spatial coordinate system, WGS84/UTM Zone 

30 N. 

 

3.5. Spatial Relationships of Shrubs with Sand Extractions, Coastline (Seawater 
Intrusion), and Protected Area 

Between 1956–1977, 752 shrubs reduced their cover area in the sand mining event. The 
AMD between the shrubs and the zones of sand extractions presented an average minimum 
distance of 25.57 ± 37.49 m. The ARD analysis showed an average minimum distance of 
127.48 m ± 23.68 m between the random simulated shrubs and the zones of the sand extractions 
(Figure 2). Seawater intrusion (1977–1984) reduced the cover area by 903 shrubs. The AMD 
analysis showed an average minimum distance of 681.32 m ± 50.15 m to the coastline. The 
ARD analysis showed an average minimum distance of 882.67 m ± 57.66 m between the 
random simulated shrubs and the coastline (Figure 8). 
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Figure 8. Differences of cover areas of Ziziphus lotus shrubs in the 1977–1984 period, when massive 

groundwater withdrawals took place in the study area. In red are shown negative areas and in green, 

positive areas. Spatial coordinate system, WGS84/UTM Zone 30 N. 

In the period 1984–2016, 551 individuals were lost (Figure 9), but in the area there was 
a total gain of more than 23 m2 (Table 5), coinciding with the protection of the study zone 
under the Cabo de Gata-Níjar Natural Park. 

 

Figure 9. Differences of cover areas of Ziziphus lotus shrubs in the 1984–2016 period, when the area 

was protected under the Cabo de Gata-Níjar Natural Park. In red are shown negative areas, in green, 

positive areas, and in black, shrub loss. Spatial coordinate system, WGS84/UTM Zone 30 N. 
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4. Discussion 

The first step in inferring human disturbances in vegetation was to generate an accurate 
object-based map of the study area. The high accuracies obtained in the segmentations, 
evaluated with the ED2 index, facilitated the classifications of the shrubs, obtaining similar 
accuracies to previous studies in which other species of shrubs with OBIA were detected 
(Hellesen and Matikainen, 2013; Laliberte et al., 2004). In the classification step, the segments 
of Z. lotus and bare soil with sparse vegetation showed high separability, using features related 
to their brightness and texture as a consequence of clear spectral differences between 
vegetation and bare soil (Fernández-Buces et al., 2006). According to Yu et al. (2006) and Gao 
et al. (2011), the best spectral-related features for discriminating between vegetation and bare 
soil with sparse vegetation were Brightness, and the GLCM family of features, which present 
high separability values in well-differentiated classes, such as vegetation and soil (Gao et al., 
2011; Murray et al., 2010; Laliberte et al., 2012). The worst features to discriminate (i.e., lowest 
separability) were the geometry-related ones (e.g., Roundness, Area). This is contrary to 
previous studies, in which Roundness has been suggested as a potential feature to discriminate 
between rounded shrubs and bare soil (Hellesen and Matikainen, 2013; Laliberte et al., 2012; 
Laliberte and Rango, 2009). This discrepancy with previous studies could be explained by the 
high heterogeneity in the vegetation form that can present after disturbance (Aguiar and Sala, 
1999). However, care must be taken interpreting these results, since shadows generated by 
large individuals may result in an overestimation of shrub cover area (Asner et al., 2008; Walsh 
et al., 2008), and individuals growing together may be underestimated as a result of appearing 
in the images as one (Laliberte et al., 2004).  

The spatial distribution of sand extraction areas was unrelated to the topography of the 
area but was related to the location of older roads and tracks. This suggests that sand extractions 
were preferentially located to previous sand extractions in an effort to minimize labor costs. 
This observation is consistent with a previous study on sand extraction in the region (e.g., 
Martínez-Lage, 1999). According to Patridge (1992), the negative effect on shrubs by sand 
mining was shown in the low values of AMD calculated in the period 1956–1977. This 
reduction in population cover area could be related to sand mining during the 1960s and 1970s 
(Martínez-Lage, 1999), which might confirm the positive effect that sands have on the health 
of Z. lotus shrubs in the study area Tirado (2009) and in other areas of North Africa (Tengberg 
and Chen, 1998; Wang et al., 2014). 

The lower value of the AMD between shrubs with reduced cover in the period 1977–
1984 to the coastline suggested by the ARD that this reduction could be related to a decrease 
in the freshwater table and the intrusion of seawater into the aquifer (García García, 2003; 
Sánchez, 2008). The smallest shrubs were the most affected, which can be related to difficulties 
of access to groundwater due to their smaller roots compared to larger and more developed 
individuals (Guirado et al., 2018; Houérou, 2006). These results agree with previous studies 
evaluating the negative effect that seawater intrusion has on vegetated communities and 
groundwater-dependent ecosystems (e.g., Howard and Merrifield, 2010; Ponce, 2019).  

In addition, the results of this work could be affected by other natural conditions or 
affections, for example, shrubs could be affected by herbivory (Aguiar and Sala, 1999; Roques 
et al., 2001), climate change (Sturm et al., 2001), or uncontrolled use of pesticides (Leonard 
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and Yeary, 1990). We argue that in order to better understand the results obtained in this work, 
it is necessary to complement remote sensing techniques with in situ works. For example, 
complementing the results obtained with the presence–absence of isotopes and relating them 
with the seawater intrusion (Bear et al., 1999; Mahlknecht et al., 2017) could provide a better 
understanding of how this phreatophytic community responds to anthropic perturbations over 
time.  

Although 742 Z. lotus individuals were lost during the study period, their average size 
and the  round shape of the shrubs were higher and bigger at the end than at the beginning of 
the period. However, the variability of these characteristics also increased over time, which 
means that a greater variety of shapes and sizes was observed in the population. This could be 
explained by the 1987 declaration regarding the Cabo de Gata-Níjar Natural Park, where the 
study area is located. This protection, in addition to a slow recovery of the aquifer after 
undergoing seawater intrusion between 1977 and 1984, could have contributed to a slow but 
continued development in time by adults, which might have better access to fresh water from 
the aquifer due to a more developed root system (Jackson et al., 1996) up to a length of 60 m 
(Nègre, 1959). Furthermore, the fact that the largest shrubs were the most developed in time 
supports the longevity character of this species through longevity (Rey et al., 2018), which is 
an important strategy for its survival in the Mediterranean region (García and Zamora, 2003). 
This, together with the anthropic pressure on the system, may explain the development of adult 
individuals, but the lack of recruitment of juveniles, as observed by Rey et al. (2018) not only 
in this area but also in other regions in SE Spain. 

 

5. Conclusions  

The combination of very high-resolution historical images and OBIA is a powerful tool 
for identifying and monitoring communities of sparse vegetation in drylands (Laliberte et al., 
2004). Our results suggest that monitoring changes in the number and the cover of a shrub 
community in a semi-arid ecosystem could help to infer anthropogenic disturbances that affect 
its health. The vegetation conditions showed that the loss of sandy substrate affected Z. lotus 
negatively, either by reducing its cover or by eliminating individuals by direct sand extraction 
processes. In addition, seawater intrusion into the aquifer influenced the cover and structure of 
the shrubs close to the coastline in a period of massive groundwater extraction (García García 
et al., 2003), negatively affecting the smallest shrubs for the most part. However, the legal 
protection of the area had a positive effect on the health of the remaining individuals, which 
increased their coverage. The implementation of semi-automatic methods to infer the effects 
of human activities on shrub populations, such as the one evaluated in this study, could help 
improve the monitoring programs of existing protected areas. This could reduce the cost of 
these activities, not only in economic terms but also from a human perspective, which is key 
to the long-term preservation of any protected area. 
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Forming Lichens 

J. Blanco-Sacristán, C. Panigada, G. Tagliabue, R. Gentili, R. Colombo, M. Ladrón de 
Guevara, F. T. Maestre, M. Rossini 

Published in Remote Sensing 11 (24), 2942 

Abstract 

Biocrusts, topsoil communities formed by mosses, lichens, liverworts, algae, and 
cyanobacteria, are a key biotic component of dryland ecosystems worldwide. Experiments 
carried out with lichen- and moss-dominated biocrusts indicate that climate change may 
dramatically reduce their cover and diversity. Therefore, the development of reproducible 
methods to monitor changes in biocrust diversity and abundance across multiple spatio-
temporal scales is key for evaluating how climate change may impact biocrust communities 
and the myriad of ecosystem functions and services that rely on them. In this study, we 
collected lichen-dominated biocrust samples from a semi-arid ecosystem in central Spain. 
Their α-diversity was then evaluated using very high spatial resolution hyperspectral images 
(pixel size of 0.091 mm) measured in laboratory under controlled conditions. Support vector 
machines were used to map the biocrust composition. Traditional α-diversity metrics (i.e., 
species richness, Shannon’s, Simpson’s, and Pielou’s indices) were calculated using lichen 
fractional cover data derived from their classifications in the hyperspectral imagery. Spectral 
diversity was calculated at different wavelength ranges as the coefficient of variation of 
different regions of the reflectance spectra of lichens and as the standard deviation of the 
continuum removal algorithm (SD_CR). The accuracy of the classifications of the images 
obtained was close to 100%. The results showed the best coefficient of determination (r2 = 
0.47) between SD_CR calculated at 680 nm and the α-diversity calculated as the Simpson’s 
index, which includes species richness and their evenness. These findings indicate that this 
spectral diversity index could be used to track spatio-temporal changes in lichen-dominated 
biocrust communities. Thus, they are the first step to monitor α-diversity of biocrust-forming 
lichens at the ecosystem and regional levels, a key task for any program aiming to evaluate 
changes in biodiversity and associated ecosystem services in drylands. 

1. Introduction 

Biocrusts are communities formed by photoautotrophic (algae, lichens, cyanobacteria, 
liverworts, and bryophytes) and heterotrophic (bacteria, fungi, protozoa, and nematodes) 
organisms that live on the soil surface and cover a large part of the non-vegetated surface in 
drylands worldwide (Belnap and Lange, 2003). These communities influence fundamental 
ecosystem processes in drylands, including—but not limited to—nutrient cycling, soil 
respiration, and runon-runoff dynamics (Weber et al., 2016), and are critical for maintaining 
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the multiplicity of ecosystem services they provide (Rodríguez-Caballero et al., 2018). 
Attributes of biocrust communities, such as their cover, composition, and diversity, largely 
modulate their impacts on multiple ecosystem functions simultaneously (Bowker et al., 2004, 
2013), and thus have been suggested as indicators of ecosystem functioning in drylands 
(Bowker et al., 2010; Tongway and Hindley, 2004). 

Multiple lines of evidence suggest that ongoing climate change can dramatically affect 
biocrust communities, reducing their cover and diversity (Reed et al., 2016. Rodríguez-
Caballero et al., 2018 estimated a global reduction of their cover by 40% globally within the 
next 65 years, and quick reductions in their cover have already been observed in experiments 
simulating climate change (Ferrenber et al., 2015; Maestre et al., 2015; Ladrón de Guevara et 
al., 2018). As biocrusts contribute to ecosystem multifunctionality (Weber et al., 2016; Maestre 
et al., 2015; Bowker et al., 2013; Delgado-Baquerizo et al., 2016), changes in their 
composition, cover and diversity could lead to a reduction of the capacity of drylands to provide 
essential ecosystem services such as atmospheric CO2 sequestration and the maintenance of 
soil fertility. For this reason, finding accurate and operational methods to estimate the cover 
and diversity of biocrust constituents is a key goal for any ecosystem monitoring program in 
drylands. 

Remote sensing has been highlighted several times as an important tool for biodiversity 
monitoring and conservation (Nagendra, 2001; Turner et al., 2003; Pettorelli et al., 2014; 
Rocchini et al., 2015). It is one of the most cost-effective approaches to identify biodiversity 
hotspots and to predict changes in species composition, potentially providing repeated 
measurements and making it possible to study temporal changes in biodiversity (Gillespie et 
al., 2008). In this context, the spectral variation hypothesis (SVH) proposes that the larger the 
spectral heterogeneity of an environment is, the higher the number of species found here will 
be (Palmer et al., 2002). This hypothesis has been validated several times using α-diversity 
metrics with vascular plants (Schäfer et al., 2016; Wang et al., 2016; Aneece et al., 2017; Wang 
et al., 2018a; Wang et al., 2018b). Even though measures of spectral diversity based on spectral 
dispersion (i.e., the coefficient of variation (CV) or the standard deviation (SD)) have shown 
good correlations with the richness, diversity, evenness, and composition of vascular plants 
(Wang et al., 2018b; Rocchini et al., 2010; Gholizadeh et al., 2018), the SVH has never been 
tested using lichens. 

