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Abstract Probabilistic graphical models successfully combine probability with graph the-
ory and therefore provide applied statisticians with a powerful data mining engine. Graph-
ical models are a good framework for formal analysis, allowing the researcher to obtain
a quick overview of the structure of association among variables in a system. This pa-
per is the first attempt to apply high-dimensional graphical models in innovation studies,
since the increasing availability of data in the field and the complexity of the underlying
processes are calling for new techniques which can handle not only a large amount of
observations, but also rich datasets in terms of number and relations among variables.
In this context, the process of variables and model selection became more arduous, in-
fluenced by biases of the scientist and, in the worst case scenario, subject to scientific
malpractices such as the p-hacking behavior. On the contrary, high-dimensional graphi-
cal models allow for bottom-up, hypotheses free, data-driven, and see-through approach.
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1. INTRODUCTION

“Probabilistic graphical models are an elegant framework which combines uncer-
tanty (probabilities) and logical structure (independence constraints) to compactly
represent complex, real-world phenomena. [...] In the last two decades graphical
models have enjoyed a surge of interest due both to the flexibility and power of
the representation and the increased ability to effectively learn and perform in-
ference in large networks” (Koller et al., 2007, p.13). Fields of application range
from bio-informatics to image segmentation, human pose estimation or language
processing. A recent application in the field of financial risk is in Ahelegbey and
Giudici (2014) We surmise that this approach could be productively applied to

1Corresponding author: marco.guerzoni@unito.it

1



 Electronic copy available at: http://ssrn.com/abstract=2541625 

innovation studies, in which the increasing availability of data is calling for new
techniques which can handle not only a large amount of observations, but also
rich datasets in terms of number and relations among variables. At the state of
the art in the field, both variables and the model to be tested are based upon either
existing theories or educated guesses. The process of variables selection might
therefore be heavily influenced by biases of the scientist and, in the worst case
scenario, subject to scientific malpractices such as the p-hacking behavior. Graph-
ical models on the contrary allow for bottom-up, hypotheses free, data-driven, and
see-through approach.

The aim of the paper is to explore the use of probabilistic graphical models
in innovation studies, a cross-boarder field between economics and management
studies. The novelty of the paper is twofold. First, we consider graphical models
for high-dimensional data and we apply them to the realm of management and
economics of innovation. Many graph-theoretic operations scale poorly, and the
set of tools and strategies to deal with the computational problems in the high-
dimensional case is very recent and differs from the traditional one. For instance,
the pioneering application Giudici and Carota (1992), who made use of the condi-
tional independence graph to study the innovation process in the software industry,
considered 6 variables only and few given ex ante research hypotheses.

Secondly, this method allows us to approach debates in the field of innovation
studies from a radically new perspectives since we are able to render a global view
of the whole dependence structure of various phenomena which are usually and
erroneously kept apart from each other. Thus, the contribution of the paper is not
purely a methodological one, for we apply graphical models to all the variables in
the Innobarometer dataset and address the many debated and interrelated issues in
economics and management of innovation.

A key research area in the field concerns the determinants and the sources of
innovation (Freeman, 1994): which firms are more likely to introduce new prod-
uct and process? Do innovations origin from technological opportunities or rather
from the recognition of emerging market needs? Which role do public research
institutions play? Does the innovative performance simply depends by the inno-
vative efforts of individual or rather by the framework conditions of a competitive
system? Are public policies such as standard settings and R&D subsidies really
effective?

Despite the wide acknowledgement in the community of innovation studies
that the process of innovation is a complex one and that the aspects mentioned
above are necessarily interrelated, scholars have been trying to answer these ex-
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emplary questions with standard regressions techniques on a small subset of the
variables at disposal. On the contrary, in this paper we map the overall structure
of the variables in the dataset taking into account almost all variables and without
any a priori on their conditional independence structure.

We show that graphical models applied to innovation studies can corroborate
most of the previous results in the field such as the diverse nature of product and
process innovations, the distinct effect of technology and market opportunities, the
role of interactions with research institutes and users. More specifically, we will
contribute to the technology-push vs.demand-pull debate which discusses whether
human needs blindly follow technological advances or whether the process of
technological development and scientific discoveries is pulled by priorities set up
by the society and by potential consumers.

