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Abstract
Recommender systems represent one of the most successful applications of machine
learning in B2C online services, to help the users in their choices in many web ser-
vices. Recommender system aims to predict the user preferences from a huge amount
of data, basically the past behaviour of the user, using an efficient prediction algo-
rithm. One of the most used is the matrix-factorization algorithm. Like many machine
learning algorithms, its effectiveness goes through the tuning of its hyper-parameters,
and the associated optimization problem also called hyper-parameter optimization.
This represents a noisy time-consuming black-box optimization problem. The related
objective functionmaps any possible hyper-parameter configuration to a numeric score
quantifying the algorithm performance. In this work, we showhowBayesian optimiza-
tion can help the tuning of three hyper-parameters: the number of latent factors, the
regularization parameter, and the learning rate. Numerical results are obtained on a
benchmark problem and show that Bayesian optimization obtains a better result than
the default setting of the hyper-parameters and the random search.

Keywords Bayesian optimization · Collaborative filtering · Hyperparameters
optimization · Matrix factorization · Recommender system

1 Introduction

Recommender systems (RS) represent a critical component of B2C online services.
They improve the customer experience exposing contents of which customer are still
unaware and attempt to profile user preferences. More in details, an RS aims to recom-
mend items (movies, songs, books, etc.) that fit the user’s preferences, to help the user
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Fig. 1 Two different types of ML algorithm for RS: a Content-based approach, and b Collaborative filtering
approach. Source: https://towardsdatascience.com/brief-on-recommender-systems-b86a1068a4dd

in selecting items from a large set of choices. Example of applications can be found in
many fields, among which movies (Koren et al. 2009), music (Lee et al. 2010), books
(Crespo et al. 2011), e-commerce (McNally et al. 2011) and active stock selection (De
Rossi et al. 2019). The idea behind an RS is that providing personalized suggestions
significantly increasing the likelihood of a customer making a purchase compared to
un-personalized ones. Personalized recommendations have huge importancewhere the
number of possible items is large such as in e-commerce related to art (books, movies,
music), fashion, food, etc. Some of the major participants in e-commerce (Amazon),
movie streaming (Netflix), and music streaming (Spotify) successfully apply recom-
mender systems to deliver automatically generated personalized recommendations to
their customers.

Machine learning (ML) algorithms inRecommender systems are typically classified
into two categories (Aggarwal 2016) (see Fig. 1):

• Content-based approaches profile users and items by identifying their characteristic
features, such as demographic data for user profiling, and product informa-
tion/descriptions for item profiling;

• Collaborative filtering approaches (CF) identify relationships between users and
items and make associations using the past user activities information to predict
user preferences on new items.

The first approach is laborious because it is necessary to collect information about
users/items, and it often tricky because the users must share their personal data for
the creation of a database for profiling. The CF approach requires few data, basically
a list of tuples containing the user ID, the item ID, and the rating done by the user to
that item. Moreover, the CF algorithms are more flexible in that they can be applied
to RS independently of the domain of application.
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In this paper, the authors focus on CF, in which the basic data structure is the rating
matrix, formed by any possible user-item combination. The problem is also called the
matrix completion problem, because it is based on an incompletely specified matrix
of values (the users’ past rated items), and the aim is to predict the remaining values
(the predicted user’ rates on new items) using some learning algorithm. The main
challenge in designing CF methods is that real-world databases are mostly sparse
(many unknown entries), but the unknown ratings are predictable because the known
ratings are often highly correlated across various users or items.

Two types of methods are commonly used in the CF framework (Cacheda et al.
2011): the memory-based methods and model-based methods. The memory-based
methods, orneighborhood-basedCFalgorithms,were among the earliest collaborative
filtering algorithms, inwhich the ratings of user-item combinations are predicted based
on their neighborhoods (users similar to a target user or items similar to a target item).
They are based on the fact that similar users display similar patterns of rating behavior
(user-based) or similar items receive similar ratings (item-based). An example of
neighbourhood method is the k-Nearest neighbours (Yeehuda 2010). These methods
are simple to implement, and the resulting recommendations are often easy to explain.
On the other hand, memory-based algorithms do not work very well with sparse rating
matrices: they scale poorly with the number of dimensions, and their predictions are
not accurate for user/item matrix with few ratings.