The use of optical remote sensing of biocrusts so far has mainly focused on mapping and 
monitoring their distribution (Karnieli, 1997; Chen et al., 2005; Weber et al., 2008; Rodríguez-
Caballero et al., 2014; Rozenstein et al., 2015; Panigada et al., 2019) and only one study (Waser 
et al., 2007) investigated lichens’ α-diversity at the landscape level through correlation of high-
resolution data with field samples. Since biocrusts are spectrally characterized by narrow 
absorption features in specific spectral regions (Weber and Hill, 2016), hyperspectral data have 
shown potential when discriminating them from vegetation and other soil features (e.g., (Weber 
and Hill, 2016; Ustin et al., 2009; Weksler et al., 2018; Rodríguez-Caballero et al., 2017). 
However, confounding factors such as water content and biocrust tridimensional structure 
might hinder their spectral characterization. For this reason, several authors (Rodríguez-
Caballero et al., 2014; Panigada et al., 2019; Weber and Hill, 2016; Rodríguez-Caballero et al., 
2017; Lehnert et al., 2018; Román et al., 2019) proposed the use of the continuum removal 
(CR) algorithm (Clark and Roush, 1984) to ensure the comparability of biocrusts’ absorption 
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features. The CR quantifies the absorption features at specific wavelengths, normalizing the 
reflectance spectra to a common baseline. This is achieved by approximating the continuum 
between local spectral maxima through straight-line segments: a value of 1 is assigned to the 
local maxima, and a value between 0 and 1 is obtained in correspondence of the absorption 
features. This approach might be particularly useful to enhance the discrimination of lichens, 
which are characterized by subtle spectral differences (Rees et al., 2004). 

In this framework, the objective of this study was to apply the SVH to capture the α-
diversity of lichens to support dryland monitoring by (i) evaluating the potential of 
hyperspectral high spatial resolution images to identify biocrust-forming lichens (at the genus 
level); (ii) exploring the relationships between spectral diversity metrics and the α-diversity of 
lichens within biocrust communities. 
 
2. Materials and Methods 

2.1. Study Area and Sampling 

The study area is located in Aranjuez, central Spain (40°01′53.9″N 3°32′50.8″W; Fig. 10). 
The climate is semi-arid Mediterranean, with mean annual temperature and rainfall of 15 °C 
and 349 mm, respectively. The plant cover is below 40%, and is dominated by Macrochloa 
tenacissima and other small shrubs, such as Helianthemum squamatum and Gypsophila 
struthium. A well-developed biocrust community, a mixture of lichens and mosses, is present 
between vegetation, covering up to more than 50% of the plant interspaces. In lichen-
dominated biocrusts, Acarospora spp., Buellia spp., Diploschistes spp., Fulgensia spp., Psora 
spp., and Squamarina spp. are the most abundant genera, while in moss-dominated biocrusts, 
Pleurochaete squarrosa, Tortula revolvens, and Didymodon acutus are the most abundant 
mosses. Since this study focused on lichens, we decided to cluster the mosses identified (under 
the term Moss). Finally, in patches of soil dominated by cyanobacteria, genera as Microcoleus 
spp., Tolypothrix spp., and Nostoc spp. are present (Cano-Díaz et al., 2018). See Maestre et al., 
2013 for a species list of the biocrust-forming lichens and mosses in our study area. 
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Figure 10. Location of the study area in central Spain and some examples of the dominant lichen 

communities found in the area. 

Following the sampling protocol described in (Weber et al., 2008), we collected 54 
biocrust samples using Petri dishes of 8.5 cm of diameter from 18 plots (three samples per plot 
randomly chosen). These plots were distributed following two altitudinal transects in two 
separated slopes of the study area with different exposures (north- vs. south-facing). Each 
transect was divided in three levels depending on the height of the transect with respect to its 
base, placing three plots on each level. 

2.2. Hyperspectral Imagery Acquisition 

Hyperspectral images of the biocrust samples were acquired with a hyperspectral scanning 
imaging system (Garzonio et al., 2018) measuring spectral reflectance in 840 bands in the 
visible (VIS) and near-infrared (NIR) spectral region (i.e., 380–1000 nm), with a spectral 
resolution of 2–3 nm (calculated at full width at half maximum; Fig. 11). The system consists 
of a custom high-precision linear stage that embeds a hyperspectral imaging spectrometer 
(Hyperspec® VNIR, HeadWall Photonics, USA) and a dedicated halogen stable light source 
(i.e., 600 or 1000 W, LOT Quantum Design). Powered by an electrical engine, both the 
spectrometer and the halogen light source are able to move back and forth at a defined speed. 
The system is a push-broom scanner and it measures lines of 1004 pixels while moving forward 
by means of the linear stage until an image of the whole studied object is collected. We used a 
water-filter tube between the lamp and the mirror reflecting the light to the samples to avoid 
sample overheating. 
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Figure 11. Picture of the system used to acquire the hyperspectral imagery. The system consists of: (a) 

samples holder and motor driver; (b) HeadWall VNIR camera thermostated by heaters; (c) stable 

halogen lamp; (d) calibrated Lambertian Spectralon panel; (e) PC connected to the spectrometer by a 

dedicated interface. 

Two sets of images were collected: one with the dry samples (dry set) and another 10 min 
after evenly watering the samples with 30 mL of distilled water (wet set). A total of 18 images 
(six samples on each set; Fig. 12) with a spatial resolution of 0.091 mm were taken. A calibrated 
white Lambertian Spectralon® panel (Labsphere, North Sutton, USA) was placed close to the 
samples to calculate the reflectance as the ratio between the radiance reflected by the biocrust 
samples and the panel. The instrument’s dark current signal was measured by manually closing 
the imaging spectrometer aperture prior to capturing each image and subtracted from the 
measured radiance. 

 

Figure 12. True color composite samples (upper images) from one of the hyperspectral images used 

and the classification derived (lower images). 

2.3. Images Processing and Classification 

Both sets of images were pre-processed and classified to characterize the composition of 
each sample. First, the parts in the images not belonging to the samples were masked and the 
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reflectance was computed between 420 and 900 nm. To reduce the noise in the measured signal, 
a Savitzky-Golay smoothing filter (Savitzky and Golay, 1964) was applied using a 20 band-
window width. A minimum noise fraction (MNF) transformation was applied to the smoothed 
reflectances to synthesize the main information in a reduced number of MNF components as 
well as to remove the residual noise in the data. The first 15 MNF components of each image 
transformation were used as input of the classification algorithm. 

The training set for the classification was created by selecting pure endmembers of each 
classes by visual-identification on the images of the samples. The following classes were 
considered in the classification process: Acarospora (Acarospora spp.), Buellia (Buellia spp.), 
Diploschistes (Diploschistes spp.), Fulgensia (Fulgensia spp.), Psora (Psora spp.), 
Squamarina (Squamarina spp.), Moss and Bare Soil. Biocrust classification was performed 
with a supervised machine learning method, using a total of around 1000 pixels per class 
identified in each image to train the support vector machine (SVM) algorithm. 

The SVM is a supervised classification method based on statistical learning theory 
(Corters and Vapnik, 1995; Vapnik, 2005). Using training samples from the classes of interest, 
it separates them by a decision surface, called hyperplane, that maximizes the margin between 
them. The closest training samples to the hyperplane are the ones used by the algorithm, called 
support vectors. SVM is a binary classifier in its simplest form, but can also act as a multiclass 
classifier by creating a binary classifier for each possible pair of classes. SVM uses a penalty 
parameter that allows a certain degree of misclassification. Fine tuning is important to avoid 
overfitting of the model because increasing its value increases the cost of misclassifying points 
and forces the creation of a more accurate model, which might be not generalizable. We used 
a radial basis kernel function, which usually performs well in remote sensing applications 
(Foody et al., 2006). This kernel is controlled by two parameters that determine the final 
classification accuracy, the penalty parameter (C) and the width of the Gaussian kernel (c). A 
large C reduces the training dataset error, but may result in model overfitting to the training 
data, reducing their generalizability. We used the SVM in a pairwise classification way to 
classify the images and evaluate the best parameters to use for each classification using the 
LIBVSM library (Rodríguez-Caballero et al., 2014; Chang and Lin, 2001). 

2.4. Validation of Classifications 

The validation set for each classification was created selecting 300 pixels per class of pure 
endmembers by visual-identification. We assessed the accuracy of the classifications using the 
receiver operating characteristics (ROC) technique (DeLeo, 1993) and the area under the curve 
(AUC; Bradlye, 1997; Hanley and McNeil, 1982) derived from it. A ROC graph is a two-
dimensional depiction of a classifier’s performance (Fawcett, 2006) and is constructed 
calculating the sensitivity and specificity of the resulting classification for each possible 
classification threshold, where 

sensitivity=a/a+c 
specificity=b/b+d, 

with a and d as the true positives and the true negatives for a certain classification, 
respectively, and b and c as the corresponding false positives and false negatives. The 
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‘sensitivity’ is the probability that a pixel of a particular class is correctly classified, while the 
‘specificity’ is the probability that a pixel not belonging to that class is correctly classified. In 
this way, the best performing classification would be that with the highest possible value of 
both sensitivity and specificity. We evaluated the probability of detection (calculated as the 
sensitivity) against the false positive rate (calculated as 1 – specificity). A ROC graph was 
calculated for each of the classifications produced (i.e., 18 classifications, six samples each), 
averaging the curves obtained for each class. 

From each ROC graph, we calculated its corresponding area under the curve (AUC), that 
is an overall quantitative performance score of the classification that allows to reduce the ROC 
performance to a single scalar value independent of a single prediction threshold (Bradlye, 
1997; Fawcett, 2006). The AUC represents the probability that a randomly chosen positive 
sample is correctly classified with greater suspicion than a randomly chosen negative one 
(Hanley and McNeil., 1982). This value might range from 0.5 (a random assignment to the 
class of interest) to 1 (a perfect classification). The AUC values were calculated by joining the 
points of the ROC through a composite trapezoid rule using the AUC function from the R 
package DescTools (Signorell et al.). To assess classification accuracy, we also evaluated the 
average accuracy creating a confusion matrix with the average accuracies from the 
classifications of each set of images (i.e., dry and wet), extracting the overall accuracy and 
Cohen’s kappa coefficient (Congalton, 2008). The points used to create these matrices were 
the same used to create the ROC curves. 

2.5. Computation of the Spectral Diversity 

Using the classifications previously obtained, we calculated, for each biocrust sample, the 
average spectral reflectance of each lichen genera from the reflectance images. We then 
calculated the pigment absorption features by the continuum removal method, normalizing the 
spectra to a common baseline. Several metrics were then calculated as indicators of spectral 
diversity for each sample: the coefficient of variation (CV; i.e., ratio of the standard deviation 
to the mean), calculated between 420–900 nm (CV420-900), between 550–750 nm (CV550–750), 
and at 680 nm (CV680), and the standard deviation of the continuum removal (SD_CR), 
calculated between 550–750 nm (SD_CR550–750; i.e., absorption feature related to the presence 
of chlorophyll) and at 680 nm (SD_CR680; i.e., maximum peak of this absorption feature). 

 

2.6. Biodiversity Metrics 

The fractional cover of each lichen class (classified at the genus level) was used to 
calculate the following α-diversity metrics for each sample: species richness (S), Shannon’s 
index (H’; (Shannon, 1948), Simpson’s index (D; (Simpson, 1949) and Pielou’s index (J’; 
Pielou, 1966). The details of the calculation are reported in Table 8. These metrics were 
calculated using the ‘vegan’ R package, version 2.4–5 (Oksanen et al.). 
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Table 8. Diversity metrics used in this study. pi is the fractional cover of the ith class. 

 

2.7. Statistical Analysis 

To evaluate the spectral diversity metrics that better capture the α-diversity of biocrust-
forming lichens, we evaluated through linear regression models the relationships between 
spectral diversity (calculated as the average CV and CR of the three samples from each plot) 
and α-diversity metrics (species richness, Shannon’s index, Simpson’s index, and Pielou’s 
index), calculated using the fractional cover of each plot (the average of three samples). Due 
to the high heterogeneity of four plots, their samples were not averaged, and the values of the 
single samples were used in the analysis. Species richness was calculated as the total number 
of genera observed in the three samples from each plot. Due to the small sample size (n = 26) 
in this analysis, the cross-validated statistics obtained with the leave-one-out cross-validation 
procedure were also computed to compare performances of different spectral diversity metrics 
in predicting α-diversity. 

 
3. Results 

3.1. Classifications and Accuracy Evaluation 

The classification (Fig. 12) of both dry and wet images was highly accurate. The high 
values of the AUC derived from the ROC curves showed that the SVMs used were successfully 
trained to classify biocrust-forming lichens (Fig. 13). 

 

Figure 13. ROC curves of the genera classifications and the derived AUC values of the wet samples. 
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The classification of the wet dataset had an average AUC of 0.95 (Fig. 13), a kappa 
coefficient of 0.97 and an overall accuracy of 97.83% (Table 9). The lowest accuracies were 
achieved classifying Moss and Fulgensia, with AUCs of 0.91 and 0.92, respectively. The most 
accurate results were obtained for Buellia and Psora, with AUCs values of 0.99 and 0.98, 
respectively. Bare soil was the most confused class, mostly with moss, even though it was 
better classified than in the dry set of images, where it presented an AUC of 0.82. The dry set 
was less accurate, presenting an average AUC of 0.93, an average kappa coefficient of 0.95 
and an overall accuracy of 95.69%. All the lichens were accurately classified, with values of 
AUC over 0.95, similar to those obtained from the wet set. Moss presented the lowest accuracy, 
with an AUC of 0.75, and was the most misclassified, being confused mostly with bare soil. 

Table 9. Average confusion matrix obtained crossing the ground truth (columns) with the results of the 

classification (lines) performed on wet samples. 300 pixels per class in each image were randomly 

selected as validation set to create this matrix. A total of 20,400 random selected pixels were used. The 

ground truth (%) shows the class distribution in percent for each ground truth class. 

