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Abstract: Clear cell renal cell carcinoma (ccRCC) is fundamentally a metabolic disease. Given the 
importance of lipids in many cellular processes, in this study we delineated a lipidomic profile of 
human ccRCC and integrated it with transcriptomic data to connect the variations in cancer lipid 
metabolism with gene expression changes. Untargeted lipidomic analysis was performed on 20 
ccRCC and 20 paired normal tissues, using LC-MS and GC-MS. Different lipid classes were altered 
in cancer compared to normal tissue. Among the long chain fatty acids (LCFAs), significant 
accumulations of polyunsaturated fatty acids (PUFAs) were found. Integrated lipidomic and 
transcriptomic analysis showed that fatty acid desaturation and elongation pathways were enriched 
in neoplastic tissue. Consistent with these findings, we observed increased expression of stearoyl-
CoA desaturase(SCD1) and FA elongase 2 and 5 in ccRCC. Primary renal cancer cells treated with a 
small molecule SCD1 inhibitor (A939572) proliferated at a slower rate than untreated cancer cells. 
In addition, after cisplatin treatment, the death rate of tumor cells treated with A939572 was 
significantly greater than that of untreated cancer cells. In conclusion, our findings delineate a 
ccRCC lipidomic signature and showed that SCD1 inhibition significantly reduced cancer cell 
proliferation and increased cisplatin sensitivity, suggesting that this pathway can be involved in 
ccRCC chemotherapy resistance. 
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1. Introduction 

Renal cell carcinoma (RCC) accounts for about 2–3% of all malignant diseases in adults. 
GLOBOCAN 2018 estimates of worldwide cancer incidence and mortality were 403,262 new cases 
and 175,098 deaths for kidney cancer [1]. Recent estimates have calculated that, in 2020, in the United 
States, 73,750 new cases will be diagnosed and 14,830 patients will die of this tumor [2]. The 
rediscovery of cancer as a metabolic disorder has led to the identification of specific oncometabolites 
with an important role in tumor growth and progression [3–6]. The introduction of high-throughput 
omics technologies has led not only to a detailed molecular characterization of RCC, but also to the 
identification of biomarkers that allow a more accurate prognostic stratification [7]. The discovery of 
novel markers will play an important role in the clinical management of this disease considering that 
up to 30% of cases have a metastatic disease at diagnosis and that, to date, we have no specific 
molecular factor for diagnosis and prognostic stratification [8–11]. Recent studies have shown that 
RCC is fundamentally a metabolic disease, since many genes that are altered in this tumor play a 
fundamental role in controlling cell metabolic activities [12–14]. Indeed, we showed that, in clear cell 
renal cell carcinoma (ccRCC), a metabolic reprogramming occurs, involving the glucose metabolism 
and the pentose phosphate pathway, and that patients with high levels of glycolytic enzymes had 
reduced survival rates [15–17]. In accordance with these findings, the role of NADH dehydrogenase 
1 alpha subcomplex 4-like 2 (NDUFA4L2) in controlling ccRCC bioenergetics and other cancer cell 
activities such as proliferation, migration, mitophagy, angiogenesis, and chemotherapy resistance, 
was demonstrated [18]. Moreover, additional data indicate that glucose and lipid metabolism 
reprogramming is grade-dependent, suggesting the need for a ccRCC reclassification on the basis of 
these particular metabolic alterations [19]. Given the importance of metabolic reprogramming in 
cancer cells, and the involvement of lipids in many cellular processes such as membrane remodeling 
and cell signaling, we delineated a lipidomic profile of human ccRCC, and integrated it with 
transcriptomic data to connect the variations in cancer lipid metabolism with gene expression 
changes. 

2. Results 

2.1. Lipidomic Profile Distinguishes ccRCC from Normal Renal Tissue 

Untargeted lipidomic analysis was performed on 40 kidney-derived tissues, including 20 ccRCC 
and 20 paired normal tissues, using LC-MS and GC-MS platforms. In total, 158 lipids were identified, 
and 93 were found to be differentially expressed in tumor tissues compared to normal samples (57 
higher and 36 lower) (Figure 1a). The application of principal component analysis (PCA) to 
distinguish normal and pathological samples as a function of the global tissue lipidome demonstrated 
that the two groups were clearly different (Figure 1b). In accordance with PCA, hierarchical 
clustering analysis and heatmap visualization showed a clear distinction between ccRCC and non-
neoplastic tissue (Figure 1c). 

