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We present results for the Higgsstrahlung process within the GENEVA Monte Carlo framework. We
combine the fully differential next-to-next-to-leading order (NNLO) calculation with the higher-order
resummation in the 0-jettiness resolution variable (beam thrust). The resulting parton-level events are further
showered and hadronized by PYTHIA8. The beam thrust resummation is carried out to next-to-next-to-leading
logarithmic accuracy, consistently incorporating all singular virtual and real NNLO corrections. It thus
provides a natural perturbative connection between the NNLO calculation and the parton shower regime,
including a systematic assessment of perturbative uncertainties. In this way, observables which are inclusive
over the additional radiation are correct to NNLO, while the description of 0-jet -like resummation variables is
improved beyond the parton shower approximation. We provide predictions for the 13 TeV LHC.
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I. INTRODUCTION

The study of the properties of the Higgs boson forms an
important part of the experimental programme at the LHC.
Though first observed in final states with two photons, the
dominant decay mode of the Higgs boson is in fact to a pair
of bottom quarks which has only recently been measured in
associated production with a vector boson [1,2]. This class
of Higgsstrahlung processes is, therefore, an interesting
subject of study. In particular, it allows one to probe
couplings of the Higgs boson to electroweak vector bosons
as well as to heavy quarks. It is also a particularly clean
channel, since the leptonic signature arising from the
bosonic decay can be efficiently distinguished above the
QCD background.
At tree level the calculation involves a relatively simple

extension of the Drell–Yan process in which a Higgs boson
is emitted from the vector boson. In the case of ZH
production, the gluon-initiated channel in which the
Higgs boson couples to a top-quark loop becomes acces-
sible beginning at Oðα2s Þ. This provides a finite contribu-
tion to the next-to-next-to-leading order (NNLO) cross
section and is particularly sensitive to the presence of new
physics. Other top-quark loop mediated contributions,
while in principle present, have been shown to provide
only a percent level contribution to the total cross section
[3] and are often neglected in differential calculations,
being separately finite and gauge invariant.

Fixed-order (FO) calculations at NNLO have been avail-
able for some time, both at the inclusive [3–5] and fully
differential level [6–8]. More recently, differential calcula-
tions including the effects of top-quark loops [9] and includ-
ing the decay of the Higgs boson to a bb̄ pair at NNLO
[10–12] have appeared. Analytic resummations of threshold
and jet-veto logarithms have been extensively discussed in
Refs. [13–16]. Next-to-leading order (NLO) electroweak
(EW) corrections have been presented in Refs. [17,18].
There has also been considerable progress in the devel-

opment of Monte Carlo event generators. NLO calculations
matched to parton showers for Higgsstrahlung have been
available in the POWHEG framework [19] for quite some
time. More recently merged NLO calculations of VH and
VH þ jet have appeared [19], utilizing the MINLO method
[20,21]. Of the available methods which can attain NNLO
accuracy matched to parton shower [21–24], to date only
the MINLO approach has been applied to the Higgsstrahlung
case [25,26]. Merged NLO samples of VH and VH þ jet
including NLO EW corrections matched to parton showers
also produced using the MINLO method have been presented
in Ref. [27].
In this paper, we present results for the Higgsstrahlung

processes pp → ZH → lþl−H and pp → W�H →
l�νlH at NNLO matched to the PYTHIA8 parton shower
according to the GENEVA method [23,28–30], assuming an
on-shell Higgs boson. The fully differential Higgsstrahlung
calculation at NNLO is improved with next-to-next-to-
leading logarithmic (NNLL0) resummation of 0-jettiness
(beam thrust) and subsequently showered while maintain-
ing NNLO accuracy at FO for the underlying process.
The content of the paper is organized as follows. In

Sec. II we present a review of the GENEVA framework in
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some detail, in order to provide background for the
uninitiated reader. We discuss the implementation of the
Higgsstrahlung processes and highlight details specific to
this case. Next, in Sec. III, we describe the validation of our
results against existing NNLO predictions. In Sec. IV we
then present our predictions for various distributions at
partonic, showered and hadronized levels. Finally, we make
some general comments on the outcome of the work and
present potential future directions in Sec. V.

II. THEORETICAL FRAMEWORK

The theoretical framework of our calculation is based
on the GENEVA method, which has been developed in
Refs. [23,28–30]. While we report in the following all the
necessary ingredients for the specific Higgsstrahlung proc-
ess under investigation, we refer the interested readers to
the original papers where the derivations of the results used
here are presented in greater detail.

A. General setup

The GENEVA framework is based on the definition of
physical and infrared (IR)-finite events, generated at a
given perturbative accuracy and obtained from both FO and
resummed calculations. This is achieved by translating IR-
divergent final states with M partons into IR-finite final
states with N partonic jets (where M ≥ N) for which the
divergences cancel on an event-by-event basis. The trans-
lation is performed using an N-jet resolution variable T N
which partitions the phase space into regions with different
numbers of resolved emissions in the final state. For
example, the GENEVA 0-jet cross section dσMC

0 receives
contributions not only from 0-parton events, but also from
1-parton events where the additional emission is unre-
solved, i.e., below the T cut

0 value of the 0-jet resolution, and
from 2-parton events where both additional emissions are
unresolved. The partitioning of the phase space is achieved
by defining cuts on the T 0 and T 1 resolution parameters
and separating regimes as follows1:

Φ0 events∶
dσMC

0

dΦ0

ðT cut
0 Þ;

Φ1 events∶
dσMC

1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ;

Φ2 events∶
dσMC

≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ: ð1Þ

In this way the cross section over the entire phase space is
divided into exclusive 0-jet and 1-jet cross sections and an
inclusive 2-jet cross section. The partonic jet bins thus
defined are rather different from those an experimentalist
might define using a usual jet algorithm: their definition
depends on an IR-safe phase space map ΦNðΦMÞ which
projects an M-body onto an N-body phase space and
ensures the individual IR-finiteness of the resulting MC
cross sections dσMC

i .
Using the events in Eq. (1), the total cross section for an

observable X is then given by

σðXÞ ¼
Z

dΦ0

dσMC
0

dΦ0

ðT cut
0 ÞMXðΦ0Þ

þ
Z

dΦ1

dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 ÞMXðΦ1Þ

þ
Z

dΦ2

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 ÞMXðΦ2Þ;

ð2Þ

whereMXðΦNÞ is the measurement function that computes
the observable X for the N-parton final state ΦN . Despite
appearances, this object is not identical to the result one
would obtain in a standard FO calculation since the
unresolved emissions are assigned to the projected phase
space points ΦNðΦMÞ rather than to the exact points ΦM.
However, provided that the definitions of the dσMC

i cross
sections correctly capture all the singular contributions
at the given order, the nonsingular difference due to the
projection vanishes in the limit T cut

N → 0. We are therefore
motivated to choose as small a value for T cut

N as possible.
We should then expect to encounter large logarithms of T N
and T cut

N as we take this limit, and, to prevent the
convergence of our perturbation theory being spoiled, these
terms must be resummed.
The attentive reader may have noticed that the require-

ment of projectability from ΦM → ΦN allows for non-
singular (nonprojectable) events to be assigned to the higher
multiplicity jet bins despite their value for the T N resolution
variable being below the T cut

N cutoff. A simple example can
be seen inΦ1 configurations qg → ZHq: when the direction
of the outgoing quark is collinear to that of the incoming
quark (and therefore anticollinear to the incoming gluon) the
resulting Φ0 projection would require a gg → ZH tree-level
configuration which does not exist. These events are
therefore classified as Φ1 and, lacking any collinear or soft
enhancement due to their nonsingular nature, they are
assigned the corresponding tree-level cross section.

