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1 Introduction 

In the 1990s, many scholars and analysts had considered the global diffusion of the 

internet as a tremendous opportunity to change –if not subvert– some traditional power 

relations in the capitalistic economy (Rosenzweig, 1998). In particular, the possibility for 

consumers to deal directly with suppliers and to choose goods and services allegedly without 

intermediation has often been celebrated as the end of the long value chain of distributors, 

which typically apply a significant mark-up on products and enlarge the gap between 

production cost and market price (Tapscott, 1996). Many predicted lower transaction costs 

both for producers, who could eventually target their customers without paying a fee for any 

form of gatekeeping (Bakos, 1998), and for final consumers, who could access more 

information and broader markets (Van den Poel and Leunis, 1999). However, in the digital 

economy, the market structure is characterized by the presence of large incumbents and this 

concentration has stimulated a debate on the risk associated with market power. Influential 

opinion makers on the world press are also calling for an antitrust intervention1, while a few 

do not believe this should be the case2 . 

Our paper focuses on the business of so-called digital platforms, which are the leading 

                                                           
1 See for example: Kahn L., “Amazon Bites Off Even More Monopoly Power”, The New York Times (June 

2017) https://www.nytimes.com/2017/06/21/opinion/amazon-whole-foods-jeff-bezos.html; Elliot L., “Is it 

time to break up the tech giants such as Facebook?”, The Guardian (March 2018) 

https://www.theguardian.com/business/2018/mar/25/is-it-time-to-break-up-the-tech-giants-such-as-facebook; 

Schiller B., “This Is How We Take Power Back From Facebook (And Every Other Monopoly)”, Fast 

Company (March 2018)  https://www.fastcompany.com/40508850/this-is-how-we-take-power-back-from-

facebook-and-every-other-monopoly 
2 See: Worstall T., “Google And Facebook Are Dominant But Not Monopolies”, Forbes, (May 2017) 

https://www.forbes.com/sites/timworstall/2017/05/10/google-and-facebook-are-dominant-but-not-

monopolies/#8b7cb6136d4e 

https://www.nytimes.com/2017/06/21/opinion/amazon-whole-foods-jeff-bezos.html
https://www.theguardian.com/business/2018/mar/25/is-it-time-to-break-up-the-tech-giants-such-as-facebook
https://www.fastcompany.com/40508850/this-is-how-we-take-power-back-from-facebook-and-every-other-monopoly
https://www.fastcompany.com/40508850/this-is-how-we-take-power-back-from-facebook-and-every-other-monopoly
https://www.forbes.com/sites/timworstall/2017/05/10/google-and-facebook-are-dominant-but-not-monopolies/%238b7cb6136d4e
https://www.forbes.com/sites/timworstall/2017/05/10/google-and-facebook-are-dominant-but-not-monopolies/%238b7cb6136d4e
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players in digital markets and raise concern due to their market power (Brousseau and 

Pènard, 2007; Smith and Telang, 2016). The competitive advantage of these companies relies 

on the data they can gather from their users and customers in order to fuel predictive models 

capable of probabilistically determining preferences and purchase behaviors. The massive 

and heterogeneous flows of data generated by any kind of internet transaction or digital 

footprint are the pivotal asset to improve customer-centered business intelligence and 

anticipate what consumers want. 

The aim of this paper is to contribute to the ongoing debate on the risk associated with the 

market power of a few oligopolistic players in the data-driven economy by using theoretical 

arguments and empirical evidence to assess any abuse of a dominant position. Specifically, 

we claim that the present market structure is the predetermined result of the emergence of big 

data and, as such, the existence of the risk of abuse of a dominant position should be assessed 

by analyzing the impact of using a large amount of data on firms’ behaviors.  

The paper is organized as follows. In section 2, we discuss why, instead of steering the 

economy towards a form a perfect competition, the large exchange of information leads to 

market concentration. Then, we question whether market concentration in the digital 

economy has brought more or less societal value. We assess whether incumbent firms can 

exploit market power to the detriment not only of competitors, but also of consumers and the 

society as a whole by looking at three major aspects of economic theory: 

- Entry barriers (section 3). According to Rubinfeld and Gal (2017), technological, legal, or 

behavioural barriers can arise in every part of the data value chain. Moreover, Mahnke 

(2015) is persuaded that big data can be an antitrust-relevant barrier to entry, in particular 

when mergers of data-intensive companies raise the risk of anticompetitive behaviour (De 

Peyer, 2018)  

- Level of price discrimination (section 4). Has the growing availability of digital 

information around consumers made more room for price discrimination? If this is the 

case, what type of discrimination and to the detriment of which consumers? According to 

Newman (2014), most digital companies adopt zero nominal price exchange, exploiting a 

non-transparent use of data for the purposes of price discrimination, and this also harms 

consumers who are ignorant of pricing options. 

- Intensity of innovation (section 5). To what extent do these oligopolies reduce the 

incentive to innovate so as not to cannibalize their products? Or, conversely, does the 



 

3 

 

presence of large incumbents generate a positive effect on product quality and stimulate 

continuous innovation?  

Finally, in section 6 we summarize the paper’s main arguments and draw a baseline for 

policy makes. 

 

2 Internet, Big Data, and Platforms: how competitive are digital markets? 

The idea of the internet as a global market place where consumers can access an infinite 

number of competitive producers with virtually no transaction costs has recently turned out to 

be a utopian paradigm. 

