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Abstract. This paper deals with branching processes in varying environment with selection,
where the offspring distribution depends on the generation and every particle has a random fit-

ness which can only increase along genealogical lineages (descendants with small fitness do not

survive). We view the branching process in varying environment (BPVE) as a particular example
of branching random walk. We obtain conditions for the survival or extinction of a BPVE (with or

without selection), using fixed point techniques for branching random walks. These conditions rely

only on the first and second moments of the offspring distributions. Our results can be interpreted
in terms of accessibility percolation on Galton-Watson trees. In particular we obtain that there

is no accessibility percolation on almost every Galton-Watson tree where the expected number of

offspring grows sublinearly in time, while superlinear growths allows percolation. This result is in
agreement with what was found for deterministic trees in [34].
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1. Introduction

A branching process in varying environment (or BPVE ), also called time-inhomogeneous branch-
ing process, is the generalization of the classical Galton-Watson process when the offspring distri-
bution depends on the generation. The limit behaviour of these processes was firstly studied in
[2, 16, 27, 31], and later in [17, 20], among others. Like the Galton-Watson process, the BPVE
serves as a simple model for the growth of a biological population and to each of its realizations we
can associate its Galton-Watson tree. We refer the reader to [28] for a survey of earlier results about
this topic and for biological motivations. See also [13] for a recent study on the survival properties
of these processes and on their connection with percolation theory on trees.

Given a BPVE, we can assign a random label (say, a fitness) to each individual. We suppose
that only the children with fitness higher than their parent’s survive. A BPVE with this selection
mechanism is called branching Process in varying environment with selection or BPWS. This process
can be seen as a model for the evolution of species (for similar models see for instance [22, 23, 30]).
In particular the BPWS is a generalization of the accessibility percolation model on regular trees,
which was introduced in [34], and recently studied on spherically symmetric trees in [18]. In [34]
the authors have deterministic, finite rooted trees, where each vertex has a random label, assigned
according to a non-atomic measure. The root is the ancestor of the population, vertices at distance
n from the root represent individuals of generation n and each vertex in this generation has a fixed
number h(n) of children in generation n + 1. For this model if h(n) grows sublinearly then the
probability that there is a path from the root, with increasing labels, reaching a vertex at distance
n from the root, goes to 0 as n goes to infinity, if the growth is superlinear then the limit is 1.

The BPWS is thus a process where the existence of an infinite line of descendance is equivalent to
the existence of an infinite accessibility path on the underlying (inhomogeneous) Galton-Watson tree.
In this paper, we give conditions for survival (with positive probability there is an infinite population)
and extinction (almost surely the process ends in finite time) for a BPWS. As a corollary, we obtain
that, provided that a certain condition on the second moments is satisfied, if the expected number of
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children in generation n grows sublinearly then there is extinction, while if the growth is superlinear
then there is survival.

In order to obtain our results we see the BPVE as a particular case of a more general process,
which is the branching random walk (or BRW ) where each particle has a position inside a space
X or, equivalently, the particle is assigned a type/label in X (the breeding law accounts for both
the number of children and their position). We identify the BPVE with a BRW on the space N
(see Section 2 for details). We note that this identification allows us to consider these processes
as BRWs on an at most countable space X, a case which is well-studied in both continuous time
and discrete time: we refer the reader, for details and results on BRWs to [5, 7, 10, 35] (continuous
time), [12, 14, 15, 21, 25, 26, 32, 33] (discrete time); see also [8] for a survey on the topic. Examples
of BRWs with countable space X (along with some variants) and their biological applications are
presented in [29, Ch.7]. Of course one could see the fitness of individuals in the BPWS as a position
and thus use results for BRWs on uncountable spaces, but for the uncountable case, as well as cases
with non-trivial interactions between particles, there is a lack of general tools (usually, different
processes need different tools, see for instance [4]). As far as we know, only a small number of
papers are devoted to BRWs where the space X is an uncountable set. One example of such a
process is proposed in [11], where particles are labelled with a reproductive prowess and children
who are too weak will not reproduce; the authors obtain conditions for survival on a family line.
Another example of a model with uncountably many types is [19], where the type is the fitness of the
individual. We stress here that the BPWS is not a particular case of a BPVE, because the number
of surviving children of a particle depends on its generation and also on its fitness. In order to obtain
conditions for survival of a BPWS, our strategy is to construct a stochastic coupling between the
BPWS and a BPVE in such a way that the survival of the latter implies the survival of the former.

For the BPVE we present conditions for survival (Proposition 2.5, Theorem 2.6 and Corollary 2.7)
or extinction (Proposition 2.4). These results are related to other results in the literature: Propo-
sition 2.4 is a consequence of [27, Corollary 3] and Theorem 2.6 is essentially equivalent to the
condition in [2, Theorem 1]. Nevertheless here we provide different and self-consistent proofs of
these facts, which are based on fixed point techniques. These techniques are a well-established tool
for branching processes and BRWs and are here applied to BPVEs and then to BPWSs. In par-
ticular, we exploit the fact that survival is equivalent to the existence of a nontrivial fixed point
of the generating function of the process (Theorem 4.1). We note that while sufficient conditions
for almost sure extinction involve only the sequence of the first moments of the reproduction laws,
conditions for survival cannot rely only on the first moments. We show that given any sequence of
first moments it is possible to construct a corresponding BPVE which dies out almost surely (see
Example 2.10). We also provide a surviving BPVE in Example 2.9 where all the first moments are
smaller than 1.