1. 0/1-jet separation

The separation between the 0-jet and 1-jet regimes is
determined by a 0-jet resolution variable T 0. In GENEVA,
resummation of this variable is performed at NNLL0

1We exploit the notation in (1) to highlight the dependence of
the dσMC

i cross section on the resolution parameters. When an
argument contains a single term, e.g., T cut

N , it means that the
corresponding quantity has been integrated over up to the value of
the argument. An argument T N > T cut

N implies instead that the
corresponding cross section is still differential in the relevant
resolution variable for values larger than the cutoff.
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accuracy, therefore including all contributions singular in
T 0 to Oðα2s Þ.2 The exclusive 0-jet and inclusive 1-jet cross
sections can then be written as

dσMC
0

dΦ0

ðT cut
0 Þ ¼ dσNNLL

0

dΦ0

ðT cut
0 Þ þ dσnons0

dΦ0

ðT cut
0 Þ; ð3Þ

dσMC
≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσNNLL

0

dΦ0dT 0

PðΦ1ÞθðT 0 > T cut
0 Þ

þ dσnons≥1

dΦ1

ðT 0 > T cut
0 Þ; ð4Þ

where the nonsingular terms contain at worst integrable
singularities. In the case of the inclusive 1-jet cross section,
it is necessary to extend the dependence of dσNNLL

0
from

Φ0 to Φ1 by including the differential dependence on the
radiation phase space, parametrized in terms of T 0 and two
other variables. This has been done by considering the
resummed differential spectrum in T 0, dσNNLL

0
=dT 0dΦ0,

and introducing a normalized splitting function PðΦ1Þ to
account for the dependence on the two remaining variables.
These could be for example the fractional energy z of one
daughter in the splitting and an azimuthal angle φ. In order
not to spoil the normalization for each point in the T 0

spectrum, the splitting function must satisfy

Z
dΦ1

dΦ0dT 0

PðΦ1Þ ¼ 1: ð5Þ

Since we wish to obtain overall NNLO accuracy, we must
have dσMC

0 and dσMC
≥1 at NNLO0 and NLO1, respectively,

which determines the nonsingular matching contributions
to be

dσnons0

dΦ0

ðT cut
0 Þ ¼ dσNNLO0

0

dΦ0

ðT cut
0 Þ −

�
dσNNLL

0

dΦ0

ðT cut
0 Þ

�
NNLO0

;

ð6Þ

dσnons≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσNLO1

≥1

dΦ1

ðT 0 > T cut
0 Þ

−
�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ
�
NLO1

θðT 0 > T cut
0 Þ:

ð7Þ

The terms in square brackets are the FO expansions to
Oðα2s Þ of the resummed cumulant and spectrum. Inserting
the expressions for the FO cross sections, we obtain

dσMC
0

dΦ0

ðT cut
0 Þ ¼ dσNNLL

0

dΦ0

ðT cut
0 Þ

−
�
dσNNLL

0

dΦ0

ðT cut
0 Þ

�
NNLO0

þ ðB0 þ V0 þW0ÞðΦ0Þ

þ
Z

dΦ1

dΦ0

ðB1 þ V1ÞðΦ1ÞθðT 0ðΦ1Þ < T cut
0 Þ

þ
Z

dΦ2

dΦ0

B2ðΦ2ÞθðT 0ðΦ2Þ < T cut
0 Þ; ð8Þ

dσMC
≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσNNLL

0

dΦ0dT 0

PðΦ1ÞθðT 0 > T cut
0 Þ

−
�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ
�
NLO1

θðT 0 > T cut
0 Þ

þ ðB1 þV1ÞðΦ1ÞθðT 0ðΦ1Þ > T cut
0 Þ

þ
Z

dΦ2

dΦT
1

B2ðΦ2ÞθðT 0ðΦ2Þ> T cut
0 Þ;

ð9Þ

where BM contains the M-parton tree-level contributions,
VM the M-parton one-loop contributions, and W0 the two-
loop contribution. We have also introduced the shorthand
notation

dΦM

dΦN
¼ dΦMδ½ΦN −ΦNðΦMÞ�: ð10Þ

Because the resummed contribution is differential in T 0,
particular care is needed when integrating the FO 2-parton
contribution B2 of the inclusive 1-jet cross section in
Eq. (9). The associated radiation phase space must be
parametrized specifically by T 0 and two other arbitrary
variables, e.g., dΦ1 ¼ dΦ0dT 0dz1dz2 where the zi might
for example be fz;φg. The projection dΦ2=dΦT

1 , which
implicitly defines ΦT

1 , must therefore use a map which
preserves the value of T 0,

T 0ðΦT
1 ðΦ2ÞÞ ¼ T 0ðΦ2Þ; ð11Þ

such that the pointwise singular T 0 dependence is alike
among all terms in Eq. (9) and cancellation of these singular
terms is guaranteed. The projection used is defined as

dΦ2

dΦT
1

≡ dΦ2δ½Φ1 −ΦT
1 ðΦ2Þ�ΘT ðΦ2Þ; ð12Þ

whereΘT ðΦ2Þ defines the region ofΦ2 that can be projected
onto the physical Φ1 phase space via the IR-safe map
ΦT

1 ðΦ2Þ. Only this projectable region of Φ2 is included in
dσnons≥1 =dΦ1, while the remainder will be included in the
nonsingular Φ2 events below.

2The inclusion of terms of the form α2sδðT 0Þ determines the
difference between NNLL0 and NNLL accuracy.
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2. 1/2-jet separation

The separation of the inclusive 1-jet cross section into an exclusive 1-jet cross section and an inclusive 2-jet cross section
proceeds in analogy to the 0=1-jet case, with the relevant resolution variable now T 1 and the requirement on the
resummation accuracy relaxed to NLL. We write

dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ ¼ dσNLL1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ þ dσnons1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ; ð13Þ

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ ¼ dσNLL≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ þ dσnons≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ; ð14Þ

where now, in contrast to the 0=1-jet case, it is sufficient to consider contributions only up to NLL to ensure that the
matching terms, which determine the FO accuracy, are free from singular logarithmic enhancements in T 1.
For NNLO accuracy, dσMC

1 and dσMC
≥2 must be correct to NLO1 and LO2 respectively, and so the nonsingular matching

contributions are [cf. Eqs. (6), (7)]

dσnons1

dΦ1

ðT 0>T cut
0 ;T cut

1 Þ¼dσNLO1

1

dΦ1

ðT 0>T cut
0 ;T cut

1 Þ−
�
dσNLL1

dΦ1

ðT 0>T cut
0 ;T cut

1 Þ
�
NLO1

; ð15Þ

dσnons≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ ¼ dσLO2

≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ −
�
dσNLL≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ
�
LO2

: ð16Þ

At NLL, the resummed contributions take the form

dσNLL1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ ¼ dσC≥1
dΦ1

U1ðΦ1; T cut
1 ÞθðT 0 > T cut

0 Þ; ð17Þ

dσNLL≥2

dΦ2

ðT 0 > T cut
0 ;T 1 > T cut

1 Þ ¼ dσC≥1
dΦ1

U0
1ðΦ1; T 1ÞθðT 0 > T cut

0 Þ
���
Φ1¼ΦT

1
ðΦ2Þ

PðΦ2ÞθðT 1 > T cut
1 Þ: ð18Þ

We now discuss separately each contribution appearing in Eqs. (17) and (18) above. In order to understand the rôle of
dσC≥1, it is perhaps clearer if we temporarily neglect the T 0 resummation which was constructed at NNLL0 accuracy in the
previous subsection. In this approximation, dσC≥1 is a proxy for dσ

FO
≥1 in the limit that T 1 → 0. We choose it to have a similar

form to the FO contribution to Eq. (9) but with the full double-real matrix element B2 replaced with its singular approximant
C2ðΦ2Þ and with a different projection, dΦ2=dΦC