The model-based methods are an alternative approach that try to predict the rat-
ings by characterizing both items and users using a certain number of parameters
inferred from the rating patterns. More in details, they are based on the assumptions
that the preferences of a user can be inferred from a small number of hidden or latent
factors. The most successful realizations of latent factor models are based on matrix
factorization (Salakhutdinov and Mnih 2008; Koren et al. 2009). These approaches
are considered superior to classic nearest-neighbour techniques for producing rec-
ommendations and learn the latent factors within an optimization framework. This
corresponds to a low-rank approximation of the rating matrix, with the assumption of
correlations between rows (or columns) to guarantee the dimensionality reduction of
the matrix itself.

The RS becomes a minimization problem, in which we want to determine two low-
rankmatrices whose product is as close as possible to the ratingmatrix. The associated
error function depends on the number of latent factors.Moreover, a regularization term
is added to reduce both the non-linearity effect and the overfitting problem. Finally,
if we solve this problem by means of stochastic gradient descent (Bottou 2010), we
must set also the learning rate related to the descent direction.

These three hyper-parameters (i.e., number of latent factors, regularization term
and learning rate) must be tuned through an optimization procedure, usually called
hyper-parameter optimization.

The objective function maps any possible hyper-parameter configuration to a
numeric score quantifying the quality of the matrix factorization. This score is com-
puted by dividing the known entries of the rating matrix in two sets: a training test and
a test set. For each hyper-parameter configuration, the stochastic gradient method is
applied on the training set and the score is obtained as validation on the test set. This
validation schema represents a randomize time-consuming black-box optimization
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problem. Therefore, an efficient global optimization strategy is mandatory to obtain
the best possible configuration using a small number of function evaluations.

Recently, Bayesian optimization (BO) (Shahriari et al. 2015; Frazier 2018) is
becoming one of the most widely adopted strategies for global optimization of
multi-extremal, and expensive-to-evaluate objective functions related to, e.g., sen-
sor networks (Garnett et al. 2010), drug design (Meldgaard et al. 2018), time-series
forecasting (Candelieri et al. 2018a), inversion problems (Perdikaris and Karniadakis
2016; Galuzzi et al. 2018), and robotics (Olofsson et al. 2018).

An example of the application of BO for RS is, e.g., in Dewancker et al. (2016) and
Cano (2019). In the first case, the authors use a Bayesian optimization web-service,
called SigOpt, and show that BO outperforms random search in tuning three hyper-
parameters of the Alternating Least Squares algorithm (Udell et al. 2016) to estimate
the entries of the rating matrix. In the second case, the authors show the advantage in
tuning the two hyper-parameters related to the KNN method to find the top five items
recommended. Finally, alternative use ofBO forRS can be found inVanchinathan et al.
(2014), where the challenge of ranking recommendation lists based on click feedback
by efficiently encoding similarities among users and among items is considered. In
this case, the Gaussian Process is used to model the elements of the rating matrix
directly.

In our paper, we want to use BO for the hyper-parameter optimization related to the
parameters of the stochastic gradient descent to find the best possible configuration,
in terms of the learning rate, number of latent factors, and regularization parameter.
We describe the mathematical formalization of the problem and we show an example
of application of BO on a benchmark dataset, the MovieLens-100k, to find the best
possible configuration of the hyper-parameters.

The rest of the paper is organized as follows. Section 2 introduces the problem
definition and Sect. 3 describes the Bayesian optimization algorithm. A benchmark
application is presented in Sect. 4, and Sect. 5 we present the conclusions.

2 The problem definition

In the most general framework, a CF problem is based on the definition of two sets
(Takács et al. 2009):

• The set of users U � {u1, u2, . . . , uM }, where M is the number of users;
• The set of items I � {i1, i2, . . . , iN }, where N is the number of items.