Here is the outline of the paper. In Section 2 we introduce the notions of BPVE, BRW, BPWS
and define survival and extinction. We state the results for BPVEs and provide examples where
the conditions for survival hold (Example 2.8). We also discuss the two aforementioned examples
(Examples 2.10 and 2.9), which have a counterintuitive behaviour. Our main results are in Section 3,
which is devoted to BPWSs: Proposition 3.1 and Theorem 3.2. As a corollary of these results, we
provide some explicit examples of surviving BPWSs (Example 3.5) and show that on Galton-Watson
trees there is a phase transition (from extinction to survival) where the threshold is the linear growth
of the expected number of offspring of the reproduction laws (Proposition 3.3). In Section 4 the
reader can find the proofs of the statements, along with the results on BRWs which are used to
prove our main results.

2. BPVEs, BRWs and BPWSs

2.1. BPVE and BRW. We begin by defining a branching process in varying environment or BPVE.
The process starts with one particle at time 0 (this is the 0th generation). The random number
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of particles generated by each particle in the nth generation has generating function Φn(z) :=∑+∞
i=0 ρn(i)zi and we define a sequence of random variables {Wn}n∈N by P(Wn = i) := ρn(i). Note

that E[Wn] = Φ′n(1); we denote by mn this first moment. To avoid trivial situations we assume
henceforth that mn > 0 for all n ∈ N. The random variable Wn represents the “typical” random
number of children of a particle in the nth generation; all the particles behave independently. More

formally, the BPVE is the stochastic process {Zn}n∈N such that Zn+1 :=
∑Zn

j=1Wn,j , where Zn
is the number of particles in the nth generation, Z0 is the initial state (Z0 = 1 in our case) and
{Wn,j}j≥1,n≥0 is a family of independent variables such that {Wn,j}j≥1 are identically distributed

copies of Wn.

Definition 2.1. The BPVE becomes extinct (almost surely) if pe := P
(⋃

n≥1{Zn = 0}
)

= 1;

otherwise, we say that it survives (with positive probability).

If we define H0(z) := z for all z ∈ [0, 1] and, recursively, Hn+1 := Hn ◦ Φn, it is not difficult to
show that Hn(0) is the probability that the population is extinct at time n; in particular Hn(0) ↑ pe
as n → +∞. The probability of extinction is monotone with respect to {Φn}n∈N, meaning that, if
Φn ≥ Φn (where {Φn}n∈N is the sequence of generating functions related to another BPVE with
extinction probability p̄e), then by induction Hn ≥ Hn and thus pe ≥ p̄e.

In order to avoid trivial situations we require that Φn(0) < 1 for all n ∈ N, that is, there is always
a nonzero probability of having at least one child for a particle in any generation. This implies that
there is always a positive probability of finding descendants in the nth generation for any given n,
that is, Hn(0) < 1 for all n ∈ N.

The main idea behind our results is the interpretation of a BPVE as a particular case of a
branching random walk. In a branching process all the particles are indistinguishable. In a branching
random walk, on the other hand, particles live on a spatial structure and are thus characterized by
their position (which can also be interpreted as their type).

A discrete-time BRW on an at most countable set X is a stochastic process {ηn}n∈N, where
ηn(x) represents the number of particles alive at x ∈ X at time n. More formally, consider a
family ν = {νx}x∈X of probability measures on the (countable) measurable space (SX , 2

SX ) where
SX :=

{
f : X → N :

∑
y∈X f(y) < +∞

}
. To obtain generation n+ 1 from generation n we proceed

as follows: a particle at site x ∈ X lives one unit of time, then a function f ∈ SX is chosen at random
according to the law νx and the original particle is replaced by f(y) particles at y, for all y ∈ X;
this is done independently for all particles of generation n. Note that the choice of f simultaneously
assigns the total number of children and the location where they will live.

We consider initial configurations with only one particle placed at a fixed site x: let Pδx be the
law of this process.

Definition 2.2. The BRW survives (globally) starting from x if q̄(x) := 1 − Pδx
(∑

w∈X ηn(w) >

0,∀n ∈ N
)
< 1. There is (global) extinction if q̄(x) = 1.

We remark here that a globally surviving BRW can also survive locally, meaning that with
positive probability there will be infinitely many returns to the starting location. Since here we are
just interested in the global survival, we refer the reader to [6, 38] for details.

Given a BPVE, with its sequence {Φn}n∈N of generating functions, we call associated BRW the
process on N where each particle at n ∈ N has a random number of offsprings at n+ 1 according to
the distribution ρn. This is a reducible BRW whose generating function G : [0, 1]N → [0, 1]N satisfies

G(q|n) := Φn(q(n+ 1)), ∀q ∈ [0, 1]N (2.1)

(note that the same identification holds in general for a BRW in varying environment (that is, time-
inhomogeneous BRW) on X and a time-homogeneous BRW on X ×N). A BPVE starting with one
particle survives if and only if the associated BRW does (starting with one particle at 0).
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2.2. BPWS and accessibility percolation. Given a BPVE, each individual can be assigned a
label; this label can be interpreted as a position, a type or a fitness. We assume that the label is
assigned at birth independently for each individual, according to a non-atomic measure µ on R (that
is, x 7→ µ(−∞, x) is a continuous map).

By using this label we define a selection mechanism as follows: all children of a particle with
fitness x ∈ R survive if and only if their fitness belong to the interval [x,+∞). This is a Bernoulli-
type selection, meaning that every child survives (independently) with probability µ(x,+∞). Hence,
elementary computations show that the generating function of the number of children of a particle
with fitness x of generation n, after selection, is Gn,x(z) := Φn

(
zµ(x,+∞)+1−µ(x,+∞)

)
. If we call

mn the expected number of children, before selection, of a particle in generation n, then G′n,x(1) =
Φ′n(1)µ(x,+∞) = mnµ(x,+∞). We call this process branching Process in varying environment with
selection or BPWS.