In the next section we briefly present the main debate in innovation studies.
In section 3, we detail the statistical method we use. In section 4, we present the
data and the results. Conclusions follow.

2. INNOVATION STUDIES: A QUICK OVERVIEW

Innovation can be broadly defined as the introduction of a new product, a new pro-
cess or a new organizational form and it is recognized as a key driver for the eco-
nomic performance both at the firm and the aggregate level (Nelson and Winter,
1982; Solow, 1957). A very much debated issue is whether the origin of innova-
tion is technology-push or demand-pull, that is whether new ideas stem from the
independent and serendipitous processes of scientific discoveries and technolog-
ical improvements, or, conversely, whether the elicitation of human needs steers
the route of science and technology.

Some scholars share a faith in the capability of mankind to continuously de-
velop technology along any possible direction. This faith in technology dates back
to the tremendous leap forward in the early second half of the last century in the
realms of nuclear technology, computer science, aerospace, and telecommunica-
tion. Bush (1945) devised the expression “Science, the endless frontier” to de-
scribe the view of a world where technological opportunities are endless ones and
the needs of individuals and firms define the priorities for the research. Therefore,
in this social context of the postwar period the demand-pull hypothesis diffuses
among scholars in economics of innovation.

In the late 1970s, the faith in the mankind and in its ability to fulfill any hu-
man needs with advancements in technology declined. In the literature, which in
social science is often wired with historical developments of a society, a very dis-
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ruptive critique to the demand-pull approach came from Mowery and Rosenberg
(1979) and Dosi (1982). In their view, the process of innovation is reverted: tech-
nology ceases to be an endless frontier, since engineers cannot explore the whole
space of technology opportunities but only a narrow contour of the state of the art.
In other words, the logic of the discoveries of new products and processes is partly
serendipitous and largely independent by any consideration of a possible final use.
Conversely, the set of human needs is endless and, thus, unable to provide a clear
route for the technological development. Within this approach, technical knowl-
edge is developed either within or externally to the firm. The internal knowledge
is the result of investment in research and development, in the hiring and training
of scientific personnel and in the acquisition of new technologies embedded in
machineries. Externally, a firm can tap into knowledge provided by other firms,
but it can also intentionally exploit the knowledge produced in universities and
research centers via collaborations (Arundel and Geuna, 2004).

This technology-based view persists as the most widely accepted in the liter-
ature. However, in the last twenty years, efforts have been also made to overcome
the Dosi’s critique and revitalize the demand-pull hypothesis. Most of the efforts
have been put forward to empirically operationalize the conceptualization of de-
mand as a blend of size of the market and information. In this approach, the role
of demand is not generally linked with a ill-defined set of general needs, but the
focus shifted either to the very precise case of the interaction between users and
producers or to the size of market as an incentive device. Fontana and Guerzoni
(2008) showed that the interaction with users impinges more on the likelihood of
introducing product innovations, while the market size has a larger impact on pro-
cess innovations. More recently also the role of governmental demand has been
considered as a possible determinant for the innovative activity as it has been tra-
ditionally the case in sectors such as defense and aerospace (Guerzoni and Raiteri,
2015).

Although scholars agree that the dichotomy technology-push vs.demand-pull
is a sterile one (Freeman, 1994), very few empirical works attempt to take into
account both sides of the story. A reason for this disappointing state of the art
could be that scholars in the field are not always equipped to deal with challenging
empirical issues. Indeed, the complexity of the debate is mirrored by the intricate
structure of the available data: it is arduous to measure innovation since it involves
non codified knowledge, implicit know-how, and intangible assets. Moreover a
successful innovation is the rare positive outcome of long efforts which alongside
produced failures which do not leave a paper trial. As a result, some scholars
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innovation studies opted long ago for a survey based approach, where firms can
describe in detail their innovative activity.

Oddly enough, the recently increased availability of information did not raise
any concern for the selection of the empirical model and for the choice of the
variables. For instance, there are no controls for the existence of false positives:
any statistical result should consider the possibility that the reality observed in
data is a fortunate random construct of the sampling and not a property of the
population (Nuzzo, 2014). Secondly, the p-value is often the only figure shown
in the tables. The increasing size of the now available samples makes the simple
p-value of a scarce information content since for large samples the p-value goes
quickly to zero. Third, surveys have many variables which are characterized by
an overlapping information content and there exist redundancies and correlations
among them. The choice of the variables to include or to omit in the analysis is a
crucial one, otherwise a perceived sloppiness in this step of the analysis would cast
doubts of scientific malpractice such as the p-hacking behaviour, that is “trying
multiple things until you get the desired result”(Simonsohn et al., 2014).