 

 

3.2. Spectral Characterization of Biocrusts 

Dry biocrusts had increasing reflectances from the blue region until 700 nm. In the visible 
region the reflectances of various biocrust classes differ because of different pigment content 
and composition (Fig. 14) differences in the NIR region are mainly related to the biocrust 
tridimensional structure. Lichens presented higher reflectances than bare soil and moss across 
the whole spectrum. Their higher reflectance in the NIR region is related to their more 
developed structure, which causes multi-scattering of light in this region. Acarospora, 
Squamarina, Buellia, and Diploschistes are light-colored lichens that showed higher 
reflectances in the visible region; Psora presented the lowest reflectance among lichens. 
Mosses had the lowest reflectance due to their darker color and less developed structure, 
resulting in a reduction of light scattering. The application of the continuum removal algorithm 
in the spectral range 450–900 nm highlighted the absorption features caused by different 
pigments. The chlorophyll absorption feature at 680 nm was present in all the classes. Bare soil 
showed a weak absorption feature at 680 nm, evidencing the presence of cyanobacteria 
colonizing the soils interspace within lichens and moss patches. Psora showed an absorption 
feature around 550 nm due to phycoerythrin, which is absent in the other lichens. An absorption 
feature at 500 nm related to the presence of carotenoids was observed in mosses. Fulgensia 
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presented an absorption peak around 490 nm due to the presence of carotenoids or 
phycoerythrin. 

 

Figure 14. Top: RGB composites of some of the samples used in the study, showing the change of 

color that takes place from dry (first row) to wet (second row) state of biocrusts. Down: Mean 

reflectance spectra and mean continuum removal absorption spectra between 450–900 nm of the 

biocrust classes and bare soil studied in this work. The red dashed line marks the absorption feature at 

680 nm related to the presence of chlorophyll. (a) Dry samples; (b) Wet samples. 

Watering had a strong effect on biocrust optical properties (Fig. 14b), causing a decrease 
of reflectance across the whole spectrum. The change was particularly evident in the absorption 
feature caused by chlorophyll at ~680 nm, which became deeper, evidencing the abrupt change 
in the reflectance from red to NIR, typical of vegetation (i.e., red edge region). The continuum 
removal algorithm allowed to enhance this absorption feature at ~680 nm related to the 
activation of chlorophyll after watering, increasing its variation (Fig. 15). 
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Figure 15. Mean continuum removal at ~680 nm of the lichen classes identified. Bars indicate the first 

and third quartile of each class. (a) dry samples; (b) wet samples. 

3.3. Fractional Cover of Biocrusts and Diversity Metrics 

The most abundant classes were moss and bare soil, covering more than 76% and 46% of 
the surface in some samples, respectively (Table 10). The most abundant lichen was 
Diploschistes, while the least were Psora and Buellia, which appeared scarcely. Species 
richness ranged from 2 to 6. Shannon’s index ranged from 0.18 to 1.53, with a mean value of 
1.03, and Simpson’s index from 0.08 to 0.77, with a mean of 0.56. Pielou’s index ranged from 
0.14 to 0.95, with a mean value of 0.66. 

Table 10. Fractional cover values of the classes evaluated in this work. Samples: number of samples 

where the class was identified. Plots: number of plots where the class was identified. Mean Fc, Max Fc, 

Min Fc, SD Fc: mean, maximum, minimum and standard deviation of the fractional cover observed for 

each class. Classes: Acarospora: Acarospora spp.; Buellia: Buellia spp., Bare Soil: bare soil; 

Diploschistes: Diploschistes spp., Fulgensia: Fulgensia spp.; Moss: mosses; Psora: Psora spp.; 

Squamarina: Squamarina spp. 
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3.4. Relationships between Biodiversity and Spectral Diversity 

The correlation analysis between spectral diversity (CV and SD_CR) and α-diversity 
metrics (i.e., species richness, Shannon’s Index, Simpson’s Index, and Pielou’s Index) showed 
that there were no significant correlations with the dry samples (results not shown). 
Conversely, positive and statistically significant relationships were found when the samples 
were wet (Table 11). 

Table 11. Slopes, coefficients of determination (r
2
) and p-values (between brackets) of the linear 

regression models calculated between spectral diversity metrics (standard deviation of the continuum 

removal calculated between 550–750 nm (SD_CR550–750) and at 680 nm (SD_CR680); coefficient of 

variation calculated between 420–900 nm (CV420–900), between 550–750 nm (CV550–750), and at 680 nm 

(CV680)) and α-diversity metrics (Species richness (S), Shannon’s index (H’), Simpson’s index (D), and 

Pielou’s Index (J’)) when the samples were wet. 

 

When the spectral diversity was calculated as SD_CR550-750 and SD_CR680, the 
relationships with α-diversity were positive and strongly significant for all the diversity 
metrics (Table 11). The standard deviation of the CR at 680 nm (SD_CR680), which is 
related to the difference in chlorophyll content, was the spectral diversity metric better 
related to α-diversity metrics. Neither the SD_CR nor the CV captured the species richness. 
The Simpson’s index was positively correlated to the CV at all the spectral ranges analyzed 
(420–900, 550–750, and 680 nm), especially at 680 nm. While Simpson’s and Pielou’s 
indices were the metrics that correlated best with SD_CR680 (r2 = 0.47 and r2 = 0.42, 
respectively; Table 11, Fig. 16), they did not show any significant correlation with CV420–

900 or CV550–750. The statistics in cross-validation (Table 12) of the linear regressions 
presented similar values to the original analysis, showing the stability of the predictions 
made by the linear regression models between spectral diversity and α-diversity of lichens. 
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Figure 16. Linear regression between the spectral diversity measured as the Standard Deviation of the 

Continuum removal at 680 nm and three α-diversity metrics: (a) Shannon’s index, (b) Simpson’s index, 

and (c) Pielou’s index. Shaded areas represent ±95% symmetrical confidence intervals. 

Table 12. Summary of statistics in fitting (r
2
 and RMSE) and cross-validation (r

2
cv and RMSEcv) of the 

linear regression models between the spectral diversity measured as the standard deviation of the 

continuum removal at 680 nm and the α-diversity metrics (Shannon’s, Simpson’s, and Pielou’s indices). 

RMSE: root mean square error; r
2
: coefficient of determination. 

 

4. Discussion 

The high accuracies obtained using SVM to classify hyperspectral imagery reinforce their 
use to differentiate biocrusts (Rodríguez-Caballero et al., 2014). Differences in the reflectance 
of biocrust constituents are subtle (Fig. 14), but SVMs are capable of differentiating spectrally 
similar classes when the inputs are spectral signatures (Gualtieri and Cromp, 1998; 
Watanachaturaporn et al., 2005; Plaza et al., 2009). Even though the accuracy metrics from 
both sets of images were similar, the classification improved when biocrusts were wet. This 
result is explained by the enhanced differences that appear in the reflectance spectra when 
biocrusts are metabolically activated after irrigation (Weber and Hill, 2016). Several studies 
have characterized the optical properties of biocrust communities in the same optical range 
used in this study (Rees et al., 2004). However, the spatial scale of these studies only allowed 
characterization of biocrust communities. Conversely, the fine spatial resolution of the imaging 
system used in this work allowed to characterize for the first time the pure spectral signature 
of six lichen genera, to compare their characteristics and to capture the spectral diversity among 
them. In fact, we used a pixel size lower than the size of each object of interest (i.e., thallus of 
lichens), as suggested by Ricotta et al. (1999) and Sticker and Southworth, 2008. 

Lichens present different structural and biochemical traits, which create wavelength-
dependent variations that can be integrated by spectral diversity, as shown in vascular plants 
by (Schweiger et al., 2018). Different genera of lichens are characterized by particular 



 50 

biochemical traits that promote spectral variations, so their spectral diversity can be exploited 
to infer their α-diversity. However, it is important to understand which are the best metrics to 
represent the relationship between lichen spectral diversity and α-diversity. Since the 
absorption peak around 680 nm has been widely investigated as a spectral feature of biocrusts 
and is present in all lichens (e.g., Weber and Hill, 2016; Román et al., 2019; O’Neil, 1994; 
Karnieli and Sarafis, 1996; Chamizo et al., 2012), we tested if a spectral diversity metric 
focused on this feature may be suitable for monitoring changes in their composition. We found 
that using a spectral diversity metric based on this absorption feature (i.e., the SD_CR680) 
increases the spectral variability determined by the chlorophyll content of different lichens, 
while removing the confounding influence of other factors such as the structure of lichens. In 
fact, some lichen genera are characterized by a strong tridimensional component (e.g., 
Diploschistes spp., Squamarina spp.) relative to others, which can determine a higher intra-
genera variability compared to the inter-genera variability. The normalization of the reflectance 
spectra to a common baseline through the CR algorithm minimized these structural effects, 
allowing to capture the spectral variability of lichens determined by the chlorophyll content. 
Conversely, the CV is influenced by both variations in the content of pigments and the structure 
of biocrusts, which may hide inter-genera variability. This might be the reason why the CV did 
not perform as well as expected in previous studies conducted with vascular plants (e.g., 
Aneece et al., 2017; Wang et al., 2018a,b), where the structural component constitutes were 
the main source of spectral variability. Conversely, the results obtained in this study highlight 
the dominant role of the chlorophyll content to determine the differences between lichen genera 
and the importance of using the absorption feature centered at ~680 nm to capture their spectral 
diversity. Nevertheless, using absorption features that are found in the shortwave infrared 
region of the spectra of lichens (Weber and Hill, 2016) might help to improve the results 
obtained in this study, that investigated only the visible and near infrared spectral domain. 

Among the α-diversity metrics tested, the Simpson’s index correlated the most with the 
spectral diversity of lichens. The better performance of the Simpson’s index compared to the 
Shannon’s index is in agreement with recent studies conducted in tropical forests (Schäfer et 
al., 2016) and in a prairie grassland (Wang et al., 2018a). The latter found similar and weaker 
relationships between spectral diversity and evenness (calculated as Pielou’s index) as we did 
here, although they correlated these metrics with the CV instead of the SD_CR. This might be 
due to the fact that Shannon’s index assumes that all the species are present and randomly 
sampled (Peet, 1974), and the Simpson’s index is more sensitive to dominant or common 
species, as noted by (Wang et al., 2018), making it more suitable when this is the case. The 
similar relationships obtained in cross-validation show that these results are reliable despite 
their sample size. 

The imagery used in this study captured with high detail the lichen genera present in our 
samples, allowing to identify positive and significant relationships between the spectral 
diversity and the α-diversity of lichens. The methodology proposed in this study should be in 
principle applied to monitor α-diversity of lichens at wider scales, a key task to understand the 
shifts in the composition that these communities are undergoing in the actual context of global 
change (Rodríguez-Caballero et al., 2018; Ferrenber et al., 2015; Maestre et al., 2015; Ladrón 
de Guevara et al., 2018). However, the upscaling of this methodology may be not trivial due to 
the decreased spatial and/or spectral resolution when working on wider scales. 
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Many ecological processes maintain scale-dependent relations (Wang et al., 2018a; 
Stohlgren et al., 1997; Kalkhan et al., 2007; Kumar et al., 2009) and a sampling scale bigger 
than the object studied might cause a loss of information that is provided at finer spatial 
resolutions (Rocchini et al., 2010). In order to understand if the relations found in this work 
hold with decreasing spatial resolution, the spatial sensitivity of the spectral diversity–
biodiversity relationship should be investigated. A previous work in a prairie grassland (Wang 
et al., 2018) identified a strong scale dependence of the spectral diversity–biodiversity 
relationships and suggested that the optimal pixel size for distinguishing α-diversity in prairie 
plots was similar to the size of an individual herbaceous plant (1 mm to 10 cm). This might 
hamper the monitoring of the α-diversity of lichen-dominated biocrusts at landscape scale with 
sensors installed on satellite or airborne platforms, which most likely would have a bigger pixel 
size than the one used in this work. 

Conversely, the use of unmanned aerial vehicles (UAVs), which can carry light-weight 
imaging sensors of different spatial (reaching 2–4 cm/pixel in many cases) and spectral 
resolutions (Aasen et al., 2018) may allow replicating studies like ours at landscape level 
(Anderson and Gaston, 2013). Many of these sensors do not have very high spectral resolution, 
but have at least one band at ~680 nm (Aasen et al., 2018), which would allow to calculate the 
SD_CR680 (the spectral diversity metric that presented the highest predictability of lichens’ α-
diversity in our study) to monitor α-diversity of lichens at larger spatial scales. Achieving the 
results shown in this work at landscape scale might also be hampered by the spectral properties 
that other components (e.g., vascular plants, mosses, bare soil) have on the spectral reflectance 
measured from remote sensors, which might hinder the separation of the pure spectral 
component of lichens and to estimate their α-diversity. This issue could be however solved 
using spectral mixture analysis (Somer et al., 2011), a technique that models a mixed spectrum 
as a combination of its spectral components weighted by the correspondent subpixel fractional 
covers (Keshava and Mustard, 2002) and has already proved to be successful for mapping 
biocrusts (Rodríguez-Caballero et al., 2014). 