Each user expresses its judgement, or rating, r ∈ X , where typical rating values can
be binary or integers from a given range. The set of all the ratings given by the users
on the items can be represented as a partially specified matrix R ∈ R

M×N , where its
entries rui express the possible ratings of user u for item i . Usually, each user rates
only a small number of items, thus the matrix elements are known in a small number
of positions (u, i) ∈ S, with |S| � min{M, N }(see Fig. 2).
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Fig. 2 Example of rating matrix

Usually, the dataset S is divided in a training set STr and a test set STe with STr ∩
STe � ∅ and STr ∪STe � S, and the aim of CF is to create a prediction of the elements
of STe using only the knowledge of STr , minimizing some error functions:

error �
∑

(u,i)∈STe
‖rui − r̂ui‖ (1)

where r̂ui � r̂ui (STr ) denotes the prediction on rui , and is obtained as a function of the
training set STr . The typical used error function is the root mean square error (RMSE),

RMSE �
√√√√ 1

|T e|
∑

(u,i)∈STe

(
rui − r̂ui

)2 (2)

2.1 Thematrix factorization algorithm

MF algorithms are the most successful ones for RS, and represent the state-of-the-art
since they have shown their superiority in terms of predictive performance and runtime
in numerous publications (Koren et al. 2009; Takács et al. 2009). The idea behind MF
techniques is to approximate the matrix R as the product of two matrices (Fig. 3):

R ≈ P · Q (3)

where P is aM×K and Q is a K×N matrix. The first matrix is called the user-feature
matrix, the second one is called the item-feature matrix, and K represent the number
of latent factors in the given factorization. Typically, K � min{M, N }, and both P

and Q contain real numbers, even when R contains only integers.
The aim of CF approach based on matrix factorization is to minimize the error

function on the training set STr , as a function of the matrixes (P, Q). The prediction
r̂ui in Eq. (1) is expressed by:

r̂ui �
K∑

k�1

pukqki (4)
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Fig. 3 Example ofmatrix factorization of the ratingmatrix in user featuresmatrix and the item featurematrix

where puk and qki denote the elements of P and Q, respectively. Therefore, the
optimization problem becomes

(
P∗, Q∗) � argmin

(P,Q)

⎡

⎣1

2

∑

(u,i)∈STr

(
rui −

K∑

k�1

pukqki

)2⎤

⎦ (5)

After the minimization of Eq. (5) is done, one can estimate the RMSE on the test
set STe:

RMSE �

√√√√√ 1

|STe|
∑

(u,i)∈STe

(
rui −

K∑

k�1

p∗
ukq

∗
ki

)2

(6)

The total number of variables of the optimization problem of Eq. (5) depends on
the number of latent factors K . Generally, increasing the number of latent factors K
improves the quality of the solution of Eq. (5) but can cause an overfitting problem.
Basically, with too much freedom (too many free parameters), the model starts fitting
well the training data but not generalizing well the unseen test data. A common way
to avoid overfitting is to apply a regularization term to Eq. (5), obtaining a new but
similar optimization problem

(
P∗, Q∗) � argmin

(P,Q)

⎡

⎣1

2

∑

(u,i)∈STr

(
rui −

K∑

k�1

puk · qki
)2

+
1

2
λ

K∑

k�1

(
p2uk + q2ki

)
⎤

⎦ (7)

where λ ≥ 0 is the regularization factor.
Besides, a simple split in the training set and test set does not guarantee robustness

of the results. A more suitable procedure, widely adopted, is the cross-validation
approach. More in detail, using the N-fold validation, the original dataset is divided
in n subsets. Then, the model prediction is computed for n times, using the nth set as
test set, and the other n − 1 folds as the training set.