One graphical way to construct the BPWS is to generate the Galton-Watson tree of the progeny
of the BPVE before selection (starting with one individual represented by the root of the tree) and
to associate independently to every vertex v a random variable Xv ∼ µ. The BPWS erases all the
subtrees branching from a vertex v′ such that Xv′ < Xv, where v is the parent of v′. There is
survival whenever the pruned tree is infinite with positive probability.

Survival of a BPWS is thus equivalent to the presence of accessibility percolation on the Galton-
Watson tree of the associated BPVE. Indeed in the the accessibility percolation model (introduced
in [34]), one considers a graph G = (V, E), and an independent identically distributed sequence of
continuous random variables {Xv}v∈V . The main question of interest is the existence of self-avoiding
paths of vertices {vi}i∈N, starting from the root to the border of the graph (that is, an infinite path
when V is infinite), such that Xvi ≤ Xvi+1 for all i ∈ N. Such a path is called accessibility path
and the existence of at least one of them, with positive probability, is called accessibility percolation.
This question has been addressed mainly on regular trees and hypercubes in [3, 34, 36, 37].

In order to study the behaviour of a BPWS, we denote by An the random set of fitness of
the particles of generation n; hence, the size of the population is Nn := #An (# represents the
cardinality of a set) almost surely. From now on, whenever the ancestor has fitness x, we say that
the process starts from x.

Definition 2.3.

(1) We define the probability of local extinction in I ⊆ R starting from x by P(lim infn→+∞{An∩
I = ∅}|A0 = {x}). We say that there is local extinction when this probability is equal to 1
and that there is local survival otherwise.

(2) We say that there is global survival starting from x if and only if there is local survival in R
starting from x.

Note that there is global survival starting from x if and only if P(An 6= ∅,∀n ∈ N|A0 = {x}) ≡
P(Nn > 0,∀n ∈ N|A0 = {x}) > 0. It is clear from the definition that local survival implies global
survival. We note that the progeny of a particle with fitness x has fitness in [x,+∞); moreover, if
we are interested in local survival, that is, the survival of the progeny in a fitness interval (a, b), we
can disregard (or “kill”) all particles with fitness outside this interval. Moreover, by using a coupling
argument, it is easy to see that the probability of local extinction is nondecreasing with respect to
x ∈ R.

Sometimes it is useful to consider the fitness of the least-fit individual which we denote by ln :=
minAn (where min(∅) := +∞). By the nature of the selection process and the fact that µ is non-
atomic, {ln}n∈N is a strictly increasing random sequence almost surely. Given any measurable set
I, if µ(I) = 0 there is local extinction in I. In general there is local survival in I starting from x if
and only if P(µ((limn ln,+∞) ∩ co(I)) > 0) > 0 (where co(I) is the essential convex hull of I, that
is the smallest interval J such that µ(I \J) = 0). Indeed no contribution to co(I) can come from its
right since particles cannot have a smaller fitness than their parent’s and, by definition of ln, there
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are no individuals of generation n with fitness in (−∞, ln). Once there is survival in co(I) then if is
easy to show, by using a Borel-Cantelli argument, that there is survival in I.

2.3. Preliminary results for BPVEs. We consider a BPVE: although the paper is focused mainly
on conditions for survival, nevertheless, there is a simple condition for extinction which involves only
the sequence of first moments {mn}n∈N (see Example 2.9 for an application).

Proposition 2.4. Given a BPVE such that if infn∈N
∏n
i=0mi = 0, then there is extinction.

The following characterization of surviving BPVEs comes from a result on BRWs (see Theo-
rem 4.1).

Proposition 2.5. Consider a BPVE and its sequence {Φn}n∈N of generating functions. There is
survival for the process if and only if there exists q ∈ [0, 1]N, n0 ∈ N such that q(n0) < 1 and
Φn(q(n+ 1)) ≤ q(n) for all n ≥ n0.

Although this proposition is very useful from a theoretical point of view, it is sometimes difficult
to find the sequence q. Thus, it is natural to look for different (sufficient) conditions for survival

which can be derived from Proposition 2.5. To this aim, we denote by m
(2)
n the second moment

E[W 2
n ] of the reproduction law of the nth generation; henceforth we suppose that this moment is

finite for every sufficiently large n. Note that m
(2)
n = Φ′′n(1) + mn. Theorem 2.6 and Corollary 2.7

provide sufficient conditions for survival (see Example 2.10 for an application). The strategy to
prove survival is to show that, to find a good sequence q, it suffices to control the ratio between the
second moment and the product of the first moments of the reproduction laws.

Theorem 2.6. Consider a BPVE such that m
(2)
n < +∞ for every sufficiently large n. Then, for

every n ∈ N, the following statements are equivalent:

(1) 
∑+∞
j=n

m
(2)
j −mj

mj

(∏j
i=nmi

)−1
< +∞

infj∈N
∏j
i=0mi > 0

(2)

lim
k→+∞

[( n+k∏
i=n

mi

)−1
+

n+k∑
j=n

m
(2)
j −mj

mj

( j∏
i=n

mi

)−1]
< +∞.

Moreover, if one of these conditions holds for some n then the BPVE survives.

Note that if (1) (resp. (2)) holds for some n = n0 then it holds for every n ≥ n0. The conditions
in Theorem 2.6 are implied by other conditions which are easier to check, as the following corollary
shows.