1 ≡ dΦ2δ½Φ1 −ΦC
1 ðΦ2Þ�. The expanded form of dσC≥1 at NLO1 is therefore

given by

�
dσC≥1
dΦ1

�
NLO1

¼ ðB1 þ V1ÞðΦ1Þ þ
Z

dΦ2

dΦC
1

C2ðΦ2Þ

≡ ðB1 þ VC
1 ÞðΦ1Þ: ð19Þ

The C2 term acts as a standard NLO subtraction that reproduces the pointwise singular behavior of B2—in practice, we
have implemented the Frixione-Kunszt-Signer (FKS) subtractions [31].
U1ðΦ1; T cut

1 Þ denotes the Sudakov factor that resums the dependence on T cut
1 to NLL accuracy and U0

1ðΦ1;T 1Þ denotes
its derivative with respect to T cut

1 . At this order, it is given by [32,33]

U1ðΦ1; T cut
1 Þ ¼ U

Γð1þ 2ð2CF þ CAÞ½ηNLLΓ ðμS; μHÞ − ηNLLΓ ðμJ; μHÞ�Þ
ð20Þ

with Γ the Euler gamma function and
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lnU ¼ 2ð2CF þ CAÞ½2KNLL
Γ ðμJ; μHÞ − KNLL

Γ ðμS; μHÞ�

þ 2CF

�
−ηNLLΓ ðμJ; μHÞ ln

�
wqwq̄

μ2H

�
þ ηNLLΓ ðμS; μHÞ ln

�
wqwq̄

sqq̄

��

þ CA

�
−ηNLLΓ ðμJ; μHÞ ln

�
w2
g

μ2H

�
þ ηNLLΓ ðμS; μHÞ ln

�
w2
gsqq̄

sqgsq̄g

��
þ KNLL

γ ðμJ; μHÞ − 2γEð2CF þ CAÞ½ηNLLΓ ðμS; μHÞ − ηNLLΓ ðμJ; μHÞ�: ð21Þ

The functions appearing in the above are defined as

KNLL
Γ ðμ1; μ2Þ ¼ −

Γ0

4β20

�
4π

αsðμ1Þ
�
1 −

1

r
− ln r

�
þ
�
Γ1

Γ0

−
β1
β0

�
ð1 − rþ ln rÞ þ β1

2β0
ln2r

�
; ð22Þ

ηNLLΓ ðμ1; μ2Þ ¼ −
1

2

Γ0

β0

�
ln rþ αsðμ1Þ

4π

�
Γ1

Γ0

−
β1
β0

�
ðr − 1Þ

�
; KNLL

γ ðμ1; μ2Þ ¼ −
1

2

γ0
β0

ln r; ð23Þ

with r ¼ αsðμ2Þ=αsðμ1Þ and the dependence on T cut
1 appears via the dependence on the scales

μS ¼ T cut
1 ; μH ¼ T max

1 ; μJ ¼ ffiffiffiffiffiffiffiffiffiffi
μSμH

p
: ð24Þ

Here, T max
1 is the value at which the T 1 resummation is turned off, which is chosen near the maximum kinematically

allowed value of T 1 for a given phase space point Φ1. The cusp and noncusp anomalous dimensions entering the above
expressions are well known,

Γ0 ¼ 4; Γ1 ¼ 4

��
67

9
−
π2

3

�
CA −

20

9
TFnf

�
;

γ0 ¼ 12CF þ 2β0; β0 ¼
11

3
CA −

4

3
TFnf; ð25Þ

while the kinematical terms are

sab ¼ p−
ap

þ
b ; sa1 ¼ p−

ap
þ
1 ; sb1 ¼ pþ

a p−
1

wa ¼ p−
a e−YVH ; wb ¼ pþ

b e
YVH ;

w1 ¼ pþ
1 e

YVH þ p−
1 e

−YVH ; ð26Þ
where pa, pb, and p1 are the massless four-momenta of the Φ1 phase space point, and pþ ¼ p0 − p3, p− ¼ p0 þ p3. The
assignment of pa, pb, and p1 to pq, pq̄, and pg is according to the flavor structure of Φ1. For example, for a qq̄ → HZg
flavor structure we have pq ¼ pa, pq̄ ¼ pb and pg ¼ p1.
Inserting now Eqs. (17) and (19) into (15), we find that the matching term for the exclusive 1-jet cross section is given by

dσnons1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ ¼
Z �

dΦ2

dΦT
1

B2ðΦ2ÞθðT 0ðΦ2Þ > T cut
0 ÞθðT 1 < T cut

1 Þ − dΦ2

dΦC
1

C2ðΦ2ÞθðT 0 > T cut
0 Þ

�

− B1ðΦ1ÞUð1Þ
1 ðΦ1; T cut

1 ÞθðT 0 > T cut
0 Þ; ð27Þ

while analogously in the 2-jet case we obtain

dσnons≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ ¼ fB2ðΦ2Þ½1 − ΘT ðΦ2ÞθðT 1 < T cut
1 Þ�

− B1ðΦT
1 ÞUð1Þ0

1 ðΦT
1 ; T 1ÞPðΦ2ÞθðT 1 > T cut

1 ÞgθðT 0ðΦ2Þ > T cut
0 Þ: ð28Þ

In these expressions, Uð1Þ
1 and Uð1Þ0

1 are the OðαsÞ terms in the expansions of the objects U1 and U0
1, which cancel the

logarithmic terms in T 1 in the B2 pieces. It is worth noticing that the contributions in Eqs. (27) and (28) are actually
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nonsingular atOðαsÞ, despite the accuracy of the T 1 resummation being only NLL and not NLL0. This is due to the fact that
we have included the full OðαsÞ virtual, soft and collinear contributions in (19).
Thus far, we have discussed the construction of an additive NLO1 þ NLLT 1

matching but have neglected to include the
T 0 resummation which we constructed at NNLL0 in the previous subsection. In order to include this correctly we must
ensure that the integral of the dσMC

1 and dσMC
≥2 cross section reproduces the T 0-resummed result for the inclusive 1-jet MC

cross section dσMC
≥1 in Eq. (9). That is,

dσMC
≥1

dΦ1

ðT 0 > T cut
0 Þ ¼ dσMC

1

dΦ1

ðT 0 > T cut
0 ; T cut

1 Þ þ
Z

dΦ2

dΦT
1

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ

¼ dσC≥1
dΦ1

θðT 0 > T cut
0 Þ þ

Z �
dΦ2

dΦT
1

B2ðΦ2ÞθðT 0ðΦ2Þ > T cut
0 Þ − dΦ2

dΦC
1

C2ðΦ2ÞθðT 0 > T cut
0 Þ

�
; ð29Þ

where we have used the identity [noting that U1ðΦ1; T max
1 Þ≡ 1 and cf. Eq. (5)]

U1ðΦ1; T cut
1 Þ þ

Z
dΦ2

dΦT
1

U0
1ðΦ1; T 1ÞPðΦ2ÞθðT 1 > T cut

1 Þ ¼ 1: ð30Þ

Inserting the expression for dσMC
≥1 in Eq. (9) into Eq. (29), we obtain the result for dσC≥1 beyond NLO1

dσC≥1
dΦ1

¼ dσNNLL
0

dΦ0dT 0

PðΦ1Þ þ ðB1 þ VC
1 ÞðΦ1Þ −

�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ
�
NLO1

ð31Þ

and thus the full expressions for the exclusive 1-jet and inclusive 2-jet cross sections,

dσMC
1

dΦ1

ðT 0 > T cut
0 ;T cut

1 Þ ¼
�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ þ ðB1 þ VC
1 ÞðΦ1Þ −

�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ
�
NLO1

	
U1ðΦ1; T cut

1 ÞθðT 0 > T cut
0 Þ

þ
Z �

dΦ2

dΦT
1

B2ðΦ2ÞθðT 0ðΦ2Þ > T cut
0 ÞθðT 1 < T cut

1 Þ − dΦ2

dΦC
1

C2ðΦ2ÞθðT 0 > T cut
0 Þ

�

− B1ðΦ1ÞUð1Þ
1 ðΦ1; T cut

1 ÞθðT 0 > T cut
0 Þ; ð32Þ

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ ¼
�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ þ ðB1 þ VC
1 ÞðΦ1Þ −

�
dσNNLL

0

dΦ0dT 0

PðΦ1Þ
�
NLO1

	
×U0

1ðΦ1; T 1ÞθðT 0 > T cut
0 ÞjΦ1¼ΦT

1
ðΦ2ÞPðΦ2ÞθðT 1 > T cut

1 Þ
þ fB2ðΦ2Þ½1 − ΘT ðΦ2ÞθðT 1 < T cut

1 Þ�
− B1ðΦT

1 ÞUð1Þ0
1 ðΦT

1 ; T 1ÞPðΦ2ÞθðT 1 > T cut
1 ÞgθðT 0ðΦ2Þ > T cut

0 Þ: ð33Þ

These contain the differential T 0 resummation via dσNNLL
0
and completely define the fully differential jet cross sections.