The results of this procedure can be, for example, the mean of the n different values
of the RMSE on the n folds. In Fig. 4 we report an example of pseudo-code for a
numeric score function, using the n-fold validation.
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Fig. 4 Pseudo-code for the numeric score function, using the k-fold validation

2.2 The optimization problem

The optimization problem associated with (Eq. 7) represents a non-convex and multi-
extremal global optimization problem. Global optimization methods could be used to
solve it such as evolutionary algorithms or multi-star method. However, finding the
global minimum results very hard to solve since also the high number of variables.
Then, it is usually content to find only a local minimum through a local gradient
method. The state-of-the-art approaches are the Alternating Least Squares and the
Stochastic Gradient Descent (SGD), that is the one we consider for this work.

First, one need to compute the partial derivative of the objective function with
respect to the variable puk and qki :

∂

∂puk
� −

∑

(u,i)∈STr

(
rui −

K∑

k�1

puk · qki
)

· qki + λ · puk

∂

∂qki
� −

∑

(u,i)∈STr

(
rui −

K∑

k�1

puk · qki
)

· puk + λ · qki (8)

At this point, one could update the entire vector of decision variables as
−

V AR� −
V AR −η

−∇ J , where
−∇ J indicates the entire vector of the partial deriva-

tives and η is the step size or learning rate. However, when the data size is very large,
it is preferable to use the SGD, in which the update is stochastically approximated in
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Fig. 5 Pseudo-code for the stochastic gradient descent algorithm

terms of the error in a (randomly chosen from a uniform distribution) observed entry
(i, j) as follows:

puk � puk + η ·
((

rui −
K∑

k�1

puk · qki
)

· qki − λ · puk
)

qki � qki + η ·
((

rui −
K∑

k�1

puk · qki
)

· puk − λ · qki
)

(9)

By this way, one can cycle through the observed entries in R one at a time (in
random order) and updates only the relevant set of 2 · K entries in the factor matrices
rather than all (m · K + n · K ). Indeed, for each observed rating ri, j , the error eui �(
rui − ∑K

k�1 puk • qki
)
is used to update the k entries in row i of U and the k entries

in the row j of Q. A typical initialization for the elements P and Q is done randomly
according, e.g., to a normal distribution with mean μ � 0 and small variance σ . The
pseudo-code for the stochastic gradient descent method is illustrated in Fig. 5.

2.3 Tuning the hyper-parameters

The optimization algorithm presented has three hyper-parameters to set: the learn-
ing rate η, the regularization factor λ, and the number of latent factors K . Different
combinations of these hyper-parameters can alter the performance of the optimization
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Fig. 6 Pseudo-code for hyper-parameter optimization

algorithm significantly. If we want to know which parameter combination yields the
best results, we must perform a hyper-parameter optimization.

Formally, we define the hyperparameter optimization task as follows. Let A be the
target algorithmwith n number of parameters to be tuned. Each hyper-parameter θi can
be a value taken from an interval [ai , bi ] (continuous or integer) in a hyper-parameter
configuration space � � [a1, b1] × · · · × [an, bn]. Defining a performance function
H : � → R

+ that maps each possible configuration θ ∈ � to a numeric score, the aim
of the hyper-parameter optimization is to find the best configuration θ∗ that minimizes
H(θ):

θ∗ � argmin
θ∈�

H(θ) (10)

The objective function H is characterized by the following properties:

1. The function is time-consuming in the sense that each evaluation takes a substantial
amount of time (minutes for a small dataset, hours for a bigger one);

2. The function is “black-box”, that means we do not know any properties about
its structure like linearity or concavity, and we do not have information about
derivatives;

3. The evaluation of the function is characterized by noise. This fact is because the
evaluation of the performance function depends on a series of random factors
related to the stochastic gradient descent algorithm (e.g., the starting point of the
gradient-based optimization) and on how the dataset is divided in training and
validation set.