To obtain a global overview of altered biochemical processes, we performed a metabolite set 
enrichment analysis (MSEA) using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) [20], and an 
alternative enrichment analysis based on chemical similarity (ChemRICH) 
(https://chemrich.fiehnlab.ucdavis.edu) [21]. These functional approaches showed that alterations in 
glycerophospholipid metabolism, in arachidonic acid and prostaglandin production, in biosynthesis 
of unsaturated fatty acid and fatty acid elongation, had the highest impact on the ccRCC lipidome 
(Figure 1d,e). 
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Figure 1. Volcano plot of the 158 lipids profiled (a). Principal component analysis (PCA) of the global 
tissue lipidome demonstrated that the two groups (clear cell renal cell carcinoma (ccRCC) vs. normal 
renal tissue) were clearly distinguishable (b). Hierarchical clustering heatmap analysis of lipids in 
normal and cancer tissues (c). Metabolic set enrichment analysis (MSEA) showing the most altered 
biochemical metabolic pathways in ccRCC (d). ChemRICH set enrichment statistical plot. Each node 
reflects a significantly altered cluster of lipids. Node sizes represent the total number of lipids in each 
cluster set. The node color scale shows the proportion of increased (red) or decreased (blue) 
compounds in tumor compared to normal tissue. Purple nodes have both increased and decreased 
lipids (e). 

2.2. Global Lipidomic Profile of ccRCC 

Different lipid classes were identified. These included essential fatty acids (EFAs), 
glycerophospholipids (including lyso species), glycerolipids, sphingolipids, neutral lipids (including 
sterols/steroids), medium chain fatty acids (MCFAs), long chain fatty acids (LCFAs), eicosanoids, and 
carnitine metabolism-related intermediates. In particular, in cancer tissue we found significantly 
higher levels of EFAs (p = 0.005), glycerolipids (p = 0.0008), LCFAs (p = 0.001), and carnitine-related 
metabolites (p = 0.01). The other lipid classes were higher in normal tissue compared to ccRCC (Figure 
2). 

Among the LCFAs, significant accumulations of saturated fatty acids (SFAs), monounsaturated 
fatty acid (MUFAs), and polyunsaturated fatty acids (PUFAs) were found (all p = 0.001, Figure 3a–c).  

Interestingly, the tissue levels of eicosanoids were reduced in pathological samples. In 
particular, we found reduced amounts of arachidonate (p < 0.0001), 5-hydroxyeicosatetraenoic acid 
(5-HETE) (p < 0.0001), 5-oxo-eicosatetraenoic acid (5-oxo-ETE) (p = 0.004), and prostaglandin E2 (p = 
0.01) (Figure 4). 

Cholesterol biosynthesis pathways were also analyzed. Clear cell RCC was characterized by a 
reduced accumulation of the main metabolic intermediates in both the Kandutsch–Russell and Bloch 
pathways (Figure 5). In addition, we found reduced levels of two oxysterols, namely 7-alpha-
hydroxy- and 7-beta-hydroxy-cholesterol (p = 0.001 and p = 0.0001, respectively), and increased 
concentrations of 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) (p = 0.0002), a cholesterol-derived 
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metabolite that is also increased in prostate cancer (Figure 5). Moreover, we found a positive 
correlation between serum and tissue levels of total cholesterol in the neoplastic samples (Rs = 0.98, 
p < 0.0001). 

 
Figure 2. Lipid classes differentially accumulated between neoplastic (ccRCC) and normal tissue. Y-
axis: metabolite relative amount. Small squares indicate extreme values in box-and-whisker plots. 

 
Figure 3. Among the long chain fatty acids (LCFAs), saturated fatty acids (SFAs), monounsaturated 
fatty acid (MUFAs), and polyunsaturated fatty acids (PUFAs) were significantly accumulated in 
cancer (ccRCC) compared to normal tissue (a). Schematic model summarizing the differences in free 
fatty acids between normal and tumor tissue (b). Exploration of the “Metabologram” Data Portal. The 
changes in the “Biosynthesis of unsaturated fatty acids” and “Fatty acid elongation” pathways are 
shown in both transcripts and metabolites when comparing tumors to adjacent normal kidney tissues 
(c). Y-axis: metabolite relative amount. Small squares indicate extreme values in box-and-whisker 
plots. 
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Figure 4. The tissue levels of eicosanoids were reduced in tumor samples (ccRCC) compared to 
normal kidney (a). Exploration of the “Metabologram” Data Portal. The changes in the “Arachidonic 
acid metabolism” pathway are shown in both transcripts and metabolites when comparing tumors to 
adjacent normal kidney tissues (b). Y-axis: metabolite relative amount. Small squares indicate extreme 
values in box-and-whisker plots. 