We propose the use of graphical models as a tool to help the researcher in
understanding the structure of a dataset as a whole, without omitting any vari-
ables on the base of educated guesses or introducing simplifying assumptions on
existing relationships. In this way we mitigate the risk of both relevant omissions
and thus endogeneity in the empirical model, and we reduce biases in the estima-
tion. As we explain in the next section, although we are forced to make statistical
assumptions to handle computational problems, the approach remain bottom-up,
free from economic hypotheses, and data-driven.

3. GRAPHICAL MODELS IN HIGH-DIMENSIONAL PROBLEMS

Essentially graphical models used in this paper are classes of multivariate distri-
butions whose conditional independence properties are encoded by a graph in the
following way. The random variables are represented as vertices (nodes), and two
vertices are connected by an edge (line) when the corresponding variables are not
conditionally independent given the other variables represented in the graph. An
introduction to graphical models can be found in Lauritzen (1996), Wermuth and
Lauritzen (1990), Whittaker (1990), and Pearl (1988), while high-dimensional
graphical models are discussed for instance in Højsgaard et al. (2012, Ch. 7).

Aiming at a data analysis free of any economic hypotheses in order to re-
discuss the empirical literature in innovation studies, a fundamental task of this
paragraph is to stress the statistical assumptions underlying our analysis. In the
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next paragraph we provide all formal definitions required to discuss them in de-
tails.

A graphical model is defined as an undirected graph G = (ℵ,E), where ℵ =

{X1, ...Xp} is the set of vertices and E is the set of edges, i.e. a subset of ℵ×
ℵ (unordered pairs), where multiple edges and self-loops are not allowed. The
number p of vertexes is assumed to be finite and the absence of an edge e =

(Xu,Xv) ∈ E connecting two vertices means

Xu⊥Xv|ℵ\{Xu,Xv}

(pairwise Markov property). This is the key feature of a graphical model: condi-
tional independence can be read in the graph.

A subset A ⊆ℵ is complete if every pair of vertices in A is connected by an
edge. If a subset is maximally complete, that is complete and not contained in
a larger complete subset, it is called a clique . In a graph G two vertices, X and
Y , are said to be connected if there is a sequence X = X1, ...,Xk = Y of distinct
vertices such that (Xi−1,Xi) ∈ E, ∀i = 2, ...,k. The sequence X = X1, ...,Xk = Y is
a path of length k−1. A subset C⊆ℵ separates two disjoint subsets of ℵ, A and
B, if all paths from a vertex X in A to a vertex Y in B passes through C. A cycle
is a path where the end vertices are the same (X = Y ). A cycle is chordless if Xu

and Xv are only connected by an edge when |u− v|= 1.
A graph is called triangulated if it has no chordless cycles of length greater

than three. A perfect ordering of the nodes, which is equivalent to a perfect se-
quence of the cliques, exist if and only if the graph is triangulated. Finally, a graph
is decomposable if and only if it is triangulated (Lauritzen, 1996).

The variables in a graphical model can be discrete, continuous, or both (mixed).
In the first case, in which each variable assumes a value in a set of levels, the mod-
els are based on the multinomial distribution. This is our case.

Labelling by 1, ...|Xv| the levels that the discrete random variable Xv may take,
so that |Xv| represents the number of its levels, we write a generic observation (or
cell) as x = (x1, ...,xp), and the set of possible cells as χ . Given a dataset with n
observations of the p discrete random variables X = (X1, ...,Xp) with Xv ∈ℵ, we
assume that the observations are independent and are interested in modelling the
probabilities p(x) = Pr(X = x) for x ∈ χ .

This kind of problem is known as structure learning or structure estimation
since we are interested in learning the structure of the probability function and
not simply in quantitative learning, such as estimations or tests, of the unknown
parameters of a given model. In other words, the graphical structure itself, that is
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to say interactions and conditional independence relationships between variables
have to be simultaneously estimated from the data.
In this sense, such problem emerging as a model selection problem in graphical
models, is parallel to e.g. density estimation, or, alternatively, it could be in-
terpreted as a data mining problem with focus on discovering relations between
variables in a complex system.