From a technological perspective, Arpanet, which became the technical foundation of the 

Internet, was created so as to have a decentralized network with a swarm-like structure and 

no central authority (Rosenzweig, 1998). Levy (1984) points out the role played by students 

at Duke University, and even more so at Berkley with their Community Memory Project, in 

influencing Arpanet with the Hacker Ethic, “in that among its values was the belief that 

systems should be decentralized, encourage exploration, and urge a free flow of information” 

(ibid, p. 137). This melting pot of ideas converged in the “techno-libertarian approach”, 

probably the central ideology on the Internet (Rosenzweig, 1998), and has been translated 

into economics by free-markets prophets such as Gilder (1990) and Toffler (1980). However, 

early on, Rosenzweig (1998) stated that despite “[…] free marketers today celebrate the 

Internet as the home of people’s capitalism, it also seems headed down the road to 

oligopoly” (ibid. p. 1551). Rosenzweig focuses on the role of infrastructure and surmises that 

this path was not inevitable. In the remainder of this section, we argue that there exists a 

natural and preordained tendency towards monopolization in the internet-based economy, and 

that this lies in the nature of the production and exchange of information.  

The Internet has been a key driver in the generation and collection of vast amounts of 

information, both offline and online. To paraphrase Herbert Simon, a wealth of information 

means a dearth of attention on the part of its recipients, since attention should be allocated 

wisely given the overabundance of information stimuli (Simon, 1971). 
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The rise of data-driven digital markets (see Figure 1) contains two seeds, both of which 

hinder the utopian libertarian economy foresighted by the internet pioneers. Firstly, as widely 

discussed in economic literature, the digital economy is characterized by two-sided markets, 

which benefit network externalities both from the demand and from the supply side (among 

others, see Rochet and Tirole, 2003; Evans and Schmalensee, 2013). On the demand side, 

consumers are overwhelmed with information and have a shortage of attention for a full 

screening of all available opportunities. On the supply side, firms willing to profit from 

growing markets need to become visible to their potential customers. These two mechanisms 

generate the need for new digital intermediaries, which on the one hand collect information 

from firms operating in the market and, on the other, organize and filter said information, 

supporting consumer searches. The more consumers use a specific platform, the more they 

make it appealing for firms; and, conversely, the more firms are visible on a platform, the 

more consumers are prone to choose it. Clearly, the positive feedback generated in two-sided 

markets abets a form of industry concentration.  

Literature on the economics of information has broadly investigated the possible 

interaction between two or more groups of agents via physical or digital intermediaries, 

defined platforms, which usually exploit cross-groups externalities. For example, Caillaud 

and Jullien (2003) studied dating agencies, real estate agents, and internet “business-to-

business” websites; Rochet and Tirole (2003) focused on the profitable credit cards industry; 

Armstrong (2006) analyzed the determinants of equilibrium prices in two-sided markets. 

They all agree that digital technologies have facilitated the diffusion of these intermediaries, 

Figure 1 A framework for the evaluation of welfare loss in data-driven digital markets 
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who typically do not generate their own contents but provide access to products and services, 

acting alternatively as online retailers or as a marketplace. 

A second aspect to consider is that platforms also compete in terms of the ability to 

leverage on big data and successfully filter same for consumers: a dating site should have an 

effective matching mechanism; a search engine should correctly predict what consumers are 

looking for; an e-commerce portal should suggest similar items to consumers. Storing a large 

amount of information is not enough since firms also needs to develop the ability to process 

information efficiently. This requires high fixed costs and specific investments in capital 

assets such as software and servers, as well as in generating analytical competencies and 

attracting skilled data scientists. For instance, in 2010, Google, which deals daily with a 

computational power equal to 30 million personal computers, developed the software 

MapReduce, which became one of the most widespread standards for parallel computing. In 

2016, Google’s capital expenditure in production equipment, facilities and datacenters peaked 

at 10.9 billion dollars.3 Facebook is also setting a new standard with the 2-billion-dollar 

“Open Compute Project” redesigning its software and its physical network infrastructure.4 

Finally, Amazon is diversifying into cloud services, which account for a large share of the 

group’s profits.5  

The increased need for large investments in new knowledge in order to deal with large 

volumes of information generates heavy economies of scale. As clearly pointed out in 

traditional literature on industrial organization, the larger the economies of scale generated by 

fixed costs, the larger the efficient size of firms, and the smaller the number of firms in the 

market (Cowling 1982, Pitelis & Tomlinson, 2017). Moreover, the return on investment, 

either in advertising to launch a platform or in R&D, increases with market size due to the 

positive feedback generated by network externalities, making the sunk cost endogenous. The 

presence of endogenous sunk costs generates a further tendency towards market power 

(Sutton, 1989). 

The presence of network externalities in two sided-markets and large fixed costs leads to 

                                                           
3 Amazon Annual Report, 2016, 

https://www.sec.gov/Archives/edgar/data/1018724/000101872417000011/amzn-

20161231x10k.htm#sDD564D1D97D95265902D853FC83D523D 
4 Bort, J. “How Facebook is eating the $140 billion hardware market” Business Insider (June 2015) 

https://www.businessinsider.com/facebook-open-compute-project-history-2015-6?IR=T 
5 Amazon has turned AWS into a business that accounts for 10% of its net revenue and generated $17.4 billion 

in 2017 (+43% on 2016). Amazon Annual Report, 2017, 

https://www.sec.gov/Archives/edgar/data/1018724/000101872418000005/amzn-20171231x10k.htm. Sep 20th, 