Corollary 2.7. Consider a BPVE such that m
(2)
n < +∞ for every sufficiently large n. If one of

the following holds:

(1)
∑+∞
j=n

m
(2)
j

mj

(∏j
i=nmi

)−1
< +∞ for some n ∈ N;

(2) lim supn→+∞
n

√
m

(2)
n /m2

n < lim infn→+∞
n

√∏n−1
i=0 mi;

(3) there exists a function g : N → [1,+∞) such that m
(2)
n /m2

n ≤ g(n) for every sufficiently

large n and lim supn→+∞ g(n+ 1)/g(n) < lim infn→+∞
n

√∏n−1
i=0 mi;

(4) limn→+∞mn = +∞ and there exists M,k ≥ 1 such that m
(2)
n /m2

n ≤ kMn for all sufficiently
large n ∈ N;

then the BPVE survives.
5



Theorem 2.6 is essentially contained in [2] but here we make use of a different, self-consistent
proof. To compare with other results in the literature, we note that the sufficient condition for
a.s. extinction in [13, Proposition 1.1] is a consequence of Proposition 2.4. On the other hand,
the sufficient condition for survival in [13, Proposition 1.1] follows from Corollary 2.7(3) by taking

g(n) := supj∈Nm
(2)
j / infj∈Nm

2
j > 0. Another sufficient condition for survival of a BPVE is given by

[20, Theorem 1] which, in general, is not comparable with Theorem 2.6.
In the following example we consider some relevant reproduction laws which satisfy the conditions

of Theorem 2.6.

Example 2.8. Consider the following sequences of reproduction laws ρn.

(1) Let the law be geometric: ρn(i) = mi
n/(1 + mn)i+1. If

∑+∞
n=0(

∏n
j=0mj)

−1 < +∞, then the

BPVE survives. As a partial converse, when
∑+∞
n=0(

∏n
j=0mj)

−1 = +∞, we have that it is

enough that infn∈N
∏n
i=omi = 0 or infn∈Nmn > 0 to get extinction.

(2) Let the law be Poisson: ρn ∼ P(mn). If
∑+∞
n=0(

∏n
j=0mj)

−1 < +∞, then the BPVE survives;

when
∑+∞
n=0(

∏n
j=0mj)

−1 = +∞, we have that it is enough that infn∈N
∏n
i=omi = 0 or

infn∈Nmn > 0 to get extinction.
(3) Let the law be binomial: ρn ∼ B(kn, rn). If

∑+∞
n=0(

∏n
j=0 kjrj)

−1 < +∞, then there is
survival. Noting that mn = knrn, the same above conditions for extinction apply.

Note that the geometric law is particularly relevant since it appears as the total number of children
of a particle in a continuous-time branching process with breeding rate mn and death rate 1. Survival
follows from Theorem 2.6, noting that the generating function is Φn(z) := 1/(1+mn(1−z)), whence

the average number of children is d
dzΦn(z)|z=1 = mn and m

(2)
n −mn = d2

dzΦn(z)|z=1 = 2m2
n which

implies (m
(2)
n −mn)/m2

n = 2 for all n. Extinction is a consequence of Proposition 2.4 for the first
condition, and of [2, Theorem 2] for the second one. The other two cases are analogously obtained.

The following two examples show that a BPVE can survive even if mn < 1 for all n, while it can
die out whatever the sequence {mn}n∈N (even if infn∈Nmn > 1 or mn →∞).

Example 2.9. Let us consider a sequence {an}n∈N such that an ∈ (0, 1) for all n. Define Wn

as a Bernoulli variable with parameter 1 − an. Clearly m
(2)
n = mn = 1 − an < 1 for all n: the

corresponding BPVE survives with positive probability if and only if and
∑
n∈N an < +∞.

It is well known that, since an < 1 for all n ∈ N then
∑
n∈N an < +∞ if and only if

∏
n∈N(1−an) >

0. If
∑
n∈N an = +∞ then

∏
n∈Nmn =

∏
n∈N(1 − an) = 0 and the BPVE dies out according to

Proposition 2.4. Survival would follow analogously when
∑
n∈N an < +∞ by applying Theorem 2.6;

indeed the sum in the first condition of the theorem is 0 (since m
(2)
n = mn) and infj

∏j
i=0mi =∏

n∈N(1− an) > 0.

Example 2.10. Consider a nonnegative sequence {mn}n∈N. Define Wn by

P(Wn = i) =

{
mn/kn if i = kn

1−mn/kn if i = 0

where the sequence {kn}n∈N of integers satisfies∑
n∈N

(1−mn/kn)
∏n−1

i=0 ki = +∞.

Note that mn = E[Wn]. We show recursively that such a sequence {kn}n∈N exists and we claim that
the corresponding BPVE dies out almost surely.

Indeed, consider any sequence {an}n∈N such that an ∈ (0, 1) and
∑
n∈N an = +∞ (take for

instance an := ε > 0 for all n). The idea is to find {kn}n∈N in such a way that (1−mn/kn)
∏n−1

i=0 ki ≥
an. Fix k0 ∈ N such that 1 −m0/k0 ≥ a0. Suppose we already defined ki for all i ≤ n − 1; since

(1−mn/x)
∏n−1

i=0 ki → 1 as x→ +∞, there exists kn ∈ N such that (1−mn/kn)
∏n−1

i=0 ki ≥ an.
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Now denote as before by An the event “the BPVE survives up to time n”. Since the maximum

number of individuals alive at time n is
∏n−1
i=0 ki we have P

(
Acn|

⋂n−1
j=1 Aj

)
≥ (1−mn−1/kn−1)

∏n−2
i=0 ki ≥

an−1 for all n ≥ 1 (where
∏−1
i=0 ki := 1). The result follows this equivalence:

P
(+∞⋂
i=0

Ai
)
> 0⇐⇒


P
(
Aci |

⋂i−1
j=0Aj

)
< 1, ∀i ≥ 0

∑+∞
i=0 P

(
Aci |

⋂i−1
j=0Aj

)
< +∞

(2.2)

where P
(
Ac0|

⋂−1
j=0Aj

)
:= P(Ac0).