B. Implementation of the VH process in GENEVA

1. Choice of the jet resolution variables

We use N-jettiness [32] as our N-jet resolution variable, defined as

T N ¼
X
k

minfq̂a · pk; q̂b · pk; q̂1 · pk;…; q̂N · pkg; ð34Þ

where the sum over k runs over all colored final-state particles and where q̂i ¼ ni ¼ ð1; n⃗iÞ are lightlike reference vectors
along the jet and beam directions. While the reference vectors which lie along the beam directions are the same for anyN so
that we can choose n⃗a ¼ ẑ and n⃗b ¼ −ẑ, for values of N ≥ 1 the definition of the reference vector along the jet direction
depends on a clustering metric. We refer the interested reader to [23] for details.

ALIOLI, BROGGIO, KALLWEIT, LIM, and ROTTOLI PHYS. REV. D 100, 096016 (2019)

096016-6



N-jettiness quantifies the degree to which the final state
is N-jetlike for a given N, and has the useful property that
T N ¼ 0 in the limit that a configuration is composed of
exactly N partons. It can be used to cluster the final state
into N-jet and beam regions in an IR-safe manner without
resorting to any additional clustering algorithms. Crucially
for our purposes, both its singular structure and resumma-
tion are known to the requisite accuracy.
For production of any color singlet at NNLL0, the two

resolution variables 0-jettiness T 0 and 1-jettiness T 1 are
needed to partition the phase space. Since this construction
is identical to what has been previously done for the Drell–
Yan process [23] we refer the reader to the discussion
therein.

2. The T 0 spectrum at NNLL0 from SCET

The all-orders parton-level factorisation theorem for
0-jettiness is given by [34,35]

dσSCET

dΦ0dT 0

¼
X
ij

dσBij
dΦ0

HijðQ2; μÞ
Z

dtadtbBiðta; xa; μÞ

× Bjðtb; xb; μÞS
�
T 0 −

ta þ tb
Q

; μ

�
ð35Þ

where dσBij=dΦ0 is the Born cross section for the ij →
ZH → lþl−H or ij → W�H → l�νlH hard scattering.
The hard function HijðQÞ contains the corresponding Born
and virtual squared matrix elements, and the sum runs over
all possible qq̄ pairs ij ¼ fuū; ūu; dd̄; d̄d;…g. The Biðt; xÞ
are inclusive (anti)quark beam functions [34], with partonic
virtualities ta;b and momentum fractions xa;b given in terms
of the total rapidity YVH and invariant mass Q ¼ MVH of
the VH final state as well as the hadronic center-of-mass
energy Ecm by

xa ¼
Q
Ecm

eYVH ; xb ¼
Q
Ecm

e−YVH : ð36Þ

The beam functions are computed perturbatively in terms
of standard PDFs fj; schematically Bi ¼

P
j I ij ⊗ fj

where the I ij are perturbative coefficients. Finally, SðkÞ
is the quark hemisphere soft function for beam thrust [36].
The preceding Eq. (35) is derived using soft collinear

effective theory (SCET) [37–43]. We note that each of H,
B, S depends only on a single characteristic scale. The
consequence is that the perturbative expansions of these
constituent functions do not feature any large logarithms
when a suitable choice of scale is made, viz.

μH ¼ Q; μB ¼
ffiffiffiffiffiffiffiffiffiffi
QT 0

p
; μS ¼ T 0: ð37Þ

In Eq. (35), however, all ingredients must be evaluated at
an arbitrary common scale μ, whose dependence exactly

cancels between the different functions at the appropriate
order. We achieve this by using the renormalization group
evolution in the effective theory to evolve each function
from its own scale to μ. We thus obtain the resummed T 0

spectrum used in Eq. (7):

dσNNLL
0

dΦ0dT 0

¼
X
ij

dσBij
dΦ0

HijðQ2; μHÞUHðμH; μÞ

⊗ ½Biðxa; μBÞ ⊗ UBðμB; μÞ�
⊗ ½Bjðxb; μBÞ ⊗ UBðμB; μÞ�
⊗ ½SðμSÞ ⊗ USðμS; μÞ�; ð38Þ

where the large logarithmic terms arising from the ratios
of scales have been resummed by the renormalisation
group evolution (RGE) factors UXðμX; μÞ. At NNLL0
accuracy, the boundary conditions for the evolution of
the functions are required at 2-loop order, while the
evolution kernel itself must be inserted at 3(2)-loop order
in the cusp (noncusp) anomalous dimensions. It suffices
to say that all required expressions are known [44–53];
they are in fact mostly identical to those used for Drell–
Yan production.
The only exception is the hard function, for which many

of the relevant Feynman diagrams are still closely related to
those appearing in the Drell–Yan case. In particular, for
the class of diagrams illustrated in Fig. 1(a) the loop
corrections are identical and differences are due solely to
the emission of the Higgs boson from the final-state vector
boson. Indeed, writing the hard function as the product of a
hadronic and an electroweak tensor,

Hij ¼ Hμ
ijðpi; pj; QÞWμðQ;pV; pHÞ ð39Þ

FIG. 1. Classes of diagrams contributing to VH production.
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it is apparent that the hadronic tensorHμ
ij (where the indices

i, j run over the allowed partonic flavors) is identical in
the Higgsstrahlung and Drell–Yan cases for the class of
diagrams in Fig. 1(a) and only the electroweak tensor is
modified. Since in Ref. [23] the hard function is imple-
mented as a factor multiplying the squared Born amplitude,
we may use that same factor here and simply replace the
tree level piece with the appropriate Higgsstrahlung con-
tribution. In the case of ZH production at NNLO, however,
a second class of diagrams appears, depicted in Fig. 1(b).
These gluon-initiated contributions are finite and enter at
Oðα2s Þ; due to the dominance of the gluon PDF at the LHC
it is important that they are included, as they have an
Oð10%Þ effect on the total cross section [26]. As their
contribution is purely nonsingular at this order, they do not
affect the implementation of the resummation and can be
included separately.
In the present calculation we neglect 2-loop contribu-

tions involving top quarks (which are separately finite
and gauge-invariant) as their effect has been shown to
contribute to the total cross section only at Oð1%Þ [3]
and their exact form remains unknown. However, we
include real–virtual corrections in which the Higgs boson
couples to a top-quark loop with exact top-quark mass
dependence.