5. Conclusions 

The very high accuracies obtained classifying the hyperspectral images using SVMs 
showed the reliability of this methodology to identify different biocrust-forming lichens. 
Therefore, we were able to extract pure spectral signatures of different biocrust constituents 
and to evaluate the relationships between α-diversity and spectral diversity of lichens. We 
found that the SD_CR680 nm was the spectral diversity metric that predicted the best α-
diversity metrics that include richness and evenness in their calculations (i.e., Pielou’s and 
Simpson’s indices). As such, we suggest that this index could help to track spatio-temporal 
changes in lichen-dominated biocrust communities. In this context, the results of this study will 
help to improve future works upscaling the methodology here shown to coarser scales in 
drylands, a key task in any monitoring program aiming to assess the impacts of ongoing climate 
change and desertification processes in these environments. 
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Chapter 4 

UAV-based RGB, thermal infrared and multispectral imagery to investigate 
the terrain control on the spatial distribution of dryland biocrusts 
  
J. Blanco-Sacristán, C. Panigada, R. Gentili, G. Tagliabue, R. Garzonio, M.P. Martín, M. 
Ladrón de Guevara, F. T. Maestre, M. Rossini 
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Abstract 

Biocrusts, topsoil communities formed by mosses, lichens, liverworts, bacteria, fungi, 
algae, and cyanobacteria, are a key biotic component of dryland ecosystems. While climate 
patterns control the distribution of biocrusts in drylands worldwide- terrain and soil attributes 
can influence biocrust distribution at landscape scale. In the last two decades, unmanned aerial 
vehicles (UAVs) have been used to study dryland vegetation and terrain. In this work, multi-
source UAV-retrieved imagery was used for the first time to map and study biocrusts’ ecology 
in a typical dryland ecosystem in central Spain. RGB imagery was processed, using structure-
from-motion (SfM) techniques, to allow for the analysis of terrain attributes related to 
microclimate and terrain stability and their relationship with soil properties. Thermal infrared 
(TIR) imagery was used to calculate the apparent thermal inertia (ATI) of soil and relate it to 
soil moisture. Finally, multispectral imagery was used to produce maps of dryland ecosystem 
components (i.e. vegetation, bare soils and lichen- and moss-dominated biocrusts). The 
relationships between soil properties and UAV-derived variables at field plot level were first 
evaluated. Then, the relationship between biocrusts and terrain attributes was studied at 
ecosystem level using the RGB- and TIR-derived variables. Lichen-dominated biocrusts were 
associated with areas with high slopes and low values of ATI, while biocrust-forming mosses 
dominated lower and moister, north-faced areas, characterised by gentler slopes and higher 
values of ATI. Notably, we found that elevation is a key terrain attribute in the study area and 
might control other variables, such as soil properties and solar radiation in areas with complex 
morphology. This study shows the potential of using UAVs to improve our understanding of 
drylands and, particularly, to evaluate the control that the terrain has on biocrusts’ distribution, 
which is a key element in any program aiming to evaluate changes in biodiversity and 
associated ecosystem services in drylands.  
  
1. Introduction 

Drylands constitute one of the largest biomes on Earth, covering ~47% of the terrestrial 
surface (Koutroulis, 2018). In these environments, topography determines the redistribution of 
scarce precipitation and therefore controls water content and the spatial distributions of soil 
nutrients and organic matter affected by subsurface flows, runoff and infiltration (e.g., 
Puigdefábregas and Sánchez, 1996; Aguiar and Sala 1999; Puigdefábregas et al. 1999; 
Puigdefábregas, 2005; Manzoni et al., 2006). This affects not only vegetation distribution, but 
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also components that appear in plant interspaces, such as biocrusts communities (Rodríguez-
Caballero et al., 2019). Biocrusts are a combination of topsoil communities including mosses, 
lichens, liverworts, bacteria, fungi, algae and cyanobacteria. They play an important role in 
nutrient cycling (Elbert et al., 2012; Weber et al., 2015), soil C fluxes (Castillo-Monroy et al., 
2011; Tucker et al., 2019), runoff/runon dynamics (Chamizo et al., 2012a; Rodríguez-
Caballero et al., 2015; Faist et al., 2017) and are a key component for dryland ecosystems’ 
services maintenance (Rodríguez-Caballero et al., 2017). The effect that these communities 
have on dryland surfaces depends on the dominant and developmental stage of the crust 
(Belnap and Lange, 2013; Concostrina-Zubiri et al., 2013; Faist et al., 2017; Tucker et al., 
2019). For example, biocrusts can increase water availability for plants by augmenting water 
retention in topsoil (Eldridge et al., 2020) and reducing soil evaporation (e.g., Chamizo et al., 
2016; Adessi et al., 2018). They modify sediment accumulation, carbon and nutrient content 
(e.g., Chamizo et al., 2017) and affect surface roughness (e.g., Rodríguez-Caballero et al., 
2015; Wang et al., 2017). For this reason, evaluating the spatial pattern of different types of 
biocrust-dominated surfaces is important to understand their role in the ecosystem. 

Sensors technology has progressed in the last decades to the point that multi- and 
hyperspectral imagers that could previously only be flown on expensive airborne platforms, 
have been miniaturized (Toth and Józków, 2016) and can therefore be carried onboard 
unmanned aerial vehicles (UAVs) (Aasen et al., 2018). This has allowed researchers to obtain 
and exploit a wide range of spectral information to better understand dryland functionality, 
often reaching sub-decimetre spatial resolutions. Previous work has used UAVs to recognize 
dryland vegetation (e.g., Cunliffe et al., 2016; Sankey et al., 2017; Milling et al., 2018), proving 
that it is an achievable task. However, remote sensing of biocrusts has traditionally been 
relegated to other platforms, such as airborne (e.g., Weber et al., 2008; Rodríguez-Caballero et 
al., 2014) and satellites (e.g. Panigada et al., 2019), with a few exceptions (Jung et al., 2020; 
Sevgi et al., 2020; Havrilla et al., 2020). In addition, biocrusts are difficult to distinguish due 
to their small size and similar optical properties to vegetation and soil (Weber and Hill, 2016; 
Smith et al., 2019). Hence, UAVs integrated with multispectral cameras can greatly benefit the 
identification of dryland biocrusts. 

The research field is starting to explore the potential of RGB imagery acquired from 
UAVs to identify dryland biocrusts (Jung et al., 2020; Sevgi et al., 2020; Havrilla et al., 2020). 
However, even though narrow-band multispectral sensors might offer more spectral 
information from biocrusts than RGB ones (Havrilla et al., 2020), to our knowledge, they have 
not been used onboard UAVs for biocrust identification in drylands. By applying the 
continuum removal algorithm (CR; Clark and Roush, 1984) to hyper- or multispectral data, the 
reflectance spectra of biocrusts can be normalized to a common baseline. Several authors have 
exploited subtle differences in their absorption features for their identification using this 
algorithm (e.g. Rodríguez-Caballero et al., 2017; Panigada et al., 2019; Román et al., 2019; 
Blanco-Sacristán et al., 2019). Multispectral sensors usually have at least one spectral band in 
the red region at ~ 660-680 nm, that is the chlorophyll-a absorption feature, which is present 
in all chlorophytic biocrusts (Weber and Hill, 2016) and allows comparison between their 
absorption in this region of the optical spectrum. In this context, the CR has never been applied 
to multispectral imagery acquired using UAVs to differentiate dryland biocrusts by exploiting 
differences in common absorption features among chlorophytic biocrusts. This increased 
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differentiation added to the sub-decimetrical resolution that can be achieved by mounting these 
sensors onboard UAVs could greatly benefit their identification, particularly when bare soil 
and biocrusts are mixed. 

UAVs have been commonly used to obtain digital surface models (DSM) from RGB 
imagery, from which digital terrain models (DTMs) of very fine spatial resolutions can be 
derived to calculate topography-related variables using digital photogrammetry (Westoby et 
al., 2012). These detailed DTMs allow to apply hydrological models and to study the impact 
of changing terrain properties on landscape’s hydrology (e.g., Lucieer et al., 2014). Thus, using 
these models it is possible to study components of hydrological systems, such as surface and 
subsurface flows, which are key to understanding nutrient and sediment transport in the 
landscape (Stieglitz et al., 2003). However, relationships between soil properties and 
topography are site-dependent in ecosystems of complex morphologies, where microclimatic 
conditions are different from the ones observed at wider scales and can favour the formation 
of a heterogeneous community assembly (Rossi et al., 2014). In this context, and since soil 
properties greatly control biocrust distribution in drylands (Rodríguez-Caballero et al., 2019), 
using DTM-derived variables to evaluate the effect of the terrain on dryland soil properties 
offer a tool of great help for their study. However, not all physical properties of soils can be 
evaluated through DTMs, and other key variables for biocrust development, such as soil 
moisture, need additional data sources in order to be estimated. 

Soil moisture plays a key role in surface water flow by controlling transport processes 
in the soil–plant–atmosphere system (Campbell and Norman, 1988). However, the estimation 
of the soil moisture involves on-site measurements by standard point-based techniques (e.g., 
the thermogravimetric method or time domain reflectometry) and requires interpolation 
techniques in order to obtain spatially explicit information. Soil thermal conductivity changes 
with fluctuations on moisture level (Minacapilli et al., 2009), therefore, thermal inertia can be 
used to estimate soil moisture. Materials with high thermal inertia have more uniform surface 
temperatures throughout the day and night than materials with low thermal inertia. Since 
thermal inertia cannot be estimated using remote sensing, apparent thermal inertia (ATI) is 
used instead to be related with soil moisture as proved by Van doninck et al., (2011) in arid 
and semi-arid environments. Maps of ATI can be obtained using multitemporal thermal 
infrared (TIR) imagery to estimate the diurnal temperature cycle. The co-albedo needed for 
this calculation can be derived from multispectral visible-near infrared (VIS-NIR) data. 
However, the coupling between ATI and soil moisture is not straight forward in heterogeneous 
surfaces, as in drylands, since ATI might be directly related to soil moisture only in areas where 
only a single soil or land cover type is present (van Doninck et al., 2011). For this reason, using 
TIR cameras on board UAVs would allow the derivation of high spatial resolution maps of 
ATI, which might solve this problem of mixed surfaces. 

The objective of this work was to evaluate the effect of terrain attributes in the 
distribution of dryland ecosystem components’ using UAV-based imagery by i) mapping 
dryland constituents (i.e. vegetation, biocrusts, and bare soil) through multispectral imagery; 
ii) estimating terrain attributes from Structure from Motion (SfM) techniques applied to RGB 
imagery and evaluating their effects on soil properties; iii) estimating soil moisture using maps 
of ATI derived from TIR imagery; iv) evaluating through a multivariate statistical approach 
how terrain attributes and soil moisture affect biocrust distribution in the study area. 



 55 

2. Materials and Methods 

2.1. Study area 

This study was conducted in a typical dryland ecosystem in Aranjuez, Spain (Fig. 17). 
The climate in this area is semiarid Mediterranean, with mean values of annual temperature 
and rainfall of 15ºC and 349 mm, respectively. The soil is classified as Gypsiric Leptosol (IUSS 
Working Group WRB, 2006). The vascular vegetation cover in this area is <40% and is 
dominated by Macrocloa tenacissima tussocks and, in a lesser amount, small shrubs, such as 
Helianthemum squamatum and Gypsophila struthium. On the surface not covered by vascular 
vegetation, a rich biocrust community develops, dominated by lichens, including Diploschistes 
diacapsis, Squamarina lentigera and Psora decipiens among others. A moss-dominated crust 
also develops, with species such as Pleurochaete squarrosa and Tortula revolvens. 
Cyanobacteria genera, such as Microcoleus, Tolypothrix and Nostoc can also be found in the 
area (Cano-Díaz et al., 2018). See Maestre et al. (2013) for a complete list of species of the 
visible biocrusts in the study area. We worked in two different areas within the study site: Area 
A, which covers an extension of 5.4 hectares, has a moderate slope a dominant West exposure 
in Zone 1 and a smaller slope exposed to the East in Zone 2; and Area B, which covers 1.2 
hectares and presents an abrupt hill, mainly exposed to the South in Zone 3, and a minor slope 
exposed to the North in Zone 4. 

 
Figure 17. Location of the study area in Aranjuez, central Spain. a) Area A of this study; b) Area B of 

this study; c-e) Communities of biocrust found in the study area; f-i) detailed view of the dominant 

biocrust surface covers. 
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2.2. Field campaign 

In March, 2018, a field campaign took place to characterise biocrust and vascular 
vegetation covers, soils and to collect RGB, multispectral and TIR UAV-based imagery. We 
collected soil samples to measure the physical properties of the soil in the study area, as 
described in section 2.2.1. The RGB imagery was collected to create DTMs that could allow 
to derive terrain attributes that are related with the soil attributes previously studied, as 
described in section 2.3.1. Multispectral imagery was collected to map the study area, as 
described in section 2.3.2. Finally, the TIR imagery was collected to evaluate soil moisture, as 
described in section 2.3.3. A general workflow with the main actions of this work is represented 
in Fig. 18. 
 

 
Figure 18. Workflow with the main processes carried out in this work. UAV: unmanned aerial vehicle; 

TIR: thermal infrared; RGB: red, green and blue; SVM: support vector machine; ATI: apparent thermal 

inertia; DTM: digital terrain model; RDA: redundancy analysis. 

