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Abstract In a standard classification framework, a discriminating rule is usually
built from a trustworthy set of labeled units. In this context, test observations will be
automatically classified as to have arisen from one of the known groups encountered
in the training set, without the possibility of detecting previously unseen classes. To
overcome this limitation, an adaptive semi-parametric Bayesian classifier is intro-
duced for modeling the test units, where robust knowledge is extracted from the
training set and incorporated within the priors’ model specification. A successful
application of the proposed approach in a real-world problem is addressed.
Abstract Di solito, in un problema di classificazione, si costruisce una regola dis-
criminante in base ad un insieme affidabile di unità etichettate. E’ cosı̀ possibile,
quindi, attribuire le osservazioni di un dataset di test ad uno dei gruppi noti, presenti
nel training set. Non vi è invece possibilità di rilevare classi mai viste prima. In molti
contesti applicativi, tuttavia, può accadere che emergano nuove classi. Per rispon-
dere a questa necessità, si introduce un classificatore bayesiano semi-parametrico,
che estrae informazione robusta dal dataset di training, la incorpora come prior
knowledge ed è in grado di includere nuove classi per modellare le unità del test
set. Viene poi presentata un’applicazione dell’approccio proposto su dati reali.
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1 Introduction and Motivation

The usual framework of supervised classification does not contemplate the possi-
bility of having test units belonging to a class not previously observed in the learn-
ing phase. A classic hypothesis is that the training set contains samples for each
and every group within the population of interest. Nevertheless, this strong assump-
tion may not hold true in fields like biology, where novel species may appear and
their detection is an important issue, or in social network analysis where communi-
ties continuously expand and evolve. Therefore, a classifier suitable for these situ-
ations needs to adapt to the detection of previously unobserved classes, accounting
also for few extreme and outlying observations that may emerge in such evolving
ecosystems. Unfortunately, standard supervised methods will predict class labels
only within the set of groups previously encountered in the learning phase.
We propose a flexible procedure in a semi-parametric Bayesian framework for deal-
ing with outliers and hidden classes that may arise in the test set. The learning
process articulates in two phases. First, we infer the structure of the known compo-
nents from the labeled set via standard robust procedures. Consequently, employing
an Empirical Bayes rationale, the dynamic updating typical of Bayesian statistics is
adopted to model the new, unlabeled dataset allowing for the detection of possibly
infinite new components.
The rest of the paper is organized as follows: in Section 2 the main features of the
novel model are presented. An application to the discrimination of wheat kernels va-
rieties, under sample selection bias, is reported in Section 3. Section 4 summarizes
the contributions and highlights future research directions.

2 The model

Consider a classification framework with {(x1, l1), . . . ,(xN , lN)} identifying the
training set: xn is a p-variate observation and ln its associated group label, ln ∈
{1, . . . ,G} with G the number of unique observed classes. Correspondingly, let
{y1, . . . ,yM} be the test set, where it is assumed, differently from the standard frame-
work, that its associated (unknown) labels may not only belong to the set of previ-
ously observed G classes, but potentially more groups could be present within the
unlabeled units. That is, there may be a number H of novel classes in the test such
that the total number of groups in the population is E = G+H, with H ≥ 0.
We assume that each observation in the test set is generated from a mixture of G+1
elements: G densities f (·|ΘΘΘ g) parametrized by ΘΘΘ g and an extra term, called novelty
component. In formulas:

ym ∼
G

∑
g=1

πg f (·|ΘΘΘ g)+π0 fnov, (1)

where πg, g = 1, . . . ,G indicates the prior probability of observing class g (already
present in the learning set), while π0 is the probability of observing a previously
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unseen class, such that ∑
G
g=0 πg = 1. Different specifications for the known com-

ponents can be easily accommodated in the general formulation of (1): Gaussian
distributions will be subsequently considered, in line with the application reported
in Section 3. A Bayesian nonparametric approach is employed to model fnov. In
particular, we resort to the Dirichlet Process Mixture model [1, 4], imposing the
following structure:

fnov =
∫

f (·|ΘΘΘ nov)G(dΘΘΘ
nov), G∼ DP(γ,H),

where DP(γ,H) is the usual Dirichlet process with concentration parameter γ and
base measure H. Note that we use the superscript nov to denote a parameter relative
to the novelty part of the model. Adopting Sethuraman’s Stick Breaking construc-
tion [7], we can express the likelihood as follows:

L (y|πππ,µµµ,ΣΣΣ ,ωωω) =
M

∏
m=1

[
G

∑
g=1

πgφ
(
ym|µµµg,ΣΣΣ g

)
+π0

∞

∑
h=1

ωhφ (ym|µµµnov
h ,ΣΣΣ nov

h )

]
, (2)

where φ(·|µµµ,ΣΣΣ) denotes the multivariate normal density, parametrized by its mean
vector µµµ and covariance matrix ΣΣΣ . There are two main reasons for employing a
nonparametric prior in this context. First, adopting a DP as mixing measure allows
an a priori unbounded number of hidden classes and/or outlying observations. Sec-
ond, it reflects our lack of knowledge about the previously unseen components. The
following prior probabilities for the parameters complete the Bayesian model spec-
ification: (

µµµg,ΣΣΣ g
)
∼ NIW

(
µ̂µµgMCD, λ̃tr, ν̃tr, Σ̂ΣΣ gMCD

)
, g = 1, . . . ,G

(µµµnov
h ,ΣΣΣ nov

h )∼ NIW
(

m̃mm, λ̃ , ν̃ , S̃SS
)
, h = 1, . . . ,∞

ωωω ∼ SB(γ) πππ ∼ Dir (α̃0, α̃1, . . . , α̃G) .