 
Figure 5. Cholesterol biosynthesis pathways. A reduced accumulation of main metabolic 
intermediates in both Kandutsch-Russell and Bloch pathways was observed in neoplastic tissue 
(ccRCC). Y-axis: metabolite relative amount. Small squares indicate extreme values in box-and-
whisker plots. 
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2.3. Integrated Lipidomic and Transcriptomic Analysis 

To compare the relative changes in gene expression and lipid abundance in ccRCC, we 
integrated the lipidomic data with gene expression data from 10 ccRCC tumor samples and matched 
non-tumor kidney tissue samples obtained from patients who underwent nephrectomy in our 
department (GSE47032). The combined analysis identified significantly enriched biochemical 
pathways (p < 0.05), including those of unsaturated fatty acid biosynthesis, glycerolipid, 
glycerophospholipid and arachidonic acid metabolism (Figure 6a,b). 

 
Figure 6. Integrated metabolic pathway enrichment analysis. All the matched pathways are displayed 
as circles. The color and size of each circle are based on the p-value and pathway impact value, 
respectively (a). Results of pathway analysis according to p-value and false discovery rate (FDR) (b). 

2.4. Clear Cell RCC Displays an Altered Expression Profile of Lipid Metabolism-Related Genes 

Gene set enrichment analysis (GSEA) [22] of the GSE47032 dataset showed that ccRCC featured 
multiple enriched gene sets depicting adipogenesis, cellular response to lipids, plasma membrane 
rafts, regulation of lipid localization, plasma membrane organization, and reduced catabolism of 
carboxylic acid (Figure 7a). To confirm the specific contribution of altered gene expression to the 
global lipidomic profile of ccRCC, we also performed GSEA in Jones cohort (GSE15641) including 23 
normal kidney samples and 32 ccRCC (Figure 7b). 

Next, we evaluated the mRNA expression of four enzymes involved in fatty acid biosynthesis, 
desaturation and elongation, namely, ACLY, SREBF1, SCD1, and ELOVLs (Figure 8a). ATP citrate 
lyase (ACLY) generates acetyl-CoA from citrate, and it connects carbohydrate metabolism with fatty 
acid biosynthesis. We found an increased expression of ACLY in association with elevated levels of 
citrate and increased acetyl-CoA-to-citrate ratio in ccRCC compared to normal tissue (Figure 8b). 
Sterol regulatory element-binding transcription factor 1 (SREBF1), which encodes for a key 
transcriptional regulator of lipid metabolism, was also upregulated in tumor tissue (Figure 8a). Multi-
omics analysis showed that fatty acid desaturation and elongation pathways were enriched in 
neoplastic tissue. Consistent with these findings, we observed an increased expression of stearoyl-
CoA desaturase-1 (Δ-9-desaturase; SCD1) and fatty acid elongase 2 and 5 (ELOVL2 and ELOVL5) in 
ccRCC (Figure 8a). Next, we evaluated the palmitoleate-to-palmitate ratio and the stearate-to-
palmitate ratio as readouts of SCD-dependent desaturation and ELOVL-dependent FA elongation 
pathways, respectively. We found that in cancer tissue, both ratios were significantly higher as a 
result of increased enzymatic activity (Figure 8c). 
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Figure 7. Gene set enrichment analysis (GSEA) of the GSE47032 (a) and GSE15641 dataset (b). 

 
Figure 8. Analysis of gene expression by Real time PCR of ATP citrate lyase (ACLY), sterol regulatory 
element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1) and fatty acid 
elongase 2 and 5 (ELOVL2 and ELOVL5) (a). Levels of citrate and acetyl-CoA-to-citrate ratio are 
increased in ccRCC compared to normal tissue (b). Palmitoleate-to-palmitate ratio and stearate-to-
palmitate ratio are increased in ccRCC (c). Small squares indicate extreme values in box-and-whisker 
plots. 