 
2.2.1. Biocrust characterization and soil sampling 

Soil samples were collected in the field on the 21st of March, 2018. A total of 23 2x2 m 
plots were placed within the two areas to capture the variations in biocrust communities and 
vascular vegetation that were identified by an expert. Pictures were also taken with a camera 
mounted on a tripod at 1 m height. Three representative soil sub-samples were taken in each 
plot from 0-10 cm depth (after removing the litter layer) and pooled to one sample, which 
represented the average soil characteristics of the plot. The samples were chemically and 
physically analysed in the laboratory applying standard techniques (Colombo and Miano, 
2015). The samples were dried and sieved (2 mm mesh) and analysed to determine the 
percentage of soluble salts (SolSal), total phosphorus (Ptot), percentage of organic carbon 
(OrgCarb) and total nitrogen (Ntot). Soil moisture was measured in the field at 0-10 cm depth 
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at three representative locations within each plot using a FieldScout TDR-100 soil moisture 
meter (Spectrum Technologies, USA). 
 
2.2.2. UAV flights 

Three photogrammetric flights (Table 13) using an eBee SQ (senseFly, Switzerland) 
fixed-wing UAV were conducted by the company 3D Scanner (Zaragoza, Spain), on March 
20th, 2018. These flights were conducted in winter, which corresponds to the wet season in the 
study area, because biocrusts are more colourful when are well hydrated by the rains, and 
therefore they are easier to map and differentiate from spectral information. Three different 
spectral cameras: SODA (senseFly, Switzerland), Parrot Sequoia (senseFly, Switzerland) and 
thermoMAP (senseFly, Switzerland) were flown to acquire RGB, multispectral and TIR 
images respectively. Two sets of TIR imagery were acquired: the first before sunrise, and the 
second at noon. During this second flight, multispectral imagery was simultaneously acquired. 
A third flight, right after the previous one, was performed to acquire RGB images on the site. 

An overlap of 80% between the RGB images was planned during the third flight, and 
an overlap of 70% between the multispectral images was achieved during the second flight. 
The multispectral Parrot Sequoia camera is a compact bundle of 4 cameras with 
complementary metal-oxide-semiconductor sensors, each one equipped with an individual 
narrow-band filter (Assmann et al., 2018). This results in a multi-band image composed by 
four bands: Green (550 ±40 nm), Red (660 ± 40 nm), Red Edge (735 ± 10 nm) and NIR (790 
± 10 nm). A white reference Micasense® panel was measured with the Sequoia camera 
immediately before and directly after the drone survey in order to calibrate the images.   

 
Table 13. Technical information of the UAV flights using thermoMAP Parrot Sequoia Parrot and 

S.O.D.A. sensors.  

Flight Sensor 
Start time 

(UTC) 

Duration 

(min) 

Average flight 

altitude  

(m. a. s. l.) 

Spatial resolution 

(cm/pixel) 

1 thermoMAP 06:15 30 620 10.3 

2 Sequoia 12:00 25 635 5.8 

3 thermoMAP 12:30 30 620 10.3 

4 S.O.D.A. 13:15 18 675 0.5 

 
2.2.3. Ground data 

Reflectance factors were obtained in the field in order to calibrate and validate spectral 
data acquired from the UAV sensors using an ASD FieldSpec® FR3 field spectroradiometer 
(Analytical Spectral Devices, USA) which features a spectral range from 350 nm to 2500 nm, 
optical resolution of 1 nm and a nominal field of view of 25º. Two types of reference targets 
were measured during the flight campaign: white and black 2 x 2 m targets made of PVC-
coated canvas material (Odyssey’ trademark material; Kayospruce Ltd., UK) assumed to be 
lambertian surfaces; and selected homogeneous plots from the main communities of biocrusts 
in the study site (Fig. 17). Before each target measurement, down-welling radiance was 
measured on a calibrated 99% reflective Spectralon® panel (Labsphere Inc., USA) to optimize 
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the instrument parameters and calculate reflectance factors. Eight to ten spectra were taken on 
each target and were averaged to obtain the final spectrum for each. These ground spectral 
measurements were acquired around solar noon, contemporaneously to the multispectral 
images by the Parrot Sequoia camera (drone flight 2). Their exact location was registered using 
a Topcon GPR-1 (Topcon, Japan) differential global navigation satellite system (dGNSS) so 
the ground targets could be accurately located in the UAV images. The spectra of all ground 
measurements were resampled to the Sequoia spectral resolution using the response function 
of the sensor (Fawcett et al., 2019). These spectra were used to apply an empirical line 
correction (Conel et al., 1987) to the multispectral images in order to guarantee radiometric 
quality in the final reflectance orthomosaics. 

Simultaneously with the drone flights, the coordinates of 10 reference targets were 
taken in each area by means of dGNSS geodetic receivers (one Topcon HiPer Pro antennas and 
one Topcon GPR-1 [Topcon, Japan]). The targets were deployed in clear areas as black and 
white grids printed on thick paper sheets (297 x 420 mm). In each area, six of these targets 
were used as Ground Control Points (GCPs) for the generation of the orthophoto and Digital 
terrain model (DTM), while the remaining 4 were used as Ground Validation Points (GVPs) 
for validation. We used a rapid-static measurement technique and the coordinates were 
corrected during post-processing (Hofmann-Wellenhof et al., 2007). One of the two GNSS 
devices was used as master and the other as rover. The master station was placed in a clear flat 
area for a cumulative time of 5 hours and was used as a static reference point. The rover was 
used to measure the centre point of each GCP and GVP keeping it over the point for at least 2 
minutes, taking a measurement every second with at least 6 satellites in the field of view of the 
receiver, according to the protocol proposed by Hegarty and Chatre (2008). The master and 
rover data were post-processed using Topcon Tools software (Topcon Positioning Systems, 
Inc.). The dGNSS system used during the surveys has a horizontal precision of 3 mm + 0.5 
ppm and a vertical precision of 5 mm + 0.5 ppm according to the Topcon HiPer Pro 
specification data. 
 
2.3. UAV data processing 

2.3.1. RGB images: Orthophoto, DTM and terrain attributes 

RGB images acquired over areas A and B of the study site by the S.O.D.A. camera 
were processed into orthophotos and grid-based DSMs following a SfM workflow (Lucieer et 
al., 2014; Westoby et al., 2012) in Agisoft Photoscan v. 1.4 (Agisoft, Russia). A detailed 
description of the SfM algorithms used in Agisoft PhotoScan can be found in Verhoeven 
(2011). The images captured during the flights were aligned using an image feature recognition 
algorithm similar to Lowe's (2004) scale invariant feature transform method, which 
automatically detects and matches unique image feature characteristics that are stable under 
variations in view perspective and illumination across input photographs. This alignment 
results in a sparse 3D point cloud, which is used to create a dense point cloud by an iterative 
bundle adjustment algorithm, which recreates its 3D geometry and camera positions from a 
sequence of two-dimensional images acquired from multiple viewpoints (Ullman, 1979). The 
onboard navigation sensors allowed the camera positions and 3D point cloud to be 
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automatically georeferenced within the precision of the instrument. The GCPs were then 
manually identified on the images, and their dGNSS coordinates were imported to optimize 
spatial accuracy and improve the geometry of the 3D point cloud. To increase the density of 
the point cloud and to convert them into the orthomosaics of each area, a multi-view stereo 
image matching algorithm was applied to the point clouds. The GVPs were also identified in 
the images and they were used for model accuracy assessment. 

To generate free-of-vegetation DTMs, points belonging to vegetation were removed 
from the point cloud (Fig. 19) using the CANUPO plug-in (Brodu and Lague, 2012) in 
CloudCompare. For each area, two point clouds representing each class (vegetation and bare 
soil) were manually segmented from the point cloud. These sub-clouds were used for training 
the classifier computing a dimensionality descriptor on the original point cloud with a regular 
ramp of scale values (sampled from 0.1 to 1 with steps of 0.1). The classifier was applied to 
the point cloud (using selected points as core points) classifying and removing vegetation 
points. Finally, isolated points were removed by using the noise filter tool (specifying a radius 
of 0.3 m and a relative error) and the DTMs were exported from CloudCompare with a 
resolution of 10 cm, interpolating empty cells with average values. To minimize potential 
errors in the DTMs’ values, they were smoothed in ArcMap by applying an average filter with 
the Focal statistics tool by considering a circle window of 1 m. 

 

 
Figure 19. Example of vegetation classification derived from the point cloud used to derive the 

vegetation-free DTM in Area A of the study site. Left: RGB natural colour composite with vegetation 

and bare soil areas. Right: Classification of vegetation (red) and bare soil (blue). 

  
         Several terrain attributes were calculated from the DTM of each area. The Elevation 
was extracted from the DTMs. The Slope of each cell was calculated applying the 9 parameters 
second order polynomial method (Zevenbergen and Thorne, 1987) within the Slope function 
in QGIS v. 2.18.12. The Aspect was derived from the DTM using the Aspect function in QGIS 
v. 2.18. The Northernness (i.e. the exposure of each cell of the DTM to the North) was 
calculated as the cosine of each cell of the Aspect model. Since this variable has values ranging 
from -1 to 1, to avoid problems in later calculations, +1 was added to each pixel value.  
 The Contributing catchment area (CCA) of each pixel of the DTMs was modelled using 
the TauDEM toolbox (Tarboton, 1997; Tesfa et al., 2011) in ArcMap v. 10.5. For this, the pits 
were first removed from the DTM and the D-Infinity Contributing Area function was used to 
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calculate it. The D-Infinity algorithm (Tarboton, 1997) calculates the flow direction using the 
steepest downwards slope on the eight triangular facets formed in a 3 x 3 pixel window centred 
on the grid cell of interest. The topographic wetness index (TWI; Beven and Kirkby, 1979), 
which quantifies the topographic control on hydrological processes, was calculated for each 
cell using Equation 1, 
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where A is the upstream area for each pixel and β is the slope in degrees. 
The length slope factor (LSF; Renard et al., 1977), indicator of the potential sediment 

transport or erosion risk under specific slope conditions, was calculated following Equation 2, 
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      Eq. 2 
where LSF is the length slope factor, A the CCA, β the slope gradient and n and m are constant 
parameters fitted to 0.4 and 1.3 respectively. 

The potential incoming solar radiation (PSIR) was calculated using the DTM of each 
area and the geometric solar radiation model implemented in ArcGIS Solar Analyst tool by 
assuming a uniform clear sky condition with a constant transmissivity of 0.5 (Fu and Rich, 
2003) and a diffuse radiation proportion of 0.3. The map of the whole year PSIR [Wh m-2 year-

1] was used in this study as indicator of the potential evapotranspiration (Monteith and Szeicz, 
1962). 

2.3.2. Multispectral Parrot Sequoia images 

The images were processed in Pix4DMapper (Pix4D S.A., Switzerland). The workflow 
implemented in this software follows the next steps to obtain the final reflectance for each 
spectral band of the image. First, the calibration coefficient K for converting measured pseudo-
radiance R to reflectance is derived for each band as 
  2 =	 1234

5234
                                  Eq. 3 

where ρref is the known reflectance of the panel for the Sequoia band and Rref represents the 
measured pseudo-radiance averaged over the imaged pixels of the reference panel. Values for 
ρref are provided by the manufacturer if MicaSense® reflectance panels are used. The digital 
number (P) of each pixel can be converted to pseudo-radiance in arbitrary units R according to 
Equation (4). 
	3 = 4& 678
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             Eq.4 

where γ is the ISO number, ε is the exposure time in seconds, f is the f-number and A, B and 
C are camera-specific calibration coefficients which model the non-linear behaviour of the 
sensor (Fawcett et al., 2020). 
Finally, the reflectance per pixel (ρ) of the scene can then be derived as 
 5 = 23                                              Eq. 5  

To correct the reflectances measured by the multispectral sensor, the empirical line 
method (Smith and Milton, 1990) was applied. This method is based on an empirical 
relationship between the drone reflectance and ground reflectance of the reference targets (i.e. 
black and white reference panels) collected with an ASD Field Spectrometer in the field.  
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The white panel saturated on the Sequoia images, therefore homogeneous biocrust 
targets were used as bright targets instead. The linear equation obtained for each multispectral 
band was applied to obtain the final reflectance of the multispectral images. 

The spatial accuracy of these multispectral orthomosaics was assessed based on the 
residuals of the GCPs and the GVPs used for their generation. The final multispectral 
orthomosaics had a spatial resolution of 7.7 cm/pixel. 

The CR algorithm was computed on the reflectance of the final multispectral images. 
The CR algorithm normalises the reflectance spectrum to a common baseline at certain 
wavelengths and allows the comparability of absorption features in the spectra that are 
produced by pigments. This is achieved by approximating the continuum between local 
spectral maxima through straight-line segments: a value of 1 is assigned to the local maxima, 
and a value between 0 and 1 is obtained in correspondence of the absorption features. The 
absorption feature related to chlorophyll-a was computed at 660 nm by extracting the value of 
the CR in the red band (CRred). The CRred was used to improve later classification of the images. 
         Seven different surface covers were identified in the study site during field surveys 
(Fig. 20): bare soil (Soil), bright lichens (BL; patches of Squamarina spp., Diploschistes spp., 
Buellia spp.), bright lichens with moss (BLM; Squamarina spp., Diploschistes spp., Buellia 
spp. and Tortula revolvens (Zone 1) or Syntrichia ruralis (Zone 2)), moss (Moss; Tortula 
revolvens (Zone 1) and Syntrichia ruralis (Zone 2)), Fulgensia spp. and moss (Fulg; Fulgensia 
spp. and Tortula revolvens (Zone 3) or Pleurochaete squarrosa (Zone 4)), green vegetation 
(GreenVeg; green tussocks of Macrocloa tenacissima) and dry vegetation (DryVeg; dry 
individuals of Helianthemum squamatum, Gypsophila struthium and Macrocloa tenacissima). 
Those surface covers were used as reference for the digital classification of the multispectral 
orthomosaic. 