2018 

https://www.sec.gov/Archives/edgar/data/1018724/000101872417000011/amzn-20161231x10k.htm%23sDD564D1D97D95265902D853FC83D523D
https://www.sec.gov/Archives/edgar/data/1018724/000101872417000011/amzn-20161231x10k.htm%23sDD564D1D97D95265902D853FC83D523D
https://www.businessinsider.com/facebook-open-compute-project-history-2015-6?IR=T
https://www.sec.gov/Archives/edgar/data/1018724/000101872418000005/amzn-20171231x10k.htm.%20Sep%2020th,%202018
https://www.sec.gov/Archives/edgar/data/1018724/000101872418000005/amzn-20171231x10k.htm.%20Sep%2020th,%202018
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the emergence of large companies that quickly gain market power and possibly a dominant 

position. The scalability of internet services is also an additional advantage, which speeds up 

the concentration process by attaching a high premium to being the first mover. Focusing on 

three relevant online markets, namely search engines, auction and trading platforms and 

social networks, Haucap and Heimeshoff (2014) show a relatively high degree of industrial 

concentration. According to the authors, the distinction into different markets is not 

exclusively based on the characteristics of products or customers or business models, which 

in fact may often overlap or look alike, but on the effects of specific drivers of industry 

concentration. In particular, Evans and Schmalensee (2013) find that while scale economies 

and indirect network effects can favor industrial concentration in these markets, capacity 

limits, product differentiation and the potential for multi-homing stimulate a more 

competitive environment. 

To sum up, platforms share similar competitive advantages. Firstly, by coordinating 

agents, they reduce the quantity of attention needed by consumers to navigate the vast 

amount of information offered by the digital economy. For this reason, a distinctive feature of 

platforms is to search for something in the infinite array of information provided by the 

internet, be it news, videos, cars, apartments or hotels. Indeed, it is worth noting that the 

home page of any internet company is designed around a well-highlighted search field. 

Secondly, the same firms also share specific competences and a physical structure for 

analyzing customer-generated big data in order to optimize matching, marketing, and 

logistics, depending on the type of service offered.  

The resulting concentration is striking. The world's five big tech public companies, namely 

Apple, Alphabet (Google), Microsoft, Amazon and Facebook, are collectively worth nearly 

4.2 trillion US dollars6 and typically compete in monopolistic markets. In 2008, Google 

launched Chrome, which ten years later controls about 70-80% of the worldwide search 

engine market, despite having a very limited presence in China, where Baidu owns 80% of 

the market. In 2017, Chrome (Google) dominated 59% of global browsers, followed by 

Firefox and Internet Explorer (Microsoft) with a 13% market share each7. Google and 

                                                           
6 According to the NASDAQ, in September 2018 both Apple and Amazon reached the record in market 

capitalization of $1 trillion dollar, followed by Windows and Google (over 800 bn each) and Facebook (about 

500 bn). 
7 Net MarketShare, 2018, https://www.netmarketshare.com; Marketing to China, 2018, The search engine 

market in China https://www.marketingtochina.com/search-engine-market-share-china-2018/. Last accessed: 

Sep 20th, 2018. 

https://www.netmarketshare.com/
https://www.marketingtochina.com/search-engine-market-share-china-2018/
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Facebook account for 73% of all U.S. digital advertising8. Operating Systems in the mobile 

segment are 99% either Android (Google) or iOS (Apple), while in the desktop market 90% 

of PCs run on Windows9. In other markets, these same companies constitute either duopolies 

or oligopolies, with one leader and one or more global followers. Amazon accounts for 

almost half of US e-commerce sales, eBay following from a distance at 6.8%10. Much the 

same happens in the cloud market, where Amazon Web Services has a 47% market share 

compared to Microsoft Azure’s 10% or thereabouts11. 

Also, if we look at specific markets, internet-based services are taking market shares from 

equivalent traditional services, and tend to be very concentrated. For example, the online 

travel agency (OTA) market is basically a duopoly of Expedia and Priceline (booking.com), 

which hold two-thirds of the global online travel-booking industry and 90% of the U.S.12 In 

the accommodation industry, as of November 2016, Airbnb reported having just over 3 

million listings worldwide. By raw number of listings, this was nearly three times the size of 

the newly combined entity made up of Marriott International and Starwood Hotels & Resorts 

Worldwide13. Although the statistics are often hidden, pornography sites get more visitors 

each month than Netflix, Amazon and Twitter combined: Pornhub alone collects about 3 bn 

visits per month, which is far from the 23 bn registered by YouTube, and still slightly more 

than the 2.6 bn recorded by Amazon14. In broadcasting, millions of U.S. households are 

cutting the cord and switching to over-the-top (OTT) devices, including ad-led video on 

demand, pay-per-view and subscription video on demand, a market led by Netflix, Amazon 

(Prime) and Google (YouTube)15. Uber and Lyft are gaining market share over taxis and 

                                                           
8 D’Onfro J., “Google and Facebook extend their lead in online ads, and that's reason for investors to be 

cautious” CNBC (December 2017), https://www.cnbc.com/2017/12/20/google-facebook-digital-ad-

marketshare-growth-pivotal.html. 
9  Net MarketShare, 2018, https://www.netmarketshare.com Last accessed: Sep 20th, 2018. 
10 Molla R. “Amazon could be responsible for nearly half of U.S. e-commerce sales in 2017” Recode (October  