GSEA of the GSE41485 dataset showed that SCD1 inhibition in ccRCC cells induced the 
activation of the unfolded protein response (UPR) and depurination/depyrimidination processes 
(Figure 9a). Therefore, we explored the role of SCD1 in sustaining cancer cell proliferation and in 
reducing cisplatin-induced cytotoxicity. Primary renal cancer cells treated with a small molecule 
SCD1 inhibitor, A939572, proliferated at a slower rate than non-treated cancer cells. In addition, after 
cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than 
that of untreated cancer cells (p < 0.001, Figure 9b). The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl 
tetrazolium bromide (MTT) assay confirmed these findings, demonstrating a decreased cell viability 
when tumor cells were treated with A939572 before cisplatin incubation (Figure 9c).  
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Figure 9. Gene set enrichment analysis (GSEA) of the GSE41485 dataset (a). SCD1 has a role in RCC 
resistance to cisplatin (CDDP)-induced cytotoxicity (C). The death rate of treated tumor cells (tumor 
+ A939572 + CDDP) is significantly higher than that of untreated cells (tumor + CDDP) (p < 0.001). No 
difference is observed in normal cells (p > 0.05) (b). MTT assay reveals significantly decreased cell 
viability when RCC cells are treated with A939572 before cisplatin incubation (c). 

Functional analysis showed that alterations in arachidonic acid metabolism and prostaglandins 
production had a great impact on the ccRCC lipidomic profile. Therefore, the expression of 
cyclooxygenase 2/prostaglandin-endoperoxide synthase 2 (COX2/PTGS2) and prostaglandin E 
synthase (PTGES) was investigated. Both the transcripts of these genes were reduced in cancer tissue 
(p < 0.01), in accordance with the reduced levels of arachidonic acid derivatives (Figure 10a). 
Moreover, since cholesterol metabolism-related intermediates were altered in ccRCC, we evaluated 
the expression of four genes involved in its biosynthesis, namely, 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase (HMGCR), mevalonate kinase (MVK), squalene epoxidase (SQLE), and sterol 
regulatory element-binding transcription factor 2 (SREBF2). Interestingly, all these genes were 
downregulated in ccRCC, in accordance with the reduced levels of tissue cholesterol content (Figure 
10b). These findings were confirmed by data mining of the cancer genome atlas (TCGA), clear cell 
renal cell carcinoma patient cohort (KIRC), using GEPIA2 (Figure 10c) [23]. 

Next, we evaluated the lipid and cholesterol receptors, and found increases in CD36 and 
caveolin 1 (CAV1) and a decrease in low density lipoprotein receptor (LDLR) transcript levels in 
ccRCC compared to normal tissue (Figure 11a). Finally, analysis of lipid storage markers showed an 
increased expression of perilipin 2 (PLIN2) and hypoxia inducible lipid droplet-associated 
(HILPDA), and reduced levels of carnitine palmitoyltransferase 1A (CPT1A) mRNA in tumor 
specimens compared to normal kidney (Figure 11b). Consistent with these findings, tumor tissue and 
primary renal cancer cells showed an increased level of lipid storage, as assessed by Oil red O (ORO) 
staining (Figure 11c).  

The results of transcriptomic and lipidomic analyses were confirmed by data mining of the 
Oncomine microarray gene expression datasets (Figure S1) and the Gene Expression Profiling 
Interactive Analysis 2 (GEPIA2) database, and by using the Metabologram data portal [23–25]. 

Finally, large-scale genomic studies performed in sporadic ccRCC, identified significantly 
mutated genes including VHL, PBRM1, SETD2, and BAP1. Spearman correlation analysis between 
these genes and ACLY, SREBF1, SCD1, and ELOVLs in the The Cancer Genome Atlas - clear cell renal 
cell carcinoma (TGCA-KIRC) patient cohort was shown in Table S1. 
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Figure 10. Analysis of gene expression by real-time PCR of prostaglandin-endoperoxide synthase 2 
(PTGS2) and prostaglandin E synthase (PTGES) (a), and 3-hydroxy-3-methyl-glutaryl-coenzyme A 
reductase (HMGCR), mevalonate kinase (MVK), squalene epoxidase (SQLE), and sterol regulatory 
element-binding transcription factor 2 (SREBF2) (b). Data mining of The Cancer Genome Atlas 
(TCGA) clear cell renal cell carcinoma patient cohort (KIRC) using GEPIA2 for HMGCR, MVK, and 
SQLE genes (c). 

 
Figure 11. Analysis of gene expression by real time PCR of CD36, caveolin 1 (CAV1) and low-density 
lipoprotein receptor (LDLR) (a), and perilipin 2 (PLIN2), hypoxia inducible lipid droplet-associated 
(HILPDA), and carnitine palmitoyltransferase 1A (CPT1A) (b). Representative images of normal and 
neoplastic kidney tissue (ccRCC) and normal cortical and ccRCC primary cell cultures captured after 
Oil Red O (ORO) staining at original magnification of 200×. Scale bars = 100 µm (c).  
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2.5. Preoperative Serum Total Cholesterol Is an Independent Prognostic Factor for Patients with ccRCC 

Statistically significant differences resulted between serum cholesterol values and clinical stage 
(p = 0.0004), Fuhrman grade (p = 0.003), lymph node involvement (p = 0.008), and visceral metastases 
(p = 0.0002) (Figure 12a). 