3. Scale choices and profile scales

The purpose of the resummation is to correctly account
for the effects of the logarithms of T 0=Q when such terms
are large, i.e., at small values of T 0, where againQ ∼MVH
denotes a hard scale. For larger values of T 0, however, the
logarithmic terms are modest or small in size and do not
spoil the convergence of the perturbative series. Moreover,
keeping the resummation in this region is in fact inappo-
site: continuing to resum logarithms in this regime would
spoil the cancellation between singular and nonsingular
terms, preventing one from obtaining the correct FO
result. It is therefore important to switch off the resum-
mation in the calculation before this occurs. In order to
determine the relevant value of T 0, it is instructive to
consider the relative sizes of the singular and nonsingular
contributions as functions of T 0. We show the absolute
values of these contributions in Fig 2. We see that these
become similar in magnitude at T 0 ≈ 150 GeV and there-
fore turn off the resummation around this point.
While this consideration holds for the total spectrum,

integrated over all the possible Born-like kinematics, one
may wonder exactly what the kinematical dependence on
the coefficients of the logarithms is and whether this
dependence might affect where the resummation needs
to be turned off. We consider this possibility in Fig. 3,
where we plot the singular and nonsingular spectra as
functions of τ0 ¼ T 0=MVH. The figure shows that the
location of the crossing point between the spectra exhibits
modest dependence on the exact kinematic regime. We may

therefore switch off the resummation in a similar manner
for all classes of event.
Since the resummation is achieved via RGE running,

it is sufficient to set all resummation scales to a common
nonsingular scale, viz. μNS ¼ μS ¼ μB ¼ μH, to stop the
evolution. In order to ensure a natural transition between
the resummation and FO regimes, we make use of profile
scales μBðT 0Þ and μSðT 0Þ which are constructed to
interpolate smoothly from the characteristic scales to μNS
[54,55]. We have

μH ¼ μNS;

μSðT 0Þ ¼ μNSfrunðT 0=QÞ;
μBðT 0Þ ¼ μNS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frunðT 0=QÞ

p
; ð40Þ

where the common profile function frunðxÞ is as in
Ref. [56],

frunðxÞ ¼

8>>>>>>>><
>>>>>>>>:

x0½1þ ðx=x0Þ2=4� x ≤ 2x0;

x 2x0 ≤ x ≤ x1;

xþ ð2−x2−x3Þðx−x1Þ2
2ðx2−x1Þðx3−x1Þ x1 ≤ x ≤ x2;

1 − ð2−x1−x2Þðx−x3Þ2
2ðx3−x1Þðx3−x2Þ x2 ≤ x ≤ x3;

1 x3 ≤ x:

: ð41Þ

This form has strict canonical scaling [cf. Eq. (37)] below
x1 and switches off the resummation above x3. Considering
Fig. 2, we are led to the choice of parameters

x0 ¼ 2.5 GeV=Q; fx1; x2; x3g ¼ f0.2; 0.45; 0.7g: ð42Þ

In the resummation region, the nonsingular scale μNS
must be chosen of the same order as the hard scale Q for

FIG. 2. The absolute value of the singular and nonsingular
contributions to the ZH cross section as a function of T 0.
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the inclusive Higgsstrahlung. In the FO region, it can
instead be left free to match any arbitrary fixed or dyna-
mic scale μFO. The transition is achieved by imposing
that Q ¼ MVH for values of τ0 up to x3 and smoothly
interpolating the μNS value between Q and μFO above
that threshold.
We may estimate the uncertainties associated with the

resummed and FO calculations by varying the profile
scales. In the FO case, we adopt the usual prescription of
varying μNS up and down by a factor of 2 and taking the
maximal absolute deviation from the central value as a
measure of the uncertainty. This preserves everywhere
the ratios between the various scales μH, μB and μS and so
the arguments of the logarithms which are resummed by
the RGE factors are unaffected. In the resummed case, we
vary independently the profile scales for μB and μS about
their central profiles while keeping μH ¼ μNS fixed. In this
way the arguments of the resummed logarithms are varied
in order to estimate the size of higher-order corrections in
the resummed series while maintaining the scale hierarchy
μNS ∼ μH ≫ μB ∼ ffiffiffiffiffiffiffiffiffiffi

μHμS
p ≫ μS. More details on the spe-

cifics of this prescription may be found in Ref. [57]. In
addition, we include two more profiles where we vary all

xi transition points by �0.05 simultaneously while keep-
ing all the scales at their central values. We thus obtain six
profile variations in total and take the maximal absolute
deviation in the result from the central value as the
resummation uncertainty. The total perturbative uncer-
tainty is then obtained as the quadrature sum of the
resummation and FO uncertainties.
Hitherto we have considered only the effect of the scale

choice on the T 0 spectrum, dσNNLL
0
=dT 0, and not the effect

on its integral over T 0, the cumulant dσNNLL
0 ðT cut

0 Þ. Indeed,
while summing over the events distributed according to
the T 0 spectrum, for example for the calculation of the
inclusive total cross section, one performs exactly this
integration. However, since the profile scales have a func-
tional dependence on T 0, the integral of the spectrum is not
exactly equal to the cumulant evaluated at the highest scale.
Choosing canonical scaling for the cumulant as a function
of T cut

0 like so,

μH ¼ Q; μB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
QT cut

0

q
; μS ¼ T cut

0 ; ð43Þ

one would obtain

FIG. 3. The absolute values of the singular and nonsingular contributions to the ZH cross section from bins of various distributions as
a function of τ0 ¼ T 0=MZH .
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Z
T max

0

0

dσNNLL
0

dΦ0dT 0

ðμðT 0ÞÞdT 0

¼ dσNNLL
0

dΦ0

ðT max
0 ; μðT max

0 ÞÞ þOðN3LLÞ; ð44Þ

where T max
0 is the upper kinematical limit, so that the

difference is due to terms of higher order. However, these
terms could be numerically relevant, especially if one aims
at reproducing the exact FO inclusive cross section.
In order to remedy this, we may add a term to the

spectrum such that the inclusive FO cross section is
correctly recovered. The term added must satisfy the
following properties:

(i) The integral of the modified spectrum must recover
the FO cross section;

(ii) The term must contribute only in the region of T 0

where the missing N3LL terms are sizeable and must
vanish elsewhere (especially in the FO region at
large T 0);

(iii) The term must be of the same order as the missing
terms so that the NNLL0 accuracy of the spectrum is
not spoiled when the term is added.

We therefore add the term

κðT 0Þ
�

d
dT 0

dσNNLL
0

dΦ0

ðT 0; μhðT 0ÞÞ −
dσNNLL

0

dΦ0dT 0

ðμhðT 0ÞÞ
�
;

ð45Þ

where κðT 0Þ and μhðT 0Þ are smooth functions. First,
we note that the term is, by construction, of higher order
and thus our third criterion is satisfied. Second, we note
that in the FO region where μhðT 0Þ ¼ Q the difference
between the pieces in brackets is zero, as the scales are
constant here—the term therefore vanishes. We may also
choose κðT 0Þ to tend to zero in this region to reduce
further the size of this additional contribution before exact
cancellation is reached, and choose the profile scale
μhðT 0Þ to reach Q at a lower value of T 0 than the rest
of the calculation. All this ensures that the accuracy of the
tail of the spectrum is not spoiled by the addition of
Eq. (45) and instead restricts it to act in the region where
T 0 ∼ T cut

0 ≪ Q. Our second criterion is therefore satis-
fied. Third, we may tune κðT 0 → 0Þ such that, upon
integration of the sum of the spectrum and Eq. (45), the
correct inclusive cross section is recovered. We thus
satisfy our first criterion. In fact, we can perform this
tuning for each FO scale variation separately. When taking
either the central value of μðT 0Þ or any of the resumma-
tion variations, we simply take μhðT 0Þ as before. When
we take the FO up and down variations for μðT 0Þ,
however, we now take μuph ðT 0Þ ¼ 2μhðT 0Þ or μdownh ðT 0Þ ¼
1=2μhðT 0Þ and readjust the value of κðT 0 → 0Þ such that
the value of the inclusive cross section is correctly
recovered. In this way we obtain the correct FO scale

variations for the inclusive cross section (or indeed any
other inclusive quantity).