2017) , https://www.recode.net/2017/10/24/16534100/amazon-market-share-ebay-walmart-apple-ecommerce-

sales-2017 
11 Coles C., “Cloud Market in 2018 and Predictions for 2021”, McAfee (July 2018), 

https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-

amazon-aws/. 
12 Quinby R., “Hotels vs. the (OTA) World”, Phocuswright (May 2017), https://www.phocuswright.com/Travel-

Research/Research-Updates/2017/Hotels-vs-the-OTA-World 
13 STR, 2017, “Airbnb & Hotel Performance. An analysis of proprietary data in 13 global markets”. Available at 

http://www.str.com/Media/Default/Research/STR_AirbnbHotelPerformance.pdf  
14 Website performance rankings are provided by https://www.similarweb.com Last accessed: Sep 20th, 2018 
15 Perez S., “Netflix reaches 75% of US streaming service viewers, but YouTube is catching up” TechCrunch 

(2017) https://techcrunch.com/2017/04/10/netflix-reaches-75-of-u-s-streaming-service-viewers-but-youtube-

is-catching-up/  

https://www.cnbc.com/2017/12/20/google-facebook-digital-ad-marketshare-growth-pivotal.html
https://www.cnbc.com/2017/12/20/google-facebook-digital-ad-marketshare-growth-pivotal.html
https://www.netmarketshare.com/
https://www.recode.net/2017/10/24/16534100/amazon-market-share-ebay-walmart-apple-ecommerce-sales-2017
https://www.recode.net/2017/10/24/16534100/amazon-market-share-ebay-walmart-apple-ecommerce-sales-2017
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.phocuswright.com/Travel-Research/Research-Updates/2017/Hotels-vs-the-OTA-World
https://www.phocuswright.com/Travel-Research/Research-Updates/2017/Hotels-vs-the-OTA-World
http://www.str.com/Media/Default/Research/STR_AirbnbHotelPerformance.pdf
https://www.similarweb.com/
https://techcrunch.com/2017/04/10/netflix-reaches-75-of-u-s-streaming-service-viewers-but-youtube-is-catching-up/
https://techcrunch.com/2017/04/10/netflix-reaches-75-of-u-s-streaming-service-viewers-but-youtube-is-catching-up/
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rentals, their combined share accounting for 72% of the ground transportation segments for 

business expense reimbursement16. 

The presence of large platforms as incumbents in many digital markets raises the question 

whether this development comes at the detriment of consumers due to the unfair exploitation 

of market power. Although this topic is discussed in antitrust law and has opened a debate 

with public regulators (AdC and BKamt, 2016), its consequence in terms of economics of 

competition and innovation are pivotal to understanding the effect of data-driven companies 

on social welfare.  

It should be noted that market concentration per se does not necessary lead to a welfare 

loss, which can only occur when oligopolistic or monopolistic incumbents exploit market 

power to increase prices or engage in anticompetitive behavior such as price discrimination. 

Even in the case of a firm exploiting its market power, for instance by charging a very high 

mark-up, this would still not result in welfare loss for consumers if the extra-profit generated 

by market power is invested in innovative activities. Indeed, if innovation activities lead to 

higher product quality or new products, this can even enhance consumer welfare. These 

considerations are well received in antitrust laws, which do not punish market power per se, 

but its abuse. Moreover, they do not punish anticompetitive behavior when this favors 

technological advantages. 

The next sections discuss this issue from three economic standpoints that we believe are 

the most important in terms of assessing the position of incumbents in digital markets: the 

existence of entry barriers, the presence of price discrimination, and the ability to generate 

welfare by increasing the capacity for innovation. 

 

3 Entry barriers and digital platforms 

According to economic theory, an incumbent cannot exploit its market power to the 

detriment of the consumer if it cannot build durable entry barriers, therefore facing the 

constant risk of potential entrants (Baumol, 1986). The aim of this section is to address five 

crucial potential sources of entry barriers related to the nature of big data. 

1. Big data as public goods reduce entry barriers. 

By their nature, information goods are conceived as public goods that are neither rival 

                                                           
16 Richter W., “Uber and Lyft are gaining even more market share over taxis and rentals” Business Insider (July 

2018) https://www.businessinsider.com/uber-lyft-are-gaining-even-more-market-share-over-taxis-and-rentals-

2018-7?IR=T  

https://www.businessinsider.com/uber-lyft-are-gaining-even-more-market-share-over-taxis-and-rentals-2018-7?IR=T
https://www.businessinsider.com/uber-lyft-are-gaining-even-more-market-share-over-taxis-and-rentals-2018-7?IR=T
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nor excludable, although exclusion can be artificially built. Certainly, the use of data by 

one company does not prevent another company from gathering and using the same data. 

Radinsky (2015) is particularly concerned with those businesses like search engines, based 

on past data and historical patterns that are not available to new competitors. Haucap and 

Heimeshoff (2014) have already called for increasing transparency in this specific market 

and have suggested not sharing the algorithm (which is the source of competitive 

advantage) but some historical data with possible competitors. However, big failures in big 

data have already shown that predictions based on historical data alone can be misleading, 

while data not even directly connected with the problem to be analyzed or solved, but 

occurring more recently, is much more valuable (Radinsky and Acriche, 2016). As for 

exclusive use, the common practice of multi-homing (Sokol and Comerford, 2016) by 

consumers implies that incumbent providers do not ask for and, therefore, do not have 

explicit exclusivity on data.  