To evaluate the association between patients’ survival and the preoperative serum cholesterol, 
we classified the entire population according to the cut-off provided by receiver operating 
characteristic (ROC) curve analysis. Detailed clinical and pathological characteristics of the patients 
are summarized in Table S2. 

Kaplan–Meier survival curves for cancer-specific survival (CSS), stratified by preoperative 
serum cholesterol levels, in the overall population and in a subset of patients with localized disease 
(pT1-2, N0, M0), are shown in Figure 12b.  

 
Figure 12. Median levels of serum cholesterol in ccRCC patients stratified according to pathological 
stage, Fuhrman grade, lymph node involvement, and visceral metastases (a). Kaplan-Meier cancer-
specific survival (CSS) curves, stratified by serum cholesterol levels in the overall population and in 
a subset of patients with localized disease (b). Small squares indicate extreme values in box-and-
whisker plots. 

CSS was significantly decreased in patients with low serum levels of total cholesterol. Univariate 
analysis for the predefined variables showed that the pathological stage, presence of nodal and 
visceral metastases, Fuhrman grade, presence of necrosis, tumor size, increased body mass index 
(BMI), and low levels of cholesterol, were significantly associated with the risk of death (Table 1). At 
multivariate analysis by Cox regression modeling, the pathological stage, presence of nodal and 
visceral metastases, Fuhrman grade, and reduced circulating levels of total cholesterol were 
independent adverse prognostic factors for CSS (Table 1). 

Table 1. Univariate and multivariate analyses for cancer-specific survival. 

Variable Category 
Univariate Multivariate 

HR (95% CI) p-Value HR (95% CI) p-Value 
T stage T3/4 vs. T1/2 4.44 (2.38–8.27) 0.0001 1.91 (1.18–3.09) 0.002 
N stage N+ vs. N0 5.49 (2.53–11.91) 0.0001 2.48 (1.41–3.96) 0.001 
M stage M+ vs. M0 7.62 (4.07–14.25) 0.0001 3.81 (1.89–7.68) 0.0002 
Grade G3/4 vs. G1/2 5.37 (2.86–10.09) 0.0001 3.35 (1.67–6.72) 0.001 

Necrosis Yes vs. No 3.47 (2.11–5.91) 0.0001 - - 
Tumor size Continuous 1.13 (1.07–1.21) 0.0001 - - 

BMI Continuous 0.86 (0.79–0.94) 0.01   
Total serum cholesterol ≤155 vs. >155 mg/dL 2.21 (1.96–3.81) <0.001 1.72 (1.43–2.51) 0.001 
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3. Discussion 

The prevalence of RCC, as with many other urologic tumors including prostate and bladder 
cancers, is increased in patients with metabolic disorders [26–31]. In particular, obesity is a well-
established risk factor for renal cancer, and a recent study has demonstrated that this association 
appears to be already established during late adolescence [32]. An altered lipid metabolism 
represents a peculiar hallmark of cancer cells, since lipids play important roles in many aspects of 
cancer biology such as cell signaling, membrane formation, cellular proliferation and metastatization.  

Our integrated lipidomics-transcriptomics approach revealed that ccRCC tissues exhibit a 
reprogramming of fatty acid metabolism in association with an altered expression of lipid 
metabolism-associated genes. In particular, we found a massive change in nearly all the free fatty 
acid levels with accumulations of many EFAs and LCFAs. These changes, in association with an 
increased expression of genes involved in fatty acid uptake and/or synthesis (ACLY, CD36 and 
CAV1), were suggestive of an altered membrane remodeling in ccRCC. Palmitate (16:0) is the main 
product of de novo lipogenesis and can be elongated and desaturated through the activity of SCD1, 
and ELOVLs to generate additional SFAs, MUFAs and PUFAs including palmitoleate (16:1n7), 
stearate (18:0), and oleate (18:1n9). These FAs, in turn, can be used for the synthesis of more complex 
lipids. The accumulation of PUFAs, in association with reduced levels of lysolipids, sphingolipids 
and cholesterol, suggested an alteration in cancer cell membrane permeability and fluidity and in 
phospholipids remodeling (Lands’ cycle), as demonstrated by other studies [33–37]. 