Model selection in graphical models represents a very challenging issue when
many structures have to be considered, particularly with sample sizes not much
larger than the number of variables - the so called “small-n-large-p situations”-,
or, more in general for the discrete case, with sparse tables resulting also from
a few variables with a large number of levels. In this respect, in section 4 we
highlight that the size of the Innobarometer dataset is significantly reduced by
the high-dimensionality of the multivariate analysis, which requires all levels of
all variables to be represented and missing values are not allowed. Therefore,
although in principle model selection in graphical models consist of finding the,
in a some sense, best fitting graph for the given dataset, it is often not possible
to perform an exhaustive search and it becomes necessary the use of standard
stepwise search methods. Forward search, i.e. edge addition starting from the
model of complete independence or from the graph with no edges, is preferred to
the backward search when the saturated model cannot be easily fitted. However,
forward searches may terminate in local optima as it can always happen in greedy
search, that is an algorithm that proceeds by repeated local optimizations.

Moreover, a massive efficiency gain in computations can be achieved if infer-
ence or model search are restricted to decomposable models, where the maximum
likelihood estimates (MLE) of the expected cell counts, m(x) = n× p(x), exist in
explicit form and depend on the observed marginal tables on the biggest cliques:

m̂(x) = ∏C∈C n(xC)

∏S∈S n(xS)ν(S)
,

where C is the set of cliques which form a perfect sequence, S is the set of
separators for this sequence, and ν(S) is the multiplicity of S as separator in this
sequence. This implies also that good inferences can be obtained if such marginal
tables satisfy the conditions required to obtain the desired good inferences (for
instance if table margins are positive when we desire MLEs) and this is clearly a
remarkable simplification of the problem.

In our case, there are 61 variables (nodes) implying 2p(p−1)/2 = 21830 possible
undirected graphs. So we adopt a radical way of dealing with high-dimensional
sparse data and restrict attention to forests and tree graphs. A forest is an undi-
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rected graph with no cycles and it may be composed of several connected com-
ponents called trees, i.e. a tree is a connected acyclic graph (Bondy and Murty,
2008). We adopt this approach as a preliminary step towards the understand-
ing of the overall dependence structure of our high-dimensional discrete dataset.
Trees and forests can be unrealistically simple models, but can provide useful
insights about identification of distinct connected components which can be anal-
ysed separately (i.e. dimension reduction), identification of neighbourhoods for
more detailed analyses, identification of hub nodes and other interesting features.
Moreover, they can be useful as initial models for search algorithms with a larger
search space, for example decomposable models. In other words they provide a
tentative network approximating the joint distribution of our variables.

From a formal point of view trees (forests) are decomposable graphical model,
with cliques of size two (or less) and such that any two non-adjacent nodes are
separated by a set of (at most) size one. Under the assumption that the cell proba-
bilities factorize according to an unknown tree τ , they can be written as

p(x|τ) = ∏u,v∈E p(xu,xv)

∏v∈ℵ p(xv)deg(v)−1 = ∏
v∈ℵ

p(xv) ∏
u,v∈E

p(xu,xv)

p(xu)p(xv)
,

where for simplicity the nodes in the graph are denoted by their indices and the
degree of v, deg(v), is the number of edges incident to Xv.

An efficient algorithm to find the maximum weight spanning tree of a arbi-
trary undirected connected graph W with p nodes and positive edge weights has
been proposed by Kruskal (1956). Starting with the null graph, the edge with
the largest weight among the edges not yet chosen is added to the graph provided
that it does not form a cycle with the ones already included. When p− 1 edges
have been added, the maximum weight spanning tree (MWST) of the graph W
has been found. Building on this work, Chow and Liu (1968) showed that the
log-likelihood maximized over p for a fixed τ yields the profile log-likelihood

l̂ = log(L(τ, p̂)) = ∑
(u,v)∈E

Iu,v + ∑
(v)∈ℵ

Iv

where Iu,v is the mutual information or empirical cross-entropy between endpoint
variables of the edge e = (Xu,Xv), i.e.