2. Velocity: diminishing returns and real-time value reduce entry barriers. 

The life of data is short and having a long-term relationship with costumers does not 

guarantee success in the future. Although time-series analyses of behavioral data can 

forecast customer preferences, their return on scale diminishes over time. In fact, in many 

businesses (Familiar and Barnes, 2017), predictive models have progressively been shifting 

towards nowcasting technologies, which analyze real-time data. For example, real-time 

bidding (RTB) has emerged as a promising business model for online advertising markets 

(Yuan et al., 2014) since it can identify in real-time the characteristics and interests of the 

target audience for each impression and automatically deliver best-matched advertising at 

optimized prices. 

In this respect, big data does not just constitute a significant advantage for platforms; it 

has become even more strategic to non-digital companies (Lerner, 2014; Manne and 

Sperry, 2015). Traditional companies in insurance and banking, large and small retailers, 

logistics operators and public administrations have adopted various devices (for example 

apps, payment systems, loyalty or membership cards) to collect and analyze information on 

the behavior of clients, users and consumers (Lerner, 2014). For example, a smart grid 

system can measure how and when consumers use the most power (Amin, 2015), and help 

both users and utility companies to manage and plan energy use. In the case of industrial 

data generated by sensors, the value is in their flow (Surblyté, 2016), and therefore, the 

focus of regulation should partially move from data itself to its source, to determine under 

what circumstances companies and public agencies should provide compulsory access in 



 

10 

 

order to safeguard competition. 

3. Volume and variety: accumulation and ubiquity of data are not an entry barrier. 

Although volume is considered the main characteristic of big data, its value is attached 

to its heterogeneous contents (Rubinfeld and Gal, 2017), which include both structured and 

unstructured, purposely and randomly collected data.   

Big data is ubiquitous by definition and is difficult to compress in proprietary data marts 

since it springs out of different sources (CRM, search engines, news, social media, sensors) 

and in different forms (numbers, text, images). Accumulation of data is not per se an entry 

barrier, as long as rivals are not prevented from doing it too. By drawing comparisons with 

the brick-and-mortar business, we learned that big stores of goods are not necessarily a 

condition for market power. There is no doubt that machine learning and artificial 

intelligence techniques require the use of a vast amount of information to train their 

algorithms, but, without the selection of data dedicated to a specific problem, the risk of 

spurious correlation, overfitting and other predictive failures is still substantial. 

4. Feed-back loop: scale and network advantages are not necessary an entry barrier. 

Platforms are typically easy to build but difficult to scale, and they require continuous 

fine tuning to be reliable and efficient. A widely accepted advantage of a Big Data 

approach is the so-called “reinforcing effect”, capable of generating direct and indirect 

network externalities. Direct network effects depend on the size of the network and have 

become very important for platforms like Facebook, where users confer more value the 

more friends use the same social network. Indirect network effects are particularly effective 

in two-sided platforms like eBay, since more users on one side (final customers) may 

attract more users on the other side (advertisers or merchants). Incumbents are supposed to 

benefit from the cross-platform effect because, on the one hand, customers minimize their 

research cost when they can access a wider market for final goods and, on the other, 

advertisers can be connected to more customers and –with the support of matching 

algorithms– can customize marketing initiatives targeting specific groups.  

As mentioned in the previous section, carrying capacity and incentive mechanisms can 

counterbalance this effect. Indeed, on the one side, customers are often disturbed by an 

overload of advertising and, on the other, advertisers take a considerable risk by putting all 

their marketing budget into one player as this may generate negative externalities 

(congestion). Also, the cost structure in online advertising is often based on a pay-per-click 

strategy, which is not an incentive for advertisers to target big platforms alone.  

The indirect network effect can be significant, even for search engines like Google: the 
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more users big digital platforms attract, the more information they analyze to improve their 

performance, thereby attracting even more users. To quote Arrow, Varian (2006), the chief 

economist at Google, argues that this is not exactly a network effect, but is more akin to a 

“learning by doing” mechanism which rewards the most efficient and innovative firm. To 

sum up, according to Lerner (2014) and Haucap and Heimeshoff (2014), network effects on 

competition are mixed and seem to only generate a temporary advantage, while evidence 

suggests that continuous innovation and product quality are the keys to succeed.  

5. Switching costs can be a barrier. 

The nature of data and, above all, its use as the competitive advantage of firms seem not 

to raise serious concerns about being a possible source of market power. Nevertheless, 

some cautions should be considered. Searching and switching costs provide an effective 

measure of monopolistic or oligopolistic behavior in online competition based on big data. 

Considering a value-chain perspective on big data markets, Rubinfeld and Gal (2017) claim 

that technological, legal and behavioral barriers exist not only during the collection phase, 

but may also appear during storage and usage (analysis) of information. Therefore, more 

than the accumulation of big quantity of data, what regulators should evaluate and secure is 

the actual possibility for consumers to switch product or platform anytime and anywhere.  

Although switching costs partly depend on the quality of products and, therefore, on the 

innovative capability of the system, this does not prevent regulators from monitoring 

markets for risky behaviors related respectively to platform lock-in, data portability and 

third-party data. Adopting standards only fosters innovation when it does not lock 

businesses and consumers into one platform, allowing them instead to change operators and 

quickly access new markets. In multi-sided markets, multi-homing is not always 

guaranteed especially when it is based on reputation mechanisms that discourage sellers 

from changing platform and losing an established market position. Also, data portability 

should be ensured. Exclusive licenses on personal data should be avoided and consumers 

should be free to grant their data to multiple parties. Eventually, in order to foster 

competition, the customer data stored by some companies must be made available to third 

parties; in particular, open data and even personal micro-data should not be exclusive to 

specific players. The Payment Service Directive 2 – PSD2 adopted in 2015 by the EU17 is a 

                                                           
17 The Directive (EU) 2015/2366 is available at: https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32015L2366 

 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
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good example of how interoperability in banking data can foster financial service 

innovation and open up markets.  