All these facts make the optimization problem hard to solve and require a specific
procedure to obtain the best configuration in a few evaluations. In Fig. 6 we show the
pseudo-code of hyper-parameter optimization.
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3 Bayesian optimization for hyperparameter optimization

BO is a sequential model-based approach to solve the problem (Eq. 10) and, in general,
global optimization problems based on expensive-to-evaluate black-box functions.
The search space � can be a compact subset of R

d , but the BO framework can be
applied also to search spaces involving categorical or conditional inputs. Moreover,
recent studies extend BO also for more complex input space, such as combinatorial
structures (Baptista and Poloczek 2018) and graph structured input space (Oh et al.
2019).

3.1 A framework for Bayesian optimization

Bayesian optimization framework has two key components (see Fig. 7). The first
component is a probabilistic surrogate model, which consists of a prior distribution
that models the unknown objective function. The second component is an acquisition
function that is optimized for deciding where to sample next. The surrogate model
provides a posterior probability distribution that describes potential values for H(θ)

at a candidate configuration θ . The basic idea is that each time we observe H at a new
point θ , we update this posterior distribution. The most used surrogate model is the
Gaussian Process (GP), which is completely specified by amean functionμ(θ) : � →
R and a definite positive covariance function, also called kernel, k

(
θ , θ

′)
: �2 → R,

H(θ) ∼ GP
(
μ(θ); k

(
θ, θ ′)) (11)

An important property of the kernel function is that the closer two points are in the
input space, the larger is the value of the kernel function. Common choices are the
Gaussian kernel or theMatern kernel. Regarding the mean function, the most common
choice is a constant value, μ(θ) � μ0.

TheBO algorithm starts with an initial set of k configurations {θ i }ki�1 and their asso-
ciated function values{yi }ki�1, withyi � H (θ i ). At each iteration t ∈{k + 1,…,N}, we
update the GPmodel using the Bayes rule, to obtain posterior distribution conditioned
on the current training set St � {(θ, yi )}ti�1 containing the past evaluated configura-
tions and observations. For any, potentially non-evaluated, configuration θ ∈ �, the
posterior mean μt (θ ) and the posterior variance σ 2

t (θ) of the GP, conditioned on Sk ,
are known in closed-form:

μt (θ) � k(θ)T
[
K + τ 2 I

]−1
y, (12)

σ 2
t (θ) � k(θ , θ) − k(θ)T [K + τ 2 I ]−1k(θ), (13)

where K is the t× t matrix whose entries are Ki, j � k
(
θ i , θ j

)
, k(θ) is the t×1 vector

of covariance terms between θ and {θ i }ti�1, y is the t × 1 vector whose i th entry is yi ,
and τ 2 is the noise variance.
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Fig. 7 Illustration of theBayesian optimization procedure over three iterations,with themean and confidence
intervals estimated with the surrogate model (Gaussian Process) of the objective function. The acquisition
functions in the lower shaded plots are showed. The figure is taken from Shahriari et al. (2015)

If a new point θ t+1 is selected and evaluated to provide an observationyt+1 � H
(θ t+1), we add the new pair{(θ t+1, yt+1)} to the current training set St , obtaining a
new training set for the next iteration St+1 � St∪ {(θ t+1, yt+1)}.

The next candidate point to evaluate is selected by solving an auxiliary optimization
problem, typically of the form:

θ t+1 � argmax
θ∈�

Ut (θ ; St ), (14)

where Ut is the acquisition function to maximize. The rationale is that, because the
optimization run-time or cost is dominated by the evaluation of the expensive function
f , time and effort should be dedicated to choosing a useful and informative (in a sense
defined by the auxiliary problem) point to evaluate. In Fig. 8 we show the pseudocode
of the BO.

In BO, typical utility functions used to select the next candidate point include:
the probability of improvement (Kushner 1964), the expected improvement (Mockus
1989), GP Confidence Bound (Auer 2003) (i.e., Lower Confidence Bound, LCB, in
case of minimization and Upper Confidence Bound, UCB, in case of maximization),
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Fig. 8 Pseudo-code of Bayesian optimization

or, more recently, the Knowledge Gradient (KG) (Frazier et al. 2008). Since the low
cost to evaluate the acquisition function, greedy optimization strategies can be used
to solve the problem (Eq. 14) such as random search, multi-star approach or genetic
algorithms.