For an explicit example, take mn := 2 for all n, k0 > 2 and kn := k2
n−1

0 for all n ≥ 1. Clearly∏n−1
i=0 ki = k2

n−1

0 = kn hence 0 < (1−mn/kn)
∏n−1

i=0 ki = (1− 2/kn)kn → e−2 which implies minn(1−
mn/kn)

∏n−1
i=0 ki > 0; thus

∑
n∈N(1−mn/kn)

∏n−1
i=0 ki = +∞.

3. BPWS: Main results

Throughout this section we consider a BPWS with fitness measure µ; we denote by {mn}n∈N and

{m(2)
n }n∈N the first and second moment of the offspring distribution of the process before selection.

The generating functions before selection are denoted by {Φn}n∈N.
In the following proposition we give a condition for extinction of a BPWS by proving the absence

of an admissible infinite path from the root in the associated accessibility percolation model on the
Galton-Watson tree. This generalizes what was already noted in [18].

Proposition 3.1. Given a BPWS , if there exists n0 ≥ 0 such that

lim inf
n→+∞

∏n−1
i=0 mi

(n+ n0 + 1)!
= 0,

then there is global extinction for every starting fitness x ∈ R.

In particular Proposition 3.1 applies to Galton-Watson trees associated to time-homogeneous
branching processes (or in any case where {mn}n∈N is a constant sequence or simply sublinear): on
these trees there is no accessibility percolation. The following theorem gives a sufficient condition
for survival of a BPWS (by definition

∏n−1
i=n ci := 1).

Theorem 3.2. Suppose that there exists a sequence {ci}i≥0 of positive real numbers such that∑+∞
i=0 ci/mi < +∞ and 

∑+∞
j=n

m
(2)
j −mj

m2
j

(
Cj
∏j−1
i=n ci

)−1
< +∞

infn∈N C
n
∏n
j=0 ci > 0

(3.3)

for some n ∈ N and C > 0. Then the BPWS starting with one particle with fitness x̄ such that
µ(x̄,+∞) > 0 survives locally in every I ⊆ [x̄,+∞) such that µ(I) > 0.

As an application of Proposition 3.1 and Theorem 3.2 we have that, on almost every Galton-
Watson tree with the expected number of offspring growing as nα, there is a phase transition at the
critical exponent α = 1. The proof is very easy and we omit it.

Proposition 3.3. Consider a BPWS such that mn ∼ βnα, β > 0.

(1) If α < 1, there is extinction.
(2) If α > 1 and equation (3.3) is satisfied, then there is survival.

More generally, (1) if mn/(n + n̄) ≤ 1 for all sufficiently large n (and some n̄ ∈ N) then there is
extinction, (2) if lim inf mn/n

α > 0 for some α > 1 (and equation (3.3) is satisfied) then there is
survival.

The following corollary, as Corollary 2.7, gives more explicit conditions for survival. We omit its
proof.
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Corollary 3.4. Suppose that there exists a sequence {ci}i≥0 of positive real numbers such that∑+∞
i=0 ci/mi < +∞ and one of the following conditions holds for some C > 0:

(1)
∑+∞
j=n

m
(2)
j

m2
j

(
Cj
∏j−1
i=n ci

)−1
< +∞ for some n ∈ N;

(2) lim supn→+∞
n

√
m

(2)
n /m2

n < C lim infn→+∞
n

√∏n−1
i=0 ci;

(3) there exists a function g : N → [1,+∞) such that m
(2)
n /m2

n ≤ g(n) for every sufficiently

large n and lim supn→+∞ g(n+ 1)/g(n) < C lim infn→+∞
n

√∏n−1
i=0 ci;

(4) limn→+∞ cn = +∞ and there exists M,k ≥ 1 such that m
(2)
n /m2

n ≤ kMn for all sufficiently
large n ∈ N;

then the BPWS starting with one particle with fitness x̄ such that µ(x̄,+∞) > 0 survives locally in
every I ⊆ [x̄,+∞) such that µ(I) > 0.

As in Example 2.8, we are able to show some reproduction laws satisfying the conditions of
Theorem 3.2.

Example 3.5. The following reproduction laws give rise to BPWSs which survive.

(1) Geometric laws: ρn ∼ G(1/(1 +mn)) such that
∑+∞
i=0 1/mn < +∞.

(2) Poisson laws: ρn ∼ P(mn) where
∑+∞
i=0 1/mi < +∞;

(3) Binomial laws: ρn ∼ B(kn, rn) such that
∑+∞
i=0 1/kiri < +∞;

in particular the geometric law corresponds to a continuous-time branching process with selection.

The role played by the sequence {ci}i≥0 is twofold: on the one hand it allows to treat cases where∑+∞
i=0 1/mi = +∞ and, on the other hand, when

∑+∞
i=0 1/mi < +∞ it allows larger upper bounds

for (m
(2)
j −mj)/m

2
j . In the following example we analyze two explicit cases.

Example 3.6. Let {Wn}n∈N such that

mn :=

{
k + 1 n = 2k

(n+ 1)2 otherwise

and

cn :=

{
1/(k + 1) n = 2k

2 otherwise.