 

4 Data as a source of price discrimination 

If we look at the demand-side in parallel with entry barriers, price discrimination (PD) is 

considered a second major concern connected with the rise of big data in the digital economy. 

PD is the practice of charging a different price to different customers for the same product.  

Despite the negative implications inherent in the term, which sounds prejudicial, economic 

theory is not clear about its alleged negative or positive effects on total welfare, efficiency 

and equity (Kraemer and Kalka, 2017). Both second- and third-degree PD are in fact fairly 

accepted. Discounts based on purchased quantity are second-degree PD –e.g. buy-one-get-

one-free– while in third-degree PD, a firm charges different prices for different groups –e.g. 

discounts for senior citizens– or consumers self-select different price segments by choosing 

slightly different versions of the good –e.g. color– or a different time or location of the 

service. Self-selection by consumers, based on versioning the same product or on their own 

socio-demographic characteristics, has often generated a net increase in the consumption of 

goods that would otherwise not have been purchased. In theory, first-degree PD, whereby a 

different price is set for every individual, would allow firms to extract full surplus as profits, 

but in fact it has always been considered fairly unfeasible, since it would be almost 

impossible to know the reservation price of each consumer for each good. 

What scholars agreed upon is that big data analytics has favored a shift from second- and 

third-degree to first-degree PD, although very often data-driven firms combine these pricing 

strategies. By employing massive behavioral and multi-dimensional fine-grained data to 

segment consumers, digital platforms can get close to willingness-to-pay for very small 

groups or even individuals. Using data on Netflix subscribers, Shiller (2014) show that the 

increase in profits made feasible by personalized pricing is much higher when using web 

browsing behaviors rather that demographic data. Mikians et al. (2012) empirically show the 

effectiveness of both first-degree price- and search-discrimination by employing profiling 

data based on location and personal information based on internet transactions.  

A report by CEA (2015) is more skeptical on the actual ability of data-mining firms to 

predict individual willingness-to-pay. Behavioral data can help to explore the demand curve 

and test price elasticity under different conditions. For specific products, steering practices 

reveal a different pricing for different target groups, but in general personalized prices are not 

at all common. Among the reasons attributed by CEA (2015), the reputation of incumbents 
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plays a major role, combined with an intense use of the internet to compare prices: consumers 

have been improving their ability to switch platforms, browse price aggregators and meta-

engines, and even explore secondary markets. A false positive application of first-degree PD 

may be deeply censored by users and can certainly damage the image of any intermediary. 

As for risk-based pricing, for example in insurance and health, the law should punish PD 

based on risk factors which fall outside the individual customer’s control (CEA, 2015). In the 

European Union General Data Protection Regulation (GDPR), special categories of sensitive 

data are very tightly regulated to avoid harming fundamental civil and personal rights. On the 

other hand, when risk is mainly behavioral and could be avoided by legitimate and personal 

decisions, discrimination tends to predict and reward less-risky consumers.  

In terms of competition policy, PD is negative in at least two situations (Armstrong, 

2008): first, when a dominant firm exploits final consumers by diminishing total or consumer 

welfare, and, second, when it excludes or weakens actual and potential rivals. Discussing the 

net-profit gain of dynamic pricing in data-driven competition Townley et al. (2017) conclude 

that “the effects on consumer welfare are ambiguous”. When markets are competitive, 

discrimination can generate high benefits, serving price-sensitive customers with lower prices 

while raising prices for those willing to pay more – see for example ticket pricing in 

transportation or cinemas. On the contrary, one may argue that information on consumer 

behaviour harms consumers who might end up paying more than they would in the absence 

of data sharing. The strongest argument by opponents of discriminating practices concerns 

incumbent firms appropriating most or all of consumer surplus by getting closer to 

reservation prices. It is true that, in a monopolistic market, price discrimination can lead to 

efficient prices, thus reducing consumer surplus. The counter-argument stresses that, in a 

monopolistic market with particularly high fixed costs, it is only with price discrimination 

that the market is both profitable and can be accessed by low-value users (Armstrong, 2008). 

In other words, extra profit allows discriminating firms to serve all segments, including low-

value markets. More generally, economists believe that social welfare, defined as the 

combination of consumers’ and producers’ surplus, might increase when discrimination 

actually expands the total output (Varian, 1985) and, ceteris paribus, consumers with a lower 

willingness-to-pay than the price equilibrium are offered a lower price. According to Kerber 

(2016), the results of theoretical models show the complexity of the effects of more 

information about customers. In particular, with sophisticated and forward-looking 

consumers (Kerber, 2016), while keeping information private may not enhance social welfare 

and lower prices, more information would increase competition and innovation. 
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In this context we should empirically observe both price dispersion, which can be a proxy 

for some discriminating practices, and a reduction in prices. Price dispersion in digital 

markets has been well documented (Gorodnichenko and Talavera, 2017), as has the overall 

reduction in prices due to e-commerce (Willis, 2004). These two pieces of evidence 

combined suggest that incumbent firms in digital markets pursue PD by lowering prices for 

consumers with a low willingness-to-pay, and this points to a likely positive effect of price 

discrimination. Thus, we can conclude that price discrimination has a positive effect on 

consumers. A final caveat should be made:  while the effect on consumers is positive, the 

decrease in profit margins due to reduced prices goes to the detriment of sellers’ profits. 