SCD1 regulation is very complex and its activity and expression is controlled by a large number 
of effectors including molecular, hormonal and dietary factors [38,39]. SCD1 gene promoter contains 
binding sites for a variety of transcription factor including SREBF1c, liver X receptor (LXR), 
peroxisome proliferator-activated receptor alpha (PPARα), nuclear transcription factor Y (NF-Y), 
specificity protein 1 (SP1), CCAAT/enhancer-binding protein alpha (C/EBP-α), neurofibromin 1 
(NF1), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α) [38]. In 
addition, the activation of the hypoxia-inducible factor (HIF) pathway, which is essential for ccRCC 
progression, is another important modulator of SCD1 expression in cancer cells. Zhang et al. showed 
that SCD1 was upregulated in ccRCC cell lines under hypoxia, and that HIF-2α and SCD1 had 
synergistic effects in sustaining cancer cell survival and migration [40]. These effects were due to a 
positive feedback loop between HIF-2α and SCD1, mediated by PI3K/Akt pathway activation [40].  

A previous study showed that increased SCD1 expression supported ccRCC viability, and when 
SCD1 was blocked using the small molecule inhibitor A939572, a significantly reduced cancer cell 
proliferation and the induction of apoptosis were observed [41]. Gene expression profile analysis 
showed that the loss of SCD1 activity in ccRCC cells induced an increased expression of endoplasmic 
reticulum (ER) stress genes associated with the unfolded protein response (UPR) [41]. A growing 
body of literature has demonstrated that UPR activation alters the chemosensitivity of cancer cells, 
and in particular it has been shown that the ER stress response sensitizes various solid tumor cells to 
cisplatin-induced apoptotic death [42]. RCC is a typical chemo-resistant tumor, and despite the 
introduction of novel targeted therapies, no evidence of complete responses has been reported 
[43,44]. On the basis of these data, we explored the role of SCD1 in sustaining chemotherapy 
resistance in ccRCC. Interestingly, inhibition of SCD1 activity reduced cell viability and sensitized 
cancer cells to cisplatin-induced apoptotic death. 

On this basis, pharmacological targeting of SCD1 represents an attractive approach, especially 
in combination with other target therapies approved for metastatic tumors [41,43,44]. For example, 
the inhibition of SCD1 activity potentiates the inhibitory effects of gefitinib and temsirolimus on 
cancer cell proliferation in non-small cell lung cancer and ccRCC, respectively [41,45]. Interestingly, 
the treatment of cancer cells with SCD1 inhibitors can trigger the AMPK-dependent autophagic 
pathway, providing a resistance mechanism against SCD1 inhibition [46]. In this scenario, therapeutic 
strategies that target SCD1 may be potentiated by combination with molecules that target the 
autophagic machinery [47]. 

Cholesterol metabolism is often reprogrammed in cancer cells [48]. Our findings demonstrated 
that the reduced accumulation of cholesterol metabolism-related intermediates in renal cancer tissue 
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was associated with downregulation of the low-density lipoprotein receptor (LDLR) gene and 
correlated with the serum total cholesterol levels. Moreover, we found that preoperative serum 
cholesterol was an independent prognostic factor for CSS, in a cohort of 450 patients who underwent 
radical or partial nephrectomy for ccRCC. As serum cholesterol is routinely assessed in ccRCC 
patients when they are admitted to hospital or during follow-up after surgery, its use in clinical 
practice may provide a useful tool for risk stratification. 

Many studies have demonstrated that tumor-associated inflammation has an important role in 
tumorigenesis, cancer progression, and metastatization [49]. In this scenario, it has been shown that 
eicosanoids, including prostaglandins, play a critical role in these processes [50]. Clear cell RCC is 
characterized by the activation of extrinsic and intrinsic inflammatory pathways and many studies 
have reported a correlation between clinical outcomes and laboratory markers of systemic 
inflammation [51,52]. Paradoxically, we found a reduced accumulation of arachidonic acid-derived 
metabolites, including prostaglandin 2, as well as a reduced expression of COX2/PTGS2 and PTGES 
transcripts in cancer tissue. These findings suggest that the regulation of cancer-related inflammation 
in ccRCC is quite complex and may involve other mechanisms such as adaptive immune responses 
and the complement system [53]. 