Then
∑
n∈N 1/mn = +∞ while

∑
n∈N cn/mn < +∞. Moreover, if b ∈ (1, 2), it is easy to prove that∏n

i=0 ci = 2n−blog2(n)c/(blog2(n)c+1)! ≥ bn eventually as n→ +∞; whence, if lim supn→+∞
n

√
m

(2)
n /m2

n <

+∞ then Corollary 2.7(2) applies and there is survival for the BPWS.

Consider now a process where mn = bn (for some b > 1). If m
(2)
n /m2

n ≤ Kαncn(n−1)/2 for some
K > 0, c ∈ (1, b) and α ≥ 1 then Corollary 3.4(1) applies (with ci := (α + 1)ci, C = 1 and n = 0)
and there is survival for the BPWS.

4. Proofs

We begin by considering a fundamental result on BRWs. For a BRW, global survival can be
characterized by using a generating function associated to the process: namely the function G :
[0, 1]X → [0, 1]X where, for all q ∈ [0, 1]X , G(q) ∈ [0, 1]X is the following weighted sum of (finite)
products

G(q|x) :=

∫
SX

νx(df)
∏
y∈X

q(y)f(y) =
∑
f∈SX

νx(f)
∏
y∈X

q(y)f(y),

G(q|x) being the x coordinate of G(q).
8



Note that [0, 1]X is a partially ordered set where q ≥ z if and only if q(x) ≥ z(x) for all x ∈ X;
clearly q > z stands for “q ≥ z and q(x) > z(x) for some x ∈ X”. The function G is nondecreasing
and continuous with respect to the product topology on [0, 1]X and the family {νx}x∈X is uniquely
determined by this generating function.

It is easy to show (see for instance [6, Corollary 2.2] or the proof of Theorem 4.1) that q̄ is the
smallest solution of G(q) ≤ q in [0, 1]X , in particular it is the smallest fixed point of G in [0, 1]X ,
that is G(q̄) = q̄.

Define the first moments mxy :=
∑
f∈SX

f(y)νx(f); denote by m
(0)
xy := δxy and m

(n+1)
xy :=∑

w∈X m
(n)
xwmwy for all n ∈ N (clearly, by using +∞ · 0 := 0 and +∞ · x := +∞ for all x > 0,

we have m
(n)
xy ∈ [0,+∞] for all n ∈ N, x, y ∈ X). Given v ∈ [0,+∞]X we define Mv ∈ [0,+∞]X by

Mv(x) :=
∑
w∈X mxwv(w); clearly Mnv(x) =

∑
w∈X m

(n)
xwv(w). The following theorem character-

izes global survival; it appears, in different flavors, in [38, Theorem 4.1] or [9, Theorem 3.1] and it is
based on [6, Proposition 2.1]. Unlike those results, here we remove the requirement that

∑
y∈X mxy

is uniformly bounded; hence we write the proof which is slightly different from the ones in the above
cited papers. We point out that it is essential to remove the above uniform bound on

∑
y∈X mxy in

order to avoid a similar bound supn∈Nmn < +∞ which, according to Proposition 3.1, would imply
extinction for a BPWS. Henceforth, by 0,1 ∈ [0, 1]X we mean the constant functions 0(x) := 0,
1(x) := 1 for all x ∈ X; note that G(1) = 1.

Theorem 4.1. Consider a BRW and a fixed x ∈ X. The following statements are equivalent:

(1) q̄(x) < 1 (i.e. there is global survival starting from x);
(2) there exists q ∈ [0, 1]X such that q(x) < 1 and G(q) ≤ q (i.e. G(q|y) ≤ q(y), for all y ∈ X);
(3) there exists q ∈ [0, 1]X such that q(x) < 1 and G(q) = q (i.e. G(q|y) = q(y), for all y ∈ X).

If q satisfies either (2) or (3), then q ≥ q̄. Moreover, global survival starting from x implies that

lim infn→+∞
∑
y∈X m

(n)
xy > 0.

Proof. Consider the sequence {qn}n∈N defined as{
q0 := 0

qn+1 := G(qn), ∀n ∈ N

clearly qn(x) is the probability that the process, which starts with one particle at x at time 0, has
no particles at time n . Moreover qn converges pointwise to q̄ (that is, with respect to the product
topology). By the continuity of G we have q̄ = G(q̄).

Now (1) =⇒ (3) =⇒ (2) are trivial. Assume (2); by induction on n we have that qn ≤ q; indeed
0 ≤ q and, since G is nondecreasing, qn+1 = G(qn) ≤ G(q) ≤ q. By taking the limit as n → +∞
we have q̄ ≤ q. This implies q̄(x) ≤ q(x) < 1; thus (1) is proven.

We are left to prove that, say, (1) implies lim infn→+∞
∑
y∈X m

(n)
xy > 0. To this aim consider a

realization {ηn}n∈N of the BRW and denote by Ex the expectation with respect to Pδx . If Pδx(S) > 0
where S := {

∑
y∈X ηn(y) > 0, ∀n ∈ N} then, since

∑
y∈X ηn(y) ≥ 1 on S, we have∑

y∈X
m(n)
xy = Ex

[∑
y∈X

ηn(y)
]
≥ Ex

[∑
y∈X

ηn(y)
∣∣∣S]Pδx(S) ≥ Pδx(S) > 0.

This implies infn∈N
∑
y∈X m

(n)
xy > 0 which is equivalent to lim infn→+∞

∑
y∈X m

(n)
xy > 0 (since∑

y∈X m
(n)
xy = 0 for some n implies the same equality for all subsequent values of n). �

Applying Theorem 4.1 to the BRW associated to the BPVE we can prove the Propositions 2.4
and 2.5.