At least 15 polygons (around 100 pixels) per class were selected on each orthomosaic 
to train the support vector machine (SVM) algorithm used in the classification. These training 
areas were selected using ancillary information such as field notes and high resolution RGB 
orthomosaics. The four bands of the multispectral images were used as input in the SVM. 
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Figure 20. Orthomosaic of Area B of the study zone and details of the classes used to classify the 

multispectral images. BL: bright lichens; BLM: bright lichens and moss; Fulg: Fulgensia spp. and moss; 

GreenVeg: green vegetation; DryVeg: dry vegetation. 

 
The SVM is a statistical learning theory-based supervised classification method (Cores 

and Vapnik, 1995; Vapnik, 2005). It uses training samples of the target categories and separates 
them using a decision surface called hyperplane, which maximizes the margins between them. 
The support vectors are the closest training samples to this hyperplane, and are the ones used 
by the algorithm. SVM allows a certain degree of misclassification by using a penalty 
parameter. However, to avoid overfitting of the model, fine tuning of this parameter is 
important, since increasing its value increases the cost of misclassifying points, forcing the 
creation of a more accurate but not generalizable model. In this work, a radial basis kernel 
function was used, which is controlled by two parameters: the penalty parameter (C) and the 
width of the Gaussian kernel (c). Large values of C reduce the training dataset error but can 
result in overfitting of the model to the training data. The best parameters used for each 
classification were evaluated using the LIBVSM library (Chang and Lin, 2011). The SVM was 
used in a pairwise classification way to classify the images and derive thematic maps with the 
spatial distribution of the main surface covers in the two areas. CRred was used to improve the 
discrimination of some categories with similar spectral behaviour such as DryVeg and Moss, 
but different pigment absorption.  

Classification accuracy was assessed through confusion matrices (Story and Congalton, 
1986). In these confusion matrices the ground truth data (the columns) are compared to the 
classified data (the rows). The major diagonal represents the agreement between these two data 
sets, and the overall accuracy (OA) of the classification is calculated by dividing the sum of 
the entries of this diagonal by the total number of samples taken. The validation dataset was 
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created by selecting independent 50 pixels per class of pure endmembers in the same way as 
for the training dataset. 
 
2.3.3. Thermal imagery and ATI calculation 

TIR images acquired by the thermoMAP camera were calibrated during the flight using 
an integrated shutter for in-flight radiometric calibration. This shutter automatically closes after 
every picture is captured and self-calibrates by comparing the grey level of each photo with the 
temperature measured by the built-in temperature sensor of the camera. Raw images were 
converted using Pix4D software (Pix4D, Switzerland) to temperature in degrees Celsius with 
the equation 
 ! = 0.01 R -100         Eq. 6 
where T is the absolute temperature in degrees Celsius and R is the radiometric value of 
thermoMap thermal images. Emissivity of biocrusts and typical soils was measured in the 
laboratory and found to be close to 1 for both targets (see Supplementary Material) in the range 
of the thermoMAP (8.5–13.5 μm). Since the aim of using these images in this study was to 
measure properties related to biocrusts, emissivity was neglected and thus not included in this 
calculation.  

Two orthomosaics (one captured before sunrise and one at noon) of each target area 
with a spatial resolution of 15 cm/pixel were generated using Pix4D (Pix4D, Switzerland). The 
accuracy of these TIR orthomosaics was assessed based on the residuals of the GCPs and the 
GVPs used for their generation and for accuracy assessment respectively.  

Thermal inertia of a certain material describes its resistance to temperature variations 
(Short and Stuart, 1982). In this work, land surface temperature differences and albedo were 
used in the definition of the concept of thermal inertia to assess the space–time variability of 
soil water content (Verstraeten et al., 2006). A simple formulation of thermal inertia is the 
apparent thermal inertia (ATI; K-1), which is derived directly from multi-spectral remote 
sensing imagery (Price, 1985; Mitra 2004; Van doninck et al, 2011): 
 6!#	 = 7 (7=
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	          Eq. 7 

where ATI is the amplitude of the diurnal temperature range [K] calculated as the 
difference between the maximum and the minimum daily surface temperature; 8 is the surface 
spectral albedo [-]; and C is the solar correction factor [-] that changes over space and time to 
normalize for solar flux variations with latitude and solar declination changes between seasons. 
In this study, ATI is calculated as the difference between the temperature orthomosaic captured 
at noon and the one captured before sunrise. C was calculated to have a value of 1.19. We 
approximated the albedo by using the brightness calculated as the arithmetic mean from 
multispectral orthophotos: 

 
	8 = 1@5AAB;15AC;15A@;1BD5

E
       Eq. 8 

where 593::;, 53:<, 53:9 and 5;#3 are the corresponding Green, Red, Red Edge 
and NIR bands, respectively. Multispectral bands were calibrated so the brightness map can 
reasonably be considered to be a proxy of the broadband visible albedo. 
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The correlation between ATI and soil moisture was tested through a linear regression model 
between the mean ATI value extracted from these orthomosaics and the mean soil moisture 
measured during the field campaign on each plot. The average value of ATI on each 2x2 m 
plot was obtained in QGIS v. 2.18.12, by averaging the ATI values of the corresponding 
polygons excluding from the calculation the vegetation pixels. A vegetation-free mask was 
created for this purpose by using the classifications of the multispectral images and was applied 
to the ATI orthomosaics. 
 
2.4. Statistical analysis 

To evaluate if there were statistically significant differences between the four zones of 
study, a post-hoc Duncan test following a one-way ANOVA analysis was performed. To 
analyse the effect of the terrain attributes in relation to the spatial distribution of soil properties 
measured in the sampling plots, the correlation ratio (Pearson, 1926) was calculated between 
the terrain attributes calculated from the RGB images and the ATI and the soil characteristics 
retrieved from ground measurements. The average value of the terrain attributes on each plot 
was obtained in QGIS v. 2.18.12, by averaging the terrain attribute values of the corresponding 
polygons, excluding from the calculation the vegetation pixels. The correlation ratio can 
assume values in the range 0-1, with values close to 1 meaning that the terrain attribute variable 
explains all the data variance, is calculated as:  
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where each observation is yxi, x indicates the terrain attributes (divided in three classes 
standardizing the values, using maximum and minimum values of each variable), and i 
indicates an observation. If nx is the number of observations in the x topography variable, ?K is 
the mean of the category x and ? is the mean of the whole population. 

The relationship between the different biocrust covers and the terrain variables in the 
whole study area was evaluated through a redundancy analysis (RDA) performed using the 
vegan R package (Oksanen et al., 2017) version 2.4. To test the significance of the selected 
variables in the RDA, permutation tests (N=999) were performed using the marginal effect of 
the terms in the anova.cca function. 

The CCA variable was removed from the analysis to avoid multicollinearity, since it 
was used to calculate TWI and LSF. Based on this, a set of 7 terrain attributes were considered 
in the analysis: PSIR as an indicator of the potential evapotranspiration (Monteith and Szeicz, 
1962) and as a proxy of thermal microclimate (Durham et al., 2018; Suggitt et al., 2018); LSF 
as an index of surface stability (Renard et al., 1977); TWI as an index of the topographic control 
on hydrological processes (Sörensen et al., 2006); Elevation; Slope gradient, as it has 
implications for dryland components distribution not captured by other variables (Rodríguez-
Caballero et al., 2019); Northernness, as indicator of facing of the slope; and ATI, as proxy of 
soil moisture. The vegetation (combination of DryVeg and GreenVeg) and soil fractional 
covers were also included as variables in this analysis. The dataset used in this analysis was 
obtained through a random sampling in the study area, where 540 points were selected. A buffer 
of 3 m was used to summarize the terrain attributes and the fractional cover of each point. To 
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avoid spatial auto-correlation (Haining, 1980) in the random sampling, in both study areas a 
semi-variograms’ analysis was performed on the first principal component of the principal 
component analysis (PCA) of the multispectral images, which captures most information in the 
original multispectral bands (Tian et al., 2005). 
 
3. Results 

3.1. Image pre-processing: radiometric and geometric accuracy 

A summary of the geometric accuracy is shown in Table 14. For the RGB orthomosaics, 
the total RMSE was lower than 10 pixels in both models. For the multispectral images, the total 
RMSE was lower than 4 pixels in both images. For the TIR orthomosaics, the total RMSE was 
lower than 3 pixels.  
 
Table 14. Root mean square error (RMSE) for the 6 Ground Control Points (GCPs) and 4 Ground 

Validation Points (GVPs) for RGB, multispectral and thermal surveys.  

Area Imagery 
GCP RMSE 

XY cm (pixel) 
GCP RMSE Z 

cm (pixel) 

GCP Total 
RMSE cm 

(pixel) 

GVP RMSE 
XY cm (pixel) 

GVP RMSE Z 
cm (pixel) 

GVP Total 
RMSE  

cm (pixel) 
Area A 

RGB 
2.17 (4.3) 4.2 (8.4) 4.7 (9.4) 2.2 (4.4) 2.3 (4.6) 3.2 (6.4) 

Area B 1.58 (3.1) 1.3 (2.6) 2.1 (4.2) 1.9 (3.8) 1.3 (2.6) 2.4 (4.8) 
Area A 

Multispectral 
18.8 (3.2) 21.8 (3.7) 22.4 (3.8) 19.4 (3.3) 13.7 (2.3) 21.8 (3.7) 

Area B 11.1 (1.9) 17.1 (2.9) 18.2 (3.1) 13.7 (2.3) 21.44 (3.7) 22.3 (3.8) 
Area A TIR 21.2 (2.1) 23.4 (2.2) 24.7 (2.4) 23.1 (2.2) 22.4 (2.1) 24.5 (2.3) 
Area B 16.6 (1.6) 17.3 (1.6) 19.8 (1.9) 16.8 (1.6) 15.9 (1.5) 19.9 (1.9) 

 
 
3.2. Classification of the multispectral orthomosaics and evaluation of the classification 
accuracy 

SVM classification generated land cover maps of the two target areas in the study site 
(Fig. 21). OAs higher than 90% where achieved in both areas. As shown in the confusion 
matrices (Table 15), BL and GreenVeg were the most accurately classified covers in this area, 
but there was some confusion between BLM and Moss, where 10% of Moss was misclassified 
as BLM. All classes were correctly classified in Area B, with an OA of 93%. However, there 
was some confusion between Moss and DryVeg, with 14% of Moss classified as DryVeg. In 
both areas, the most dominant class was DryVeg, while the least ones were the classes with 
lichens and mosses mixed (i.e. BLM and Fulg in Area A and Area B, respectively; Table 16). 
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Table 15. Confusion matrices of the classification of both areas of study. Top: confusion matrix of Area 

A. Bottom: confusion matrix of Area B.  BL: bright lichens; BLM: bright lichens and moss; Fulg: 

Fulgensia spp. and moss; GreenVeg: green vegetation; DryVeg: dry vegetation. 

  Field data (%) 

  Soil DryVeg GreenVeg BL BLM Moss 

 Soil 94 0 0 4 6 0 

 DryVeg 0 98 4 0 0 4 

Classified 

data (%) 
GreenVeg 0 2 96 0 0 0 

 BL 4 0 0 96 2 0 

 BLM 0 0 0 0 82 6 

 Moss 2 0 0 0 10 90 

 

  Field data (%) 

  Soil DryVeg GreenVeg BL Fulg Moss 

 Soil 96 0 0 6 0 0 

 DryVeg 0 98 0 0 4 14 

Classified 

data (%) 
GreenVeg 0 2 100 0 0 0 

 BL 0 0 0 94 0 0 

 Fulg 4 0 0 0 94 6 

 Moss 0 0 0 0 2 80 

 
Table 16. Fractional cover of each class in the study areas as resulted from the classification of the 

multispectral images. -: class not present.  

 Surface cover (%) 

 Soil DryVeg GreenVeg BL BLM Fulg Moss 

Area A 4.01 59.88 10.23 1.32 10.21 - 14.32 

Area B 8.94 43.11 8.03 0.86 - 14.84 24.19 

 
 



 67 

 
Figure 21. Details of the support vector machine classifications (top) of the multispectral images 

(bottom), represented as false-colour composite (bands NIR, Green and Red). Left: area A; right: area 

B. 

 
The reflectances (Fig. 22b) of biocrust classes in the overall brightness and in the red 

edge region, i.e. the region of rapid change in reflectance between red absorption due to 
pigment content and near infrared reflectance due to the structure, were the highest among the 
evaluated. Classes dominated by lichens had higher reflectances, and BL was the class with 
the highest reflectance among them. Classes dominated by mosses had the lowest reflectances 
among biocrusts, and only vegetation reflectances were lower. The application of the 
continuum removal algorithm (Fig. 22a) highlighted the absorption due to chlorophyll at ~660 
nm. Moss was the biocrust class with the highest absorption at ~660 nm due to chlorophyll (i.e. 
lowest CRred value), while GreenVeg was the class showing the highest absorption of all the 
evaluated classes. While similar in the spectral shape, DryVeg and Moss presented differences 
in their CRred and reflectance values. This absorption feature was present in all classes but Soil, 
and allowed to better differentiate it from biocrust classes. Pixels classified as DryVeg with 
values of CRred greater than 0.75 were assigned to Moss and pixels of BL with values of CRred 
of 1 were assigned to Soil. These subtle differences allowed to improve the classification done 
by the SVM, which slightly confused these two classes, by using thresholds in the CRred. Final 
accuracies (Table 15) are the result of using these thresholds after the SVM classifications. 
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Figure 22. Mean continuum removal absorption spectra (a) and mean reflectance spectra (b) of the 

vegetation, biocrust and soil classes used in this work, extracted from the Sequoia multispectral images. 