In this paper, we use the Expected Improvement (EI), that is based on the maxi-
mization of the following function:

Ut (θ ; St ) � (
f ∗ − μt (θ)

) · 	
(
f ∗;μt (θ); σt (θ)

)
+ σt (θ) · N (

f ∗;μt (θ); σt (θ)
)

(15)

where N and 	 are the normal distribution function and the normal cumulative dis-
tribution function, respectively. The EI has two components: the first can be increased
by reducing the mean function μt (θ), the second can be increased by increasing the
variance σt (θ). These two terms balance the trade-off between exploitation (evaluating
at points with low mean) and exploration (evaluating at points with high uncertainty).

3.2 Dealing with integer parameters

The previous framework considered for BO through GP assumes that all the variables
for H are continuous. However, even if the regularization factor λ and the learning
rate η are continuous, the number of latent factor K takes values in a closed subset of
integers. Optimization problems involving continuous and integer/discrete variables
is common in many tasks of optimizing for the hyper-parameters of machine learning
systems (Snoek et al. 2012). Typical examples can be found, e.g., in an ensemble of
decision trees generated by the gradient boosting algorithm, in which we must adjust
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Fig. 9 The left figure shows the true integer function (red), and the approximation (mean and variance) to
the original function by the GP model (green). The right figure shows the acquisition (integer) function (EI)
values after the surrogate model is fitted. The next query point is coloured by red (color figure online)

the learning rate and the maximum depth of the trees, or in a deep neural network,
in which we must adjust the learning rate, the number of layers and the number of
neurons per layer, which can only take discrete values.

In this case, two possible approaches can be considered. In the first case, other
surrogatemodels, different fromGP, canbeproposed, such asRandomForest (RF) (Tin
Kam Ho 1995; Candelieri et al. 2018b), which should be, at least ideally, well suited
for optimization problem with only integer variables or mixed space in which most of
the variables are integer. In the second approach, that is the one we considered, the GP
is used, but an approximation is done along the integer dimensions. More in details,
the optimization of the acquisition function A can be done assuming all variables
take continuous values. The values for the integer-valued variables are replaced by the
closest integer (the naïve approach in “Dealing with categorical and integer-valued
variables in Bayesian optimization with Gaussian processes” (Garrido-Merchán and
Hernández-Lobato 2018)). Another possibility is to deal with integer-valued variables
considering their discrete nature: for instance, random sampling-based optimization
will sample in a finite set of integer values instead of a continuous range. This is the
approach followed by the software Scikit-optimize (https://scikit-optimize.github.io/),
and the onewe considered. Figure 9 shows an example of optimization for a 1D integer
function (red), and the approximation (mean and variance) to the original function by
the GPmodel (green), whereas the second column shows the acquisition function (EI)
values after the surrogate model is fitted. Note that only integer values are considered
for the acquisition function.

4 Benchmark problem

TheMovieLens datasets (Harper and Konstan 2015) were collected by the GroupLens
Research Project at theUniversity ofMinnesota. These datasets are used as benchmark
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Fig. 10 Two images of the score function as a function of λ and K, fixing two different values of η

in many different works, among which (Tsai and Hung 2012; Matuszyk et al. 2016;
Katarya and Verma 2017; Bogunovic et al. 2018). One of these datasets is called
MovieLens-100 k and consists of 100,000 ratings (1–5) from943users on 1682movies.
Each user has rated at least 20 movies. The data was collected through the MovieLens
web site (https://movielens.org) during the seven-month period from September 19th,
1997 through April 22nd, 1998.