Proof of Proposition 2.4. It can be easily derived from Theorem 4.1. This could also be seen as a
consequence of [27, Corollary 3]. �
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Proof of Proposition 2.5. According to Theorem 4.1 the associated BRW survives globally if and
only if there exists q ∈ [0, 1]N such that G(q) ≤ q and q(n) < 1 for some n ∈ N (that is, q < 1). By
equation (2.1) the condition is equivalent to Φn(q(n + 1)) ≤ q(n) for all n ≥ n0 and q(n0) < 1 for
some n0; indeed we can always define q(i) = 1 for all i = 0, 1, . . . , n0−1 and we have Φn(q(n+1)) ≤
q(n) for all n ∈ N. This implies survival starting from the n0th generation.

However, since Φn(0) < 1 for all n ∈ N, there is a positive probability for the BPVE to survive
up to the n0th generation (for every fixed n0 ∈ N). Thus, there is survival starting from the 0th
generation if and only if there is survival starting from the n0th generation. �

Proof of Theorem 2.6. The idea is to construct a solution q as in Proposition 2.5. To this aim,
we make use of an upper bound due to [1]: Φn(x) ≤ fn(x) for all x ∈ [0, 1] where fn(x) :=

1− bn/(1− cn) + bnx/(1− cnx) with bn := m3
n/(m

(2)
n )2 and cn := (m

(2)
n −mn)/m

(2)
n . In particular,

by defining 1/0 := +∞ and 1/+∞ := 0, we have

fn(x) = 1− 1

ξn(1/(1− x))

for all x ∈ [0, 1] where

ξn(s) :=

{
s/mn + (m

(2)
n −mn)/m2

n s ∈ R
+∞ s = +∞.

Define Sn,l :=
∑l
j=n

m
(2)
j −mj

mj

(∏j
i=nmi

)−1
and βn,l := Sn,l +

(∏l
i=nmi

)−1
(for all 0 ≤ n ≤ l).

Note that Sn,l is nondecreasing with respect to l: indeed, Wj is an integer-valued random variable,

whence m
(2)
j ≥ mj . Now we prove that also l 7→ βn,l is nondecreasing. Indeed it is trivial to

show that βn,l+1 − βn,l = (m
(2)
l+1/m

2
l+1 − 1)(

∏l
i=nmi

)−1 ≥ 0. Observe that, for every n ∈ N,

infj≥n
∏j
i=nmi > 0 if and only if infj∈N

∏j
i=0mi > 0; moreover,

∏j
i=0mi and

∏j
i=nmi have the

same behaviour as j → +∞.
(1) =⇒ (2). Indeed if Sn,n+k converges as k → +∞ and βn,n+k − Sn,n+k is bounded from above

with respect to k, then βn,n+k is bounded from above with respect to k, thus the convergence follows
from the monotonicity.

(2) =⇒ (1). Clearly Sn,n+k ≤ βn,n+k; if βn,n+k converges as k → +∞, since Sn,n+k is non
decreasing then it converges, thus βn,n+k − Sn,n+k is bounded from above with respect to k.

(2) =⇒ survival. Denote limk→+∞ βn,n+k by bn. Now we prove that: (a) q(n) := 1−1/bn ∈ [0, 1]
for all n ∈ N, (b) q(n) < 1 for some n and (c) q is a solution of Φn(q(n + 1)) ≤ q(n). Thus
Proposition 2.5 applies.

Clearly bn ≥ βn,n = 1/mn + (m
(2)
n − mn)/m2

n = m
(2)
n /m2

n ≥ 1, whence q(n) ∈ [0, 1] and (a)
is proved. Moreover (2) implies 1 − 1/bn < 1, that is, (b). To prove (c) it suffices to show that
q(n) = fn(q(n+ 1)) ≥ Φn(q(n+ 1)). To this aim we show that ξn(bn+1) = bn. Indeed, by using the
continuity of ξn,

ξn(bn+1) = lim
k→+∞

(βn+1,n+k+1/mn + (m(2)
n −mn)/m2

n)

= lim
k→+∞

[( n+k+1∏
i=n

mi

)−1
+

n+k+1∑
j=n+1

m
(2)
j −mj

mj

( j∏
i=n

mi

)−1
+ (m(2)

n −mn)/m2
n)
]

= lim
k→+∞

βn,n+k+1 = bn.

�

Proof of Corollary 2.7. It is enough to prove that (4) =⇒ (3) =⇒ (2) =⇒ (1) =⇒ survival.
10



(1) =⇒ survival. Sincem
(2)
j /mj ≥ 1 then

∑+∞
j=n

m
(2)
j

mj

(∏j
i=nmi

)−1
< +∞ implies both limn→+∞

∏n
i=0mi =

+∞ and
∑+∞
j=n

(m
(2)
j −mj)

mj

(∏j
i=nmi

)−1
< +∞ whence condition (1) of Theorem 2.6 holds and the

survival follows.
(2) =⇒ (1). It follow easily from Cauchy’s Root Test.
(3) =⇒ (2). We observe that since g : N→ [1,+∞) then lim supn→+∞ g(n+ 1)/g(n) ≥ 1. For every

ε > 0 define Kε := supn
(∏n−1

i=0 g(i+ 1)/g(i)
)
/(lim supn→+∞ g(n+ 1)/g(n) + ε)n < +∞; then

m(2)
n /m2

n ≤ g(n) = g(0)

n−1∏
i=0

g(i+ 1)/g(i) ≤ g(0)Kε(lim sup
n→+∞

g(n+ 1)/g(n) + ε)n

which implies lim supn→+∞
n

√
m

(2)
n /m2

n ≤ lim supn→+∞ g(n + 1)/g(n) + ε. This can be done for

every ε > 0, hence

lim sup
n→+∞

n

√
m

(2)
n /m2

n ≤ lim sup
n→+∞

g(n+ 1)/g(n) < lim inf
n→+∞

n

√√√√n−1∏
i=0

mi.