∑
n(xu,xv)

n
log

n(xu,xv)/n
n(xu)n(xv)/n2 ,

where the sum extends to all possible levels xu and xv of Xu and Xv and n(xu,xv)

is the number of observations with Xu = xu and Xv = xv. Similarly, Iv denotes the
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empirical entropy of Xv. Therefore, by using the Iu,v as edge weights on the com-
plete graph with vertex set ℵ, and applying a maximum spanning tree algorithm,
one can obtain the maximum likelihood tree.
The mutual information is written emphasizing how the MLEs from the pair-
wise marginals enter the formula. Note also that Iu,v is one half of the usual
likelihood ratio test statistic for marginal independence of Xu and Xv, that is
G2 = −2logΛ = 2Iu,v (Agresti, 2013, Ch.3). Under marginal independence G2

has an asymptotic χ2
k distribution, where k = (|Xu| − 1)(|Xv| − 1) represents the

number of additional free parameters required under the alternative hypothesis,
compared with the null hypothesis.

A disadvantage of the previous approach, based on the complete graph W on
ℵ with edge weights given by I(u,v), u,v ∈ℵ, is that it always results in optimal
trees, not forests. To take account of the number of model parameters in some
fashion Edwards and Labouriau (2010) replace the maximun likelihood with other
well-established information criteria, particularly AIC (the Akaike information
criterion) (Akaike, 1974) and BIC (the Bayesian information criterion) (Schwarz,
1978). Both criteria correspond to penalized likelihoods. The former is defined
as −2log(L)+ 2r, where L is the maximized likelihood under the model and r
is the number of parameters in the model, and the latter as −2log(L)+ log(n)r.
Accordingly, in order to find the forest F with the minimum AIC or BIC, Edwards
and Labouriau (2010) add a penalty for each edge, proportional to the number of
additional parameters ku,v of introducing the edge e. Then, banning all the edges
whose weights are negative, they find the optimal forest F by carring out the
Kruskal’s algorithm on the rest. In this case the weight of e = (u,v) is taken to be
a penalized mutual information, Iu,v− ku,v or Iu,v− 1

2 log(n)ku,v, respectively.
This approach is attractive with high-dimensional data, since if the selected

forest does consist of multiple connected components these may then be analyzed
separately allowing a dimension reduction. Interestingly, the connected compo-
nents of the minimal AIC/BIC forest are also connected components of the mini-
mal AIC/BIC decomposable model, providing further justification for this proce-
dure. A further interesting property is that the global optimality of the selected
minimal tree holds under marginalization when the subset of variables of interest
in turn is a tree.

A completely different criterion leading to maximum a-posteriori (MAP)
forests has been proposed by Panayidou (2011) in a Bayesian contest. We do
not enter in details of this proposal.
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4. AN APPLICATION TO THE INNOBAROMETER SURVEY

Innobarameter is a dataset of 81 variables describing firms’ innovative behaviour
and collected via telephone-aided interviews to a stratified sample of 5234 Eu-
ropean firms in the manufacturing sector. The dataset has already been used for
scientific analysis in innovation (Guerzoni and Raiteri, 2015) and policy reports
by the European Commission. Moreover the structure of this survey mimics the
Community Innovation Survey, another widely used source of data in innovative
studies. The detailed description of the dataset, of the questions, including the
distribution of the variables and a rich set of descriptive statistics can be found
in (Vv.Aa, 2009).2 Excluding 18 “filtered” or “accessories” variables (questions
only asked to whom provided a specific answer to a previous question) and one
irrelevant variable (d5), 62 variables are eligible for the multivariate analysis.

Only one variable (q8) belonging to the latter group has been removed be-
cause of a huge number of missing values. This happened because q8 presupposes
a positive answered to q7, that is it depends de facto on such a filter question, even
though this fact is not clearly established in the survey.

All of the remaining 61 variables have been codified as follows: the answers
Don’t Know-Not Available are taken to be NA, while the answer Not Applicable is
taken to be NO. In addition, given the nature of questions q2, q3, q4, and q5, they
have been codified according to a further rule: answers of subjects responding No
or Not Applicable in q1_a-g and jointly Don’t Know-Not Available in q2, q3,
q4 and q5 have been re-codified into the same variables, respectevely q2, q3, q4
and q5, as NO. Such a decision originates from the fact that the answers NO or
Not Applicable in q1_a-g implies the answer NO in the four subsequent questions
(other variables). Also in this case the text of the survey was not well presented to
the respondents.