4. Power-suppressed corrections
to the nonsingular cumulant

The 0-jet cross section in Eq. (8) is NNLO accurate and
fully differential in the Φ0 phase space. In order to regulate
the IR divergences that appear in 4 dimensions in the
intermediate stages of the calculation, however, one needs a
subtraction method up to NNLO which is also fully
differential in Φ0. While fully general local subtractions
are available at NLO [31,58,59], local NNLO general
subtraction methods are still in their infancy [10,60–64].
Even when provided with a NNLO subtraction, the GENEVA

predictions atOðα2s Þ stemming from Eq. (8) would be exact
for the total cross section but might be correct only up to
power corrections in T cut

0 for observables dependent on the
Φ0 kinematics. This is a consequence of the projective map
used in the definition of theΦ0 events.

3 For this reason, one
can avoid the necessity of a NNLO subtraction which is
fully differential in Φ0 and replace the formula for the 0-jet
cross section with

gdσMC
0

dΦ0

ðT cut
0 Þ ¼ dσNNLL

0

dΦ0

ðT cut
0 Þ −

�
dσNNLL

0

dΦ0

ðT cut
0 Þ

�
NLO0

þ B0ðΦ0Þ þ V0ðΦ0Þ

þ
Z

dΦ1

dΦ0

B1ðΦ1ÞθðT 0ðΦ1Þ < T cut
0 Þ;

ð46Þ

where only a local NLO subtraction and the expansion of
the resummation at OðαsÞ are now required. The formula
above assumes that there is an exact cancellation of both the
singular and nonsingular contributions at Oðα2s Þ between
the FO and the resummed-expanded terms. In reality these
terms differ by a nonsingular contribution, which can be
written as

dσnons0

dΦ0

ðT cut
0 Þ ¼ ½αsf1ðT cut

0 ;Φ0Þ þ α2sf2ðT cut
0 ;Φ0Þ�T cut

0

ð47Þ

where the functions fiðT cut
0 ;Φ0Þ are at worst logarithmi-

cally divergent in the small T cut
0 limit. While we include the

NLO term proportional to f1ðT cut
0 ;Φ0Þ in Eq. (46), we

neglect the f2ðT cut
0 ;Φ0Þ piece. The size of this neglected

term as a function of the cut is shown in Fig. 4(a) for ZH

3To be precise, any Φ0 variable which is left unchanged by the
Φ0ðΦ1Þ andΦ0ðΦ2Þmappings, e.g., theMVH invariant mass, will
achieve NNLO accuracy in our implementation of Eq. (8).
However, it is not possible to avoid power corrections for all
Φ0 variables simultaneously.
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production. We note that at the default value at which we
run, T cut

0 ¼ 1 GeV, the observed effect is rather small in
magnitude at just under 0.2 fb (∼0.7% of the total cross
section). In order to correct for this discrepancy and obtain
the correct NNLO inclusive cross section, we may simply
rescale the weights of the Φ0 events in such a way that the
total cross section thus obtained matches the result of an
independent NNLO calculation. In practice, we use cross
sections obtained from the MATRIX program [65] to obtain
the reweighting factors for the central scale and its FO
variations. By following such a procedure, we are able to
include the effects of the f2 term in Eq. (47) on the total
cross section that would have been present had we
implemented Eq. (8) literally. Since neither Eq. (8) nor
our approach in Eq. (46) achieve the exact Oðα2s ÞΦ0

dependence of all observables, our approximation does
not inherently limit the accuracy of our predictions.
In nearly all spectra, the lack of the correct Oðα2s ÞΦ0

dependence does not produce striking differences when
compared with MATRIX. We therefore conclude that
our approximation holds rather well. As an example, we
show the transverse-momentum distribution of the hardest
lepton produced for different values of T cut

0 in Fig. 4(b). We
observe similar behavior in many other distributions. In
one exceptional case, however, we find a mild effect on a
distribution, namely the Higgs boson transverse momen-
tum. In Fig. 4(c), one can see a difference of Oð1%Þ
between the GENEVA and MATRIX results in the first few
bins. This difference is halved when the T cut

0 is reduced to
0.1 GeV and is restricted in range compared to the results
using the higher cut. Nonetheless, throughout this work we
have continued to use a value T cut

0 ¼ 1 GeV for reasons of
improved numerical stability (the reader may note the
increase in the sizes of the statistical errors associated with
the T cut

0 ¼ 0.1 GeV calculation, for example). We find that
any discrepancies caused by this choice are consistently
small and would most likely fall within PDF uncertainties.

5. NLO1 calculation and phase space mapping

We remark that the approximation described above is
applied only to the 0-jet bin. The Φ1 and Φ2 events are
produced instead following the full forms in Eqs. (32)
and (33), which employ a proper 0-jettiness subtraction at
NNLO combined with the local NLO1 subtraction for the
VHj process. In practice we use the FKS subtraction, but
with a specific choice for the mapping employed in
splittings and projections. Since the FO terms appearing
in Eqs. (32) and (33) are differential in T 0, the mapping
used in the NLO1 calculation must preserve the value of T 0

during such splittings or projections, see, e.g., Eq. (12).
Such a mapping was devised for the Drell–Yan production
in Ref. [23] and is discussed briefly therein. For this work,
we performed only minor modifications in order to accom-
modate the additional final-state Higgs boson.

6. Interface to the parton shower

Since the shower interface is mostly identical for
Drell–Yan production and Higgsstrahlung, we provide
only a brief recap of its main features here, referring the
interested reader to Sec. 3 of Ref. [23] for a more detailed
discussion.
The partonic jet cross sections dσMC

0 , dσMC
1 , and dσMC

≥2
each include contributions from higher multiplicity phase
space points, but only in those cases where T NðΦMÞ <
T cut

N . In order to make the calculation fully differential in
the higher multiplicities, a parton shower is interfaced
which adds radiation to each jet cross section in a manner
which does not alter the value or accuracy of the integrated
cross sections but still produces a fully exclusive final state,
i.e., in a unitary and recursive fashion. The effect of this
is to restore the emissions in dσMC

0 and dσMC
1 which were

integrated over when the jet cross sections were con-
structed, as well as to add extra final-state partons to the
inclusive dσMC

≥2 .

FIG. 4. The neglected nonsingular contribution to the T 0 cumulant at NNLO (left) and its impact on the hardest lepton (centre) and
Higgs boson (right) pT spectra.
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In order to simplify the treatment, we consider a shower
strongly ordered in T N , such that T 0ðΦ1Þ≫T 1ðΦ2Þ≫…
In practice, no current parton shower program uses T N as
an evolution variable in the way that we have here,
choosing instead, e.g., the transverse momentum of an
emission. However, if one were to take the output of a
shower ordered in say transverse momentum, one could
recluster the partons using the N-jettiness metric in order to
obtain a splitting history that was ordered in T N and
equivalent at LL order.
The requirement of the preservation of the accuracy of

the jet cross section after applying the shower on a phase
space point ΦN sets constraints on the point ΦNþ1 reached
after each emission added by the shower. These constraints
are different for the different partonic multiplicities of the
events before the shower.
For the cases in which the showered events originate

from Φ0 events, the main constraint is that the integral of
the cross section below the T cut

0 (which is NNLL0 þ NNLO
accurate) must not be modified. The emissions generated
by the shower must in this case satisfy T 0ðΦNÞ < T cut

0 , so
that they recover the events which were integrated over in
the construction of the 0-jet exclusive cross section and
add events with more emissions below the cut. In case
of a single shower emission we require also that the
resulting Φ1 point is projectable onto Φ0, as these are
the only configurations at this order which are included in
Eq. (46) [see also Eq. (10)]. Both these conditions can be
implemented with a careful choice of the starting scale of
the shower. The preservation of the cross section below the
cut is then ensured by the unitarity of the shower evolution.
In practice, we allow for a tiny spillover up to 5% above
T cut

