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Abstract Several contributions to the recent literature have shown that supervised
learning is greatly enhanced when only the most relevant features are selected for
building the discrimination rule. Unfortunately, outliers and wrongly labelled units
may undermine the determination of relevant predictors, and almost no dedicated
methodologies have been developed to face this issue. In the present paper, we in-
troduce a new robust variable selection approach, that embeds a classifier within a
greedy-forward procedure. An experiment on synthetic data is provided, to under-
line the benefits of the proposed method in comparison with non-robust solutions.
Abstract Recenti risultati in letteratura hanno dimostrato che l’apprendimento su-
pervisionato migliora notevolmente quando si scelgono le variabili più rilevanti
per la costruzione della regola discriminante. La presenza di valori anomali e di
unità erroneamente classificate nel learning set può severamente minare la deter-
minazione dei predittori rilevanti e sfortunatamente quasi nessuna metodologia af-
fronta questo problema. Il presente contributo propone un nuovo approccio robusto,
che incorpora un classificatore all’interno di un metodo incrementale di selezione
delle variabili. Risultati simulativi mostrano i vantaggi del nuovo metodo, in com-
parazione con soluzioni non robuste.
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1 Introduction

Nowadays, hundreds or thousands of variables on each sample are available in fields
like chemometrics, computer vision, engineering and genetics, and many other sci-
entific domains. Feature selection techniques have been introduced in data analysis,
mainly aiming at building simpler models, easier to interpret by researchers/users,
with shorter training times. Models based on the right selection of variables allow
to avoid the curse of dimensionality, reduce overfitting, and prevent identifiabil-
ity problems that may arise in high dimensional spaces. This has been known for a
long time, as demonstrated by the specific literature reviews on the topic in the fields
of machine learning, data mining, bioinformatics, genomic, and statistics. Surpris-
ingly, the impact that outliers and wrongly labelled units cause on the determination
of relevant predictors has received far less attention. Indeed, contaminated data can
heavily damage a classifier performance [6], and most variable selection methods
rely on the implicit assumption of dealing with an uncontaminated training set.

The present paper aims at filling this gap. We propose a new robust variable se-
lection method for model-based classification, by embedding a robust classifier, re-
cently introduced in the literature, in a greedy-forward stepwise procedure for model
selection. Section 2 recalls the problem of variable selection in model-based dis-
criminant analysis, and the Robust Eigenvalue Decomposition Discriminant Analy-
sis (REDDA), and then introduce the robust variable selection technique. Section 3
presents the comparison of several feature selection procedures within a simulation
study in an artificially contaminated scenario. A discussion of our results concludes
the paper, outlying some remarks and future research directions.

2 Robust variable selection in model-based classification

Model-based discriminant analysis is a probabilistic framework for supervised clas-
sification, in which a classifier is built from a complete set of N learning observa-
tions (i.e., the training set):

(x, l)=
{
(x1, l1) , . . . ,(xN , lN) ;xn ∈ RP, ln = {ln1, . . . , lnG}′ ∈ {0,1}G; n = 1, . . . ,N

}
(1)

where xn is a P-dimensional continuous predictor and ln is its associated class label,
such that lng = 1 if observation n belongs to group g and 0 otherwise with, clearly,
∑

G
g=1 lng = 1∀n = 1, . . . ,N. We assume that the prior probability of class g is τg > 0

and ∑
G
g=1 τg = 1. The gth class-conditional density is modeled with a P-dimensional

Gaussian distribution with mean vector µµµg ∈RP and covariance matrix ΣΣΣ g ∈PD(P):
xn|ln = g∼ NP(µµµg,ΣΣΣ g). Therefore, the joint density of (xn, ln) is given by:

p(xn, ln;θθθ) = p(ln;τττ)p(xn|ln; µµµg,ΣΣΣ g) =
G

∏
g=1

[
τgφ(xn; µµµg,ΣΣΣ g)

]lng (2)
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where φ(·; µµµg,ΣΣΣ g) denotes the multivariate normal density and θθθ represents the
collection of parameters to be estimated, θθθ = {τ1, . . . ,τG,µµµ1, . . . ,µµµG,ΣΣΣ 1, . . . ,ΣΣΣ G}.
Eigenvalue Decomposition Discriminant Analysis (EDDA) is a family of classi-
fiers developed from the probabilistic structure in (2), wherein different assump-
tions about the covariance matrices are considered. Particularly, EDDA is based on
the following eigenvalue decomposition:

ΣΣΣ g = λgDDDgAAAgDDD
′
g (3)

where DDDg is an orthogonal matrix of eigenvectors, AAAg is a diagonal matrix such that
|AAAg| = 1 and λg = |ΣΣΣ g|1/p. Allowing each parameter in (3) to be equal or different
across groups a family of 14 patterned models arises. To protect parameter estimates
against label noise and outliers, [1] introduced a robust version of EDDA, called
REDDA, by means of the maximization of a trimmed mixture log-likelihood [4], in
which an impartial trimming level γl is enforced in the estimation procedure.

The next step is therefore to include a robust variable selection procedure within
REDDA. We proceed in a stepwise manner, by considering the inclusion of extra
variables into the model, and also the removal of existing variables from the model,
one at a time, conditioning on their discriminating power. We start from the empty
set and then, in each step of the algorithm, we partition the learning observations xn,
n = 1, . . . ,N, into three parts xn = (xc

n,x
p
n ,xo

n), where:

• xc
n indicates the set of variables currently included in the model

• xp
n the variable proposed for inclusion

• xo
n the remaining variables

To decide whether to include the proposed variable xp
n , we compare the following

two competing models:

• Grouping (MGR): p(xn|ln) = p(xc
n,x

p
n ,xo

n|ln) = p(xc
n,x

p
n |ln)p(xo

n|xp
n ,xc

n)
• No Grouping (MNG): p(xn|ln)= p(xc

n,x
p
n ,xo

n|ln)= p(xc
n|ln)p(xp

n |xr
n⊆ xc

n)p(xo
n|xp

n ,xc
n)

where xr
n denotes a subset of the currently included variables xc

n. The Grouping
model specifies that xp

n provides extra grouping information beyond that provided
by xc

n; whereas the No Grouping model specifies that xp
n is conditionally indepen-

dent of the group membership given xr
n. We consider xr

n in the conditional distribu-
tion because xp

n might be related to only a subset of the grouping variables xc
n [3].

The differences between the two models are graphically illustrated in Figure 1. The
model structure of p(xo

n|xp
n ,xc

n) is assumed to be the same for both grouping and no
grouping specification, and we let p(xc

n,x
p
n |ln) and p(xc

n|ln) be a normal density with
parsimonious covariance structure. Additionally, we assume p(xp

n |xr
n ⊆ xc

n) to be a
normal linear regression model, as a result from conditional multivariate normal
means. The selection of which model to prefer is carried out employing a robust ap-
proximation to the Bayes Factor BGR,NG, given by the ratio between the integrated
likelihood of the two competing models. Along the lines of [5], twice the logarithm
of BGR,NG can be approximated with

2log(BGR,NG)≈ BIC(Grouping)−BIC(No Grouping) (4)
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Fig. 1: Graphical representation of the Grouping and the No Grouping models

and a variable xp
n with a positive difference in BIC(Grouping)−BIC(No Grouping)

is a candidate for being added to the model. A robust version of the BIC is employed
here, for avoiding the detrimental effect that class and attribute noise might produce
in the variable selection procedure. The Trimmed BIC (TBIC), firstly introduced in
[4], is employed as a robust proxy for the quantities in (4). Let us define:

T BIC(Grouping) = 2
N

∑
n=1

ζ (xc
n,x

p
n)

G

∑
g=1

lng log
(

τ̂
cp
g φ(xc

n,x
p
n ; µ̂µµ

cp
g , Σ̂ΣΣ

cp
g )
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,x
p
n ,ln)

+

− vcplog(N∗)

(5)

T BIC(No Grouping) = 2
N

∑
n=1

ι(xc
n,x

p
n)

G

∑
g=1

lng log
(

τ̂
c
gφ(xc

n; µ̂µµ
c
g, Σ̂ΣΣ

c
g)
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,ln)

−vclog(N∗)+

+2
N

∑
n=1

ι(xc
n,x

p
n) log

[
φ

(
xp

n ; α̂ + β̂ββ

′
xr

n, σ̂
2
)]

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xp

n |xr
n⊆xc

n)

−vplog(N∗).