Indeed, the dominant position of an internet aggregator can impose a pricing strategy on the 

seller, as shown by the confrontation between Amazon and traditional publishers.18  

 

5 Effects on innovation 

While in a static framework, the exploitation of market power leads to welfare loss at the 

expense of the consumers, this is not necessarily true if we consider the dynamic efficiency 

gains due to the introduction of any innovation resulting from extra profits. Indeed, it could 

be argued that the over-profits generated by market power are a necessary condition for the 

R&D investments required by innovation (Acs and Audretsch, 1987). 

This view has been well received in antitrust laws, which allow a firm with market power 

to engage in anticompetitive behaviors or to apply a high mark-up on marginal costs if this 

might generate more consumer value, as for instance in the case of product improvements. 

At the European level, for instance, Art 101 of the TFEU clearly states that the article’s 

provisions are inapplicable when anticompetitive behavior “contributes to improving the 

production or distribution of goods or to promoting technical or economic progress, while 

allowing consumers a fair share of the resulting benefits”. The introduction of such a 

suspensive clause has sparked a decade-long debate, in the realm of economics of innovation, 

on the relation between market power and innovation. 

The debate is rooted in the Structure-Conduct-Performance (S-C-P) paradigm, which 

states that firms’ decisions (Conduct) are based on the structure of the industry and have a 

direct impact on economic and innovative performance. This approach dates back to the 

                                                           
18 Albanese A., “How German Publishers Deal With Amazon”, Publishers Weekly (October 2015)  

https://www.publishersweekly.com/pw/by-topic/international/Frankfurt-Book-Fair/article/68477-how-

german-publishers-deal-with-amazon.html 

https://www.publishersweekly.com/pw/by-topic/international/Frankfurt-Book-Fair/article/68477-how-german-publishers-deal-with-amazon.html
https://www.publishersweekly.com/pw/by-topic/international/Frankfurt-Book-Fair/article/68477-how-german-publishers-deal-with-amazon.html
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seminal work by Arrow (1962), who showed that, in theory, a monopolist has less incentive 

to introduce new process innovations than firms in a competitive environment, since this 

might cannibalize its own position. Conversely, Dasgupta and Stiglitz (1980) adopt a game 

theory approach to show that, in a competitive environment, the race to innovate generates 

more R&D investments and, therefore, more innovation than a more oligopolistic market 

characterized by a few large incumbents. 

Hypotheses whereby large firms with market power innovate more than small firms in a 

competitive market, are known as neo-Schumpeterian hypotheses, since the early Schumpeter 

(1912) highlighted the quasi Nietzschean role of a single entrepreneur capable of introducing 

innovative solutions in a competitive environment. On the other hand, the late Schumpeter 

(1942), influenced by the observation of the trustified American capitalism, suggested that 

the engine of innovation lies in large monopolistic corporations that can rely on large profits 

to invest in R&D laboratories (Nelson and Winter, 1982; Kamien and Schwartz, 1982). 

However, empirical evidence on the neo-Schumpeterian hypotheses has been 

inconclusive, and a firm’s sector of belonging seems to be a better predictor than market 

structure or the firm’s size, both in terms of propensity to innovate and type of innovation 

(product vs. process). Consequently, many scholars (Pavitt, 1984) have suggested abandoning 

the S-C-P paradigm and considering market structure as endogenous to firms’ choices, rather 

than other way around. The most interesting approach along this line is the “technological 

regimes” approach (Malerba and Orsenigo, 1996 and 1997; Breschi, et al., 2000), which 

considers the underlying technology of a sector as the main determinant of both market 

structure and innovative performance.  

In those industries where technology opportunity levels are low, appropriability conditions 

are high, and the cumulativeness of knowledge is important; here, we tend to observe a few 

large, stable innovators (“Schumpeter Mark II”), whereas in the opposite case we observe a 

turbulent change in market leaders (“Schumpeter Mark I”). Malerba and Orsenigo (1997) 

showed that most industries can be classified in one of these two cases. 

The industry life-cycle perspective takes a dynamic view on the same issue (Cohen and 

Klepper, 1996; Klepper, 1996). Usually, an infant industry is characterized by high 

opportunity, by low appropriability due to low codification of the knowledge involved in the 

process and, naturally, by a low degree of cumulativeness of the competencies involved. 

Conversely, a mature industry reveals the opposite situation. For this reason, infant industries 

are characterized by a high rate of entry of new innovative firms and of exit of former 

incumbents, while mature industries remain stable.  
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In the 1990s, at the time of the dot-com bubble, the internet economy was clearly a 

Schumpeter Mark I, in which innovation was introduced by a constant influx of new 

companies. However, it seems that now the low-hanging fruit of innovation has been 

harvested and further exploitation of technological opportunities requires large R&D 

investments as proven by the recent intensification of research by Facebook, Alphabet, and 

Amazon. Alphabet and Amazon entered the top 20 chart of largest R&D spenders in 2013, 

quickly reaching positions 1 and 2, respectively, in 201719. According to the US Patent and 

Trademark Office in  2017 Google scored almost 2500 patent applications and was exceeded 

only by IT producers20. 