0 in order to smoothen the transition.
Shower events originating from Φ1 and Φ2 events

require instead more care. The reason is that we must
now preserve the NNLL0 þ NNLO accuracy of the T 0

spectrum. This means that the Φ2 points produced after
the first emission must be projectable onto Φ1 using the
T 0-preserving map mentioned earlier and discussed in
detail in Ref. [23]. These constraints are most simply
implemented by performing the first emissions in GENEVA

(using the analytic form of the NLL Sudakov factor
and phase space maps) and only thereafter letting the
shower act as usual, subject to the single restriction
T 2ðΦNÞ ≤ T 1ðΦ2Þ. Since it can be shown that the shower
acting on the resulting Φ2 events alters the accuracy of the
T 0 distribution only beyond NNLL0 [23], in practice we
apply this procedure only to the Φ1 events. We find that

dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 ;Λ1Þ

¼ dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 ÞU1ðT cut
1 ;Λ1Þ; ð48Þ

dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T cut

1 ; T 1 > Λ1Þ

¼ dσMC
≥2

dΦ2

ðT 0 > T cut
0 ; T 1 > T cut

1 Þ

þ d
dT 1

dσMC
1

dΦ1

ðT 0 > T cut
0 ; T cut

1 ; T 1Þ

× PðΦ2ÞθðΛ1 < T 1 < T max
1 Þ: ð49Þ

By choosing Λ1 ∼ ΛQCD, the Sudakov factor
U1ðT cut

1 ;Λ1Þ becomes vanishingly small and we can
relax the shower conditions on the 1-jet contributions.
The showered events therefore originate from either dσMC

0

or dσMC
≥2 .

The main differences which occur with respect to the
Drell–Yan case are twofold: the decay of the Higgs boson
and the choice of the starting scale for the gluon-fusion
contributions. In our study, we have hitherto considered a
stable Higgs boson. As the Higgs boson is a scalar with a
small width over mass ratio, it is a legitimate strategy to
separate the production process from the decay in the
narrow width approximation. As long as we limit ourselves
to a leading-order description of the decay process, it could
be handled entirely by the parton shower program. In the
following, we have chosen to work with a stable Higgs
boson, in order to simplify the analysis routines, but we
might as well have let PYTHIA8 decay it in order to achieve a
more realistic description of the final state. The gluon-
fusion contribution could be considered as giving rise to
Φgg

0 events which are different in nature to the standard Φ0

events entering the GENEVA formula. As explained in
Sec. II B 2, the reason is that the gluon-fusion contributions
are entirely nonsingular and are therefore merely added at
FO, lacking any resummed contribution. Since they enter at
Oðα2s Þ, any emission added by the shower would contribute
beyond the claimed NNLO accuracy. We have, therefore, a
greater freedom in the choice of the shower starting scale,
which we set at the kinematic limit determined by the
available centre-of-mass energy.

III. VALIDATION

In order to validate the FO accuracy of our results we
have compared with a custom version of the MATRIX code
[65] which implements the Higgsstrahlung process. This
program calculates cross sections at NNLO accuracy in
QCD through its fully general implementation of the qT-
subtraction formalism [66–68], in combination with the
dipole-subtraction formalism [58,59] to deal with NLO-like
singularities. To eliminate the dependence on the slicing
parameter rcut ≡ qcutT;VH=MVH we numerically approach the
limit rcut → 0 by the extrapolation procedure of Ref. [65]
not only for inclusive cross sections, but also on a bin-
wise level for distributions, as introduced in Ref. [69].
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The uncertainties associated with this extrapolation pro-
cedure are combined with the statistical uncertainties to
provide the overall numerical error of the predictions that is
shown in Figs. 5–7 and 9.
Our calculations are performed for pp collisions at the

13 TeV LHC using the PDF4LHC15_nnlo_100 PDF
sets [70] available via the LHAPDF interface [71]. In the case
of ZH production we restrict the invariant mass of the
lepton pair to lie within the range 50 GeV < mlþl− <
150 GeV; we place a much looser 1 GeV < mlν <
13 TeV restriction in the case of W�H production. We
use the following values of SM parameters:

MZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

MW ¼ 80.398 GeV; ΓW ¼ 2.1054 GeV;

sin2θeffW ¼ 0.2226459; α−1ðMZÞ ¼ 132.338; ð50Þ

and use also the values of the CKM matrix elements
appearing in Ref. [72]. We set T cut

0 and T cut
1 at 1 GeV

and adopt the dynamical scale choice μFO ¼ MVH for the
FO scale in this section (except where explicitly specified
otherwise).
In Fig. 5 we show the transverse-momentum spectra of

the produced vector boson for each of the three possible
VH processes, excluding for the moment the gluon-
initiated channel in ZH production. The red hashed band
associated with the MATRIX curve reflects the error obtained
from a simultaneous variation of the renormalisation and
factorisation scales around the central scale (3-point varia-
tion), while the blue band associated with the GENEVA

prediction has been obtained by following the procedure
detailed in Sec. II B 3. We observe good agreement for the
central value in each case. The scale variation band in the
GENEVA case becomes slightly larger in the hard region
at large transverse momentum because the mechanism
for recovering the exact NNLO cross sections and scale
variations discussed in Sec. II B 3 becomes less effective,
being based on the total cross section and not on differential
distributions.

FIG. 5. Vector boson transverse-momentum spectra in VH production: ZH (left), WþH (center), W−H (right)

FIG. 6. Transverse momentum (left) and rapidity (right) of the Higgs boson in ZH production.
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From here on we leave behind the W�H process and
focus only on the ZH case, which displays broadly similar
behavior but exhibits a few more interesting subtleties
due to the presence of the aforementioned gg production
channel at NNLO. In Figs. 6–7 we show comparisons of
transverse-momentum and rapidity distributions between
GENEVA and MATRIX, again neglecting the gg channel for
the time being. At the value of T cut

0 chosen, we observe
very good agreement with the MATRIX results with the
exception of the case of the Higgs boson transverse
momentum. We find that agreement for this distribution
is improved at a lower value of the cut at the expense of a
higher statistical uncertainty (as previously discussed in
Sec. II B 4).

We now consider the inclusion of the gg channel at FO.
In Fig. 8 we show the impact at the partonic level in
GENEVA, focusing on the Higgs boson transverse momen-
tum and the invariant mass of the VH system. We observe
an effect of up to ∼20% on the differential distributions,
demonstrating the importance of including this channel. We
see also an increase in the scale uncertainties, related to the
fact that the process gg → ZH is included in effect only at
leading order [albeit Oðα2s Þ]. In Fig. 9 we compare the
GENEVA predictions including the gg channel with those of
MATRIX for the Higgs boson transverse momentum and
rapidity and again find good agreement.
Unfortunately, we were unable to compare with the

results of similar calculations presented in Refs. [25,26].

FIG. 7. Transverse momentum (left) and rapidity (right) of the hardest lepton in ZH production.

FIG. 8. Impact of the inclusion of the gluon-fusion contributions to ZH production at the partonic level in GENEVA.
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The reason for this was that in the case ofW�H production,
the authors in Ref. [25] neglected all top-quark effects
while using a 3 × 3 CKM matrix. While each of these
options can be set separately in the current public release of
OPENLOOPS [73] which we rely on to provide amplitudes,
the combination of both is not possible. In the case of ZH
production, the same authors in Refs. [26] included the
decay of the Higgs boson into a bb̄ pair at NLO, which at
present is omitted in our calculation. We intend to include
the higher-order corrections to the decay in a future release
of the program which will enable us to make a detailed
comparison of the two results.