(4) =⇒ (3). It is enough to choose g(n) := kMn.
�

Proof of Proposition 3.1. We start by supposing that the initial fitness x is chosen according to µ.
We use the identification of the BPWS with the associated accessibility percolation model on its
infinite Galton-Watson tree: indeed, if the tree is finite, i.e. there is extinction before selection,
there is extinction also for the BPWS. Suppose that the Galton-Watson tree τ is infinite; then,
almost surely, the number of leaves at distance n from the root, say sn(τ), has an asymptotic value

sn(τ) ∼W
∏n−1
i=0 mi as n→ +∞ for a suitable random variable W (it is enough to use a martingale

argument as in [24, Chapter I, Section 8.1]). Note that there is a unique path of length n from the
root to each leaf. The probability that a fixed path of length n is admissible is 1/(n + 1)! since
there are (n+ 1)! possible orderings for the n+ 1 labels and all orderings have the same probability.
Denote by An the event “there exists an admissible path of length n from the root” and by Pτ the
probability conditioned on the realization τ of the Galton-Watson tree. Thus for every τ , Pτ (An) ≤
sn(τ)/(n + 1)!. On the other hand, for almost every τ , sn(τ)/(n + 1)! ∼

(
W
∏n−1
i=0 mi

)
/(n + 1)! as

n→ +∞; thus lim infn→+∞ sn(τ)/(n+ 1)! = 0. Hence,

lim
n→+∞

Pτ (An) = lim inf
n→+∞

Pτ (An) ≤ lim inf
n→+∞

sn(τ)/(n+ 1)! = 0.

This yields the result when n0 = 0.
Suppose n0 > 0 and consider a new BPWS with generating functions {Φ̂n}n∈N (before selection)

where Φ̂n(z) := z if n < n0 and Φ̂n(z) := Φn−n0
(z) if n ≥ n0 (for all z ∈ [0, 1]). This means that

every individual from generation 0 to n0 − 1 has exactly one child. This new BPWS survives with
positive probability if and only if the original one does; indeed, it is enough to note that there is
always a positive probability that the unique path from generation 0 to generation n0 is admissible.
The result follows by the first part of the proof by noting that

∏n+n0−1
i=0 m̂i =

∏n−1
i=0 mi.

This proves that the probability of extinction is 1 for almost every starting fitness x with respect
to µ; since this probability is nondecreasing with respect to the starting fitness x we have that it is
1, for all x ∈ R. �

Proof of Theorem 3.2. Note that it is enough to prove local survival in [x̄, y) where µ(x̄, y) > 0.
Indeed, if µ([y,+∞) ∩ I) > 0 then, according to the Borel-Cantelli lemma local survival in [x̄, y)
implies that an infinite number of particles have fitness in [y,+∞) ∩ I. Furthermore, C can always
be chosen as equal to 1, by using a new sequence c′i := Cci instead of ci; thus, we assume, without
loss of generality, C = 1. Finally, observe that if the condition (3.3) holds for some n = n1 then it
holds for every n ≥ n1.
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Fix δ ∈ (0, µ(x̄,+∞)) and, using the continuity of µ, pick y such that µ(x̄, y) = δ. Let n0 ∈ N
be such that

∑
n≥n0

cn/mn < δ/2; n0 can always be chosen larger than n1. Let pn := δ/(2n0) for

all n < n0 and pn := cn/mn for all n ≥ n0. We construct recursively a strictly increasing sequence
{xn}n∈N satisfying {

x0 = x̄,

µ(xn, xn+1) = pn.

Clearly
∑
n≥n0

pn < δ/2 and limn→+∞ xn < y. Indeed

µ(x̄, lim
n→+∞

xn) =
∑
n∈N

µ(xn, xn+1) =
∑
n<n0

pn +
∑
n≥n0

pn < δ = µ(x̄, y).

Thus, if we can prove local survival of the BPWS in [x̄, limn→+∞ xn) we have local survival in [x̄, y).
We proceed by constructing a BPVE which is stochastically dominated by the BPWS as follows:

at each generation n ≥ 1 we obtain a BPVE by removing all the particles of the BPWS with fitness
outside the interval [xn−1, xn) (along with their progenies). More precisely the BPVE starts with
one particle with fitness x̄ which breeds according to the law of W0 and kills all the particles with
fitness outside the interval [x0, x1); this is equivalent to removing each child independently with
probability 1 − p0. Given the nth generation, we construct the next one by keeping all children of
the particles of the nth generation whose fitness belongs to the interval [xn, xn+1); again, this is like
removing each newborn independently with probability 1− pn. This is a BPVE which is dominated
by the original BPWS since if a particle has fitness x ∈ [xn−1, xn), in the BPWS we keep every child
with fitness in the interval [x,+∞) while in the BPVE we keep only those children whose fitness
belongs to [xn, xn+1) ⊂ [x, y) ⊂ [x,+∞). Hence, the survival of the BPVE implies the local survival
of the BPWS in [x̄, y).

Denote by m̃n and m̃
(2)
n the first and second moments respectively of this BPVE. They are

related to the moments of the original process: m̃n = pnmn and m̃
(2)
n − m̃n = p2n(m

(2)
n −mn). Note

that m̃n = cn and (m̃
(2)
n − m̃n)/m̃n

(∏n
i=n0

m̃i

)−1
= (m

(2)
n −mn)/m2

n

(∏n−1
i=n0

ci
)−1

for all n ≥ n0.
Theorem 2.6 yields the conclusion. �
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