Moreover, the knowledge involved in big data analytics and the business model are rather 

stable, making the process of knowledge accumulation rather cumulative. According to this 

interpretation, we argue that market concentration in the internet economy is the result of the 

underlying technology, but it has allowed a fast pace of technological change that would 

otherwise have been impossible. This evidence makes the decisions of antitrust authorities 

rather difficult, as they need to carefully balance the negative and direct impact of market 

power exploitation against the resulting dynamic efficiency.  

 

6 Conclusions 

The technology underlying digital transformation has triggered a process of concentration 

in several markets in terms of information goods, and a few global players (platforms) have 

typically risen by leveraging on network externalities and economies of scale. When 

information is both the input and output of an industry, network externalities make a single 

platform an efficient tool to coordinate the market. Moreover, the exploitation of big data 

requires a large R&D investment in knowledge both for the creation of algorithms and for the 

development of the data processing infrastructure. In this paper, we discuss whether or not 

technology-driven dominant positions can favor the anticompetitive behavior of large 

incumbents. 

We evaluate the risk of abuse of a dominant position by looking at three economic aspects. 

First, we claim that firms cannot easily abuse their dominant position because digital markets 

show a high degree of contestability. The nature of the data itself and rapidly changing 

                                                           
19 Statista (2017) https://www.statista.com/statistics/265645/ranking-of-the-20-companies-with-the-highest-

spending-on-research-and-development/ Last accessed: 20th Sep 2018 
20 USPTO https://aztecip.com/patent-news/top25-2017.html Last accessed: 20th Sep 2018 

https://www.statista.com/statistics/265645/ranking-of-the-20-companies-with-the-highest-spending-on-research-and-development/
https://www.statista.com/statistics/265645/ranking-of-the-20-companies-with-the-highest-spending-on-research-and-development/
https://aztecip.com/patent-news/top25-2017.html
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technologies do not grant long-term entry barriers. Secondly, the coordinating role of 

incumbents and the large amount of information place them in the position of discriminating 

among consumers. However, we show that consumers tend to benefit from discriminating 

practices in online markets, since firms pursue these practices by lowering prices for the low-

end markets, thus expanding the output, while leaving welfare unaltered for old consumers. 

However, on looking at the huge profits generated by some of these incumbents, it would 

be naïve not to recognize some sort of rent exploitation. Therefore, thirdly, we highlight that 

antitrust laws tolerate market power exploitation when it aims to enhance consumer welfare, 

for instance by investing in improving existent products or developing new ones. Despite big 

tech companies generating billions of dollars in net incomes, they rarely –if ever– distribute 

dividends; so far, they sometimes employ profits for share buybacks, but mostly for R&D 

investments and for the acquisition of high-tech companies. Amazon, Apple and Microsoft 

spend more in R&D than any other company in the S&P500 index, including those in the 

pharmaceutical and automotive industries.21 

We explain that, in this context, it is precisely the nature of the technological progress that 

generates market power, and that, conversely, only extraordinary efforts in R&D allow 

incumbents to stay ahead of competitors and potential entrants. Furthermore, the need for 

huge R&D investments is increasingly exacerbated by emerging technologies which can 

disrupt the market. 

Data-driven companies and digital platforms have established themselves as new 

intermediaries in information goods markets that were already oligopolistic. The change we 

have observed in the digital economy concerns a progressive shift in market power along the 

value chain, from product and content producers to service providers and distributors. 

Policy makers and scholars stressing the risk of market control by big data companies tend 

to overestimate the technological aspect over the human factor. The business value of data is 

built around the capability for extracting knowledge, and not its mere acquisition and storage. 

What is not stressed enough in the big data paradigm is that “data, by itself, is often of low 

value” (Rubinfeld and Gal, 2017); what is required is not just technological or analytical 

capabilities, but heterogeneous skills and, above all, a new approach to continuous 

innovation. Many companies already generate a lot of information on their customers without 

the need for big data and may even be able to process it with advanced data mining and 

                                                           
21 Molla R., “Tech companies spend more on R&D than any other companies in the U.S.”Recode (2017) 

https://www.recode.net/2017/9/1/16236506/tech-amazon-apple-gdp-spending-productivity  

https://www.recode.net/2017/9/1/16236506/tech-amazon-apple-gdp-spending-productivity
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machine learning techniques. The major effort in becoming a data-driven firm is the 

achievement of cultural and organizational change, focusing on the economic value of 

information. Digital transformation shows that, for any (digital) business model, underlying 

solutions and innovative culture are more important than data. WhatsApp, Tinder, Airbnb, to 

quote some well-known cases, have implemented effective ideas that earned the approval of 

consumers before using big data. 

The baseline for any data-related competition policy should consider the nature of big 

data: on the one hand, it has triggered market concentration, but on the other, it limits the 

possibility of its abuse. This claim is not a-priori apologia of large incumbents in digital 

markets, which should in any case be kept under control by antitrust authorities as in any 

other industry, but rather an attempt to argue that market concentration is a matter of fact and 

not necessarily detrimental. Nonetheless, the concentration of power in a few large global 

players should raise other concerns linked with the supranational nature of these firms, which 

can easily cherry-pick locations to exploit tax competition among countries or more favorable 

privacy legislation and the fair use of data. The recent Facebook-Cambridge Analytics case 

has not only shown the potential misuse of personal data for propaganda purposes; it has also 

stressed that trivial control over privacy issues can severely erode the trust people have 

placed in many big tech companies. The adoption of the GDPR in Europe in May 2018 has 

taken back control of personal data, allowing individuals to choose what kind of data use to 

allow companies, and above all it has introduced an effective set of enforcement measures 

which will affect companies and citizens even outside Europe.  
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