IV. RESULTS

We now present our predictions for various spectra
after interfacing with the parton shower provided by
PYTHIA8 v8.235 [74,75]. For definiteness, we have chosen

PYTHIA8 ’s tune 18, we have set pref
T0

¼ 2.4 GeV, and have
run with all matrix element corrections switched off, since
now the radiative effects entering at higher order are
provided by GENEVA. In order to keep the analysis as
simple as possible, we have also switched off all QED
effects in the showering. In the following, we adopt the
scale choice μFO ¼ MT

VH but otherwise use the same values
of the parameters as in Sec. III. Our scale uncertainty bands
are calculated using a different procedure depending on
whether quantities are either exclusive or inclusive in the
additional radiation, as described in Sec. II B 3. We
reconstruct jets using the FASTJET algorithm [76,77] with
a jet radius R ¼ 0.4 and a minimum pj;cut

T ¼ 30 GeV.
In fig. 10 we show the T 0 distribution at the partonic

and showered level for ZH production with the gg channel
switched off in three different regions: the peak (left
pane), where the resummation effects are expected to be

FIG. 9. Comparison of distributions including the gg contribution between MATRIX and GENEVA.

FIG. 10. Validation of the T 0 spectrum in GENEVA. The partonic NNLL0 þ NNLO T 0 resummation is compared to the showered
results, before the addition of nonperturbative effects.
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dominant; the transition region (center pane) where the
resummed and FO contributions should be on the same
footing; and the tail (right pane), where the resummation is
switched off and the FO perturbative expansion is a valid
approximation. We confirm that, as expected, the NNLL0
accuracy of the T 0 distribution is preserved by the shower
above T cut

0 . The shape below T cut
0 is determined entirely by

PYTHIA8, but the cross section falling below the cut is
preserved as required (apart from the small spillover
discussed in Sec. II B 6). The small contribution appearing
between 0 < T 0 < T cut

0 at the partonic level is due to the
nonsingularΦ1 events which cannot be projected on a valid
Born-like configuration and are therefore included only at
fixed order.
In Fig. 11 we turn on the hadronisation and show its

impact on the showered distribution: we observe a large
difference only in the peak region, as expected, with

the corrections at larger values of T 0 being suppressed
as OðΛQCD=QÞ.
We continue with an examination of the effects of the

shower on distributions other than T 0. In Fig. 12 we
consider the transverse momentum of the Higgs boson and
the rapidity of the hardest lepton, both quantities which are
inclusive over any additional radiation. We note that
showering does not significantly change the normalization
or the shape of the distributions, demonstrating that the
NNLO accuracy is maintained even after showering and
hadronization. Additionally, we note that the scale variation
uncertainties are unaffected by the shower and hadroniza-
tion stages. This is to be expected and a consequence of the
fact that in this simple analysis we have neglected any
uncertainty originating from the interface of our partonic
predictions to the shower and from the hadronization
model. One could explore these effects in more detail by

FIG. 11. Comparison of the showered and hadronized T 0 spectra in GENEVA.

FIG. 12. Comparison of showered and hadronized spectra for inclusive quantities in GENEVA.
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studying, for example, the variation in our predictions after
modification of the shower starting scale for the former or
explore different tuning parameters for the latter. Such
investigation is beyond the scope of the current study.
In Fig. 13 we show instead quantities exclusive in the

additional radiation. Although we cannot claim NNLL0
accuracy in the resummation for these observables, we
may anticipate that a certain amount of the accuracy from
the prediction of T 0 may be inherited by other quantities.
In the case of the rapidity of the hardest jet we see that the
shower causes an overall shift of the distribution down-
wards byOð10%Þ, most likely due to the acceptance cut on
the jet above pj;cut

T . Considering instead the transverse
momentum of the VH system, we see that the shape of the

distribution in the resummation region is significantly
modified by the shower.
We now proceed to study the effect of the shower after

including the gluon-fusion channel. The majority of dis-
tributions show similar effects, with the inclusive quantities
surviving the shower stage unmodified. Two distributions
for which more significant differences are seen, however,
are shown in Fig. 14, where we plot the transverse momenta
of the Higgs boson and of the VH system. We notice a
significant deviation after the inclusion of the shower in the
hard region. This is most likely to be a consequence of our
choice of starting the shower at a very high scale for these
contributions, and is in accordance with previous obser-
vations for similar gg-initiated processes [78,79]. Since the

FIG. 13. Comparison of showered and hadronized spectra for exclusive quantities in GENEVA.

FIG. 14. Comparison of showered and hadronized spectra for quantities in GENEVAwith the inclusion of the gluon-fusion contributions
to ZH production.
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showering of these contributions starts at Oðα3s Þ, in the
present calculation we lack any further means by which we
may constrain its effects. This motivates a future inclusion
of the gg-initiated process at NLO.
Finally, in Fig. 15 we examine the difference in the spectra

when multiparton interaction (MPI) effects are included in
predictions for ZH production at the hadronized level and
with the gg channel switched on. We observe that the T 0

distribution is significantly modified by inclusion of MPI, as
already seen in Ref. [30]—this follows from the definition of
the beam thrust at the analysis level, which involves a sum
over all final particles including those arising from secondary
collisions. In the case of an inclusive quantity however (for
example the Higgs boson transverse momentum), the shape
of the distribution changes very little.

V. CONCLUSIONS

We have implemented the Higgsstrahlung process in the
GENEVA framework, which provides resummed predictions
matched to the fixed-order calculation and a parton shower
at NNLL0 þ NNLO accuracy. In order to make a consistent
choice for the profile functions used for the determination
of the resummation scales, we have studied the interplay
between the singular and nonsingular contributions in
different regions of the Born-like phase space. As expected,
we find that the region in which the resummation is
applicable depends mostly on the value of the invariant
mass of the VH system and it can be defined in a similar
way for all classes of events showing only a mild
dependence on the other kinematical variables.
We have confirmed the fixed-order accuracy of our

results by comparison with the program MATRIX and
found very good agreement at T cut

0 ¼ 1 GeV. Only for
the Higgs boson transverse-momentum distribution do

we find that an improved agreement can be reached by
lowering the 0-jet resolution cutoff to T cut

0 ¼ 0.1 GeV, at
the price of an increased statistical uncertainty. This leads
us to conclude that the discrepancy is most likely due
to the missing Oðα2s Þ power corrections in GENEVA as
compared to MATRIX.
We have provided predictions at the showered and

hadronized levels by interfacing with the parton shower
program PYTHIA8. We first confirmed that the accuracy of
the T 0 distribution is unaffected by the showering and then
showed that the inclusive distributions retain their NNLO
accuracy and are mostly unchanged by the shower. The
shower effects were found to be more significant for more
exclusive distributions.
We have also included the gluon-fusion channel and

studied the differential distributions which are affected
most by its inclusion. We observe larger shower effects
connected with these configurations, possibly related to the
higher starting scale used for the shower.
Finally we were also able to include MPI effects and

showed their impact on inclusive and MPI-sensitive
distributions.
The code used for this study is available upon request to

the authors and will be made public in a future GENEVA

release at http://geneva.physics.lbl.gov.
There are some clear directions in which this work could

be furthered. At present, the decay of the Higgs boson in
our implementation can only be provided at LO by
PYTHIA8. A full NNLO calculation of the Higgs boson
decay to a bb̄ pair would be desirable in order to improve
the description of the final states which are experimentally
accessible. The combination of the production and decay
processes in the narrow-width approximation is in principle
feasible within the GENEVA framework, and we plan to
study this in a future work. Another avenue worth pursuing

FIG. 15. Impact of the inclusion of MPI effects to ZH production at the hadronized level in GENEVA. The gg channel is included.
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is the inclusion of subleading power corrections at the
fully differential level, which would reduce the size of
the neglected terms and thus improve the predictions for
distributions even when a larger value of the resolution
cutoff is used. These effects are likely to become more
important as processes with more complex final-state phase
spaces are considered.
Given the difficulty of discovering new physics at the

LHC, it is now more important than ever to be able to make
precise predictions of the SM backgrounds both at the
fiducial cross section level and when extrapolated over the
full phase space. Since Monte Carlo event generators are
the primary tool used to provide these predictions, it is vital
that they are made as accurate as possible. This allows
state-of-the-art theoretical calculations to be made available
to experimental collaborations so that they can be used
directly in analyses.
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