Shaded area is the standard deviation of each spectra. DryVeg: dry vegetation; GreenVeg: green 

vegetation; BLM: bright lichens with moss; Fulg: Fulgensia spp. with moss. 

 
3.3. Thermal data and soil moisture 

ATI was calculated from the TIR imagery captured, and maps of ATI were created, 
masking the vegetation component. The soil moisture that was measured in the 23 field plots 
correlated well with the ATI values (r2=0.83; Fig. 23), indicating that ATI is a good estimator 
of soil moisture in the study area, even when soils are covered by biocrusts. ATI was then used 
as a proxy of soil moisture in the subsequent analysis. 

 
Figure 23. Linear regression between Apparent Thermal Inertia (ATI) and soil moisture in the 23 field 

plots used in this study. Shaded areas represent ±95% symmetrical confidence interval. 
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3.4. Analysis of soil properties 

Soils in the study area are Gypsiric Leptosols and this is represented by the very high 
content of SalSol, reaching values higher than 90% in some of the plots, and the low presence 
of OrgCarb (Table 17). Plots presented similar and low nutrients content, reaching values of 
Ptot of 0% in some plots and close to 0% of Ntot. Moisture presented high variation among the 
plots, with mean values around 14%. 

 
Table 17. Soil attributes retrieved from the 23 2x2 m plots deployed in the field. Mean, Max, Min, SD: 

mean, maximum, minimum and standard deviation, respectively. SolSal: soluble salts; OrgCarb: 

organic carbon; Ptot: total phosphorus; Ntot: total nitrogen.  

Soil attribute  Mean  Max  Min  SD 
Moisture (%)  14.3  22.6  4.44  5.3 

SolSal (%)  81  96  19  15.02 

OrgCarb (kg m
-2

)  0.92  3.96  0.14  0.74 

Ptot (%)  0.6  7.26  0  1.44 

Ntot (%)  0.08  0.37  0.01  0.07 

 
3.5. Statistical analysis 

3.5.1. Relationships between terrain attributes and soils in the study plots 

Terrain attributes in the field plots were found to range differently in the four zones 
sampled (Fig. 24). The Elevation presented similar values in zones 1 and 2 (area A) and in 
zones 3 and 4 (area B). The Slope was higher in zones 1 and 3, reaching values of 35% of slope 
gradient. As expected, LSF presented similar patterns to Slope. The TWI presented values not 
statistically different around 3.5 in the four zones. PSIR showed an opposite pattern to 
Northernness, with higher values in zones 1 and 3, which are mainly exposed to South-West 
and South, respectively, indicating higher evapotranspiration. PSIR presented lower values in 
zone 2 mainly exposed to the East and minimum values in zone 4, mainly exposed to the North. 
In line with the previous results, the ATI, i.e. soil moisture, presented the highest values in 
North-facing plots, while values in the other slopes were similar.  
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Figure 24. Box plots of the terrain attributes for the different aspects of the plots deployed in the field. 

The different lowercase letters indicate statistically significant differences between aspects (post-hoc 

Duncan test following one-way ANOVA). 1, 2, 3 and 4 indicate the study areas of the study, which are 

mainly exposed to West, East, South and North, respectively. LSF: length slope factor; TWI: 

topographic wetness index; PSIR: potential solar incoming radiation; ATI: apparent thermal inertia. 

 
Among the terrain attributes investigated, Northernness, ATI and PSIR are the ones 

that explained most of variance of the soil properties (Table 18). PSIR explained much of this 
variance, with values of h2 close to 0.4 when related with SalSol, OrgCarb, Ptot and Ntot. 
Northerness and ATI showed slightly lower values of μ2than PSIR for the same soil properties.  
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Table 18. Descriptive statistics (i.e. mean and standard deviation) of soil properties grouped in terciles 

of terrain attributes:, Slope, North (Northerness), ATI (apparent thermal inertia), PSIR (potential solar 

incoming radiation). L: low; M: medium; H: high. Correlation ratio (μ2) among soil variables and 

topography variables is also reported. Only variables with μ2 higher than 0.2 are represented. Moisture 

(%); SolSal: soluble salts (%); OrgCarb: organic carbon (km m
-2

); Ptot: total phosphorus (%); Ntot: total 

nitrogen (%). 

 
 
3.5.2. Relationships between topography and biocrusts and vegetation distribution at 
landscape level 

The analysis of the semi-variograms of the PCAs of the multispectral images revealed 
different spatial autocorrelation in the data ranging from 0 to 3 m. Given this, the plots for the 
next analysis were selected randomly at a minimum distance of 3 m between them. 

The RDA indicated that terrain variables significantly explained variation in biocrusts 
distribution in our study area (42.3% of the total inertia; F=92.5; p<0.001). The first two RDA-
axes accounted for 69.2% of the variation for biocrust data (Fig. 25). The most significant 
variables were: ATI (F= 115.2; p<0.001), Elevation (F=100.8; p<0.001), Northernness 
(F=32.0; p>0.001) and Veg (F=29.7; p<0.001). In relation to such variables, differences were 
found between areas dominated by lichens and mosses. Lichen-dominated biocrusts appeared 
in the left side of the first axis, which was characterized by low values of ATI (i.e. low 
moisture) and high values of LSF, which indicates high potential soil erosion, and high values 
of PSIR, that is related to high SolSal, high slope gradient and high values of elevation. Among 
lichen-dominated biocrusts, Fulg class developed mostly in Zone 3, where there is a significant 
gradient of elevation and slope, thus these terrain attributes explained much of its distribution. 
Conversely, typical mosses of shaded areas (i.e. Pleurochaete squarrosa and Syntrichia 
ruralis) were more influenced by vegetation presence and soil moisture (high ATI values). 
Nevertheless, Tortula revolvens develops in soils with similar characteristics to those where 
lichens dominate. 
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Figure 25. Redundancy analysis (RDA) of the coverage of biocrust and vegetation and terrain attributes 

in the four zones of the study area. Arrows indicate the direction of increase along a gradient of the 

corresponding terrain attribute and their direction represent the explanatory relationships with the axis. 

Length of each arrow is proportional to the correlation between the predictor variable and the ordination. 

LSF: length slope factor; ATI: apparent thermal inertia; TWI: topographic wetness index; Veg: 

vegetation; North: northernness; PSIR: Potential Solar Incoming Radiation; Veg: vegetation; BL: bright 

lichens; BLM: bright lichens with moss; Fulg: Fulgensia spp. with moss; PleuSqu: Pleurochaete 
squarrosa; TorRev: Tortula revolvens. 

 
4. Discussion 

The accurate classification of biocrusts obtained using UAV-based multispectral 
imagery shows the potential of these platforms to provide dryland composition maps with more 
detailed spatial resolutions than the ones produced in previous works using airborne and 
satellite imagery (e.g., Weber et al., 2008; Rodríguez-Caballero et al., 2014; Panigada et al., 
2019). The high accuracy reached in discriminating between typical semiarid environmental 
components (i.e. vascular vegetation, different biocrust compositions and soils) reinforces the 
ability of SVM algorithm to distinguish between similar spectral classes (Plaza et al., 2009) 
and of the CR algorithm to improve identification of biocrusts (e.g., Blanco-Sacristán et al., 
2019; Panigada et al., 2019; Román et al., 2019). Although differences in the absorption feature 
caused by chlorophyll at ~660 nm between biocrusts and bare soils are subtle (Weber and Hill, 
2016), applying the CR allowed to exploit these differences improving the classification 
results.  

It should be noted that UAV data collection took place during the wet season, when 
water content in biocrusts is high and pigments are metabolically active (Weber and Hill, 
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2016). This enhances differences in the spectral properties of biocrusts and improves their 
identification (Blanco-Sacristán et al., 2019). While the classifications from the multispectral 
images allowed to map the different environmental components of the study area, the values 
of ATI derived from TIR imagery correlated very highly with the soil moisture measured in 
the field. Even though the coupling between ATI and soil moisture is not straight forward in 
heterogeneous surfaces as in drylands (van Doninck et al., 2011), we demonstrated that the 
correlation between ATI and soil moisture is maintained also when biocrust cover is present. 
To our knowledge, these are the first maps of ATI derived from UAV in drylands with presence 
of biocrust cover. In this study, the ATI map was used to estimate how soil moisture affects 
biocrust type and distribution, but ATI maps could be also used to better understand water 
distribution in drylands, where this resource is a key limiting factor to the development of not 
only biocrusts but also vegetation (Puigdefábregas and Sánchez, 1996).  

The UAV RGB images were used to produce fine DTMs from which terrain attributes 
were derived and utilised to evaluate their impact on soil properties. The overall RMSE of these 
DTMs was lower than 5 cm and is comparable to previous works using SfM techniques in 
drylands (e.g., Cunliffe et al., 2016; Gillan et al., 2017). We found that PSIR, ATI and 
Northernness were the terrain attributes mostly related to soil properties. These attributes 
explained in similar amounts the distribution of SolSal, OrgCarb, Ptot and Ntot., illustrating how 
related these three terrain attributes are. Increased shadows and higher soil moisture, indicated 
by low PSIR and high ATI, are related to a higher content of soil nutrients, as shown in plots 
located in zones 2 and 4, mostly East- and North-facing plots, respectively. Increased shadows 
and soil moisture control the survival and activity of microorganisms (Drenovsky et al., 2004; 
Borken and Matzener, 2009) and lead to better nutrient cycling and higher activity of microbial 
communities (e.g., Xue et al., 2018). This increased moisture favours not only the preservation 
of OrgCarb and its association with other mineral components (Plaza et al., 2012, 2013), but 
also the presence of vegetation and moss-dominated biocrusts in the most humid slopes. 
Conversely, plots from zones 1 and 3 presented the greatest PSIR, which can explain lower 
content of nutrients (lower microbial activity-lower nutrients) and increased content of SolSalt, 
already observed in other areas with high rates of evapotranspiration (Rodríguez-Caballero et 
al., 2019). 

The variance in soil properties not explained by the terrain attributes could be explained 
by the presence of vegetation and biocrust cover. Vegetation patches enhance accumulation of 
water and nutrients capture, which increases biological activity under and close to their cover 
(e.g., de Graaf et al., 2014; Okin et al., 2015). In addition, vegetation increases shadows where 
it appears, promoting microbial activity (e.g., Huang et al., 2015; Xue et al., 2018) and thus 
soil nutrients content. Particularly, M. tenacissima, the dominant species in the study area, 
modifies stocks of soil carbon and organic matter (e.g. Gauquelin et al., 1996; Maestre et al., 
2001; Kaouthar and Chaieb, 2009), while its effect on N content is less clear; some studies 
have found negative effects on this parameter (Armas and Pugnaire, 2011) while other positive 
effects (Castillo-Monroy et al., 2010) when compared to non-vegetated surfaces.  

Together to the effect of vegetation on soil properties, biocrusts have been found to take 
up significant amounts of atmospheric C and N by photosynthesis and N fixation (Elbert et al., 
2012), thus being an important pool and source of organic inputs into the soil in drylands 
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(Castillo-Monroy et al., 2011; Chamizo et al., 2012b; Concostrina-Zubiri et al., 2013). 
Furthermore, biocrusts strength soil structure by interacting with mineral particles and 
formatting aggregates (Belnap, 2013; Eldridge and Leys, 2003), thus protecting soil from C 
loss. Biocrusts promote microbial community growth where they appear and the increased 
shadows created by vegetation increase indirectly this growth (Huang et al., 2015). However, 
the role of biocrusts on soil nutrients content depends on biocrust composition and patch-size 
distribution (e.g., Delgado-Baquerizo et al., 2015; Sedia and Ehrenfeld, 2006; Bowker et al., 
2013). For example, mosses have greater photosynthetic capacity compared to other types of 
biocrust (Weber and Hill, 2016), thus can incorporate higher levels of carbon to the soil, and 
positive relationships between Nitrogen and their presence of mosses have already been 
observed before (Delgado-Baquerizo et al., 2016). This might affect the increased soil nutrients 
content in the North- and East-facing plots in the study area, where mosses appear dominating 
plant interspaces, as observed in the RDA analysis in this work. 

The different sensitivity of biocrusts to the distribution of resources conditions the 
composition of dryland landscapes. In this work, the RDA analysis conducted using data from 
540 points showed that Fulgensia spp. presented a strong positive relationship with unstable 
zones (high values of Slope and LSF). Fulgensia spp. has already been observed in unstable 
terrains several times, highlighting the pioneering behaviour of this genus (Rodríguez-
Caballero et al., 2013; Cantón et al., 2020; Miralles et al., 2020). Mosses typically found in 
shaded areas (i.e. Pleurochaete squarrosa and Syntrichia ruralis) dominated areas with low 
PSIR, North aspect and high presence of vascular vegetation. A positive plant-biocrust 
relationship is common for bryophytes (Zhou et al., 2020) and close correspondence with M. 
tenacissima presence has already been observed (Martínez-Sánchez, 1994). 