To rating matrix associated to the problem consists of 943 rows (users), 1682
column (items) and about 100,000 known entries. To apply the procedure described in
Sect. 2, we use the Surprise library (https://surpriselib.com/), a Python scikit library
for recommender system. This library has a set of built-in prediction algorithms,
among which the matrix-factorization algorithm with a default setting of the hyper-
parameters, 0.02 for λ, 0.005 for η, and 100 for K , respectively. As performance
function H , we consider a tenfold cross-validation procedure with 10 splits, from
which we extract the mean RMSE on the different folds. The objective of this problem
is to find the best configuration for hyper-parameters in as few iterations as possible.
One iteration is defined as one call to the tenfold cross validation procedure. Using the
default setting of the hyper-parameters, we obtain a value of 0.9296, where the rating
error can be at most 4.

To search which hyper-parameter combination yields the best performance results,
we define a configuration search space�with three dimensions (λ, η, K ): the number
of latent factors range in the integer interval {10, 100}, whereas the learning rate and
the regularization parameter range in the continuous interval [0.001,0.1].

First, to analyse the complexity of the metric score function, in Fig. 10 we report
two images in which we represent the score function as a function of λ and K , fixing
to different value of η.

In the first case (η � 0.005) the value of the score function varies between 0.925 and
0.945. The score function decrease as a function of K, and increases as a function of
λ, respectively. The worst score values are for λ ≈ 0 (no regularization) and K > 30,
and for λ > 0.8 and K < 30. The better score values are for 0.02 < λ < 0.04 and
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Fig. 11 Five curves representing five different runs of BO. The curves show the minimum found (y-axis) as
a function of the number of iterations performed so far (x-axis)

30 < K < 50. In this part of the graph, we have a value of the score function less than
0.928.

In the second case (η � 0.0155), the values of the score function varies between
0.905 and 1.1. For λ < 0.05, the score function decreases as a function of λ, and
increases as a function of K , respectively. In this part of the graph, we have values of
the score function higher than 0.93. The worst case is when λ ≈ 0 (no regularization)
and K > 20, in which we have value of the score function over 1. Then for λ > 0.05,
the score function appears less sensitive to the value of K and λ.

To apply BO we use the gp_minimize function from the Scikit-Optimize package
(Head et al. 2019), based on the Scikit-Learn library (Pedregosa et al. 2012). This func-
tion uses GP as surrogate model with a Matern kernel (ν � 2.5) and EI as acquisition
function. The method to optimize the acquisition function is the Random Search, in
which the function is evaluated on 10,000 points.

We perform BO several times using a different seed for the random generator. In
Fig. 11, we report the results on five different experiments, in which we evaluate the
objective function 30 times using BO (5 initial configurations chosen randomly, and
25 iterations of the BO algorithm). The plot shows the value of the minimum found
(y-axis) as a function of the number of iterations performed so far (x-axis). The BO
reaches a mean final value and standard deviation of 0.9064 and 0.0009, respectively,
and the final values are all lower than the one obtained for the default setting. For the
first iterations, the curves are different. After iteration five, the next point at which to
evaluate the function is guided by the model, which is where an important decrease
starts to appear. After iteration 25, all the curves seem to converge to a common value.
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Fig. 12 Boxplot for each iterations of BO (blue) and RS (red) computed on 50 different experiments (color
figure online)

Tomake the analysis of theBO resultsmore robust,we performa total of 50 different
tests, and we report the results in Fig. 12 as a boxplot (minimum, first quartile, median,
third quartile, and maximum) for each iteration. The performances are compared with
that of Random Search (RS). As we can note, the behaviour of the two algorithms is
similar in the first iterations (below 10/12 iterations). On the contrary, the performance
for BO is better than RS in the last iterations: the BO reaches a mean final value and
standard deviation of 0.9062 and 0.0007, respectively, whereas the RS reaches a mean
final value and standard deviation of 0.9086 and 0.0026, respectively. One can test if
the differences between the two distribution of BO and RS are meaningful or not at
different iterations. This can be done performing the Mann–Whitney U test in which
the null hypothesis is that “the two groups are sampled from populations with identical
distribution”. If the p-value is below 0.05, then the null hypothesis is not true, and the
two groups are different. Performing a Mann–Whitney U test at iteration n° 1°, 10°,
20°, and 30°, we obtain a p value of 0.380, 0.496, 0.066, and 3.29e-09, respectively.