(6)

The penalty terms vcp and vc indicate the number of parameters for a REDDA
model respectively estimated on the set of variables xc

n,x
p
n and xc

n; while vp ac-
counts for the number of parameters in the linear regression of xp

n on xr
n. The 0-1

indicator functions ζ (·) and ι(·) identify the subset of observations that have null
weight in the trimmed likelihood under the Grouping and No Grouping models,
with N∗ = ∑

N
n=1 ζ (xn) = ∑

N
n=1 ι(xn). Accordingly, at each iteration of the proce-

dure that leads to the final robust estimates, we discard the bNγlc% of the sample
with the lowest contribution to the conditional likelihood, under the no grouping
model. Once the Concentration step is enforced, the set of parameters

{
α, βββ , σ2

}
for the regression part is robustly estimated via ML on the untrimmed observations,
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in which a stepwise method is employed for automatically choosing the subset of
regressors xr

n.
After each addition stage, we make use of the same procedure described above

to check whether an already chosen variable in xc
n should be removed: in this case

xp
n takes the role of the variable to be dropped, and a positive difference in terms of

TBIC implies the exclusion of xp
n to the set of currently included variables. The pro-

cedure iterates between variable addition and removal stage until two consecutive
steps have been rejected, then it stops. Notice that, whenever γl = 0, BIC and TBIC
coincide and the entire approach reduces to the methodology described in [3].

3 Simulation study

The aim of this simulated example is to numerically assess the effectiveness of the
new methodology, whilst investigating the effect that a (small) percentage of con-
tamination has on standard variable selection procedures. We adopt the data gener-
ating process (DGP) in [3], and add some attribute and class noise to the original
experiment. A total of B = 100 Monte Carlo (MC) experiments are conducted as
follows. From the DGP outlined in [3], N = 500 units are generated and their group
membership retained for constructing the training set; while M = 5000 unlabelled
observations compose the test set. Subsequently, label noise is simulated by wrongly
assigning 20 units coming from the fourth group to the third class. In addition, 5 uni-
formly distributed outliers, having squared Mahalanobis distances from µµµg greater
than χ2

3,0.975 ∀g ∈ {1,2,3,4}, are appended to the training set, with randomly as-
signed labels. These contaminations produce, in each MC replication, a total of 25
adulterated units, that account for slightly less than 5% of the entire learning set.
We validate the performance of our novel method in correctly retrieving the relevant
variables, the comparison being carried out considering the following methods:

• TBIC: new robust stepwise greedy-forward approach via TBIC
• SRUW: stepwise greedy-forward approach via BIC [3]
• SelvarMix: variable selection in model-based discriminant analysis with a regu-

larization approach [2].

Once the important variables have been identified, the associated classifier (i.e.,
REDDA for the robust variable selection criteria, with trimming level γl = 0.05;
and EDDA for the non-robust ones) is trained on the reduced set of predictors and
the classification accuracy is computed on the test set. Lastly, for providing bench-
mark values on the relevance of feature selection, both EDDA and REDDA classi-
fiers are also fitted on the original set with P = 16 variables. Table 1 and Figure 2
show that the misclassification error for TBIC is always lower than for non-robust
procedures. As expected, the best prediction accuracy is obtained via the forward
selection algorithm with TBIC selecting 3 variables. Interestingly, the EDDA clas-
sifier, coupled with (non-robust) variable selection via either SelvarMix or SRUW,
shows on average a higher misclassification error than REDDA learned on the entire
set of features. That is, the harmful effect of adulterated observations is increased
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Fig. 2: Boxplots of the misclassification error, varying variable selection and model-
based classification methods.

Table 1: Average misclassification errors, followed by their standard deviations.

Method TBIC REDDA NoVarSel EDDA NoVarSel SRUW SelvarMix
Misc Error 0.0409 0.051 0.073 0.072 0.0639

(0.0026) (0.0026) (0.0026) (0.0037) (0.0028)

by the presence of noisy variables, also shown by the poor performance of EDDA
with no feature selection. Further research will be devoted to the development of a
methodology that automatically assesses the contamination rate present in a sample,
as the a-priori specification of the trimming level still remains an open issue in this
field, particularly delicate for high-dimensional data.
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