In conclusion, 52 binary variables and 9 variables taking a number of lev-
els from 4 to 6 enter our analysis. They are listed in Table 1, third column. As
mentioned in the previous section, the joint analysis of the structure of their asso-
ciation by high-dimensional graphical models implies a reduction of the sample
size from 5234 to 1531.

2The Innobarometer analytical report is also available at this web-page: http://ec.europa.
eu/public_opinion/flash/fl_267_en.pdf or upon request to the authors.
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4.1. VARIABLES

In Table 1, first and second columns, we group the variables in five sets according
to their economic meaning. The first group consists of output variables, which
grasp whether a firm introduced product, process, service innovations, new mar-
keting strategies, and new form of organization. In this group, we also include
patent and design applications, which have been widely used in the literature to
proxy innovative activities.

The second group entails variables which describe firms’ innovative strate-
gies, id est routines, behaviours and actions put deliberately in place in order
to improve the innovative performance. The most discussed in the literature are
R&D investment strategies, which do not consist in formal R&D only, but also
in training for scientist, acquisition of external R&D by hiring expert consultants
and by acquiring of new machines. Firms can also collaborate with universities
and research centres to tap into their knowledge.Concerning the demand side,
firms can also improve their performance by actively engage in collaborations
with users, since in many cases, and especially in B2B relationships, users can
provide firm with relevant information about their needs to be fulfilled by the in-
novation (Guerzoni, 2010) or even suggest themselves new product or process
improvements (Von Hippel, 1988). In the survey, firms are asked about the inten-
sity of interaction with users or directly whether users are a source of knowledge
for the introduction of new ideas. Finally, firms can also make efforts to improve
the management of internal and external knowledge flows, for instance by creating
ad hoc positions or by investing in training activities.

A further vital decision for firms is market positioning. The size of the market
is measured by the potential number of buyers, the size of the local market, the
countries in which a firm operate, and the level of internationalization. Firms have
also been asked about their strategies for managing the internal and external flows
of knowledge and information and their activity of training on the job.

The third group of variables describes the external conditions a firm is fac-
ing such as the institutional setting, the competitive pressure, the policy, and the
existence of public procurement.

The fourth group consists of two variables only, which we decided to high-
light since they grasp the techology-push vs. demand-pull debate. Firms have
been asked about the factors having a positive influence upon the innovative ac-
tivities and the two variables refer to the emergence of a new technology to be
exploited (q16_b) and to new opportunities from the market (q16_d).

The last group of variables describe firms’ characteristics. In the survey we
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have information about the firm’s size, age and turnover. Some scholars suggested
that large firms should innovate more than others since they have more dedicated
resources. Some others however puts forward some evidence for an inverted U-
shape relation: small and large firms are the most innovative, while medium size
ones lag behind (Acs and Audretsch, 1987). The role of age is less controversial.
Young firms are very likely to fail and exit the market. However, if they manage
to be successful they growth faster and they are more innovative than the market
average (Audretsch, 1995).

Table 1: Variables list

Group Content Variable

Innovative output

Product Innovation q6_a
Process Innovation q6_c
Service Innovation q6_b
Organization Innovation q6_e
Marketing Innovation q6_d
Patent and Design Application q1_f, q1_g

Firm Innovative Strategy

R&D Invesment q1_a-e, q2, q3, q4, q5
Interaction with the users q12_a-c, q16_f , q18
Collaboration with University q12_e, q12_d, q16_a
Market positioning d1_a-c, d1_f, q_14, q10_a-e, q17
Internal Knowledge Management q9_a, q9_b, q9_c, q9_d
External Knowledge Management q11_a-d
Training q13_a-e

External Conditions
Institutional Settings q15_a-e
Public Procurement q16_e, q7
Competitive Pressure q16_c

Demand vs. Technology Market opportunities q16_d
Technological opportunities q16_b

Firms Characteristics
Size d2
Turnover d4
Age d3

4.2. RESULTS

Figure 1 maps the 61 variables listed in Tabel 1 and describes the conditional
independence structure of the dataset through a minimum BIC forest, obtained
by the R package gRapHD for efficient selection of high-dimensional undirected
graphical models (Abreu and L., 2007). Figure 2 shows the same forest with labels
for the most important variables or groups of variables relevant for the analysis we
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Figure 1: The minimum BIC forest
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Figure 2: The minimum BIC forest with labels
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present in the next paragraphs. For the sake of simplicity, in this paper we do not
report the optimal decomposable graphical model corresponding to the minimum
BIC forest since many relevant results can be derived from this preliminary anal-
ysis alone.