The RDA showed a lower explanatory power of the terrain attributes regarding Tortula 
revolves, a moss that develops in arid environments, and BLM class dominated by the 
association of Diploschistes diacapsis and Squamarina lentigera (BLM). They appeared in 
more stable zones (i.e. low values of Slope and LSF), as already observed in geographic area 
with similar characteristics (e.g., Loppi et al., 2004; Ladrón de Guevara et al., 2018) and with 
high solar radiation. Squamarina lentigera in particular can be physiologically adapted to light-
exposed environments, and requires high temperatures for optimal photosynthesis while being 
well hydrated (Lange et al., 1997). Nevertheless, Diploschistes diacapsis, the dominant species 
of BL was also found in area with higher slopes and LSF.  This species is very versatile and 
can adapt its physiology depending on the characteristics where it grows (Pintado et al., 2005). 
This is why we found it, as dominant species in BL class, also in area with higher Slope and 
LSF representing here the early stage of biocrust development.  

It is generally accepted that cyanobacteria-dominated crusts appear in the early stages 
of biocrust development (Belnap, 2006) and facilitate later stages of development by exuding 
polysaccharide sheaths, which bind soil particles, enhance moisture uptake and increase soil 
fertility by N-fixation (Belnap, 2006; Tsygankob, 2007). However, previous studies have cast 
doubt on the widely accepted view that regards cyanobacteria as needed in biocrust succession 
(e.g., Kidron, 2019, Read et al., 2016). In our study area, lichen-dominated biocrusts, 
particularly rich in Diploschistes diacapsis, can develop directly on outcrop rocks with very 
few millimetres of soil beneath them, as indicated by the presence of these biocrusts in the axis 
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of the RDA plot dominated by unstable terrain (i.e. high values of LSF, Slope and Elevation). 
In contrast to the classical biocrust development model, we found mixed patches of lichens and 
moss (thought to be of the last stages of development) in the left axis of the RDA plot, where 
the terrain is represented by greater slope. This might be explained by the fact that the 
successional development of biocrust communities might be more affected by water 
availability, rather than by soil stability in areas where gypsum substrates with fine soil texture 
favour stability. In these areas with outcrop rock, high concentrations of gypsum and higher 
solar radiation (i.e. high values of PSIR), lichens are more adapted to establish and develop 
than a moss-dominated biocrust or plants. These latter assemblages appear last and become 
dominant in areas with higher soil moisture and North-facing areas, where soil and micro-
environmental conditions are less selective. In the Tabernas desert (southern Spain, Almería; 
Rodríguez-Caballero et al., 2019), a close site with 220 mm of mean annual rainfall, similar 
lichen-dominated biocrusts appear in north-faced slopes (low evapotranspiration, low PSIR), 
while in our study area they appear in south-facing slopes (high evapotranspiration, high PSIR). 
The local hydric availability might be more affected by the terrain attributes rather than rainfall 
water inputs, which ultimately affects biocrusts’ distribution in drylands. For this reason, it is 
difficult to make generalizations in the development of biocrusts’ communities and developing 
monitoring methodologies that allow up-scaling local relationships of biocrusts with the terrain 
is key for dryland ecology. 
 
5. Conclusions 

Providing detailed information from the terrain using RGB imagery and of soil moisture 
using maps of ATI help to understand the relationships of biocrusts with the ecosystems where 
they appear, as done in this work. Furthermore, accurate maps as the ones presented in this 
work can help to up-scale the local effect of biocrust components on ecosystem functioning by 
increasing the accuracy of erosion and infiltration modelling in drylands and help to understand 
their relationship with the terrain at higher scales than at plot level. These aspects of dryland 
ecology are key to understand the distinctive role that biocrust-dominated surfaces have on 
water runoff and erosion depending on the predominant type of biocrust (e.g., Rodríguez-
Caballero et al., 2012, 2015; Wang et al., 2017). For this reason, producing maps with a very 
high resolution like the ones obtained in this work will help to monitor these communities in 
space and time, a key task to understand the compositional changes they are already and will 
experience in the next decades (Escolar et al., 2012; Ladrón de Guevara et al., 2018).  

Since field-based data collection implies many drawbacks, mainly related to time and 
costs (Palmer et al., 2002), applying UAV-based methodologies as the one developed in this 
work will help to build standardized procedures in actual and future dryland monitoring 
programs, while providing very detailed information of these environments. However, not all 
drylands have the same structural and functional organisation and present a wide spectrum of 
compositions. We observed some discrepancies with the traditional biocrusts’ development 
models, in which more advanced stages (i.e. mixed patches of lichens and moss) are assumed 
to appear in stable soils. Thus, we suggest to reconsider this traditional approach by evaluating 
it in future works using methodologies as the one developed in this study, which can provide 
the very fine spatial resolution maps of dryland composition and terrain attributes needed for 
this.  



 76 

Replicating the methodology developed in this work in other drylands could help to 
better understand the relationships between biocrusts and their environment, which are likely 
to change due to the ongoing context of global change. This will contribute to our 
understanding of the underlying processes controlling biocrusts’ spatial distribution in drylands 
and the development of current and future successional trajectories of these communities in 
relation with dryland terrain. 
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Chapter 5 

Conclusions of this thesis 
 The main objective of this PhD thesis was to advance our understanding of terrain 
control on dryland functioning by using multi-source remotely sensed data. The existing links 
between terrain, dryland vegetation and biocrust optical properties were analyzed in the context 
of two different dryland ecosystems. This shows how powerful multi-source image analysis is 
to infer the effect that terrain has on dryland functioning. Furthermore, the link between 
biocrusts’ optical properties and their composition was analyzed not only in relation with 
dryland terrain, but also in the context of their spectral diversity, proving how useful it might 
be to improve actual dryland monitoring and conservation programs. 
 To achieve this, I addressed different approaches for studying dryland vegetation and 
biocrust distribution using remote sensing sensors. First, I evaluated the evolution of SfM-
based digital photogrammetry in the last two decades and discussed its potential to study terrain 
and vegetation in different scenarios, with a particular focus in drylands. Second, I used an 
OBIA approach to infer changes in a long-lived population of plants during more than 60 years 
and related its population dynamics to human actions. Third, I evaluated the identification of 
biocrust-forming lichens using SVMs and used their spectral diversity to estimate their α-
diversity. Fourth, I used an innovative mixed approach, using image analysis on RGB, 
multispectral and TIR imagery in a dryland environment dominated by biocrust communities 
to evaluate the control exerted by the terrain on them. These approaches have been presented 
in Chapters 1, 2, 3 and 4 of this thesis and the main outcomes of each chapter are summarised 
below. Following these are concluding remarks and potential perspectives of this work. 
 
1.1. Main results  

Chapter 1. Terrain attributes of drylands with complex geomorphologies and covered by 
dense vegetation can be evaluated using Structure-from-Motion-based photogrammetry. 

This is the main outcome of Chapter 1, aimed at evaluating the evolution of digital 
photogrammetry and its applicability in vegetation and terrain characterization in the last 
twenty years. Digital photogrammetry has considerably advanced in this period both in terms 
of software and hardware and its application in several environments and scales ensures this. 
However, many of the principles and cautions existing twenty years ago are still relevant, being 
necessary by practitioners to know how to properly use check and control points for validation, 
and the influence of inaccurate camera calibrations in the final outputs of this method. 
Considering these cautionary aspects, application of SfM-based digital photogrammetry in 
drylands, even when the terrain is complex and the vegetation is densely distributed, has proved 
to be useful for hydrology modelling purposes. This allows to evaluate the effect that terrain 
might have on nutrients’ distribution and soil properties in drylands. 
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Chapter 2. Object-based image analysis is a powerful tool to infer anthropogenic actions 
on the health of dryland vegetation communities. 

This is the main result of Chapter 2, aimed at monitoring a population of sparse shrubs 
in a groundwater-dependent dryland ecosystem during a 60 years-long period. The 
combination of very high-resolution historical images, OBIA and DTMs, derived from LiDAR 
data, allowed to track spatio-temporal changes in this population and to relate them with human 
actions. These results suggest that monitoring changes in the number and the cover of 
vegetation communities in dryland ecosystems help to infer anthropogenic disturbances that 
affect their health. In this study case, the groundwater extraction from the aquifer that feeds the 
population of plants and the massive extraction of sands in the area, both caused by human 
actions, were related with changes in the health and composition of the studied ecosystem. 
Thus, the implementation of semi-automatic methods to characterize dryland ecosystems as 
the one presented in this chapter can help to infer the effects of human activities on shrub 
populations in drylands. This could reduce costs and improve current and future dryland 
monitoring programs. 

Chapter 3. Spectral Diversity can be used to estimate the α-diversity of biocrust-forming 
lichens. 

This is the main outcome from the study of Chapter 3, aimed at using hyperspectral 
high spatial resolution images to identify biocrust-forming lichens at genus level for the 
evaluation of the relationships between the spectral and α-diversity of lichen-dominated 
communities. In this study, the very high accuracies obtained classifying the hyperspectral 
images using SVMs showed the reliability of this methodology to identify biocrust-forming 
lichens. Therefore, I was able to extract pure spectral signatures of different biocrust 
constituents and to evaluate the relationships between α-diversity and spectral diversity of 
lichens. The SD_CR680 nm was the spectral diversity metric found to predict the best α-
diversity metrics that include richness and evenness in their calculations (i.e. Pielou’s and 
Simpson’s indices). As such, I suggest the use of this metric to track spatio-temporal changes 
in lichen-dominated biocrust communities. Upscaling the results of this study to coarser scales 
in drylands is a key task in any monitoring program aiming to assess the impacts of ongoing 
climate change and desertification processes in these environments. For this, using fixed-
cameras deployed in the field or multiple sensors onboard UAVs could greatly help. 
 
Chapter 4. Multi-source UAV-based imagery can be used to map dryland biocrusts and 
to evaluate the effect of the terrain on their distribution. TIR imagery can be used to 
evaluate soil moisture in heterogeneous dryland surfaces. 

 These are the main results of Chapter 4, aimed at understanding the effect of terrain 
attributes on biocrust distribution in drylands. In this work, I used a multi-source approach 
using TIR, RGB and multispectral data, each with specific aims to achieve the main objective. 
TIR imagery was used to estimate soil moisture by creating maps of ATI, RGB imagery was 
used to extract terrain attributes and multispectral imagery was used to map dryland ecosystem 
components. The TIR imagery allowed to create maps of ATI and to successfully relate this 
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variable with soil moisture for the first time in a dryland ecosystem dominated by biocrust 
communities. The fine spatial resolution of the RGB imagery allowed to filter the vegetation 
and to produce very fine DTMs, from which terrain attributes were derived and found to affect 
the variance of soil nutrients in the study area. The multispectral images allowed to produce 
the most finely detailed maps of drylands until the date. Fractional covers of the main surface 
units of biocrusts were related to terrain attributes and ATI. The aspect of the terrain, the soil 
moisture and the elevation were the terrain attributes explaining most of biocrust distribution 
in the study area. Furthermore, mixed biocrusts of lichens and mosses and lichen-dominated 
ones were found in unstable terrains, contrary to traditional biocrust development models in 
drylands. Thus, these models should not be generalized, since they can not be applied to all 
drylands worldwide. This work shows the potential of using UAVs on dryland ecology in 
systems with complex geomorphologies, where accurate representations of their composition 
are key to up-scale their local effects to regional levels. 
 
1.2. Concluding remarks and outlook 

In this PhD thesis, multiple approaches for identifying dryland vegetation and biocrust 
were tested and discussed. Through the four chapters presented, these approaches were 
evaluated to characterise vegetation and biocrust from a structural and functional point of view, 
providing a thorough understanding of dryland functioning, with a particular focus on the effect 
that terrain has on dryland composition. This was made possible by the integration of multi-
source remote sensing data and their correct exploitation by using different remote sensing 
techniques, adequate to each study case. 

Overall, the results obtained effectively demonstrate the strength of multi-source image 
analysis to identify vegetation and biocrust in drylands and to infer the effect that terrain has 
on their distribution. In particular, the use of RGB imagery by applying SfM-based digital 
photogrammetry allowed to create digital models of terrain and vegetation; the analysis of RGB 
imagery over a period of 60 years allowed to infer the effect of anthropogenc actions in a long-
lived community of scattered vegetation; the analysis of very high spatial resolution 
hyperspectral imagery allowed to estimate the α-diversity of biocrust-forming lichens; the 
fusion analysis of RGB, multispectral and TIR imagery allowed to evaluate the effect that 
terrain has on dryland biocrust distribution. These achievements are particularly important 
under the actual scenario of climate change, which is expected to increase drylands’ cover 
worldwide and change their composition and functioning in the next decades. 

The methodologies here shown will allow to characterise in higher detail dryland 
vegetation and biocrust communities at regional scale, which has proved to be a challenging 
task until the date. Gathering data of drylands at this level will produce detailed and more 
complete datasets of dryland optical properties and functioning. An enhanced understanding 
of the link between dryland optical properties and dryland functioning will permit a more 
operational use of remotely sensed data to reveal new insights into dryland dynamics. Thus, 
this improved understanding of dryland functioning will allow to increase current knowledge 
of the key role these ecosystems play in global water and nutrients cycling. This is key for a 
right understanding of the complex system the Earth is. 
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