Then the two distributions can be considered similar in the first iterations but are
different in the final ones. This means that the performance of BO and RS are similar
in the first iterations, but then BO outperforms RS. This is due mainly to the capacity
of BO to explore the most promising regions obtained by the associated surrogate
model, that results better than RS for the exploitation phase.

Figure 13 represents the 2D scatter plot between η and λ (a), η and K (b), and λ and
K(c), in which we display circles at the locations specified by the final configurations
of the 50 tests for BO (blue circles) and RS (red circles). As a general result, we can
see that η must be quite low and λ must be quite high, where K can take different
values without altering so much the score value. We can see that many combinations
of the hyper-parameters reach a low value of the score function, and that it is possible
to consider a low value of K for the sake of interpretability. Indeed, the latent factors
can refer, for MovieLens-100k dataset to the genre that the movie belongs to.

123



Hyperparameter optimization for recommender systems through…

Fig. 13 2D scatter plots between η and λ (a), η and K (b), and λ and K (c), in which we display circles at
the locations specified by the final configurations of the 50 tests for BO (blue circles) and RS (red circles)

Fig. 14 Analysis of the distribution of the points chosen by BO (left) and RS (right), respectively, for two
different tests. The found minimum is represented by the black point

In Fig. 14 we analyse the distribution of the points chosen by BO (left) and RS
(right), respectively, for two different tests. The found minimum is represented by the
black point. We report only the value of η and λ (x-axis) over the value of the objective
function, fixing K � 100. From the figure, we can note that the distribution of points
selected by BO is more focused on the most promising zone of the score function,
located in the upper-left part. On the contrary, a few points are in the low part of the
graph, where we have a high value of the score function.

This general behaviour is testified also in Fig. 15, in which we represent the boxplot
of η (left) and λ (right) component for the group formed by all the best configurations
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Fig. 15 boxplot of η (left) and λ (right) component for the group formed by all the best configurations
obtained by the 50 tests for BO (blue) and RS (red) (color figure online)

obtained by the 50 tests for BO (blue) and RS (red). Note that BO group is more
focused on the most promising zone of the score function, located in the upper-left
part, with η ≈ 0.02 and λ ≥ 0.8.

5 Conclusions and remarks

In these years, many approaches (content or collaborative filtering) and types of ML
algorithms (memory-based methods and model-based methods) have been studied to
build efficient RS. Like many applications of ML, the aim of a RS is to predict the
preferences of the users on new incoming data according to a huge amount of known
data (the past histories of users and/or items). As a learning algorithm, we used the
CF matrix-factorization method, which leads to an optimization problem that can be
solved through the stochastic gradient descent algorithm. The effectiveness of this
procedure for RS goes through the tuning of its hyper-parameters. Two of these, the
number of latent factors and the regularization factor, are related to objective function,
whereas the learning rate is related to the optimization procedure.

A default setting of these values cannot be donewithout any prior information about
the problem but requires a hyper-parameter optimization procedure. The associated
objective function, usually a score measure based on cross-validation, is noisy time-

123



Hyperparameter optimization for recommender systems through…

consuming and black-box. The Grid Search method cannot assure a good precision if
we use a large grid size or results too long to compute if we use a small grid size.

In this work, we have showed how the optimal hyper-parameter configuration can
be obtained optimizing through BO a performance measure based on cross-validation.
The success of BO strategy can be motivated by its exploration–exploitation balance:
the exploration probes a larger portion of the search space to find the most promising
regions, that are not yet refined, the exploitation allows of probing these promising
regions in order to improve already promising solutions.

The numerical results have been obtained on a benchmark example, called
Movielens-100k. The results showed that BO obtains a value of the performance
metric slightly better than the RS. However, the better result obtained by BO could
revealed more significant in case of complex objective or increasing the number of
variables associated to different hyper-parameter optimization problem.
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