First of all in Figure 1 we observe that the forest consists of three trees or
unconnected components: two variables stand alone and are independent from
the rest of the structure, while all other variables are a connected in a large tree.
One of the unconnected trees is the age of the firm (d3), the second the exchange
of property rights (q11_d). While for the latter, there is not necessarily a surprising
result because markets for knowledge are rather underdeveloped, for the former it
probably depends on the structure of the question asking only whether the firms
was founded before or after 2001, which do not really grasp the age of the firms.
Before analyzing in details the large tree, we recall that in a tree, two variables
can be directly linked by an edge or by a path via one or more nodes. Given that
cycles are not allowed, two variables are connected by a unique path. When the
connection of two variables is mediated by another node omitting the separating
node/variable may induce dependence between the two variables. The longer is
the path connecting two variables the weaker is their association since, under the
constraint of no cycles, at each step the Kruskal algorithm compares their mutual
information to the mutual information of all other pairs of variables included in the
path. We first focus on the output variables, namely innovation (product, process,
service and organizational) and invention (patent and design application). If they
are the outcome of an underlying inventive and innovative process, it reasonable
to expect them to be at the end of a chain of dependence. This is clearly the case
for product and process innovations which are connected to tree by an edge only
and therefore are labeled leaves, but also for groups of other output variables in
Figure 2.

Both product and process innovation are closely linked to demand factors:
product innovation depends on the group of variables capturing the interaction
with the users. Similarly, all variables in the tree with the highest proximity to
process innovation relate to the size of market. Service, organization, and market-
ing innovations are closely related with the nodes capturing firms behavior about
internal and external knowledge management and training. Patents and design
applications are dependent on R&D input variables and conditionally indepen-
dent of any other output of inventive activity. Without additional information, it
seems questionable to consider different types of innovation as homogeneous en-
tities, since they are related to different variables and, thus, possibly generated by
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different underlying processes.
At the core of the map, two nodes deserve a peculiar attention. These two

nodes depict the variables “technological-push” and “demand-pull”, which re-
spectively describe whether a firm declared as important for the introduction of
a innovation either a technological innovation or market opportunities. For this
reason, the localization of these two variables in the tree, here interpreted as a
map, can suggest how to empirically investigate the technology-push vs. demand-
pull debate. With this purpose in mind and a slight abuse of terminology, we
can observe that they have both a high “degree of centrality”, that is they play
an important role in the“cohesion” of tree. This is mostly true for the variable
demand-pull which, “if removed”, would have the large tree of the forest divided
in three different and large unconnected components3. In other words, such a node
separates three sub-trees in the large tree of the forest. It is also noticeable that
the same variable has a high proximity with market size and user interaction, that
is demand side variables, while the technology-push node is closer to the technol-
ogy variables such as the interaction with university and the level of investment in
R&D.

The level of investment in R&D has been usually considered as the main de-
terminant of the innovative activity. Despite the overall consistency of the tree
with this view, a researcher should be aware that the path from nodes describ-
ing the R&D investment activity to the innovative outcome consists of more than
10 steps. When modeling R&D investment as a determinant of product and pro-
cess innovation a researcher should not omit all the variables/nodes in-between in
that path. On the other hand, a different story concerns the relation between the
level of investment in R&D and patent and design applications, which are directly
linked. This layout of the tree suggests that a model which assumes or tests a
dependence of patents application and R&D investment is a sound one. This is a
very good news for innovative studies, since many scholars tested the parameters
of a Cobb-Douglas production function where the outcome are patents as recorded
in a patent office and the inputs are different investments in R&D (for a review see
Griliches (1998)). However, the bad news is that the number of patent applications
is not a good proxy for the number of product and process innovations: the for-
est suggests that this is strong assumption since the dependence relation between

3The terminology ”centrality” is borrowed by social network theory (Wasserman and Faust,
1994). Borgatti and Everett (2006) show how the centrality of a node can be conceived as its
contribution to the cohesion of a graph, measured using the distribution of the reachability of the
nodes.
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patents application and innovation emerges as mediated by many variables.4

Regarding the variables capturing the institutional conditions, it should be
noticed that they are all grouped in the south-east part of the map and the award
of a public procurement contract is the closest the product innovation. Given
the increased attention of policy makers to the use of public procurement as an
industrial policy, data suggest that in case of product innovation this is a very
sound hypothesis, while for the case of other type of innovations or for R&D
investment this hypothesis might be less reasonable.