A feature of ccRCC is the presence of intracellular lipid droplets (LDs), which have the function 
of releasing lipid species for membrane biosynthesis and sustaining endoplasmic reticulum 
homeostasis. Recently, it has been shown that two LD-associated proteins (PLIN2 and HILPDA) are 
overexpressed in ccRCC, regulate lipid storage and enrich lipids that contain polyunsaturated fatty 
acyl side chains [54]. Moreover, PLIN2 is required for ER homeostasis and cell viability in ccRCC cell 
lines and xenograft tumors, and its depletion triggers the UPR, cell cycle withdrawal, and cell death 
[54]. In addition, the mechanism of lipid deposition is favored by repression of carnitine 
palmitoyltransferase 1A (CPT1A), an enzymatic component of mitochondrial FA transport. In ccRCC, 
hypoxia inducible factors (HIFs) are responsible for inhibiting CPT1A expression, reducing FA 
transport into mitochondria, and rerouting FA to LDs for storage [55]. In accordance with these 
findings, we found an increased expression of PLIN2 and HILPDA, and reduced levels of CPT1A 
transcripts in cancer tissue. Moreover, ORO staining confirmed the increased lipid storage in cancer 
cells. 

4. Materials and Methods 

4.1. Study Population and Tissue Collection 

Primary renal tumor (n = 20) and paired non-neoplastic samples (n = 20) were retrieved from 
patients with ccRCC. Patients with eGFR < 60 mL/min/1.73 m2 and metabolic diseases (including 
diabetes mellitus) were excluded from the study. Informed consent was obtained from all individual 
participants included in the study. All procedures were in accordance with the ethical standards of 
the institutional and/or national research committee and with the 1964 Helsinki Declaration and its 
later amendments or comparable ethical standards. The research project was approved by the local 
Ethics Committee (n. 143/CE/2015). 

4.2. Metabolite Analysis 

4.2.1. Sample Preparation 

Metabolic analyses were performed at Metabolon Inc. All tissue samples were stored at −80 °C. 
The automated MicroLab STAR® system (Hamilton, Reno, NV, USA) was used for sample 
preparation. Recovery standards were used in the extraction process for quality control (QC). A 
proprietary series of organic and aqueous extractions were used for sample preparation. The 
resulting extract was split into two aliquots: one for liquid chromatography (LC) and one for gas 
chromatography (GC) analysis. Samples were placed on a TurboVap® (Zymark, Hopkinton, MA, 
USA) for the organic solvent removal and then frozen and dried under vacuum. Tables S3 and S4 list 
the QC compounds.  
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4.2.2. Liquid Chromatography/Mass Spectrometry (LC/MS, LC/MS) 

The LC/MS platform was composed by a Waters ACQUITY UPLC (Waters Corporation, 
Milford, CT, USA) and a Thermo-Finnigan LTQ MS (Thermo Fisher, Waltham, MA, USA). The 
sample extract was divided into two parts, dried, and rehydrated in acidic or basic LC-compatible 
solvents. The analysis was performed using acidic positive ion and basic negative ion optimized 
conditions using different dedicated columns. The extracts, rehydrated in acidic conditions, were 
eluted using water/methanol with 0.1% Formic acid. For the basic extracts, the reconstitution was 
performed using water and methanol, with 6.5mM Ammonium Bicarbonate. 

4.2.3. Gas Chromatography/Mass Spectrometry (GC/MS)  

GC/MS analysis was performed using sampled re-dried under vacuum desiccation for a 
minimum of 24 h and then derivatized using bistrimethyl-silyl-trifluoroacetamide (BSTFA) (Sigma 
Aldritch, Saint Louis, MO, USA). The GC column was 5% phenyl and the temperature conditions 
ranged from 40 °C to 300 °C. Samples were analyzed using a Thermo-Finnigan Trace DSQ fast-
scanning single-quadrupole MS (Thermo Fisher, Waltham, MA, USA). 

4.2.4. Accurate Mass Determination and MS/MS Fragmentation (LC/MS), (LC/MS/MS)  

The LC/MS part of the platform consists of a Waters ACQUITY UPLC and a Thermo-Finnigan 
LTQ-FT MS. Fragmentation spectra (MS/MS) were obtained in a data-dependent manner. If needed, 
targeted MS/MS was used. 

4.2.5. Compound Identification 

Compounds identification was performed by comparison to library entries of purified standards 
or recurrent unknown entities. 

4.3. Bioinformatics and Statistical Analyses 

MedCalc 9.2.0.1 (MedCalc software, Mariakerke, Belgium) and “R” (http://cran.r-project.org) 
[56] were used for statistical analyses. Comparisons of median values between groups were 
performed using Mann-Whitney U or Kruskal-Wallis test, as appropriate. Spearman’s test was used 
to study the correlation between serum and tissue cholesterol levels. 