Overall, we can send a clear message to scholars in innovation studies. If the
aim of a research is to explain the determinants of innovation the following should
be carefully taken into account:

• Product and process innovations should be considered as distinct outputs,
resulting from partly different generative processes.

• There might be a causal link which flows from R&D investment to innova-
tion. However, if it exist, our preliminary analysis shows that it is mediated
by the role of other variables, namely the interaction with university, the
existence of technological and market opportunities and the role of demand
both as the size of the market and as the interaction with users. For this
reason, any empirical study that tests or imposes a model where R&D in-
vestments directly influence the level of innovation might omit important
endogenous variables.

• This evidence suggest that Freeman’s intuition was the correct one: the
seeds of future innovation rest in both technology and market opportuni-
ties. However, variables capturing demand conditions seems to be more
related with the output of the innovative process. Anyway, the role of de-
mand factors, even when not prominent, can not be omitted in an empirical
analysis, which would otherwise results a biased one.

• Service, marketing and organizational innovations are very close and they
directly depends by investment in human capital (knowledge management
and training). In line with literature, they are not closely associated with
R&D investment.

• In the map, institutional conditions and competitive pressure are clustered
and they exert a direct impact on product innovation only.

4Such indication is substantially confirmed by the corresponding decomposable model, which
we do not report in this paper for the sake of brevity.
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• Patent applications are not a suitable proxy for product or process innova-
tion.

5. CONCLUSIONS

Innovation is both a driver of the performance at the firm level and a determi-
nant of long term productivity growth at the aggregate level. Innovation studies,
a cross-boarder field between economics and management, deal with the complex
process of innovation that generates and exploits new technological opportunities
and compel them to satisfy human needs. The underlying process is uncertain and
it involves various factors which affect the system in a non-linear way. The com-
plexity of this phenomenon reflects in the lack of well-behaved data and in the use
of survey data, where firms can describe in detailed the multifaceted aspects of
their innovative activity.

The increased availability of survey data, the large sample sizes, and the high
number of variables call for a cautious approach when performing empirical ex-
ercises. Specifically, major problems consist of the selection of the empirical
model to test and the choice of the variables. In this paper, we show that high-
dimensional graphical models, and specifically simple minimum BIC forests, can
serve as a data mining tool and guide the researcher towards a sound empirical
design.

The application to this method to a survey on firms’ innovative behaviour led
to remarkable results. Indeed we encompassed in one picture the most pressing
debates in innovation studies. It is not the aim of this research to contribute to
any of these single issues in depth. However, we showed that most of them in the
past have been erroneously handled as independent ones, whereas the dependency
structure of the variable suggests that they should considered together.

This work call for extension along different lines. First of all, Innobarom-
eter is not the only survey, nor the most used. We therefore plan to repeat this
exercise on the Community Innovation Survey (CIS) 2012 as soon as it is avail-
able. Moreover the CIS is available in different waves and this allows us analyzing
the dynamic properties of graph over time. A second step consists of controlling
whether models applied in past works are coherent with the graph present here
and, if not, we aim at testing whether a different model, suggested by the graph,
lead to different results. From a technical point of view, we can introduce many
interesting variants in the analysis presented in this paper. They include different
weights for edges in the tree such as Bayes factors for independence of Xu and
Xv, instead of the mutual information, leading to maximum a posteriori forests.
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We can deepen the local analysis on sub-graphs of a given forest, as for instance
one including specific neighbours of a given node of interest. We can also remove
the no-cycle restriction and search for decomposable graphical models. Finally,
of course, the analysis can be restricted by resorting to directed graphical models
for high-dimensional data when causal relationships among variables have to be
explored.
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