Cancer-specific survival (CSS) was estimated by using the Kaplan–Meier method and compared 
with the log-rank test. The Cox proportional hazards regression model was for univariable and 
multivariable analyses. p-values below 0.05 were considered statistically significant. 

4.4. Integration of Metabolomic and Transcriptomic Data 

Exon array analysis of 20 total samples (10 ccRCC neoplastic tissues and paired non-neoplastic 
samples) was performed (GEO accession number: GSE47032). 

Metabolite set enrichment (MSEA) and transcriptomics–metabolomics data integration was 
performed using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca)[20]. Gene set enrichment 
analysis (GSEA) [22], performed across renal cancer datasets, revealed which pathways were 
enriched in ccRCC. The normalized enrichment score (NES) gave an estimate of the importance and 
direction of pathway enrichment. 

ChemRICH (https://chemrich.fiehnlab.ucdavis.edu) was used for biochemical pathway 
enrichment analysis [21]. 

4.5. Real Time Polymerase Chain Reaction (PCR) 

Total RNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems Foster City, CA, USA), according to the manufacturer’s instructions. 
Quantitative real-time PCR was performed using the iQTM SYBR Green Supermix buffer 
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(6mMMgCl2, dNTPs, iTaq DNA polymerase, SYBR Green I, fluorescein and stabilizers) (BIO-RAD 
Laboratories, Hercules, CA, USA). The primers used in this study are reported in Table S5. 

MiniOpticon Real-Time PCR detection system (BIO-RAD Laboratories, Hercules, CA, USA) was 
used for mRNA levels quantification. The following conditions were used: polymerase activation at 
95 °C for 3 min, followed by 45 cycles at 95 °C for 10 s, 60 °C for 30 s. Expression was determined 
using the 2-ΔΔCt method used for quantification. β-Actin was used for normalization. 

4.6. Data Mining Using the Oncomine Gene Expression Microarray Datasets, Gene Expression Profiling 
Interactive Analysis 2 (GEPIA2) Database, and Metabologram Data Portal 

The Oncomine database (https://www.oncomine.org/resource/login.html) [24] was explored for 
publicly available transcriptomics data analysis. 

The GEPIA2 database (http://http://gepia2.cancer-pku.cn) [23] was also used to validate the 
expression of genes involved in ccRCC lipid metabolism. In this web-based resource, the data from 
the Cancer Genome Atlas (TGCA) and Genotype-Tissue Expression (GTEx) are available for 
validation analysis. The clear cell renal cell carcinoma (KIRC) cohort, includes 523 ccRCC and 100 
normal kidney specimens. 

In addition, the metabolic pathways were explored using the Metabologram data portal 
(http://sanderlab.org/kidneyMetabProject) [25], a web-based application that combines data derived 
from TCGA database and MSKCC metabolomics dataset. 

4.7. Primary Cell Cultures from Renal Tissues 

Primary tumor and normal cell cultures were obtained from tumor (ccRCC) and normal kidney 
tissue specimens as previously described [57]. Immunocytochemistry by using EpCAM and CA IX 
was performed for cell characterization. 

4.8. Cell Viability Assay 

Cell viability after exposure to 75 nmol/L of A939572 or to A939572 and 10 µM cis-
Diamminedichloroplatinum (II) (cisplatin) was evaluated using MTT assay as previously described 
[38]. In the first part of the experiment, the cells were exposed to A939572 for 72h or incubated in 
medium alone. In the second part of the experiment, after 24 h the cells were treated with cisplatin 
10 µM for 1 h and 2 h. Each experiment was performed in triplicate. 

4.9. Oil Red O Staining 

Oil Red O (ORO) staining was performed on formalin-fixed primary cells and tissue samples, as 
previously described [19,58]. 

4.10. Availability of Data and Material 

The datasets generated and/or analyzed during the current study are available in the GEO 
repository: 

1. Accession number GSE47032; 
2. Accession number GSE15641; 
3. Accession number GSE41485. 

5. Conclusions 

In conclusion, our study showed that ccRCC is characterized by lipid metabolism 
reprogramming associated with a switch in adipogenic gene signatures. The accumulation of very 
long-chain FAs and PUFAs is sustained by overexpression of SCD1 and ELOVLs, and the inhibition 
of SCD1 activity decreases cell viability and improves cisplatin susceptibility, suggesting that this 
pathway can regulate chemotherapy resistance in ccRCC. 
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