(3)

A detailed explanation of the quantities in (3) follows, where we incorporate the
information contained in the training set for setting robust informative priors for
the parameters of the known classes. Values α̃1, . . . , α̃G are the hyper-parameters
of a Dirichlet distribution on the known classes. The learning set can be exploited
to determine reasonable values of such hyper-parameters, setting α̃g = ng/N for
g = 1, . . . ,G with ng the total number of observations belonging to the g-th group
in the training set. The priors for the mean vectors and the covariance matrices of
both known and hidden classes are assumed to follow a conjugate Normal-inverse-
Wishart distribution. Robust hyperparameters µ̂µµgMCD and Σ̂ΣΣ gMCD, g = 1, . . . ,G are
obtained via the Minimum Covariance Determinant estimator (MCD) [6] computed
group-wise in the training set. Subsets of sizes d0.95nge, g = 1, . . . ,G, over which
the determinant is minimized, are employed in the application of Section 3. In this
way, outliers and label noise that may be present in the labelled units will not bias
the initial beliefs for the parameters of the known groups. Lastly, with ωωω ∼ SB(γ)
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Fig. 1 Learning scenario (only perimeter and compactness variables displayed) for novelty
detection of 1 unobserved wheat variety, seed dataset.

we denote the vector of Stick-Breaking weights, composed of elements defined by
wk = uk ∏l<k(1−ul), where ∀k uk ∼ Beta(1,γ).
We remark that particular care is needed in choosing informative values for λ̃tr and
ν̃tr, according to the problem at hand: inducing non-informative priors would jeop-
ardize the robust extraction of information performed with the MCD estimator.
A blocked Gibbs sampler scheme [5] is employed for posterior computation, wherein
the full conditionals for the model parameters are derived considering the following
complete likelihood, obtained after proper reparameterization:

L (y,ααα,βββ ,u|πππ,µµµ,ΣΣΣ ,ωωω) =
M

∏
m=1

[
παm1{αm>0∩βm=0}φ

(
ym|µµµ(αm,0),ΣΣΣ (αm,0)

)
+

+ π0ωβm1{αm=0∩βm>0}φ
(

ym|µµµnov
(0,βm)

,ΣΣΣ nov
(0,βm)

)]
,

where αm ∈ {0, . . . ,G} and βm ∈ {0, . . . ,∞} are latent variables identifying the un-
observed group membership for ym, m = 1, . . . ,M. In detail, αm > 0 controls the
assignation of ym to one of the G training class (βm = 0). In case ym is recognized as
a novel observation (αm = 0), it is assigned to one of the previously unseen mixture
components constituting fnov, according to βm > 0.

3 Application

The methodology described in Section 2 is used to perform classification when a
novelty component is present within the data units. The considered dataset con-
tains 210 grains belonging to three different varieties of wheat. For every sample
(70 units for each variety), seven geometric parameters are recorded postprocess-
ing X-ray photograms of the kernel [3]. The obtained dataset is publicly available
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Fig. 2 Model results for experimental scenario H3, seeds test set. Plots below the main diago-
nal represent the estimated posterior probability of being a novelty, according to formula (4): the
brighter the color the higher the probability of belonging to fnov. Plots above the main diagonal
display the associated group assignments: the turquoise solid dots denote observations classified
as novelties.

in the University of California, Irvine Machine Learning data repository. The study

Table 1 Seeds dataset. Confusion matrix between the true values (T:) and the semi-
parametric Bayesian classification (C:) performed on the test set for three hyperpriors specification.
The label “New” indicates units that are estimated to have arisen from the novelty component.

H1 : λ̃tr = 1, ν̃tr = 50 H2 : λ̃tr = 10, ν̃tr = 500 H3 : λ̃tr = 250, ν̃tr = 1000

T:1 T:2 T:3 T:1 T:2 T:3 T:1 T:2 T:3

C:1 1 35 0 27 0 3 26 0 3
C:2 34 0 70 1 35 0 0 35 0
C:New 0 0 0 7 0 67 9 0 67

involves the random selection of 70 training units from the first two cultivars, and
a test set of 140 samples, including the entire set of 70 grains from the third vari-
ety: the resulting learning scenario is displayed in Figure 1. The aim of the exper-
iment is therefore to employ the model described in Section 2 to detect the third
unobserved variety, incorporating robust priors information retrieved from the train-
ing set. We employ three different hyperpriors specification (H1 : λ̃tr = 1, ν̃tr = 50,
H2 : λ̃tr = 10, ν̃tr = 500, H3 : λ̃tr = 250, ν̃tr = 1000) to investigate how the results
change when different degrees of informativeness are adopted for the values ex-
tracted from the learning set. Model results for scenario H3 are reported in Fig-
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ure 2, where the posterior probability of being a novelty PPNm = P [ym ∼ fnov|Y],
m = 1, . . . ,M are estimated according to the ergodic mean:

ˆPPNm =
∑

T
t=11(α

(t)
m = 0)

T
(4)

where α
(t)
m is the value assumed by the parameter αm at the t-th iteration of the

MCMC chain and T is the total number of iterations. The confusion matrices asso-
ciated with the estimated group assignments for the three scenarios are reported in
Table 1. When fairly and strongly informative priors for the training set information
are adopted, the third group variety is effectively captured by the flexible process
modeling the novel component. Notice that, whenever the novelty contains more
than an extra class, its best partition can be recovered minimizing for example the
Binder loss [2] or the Variation of Information [8], thus providing a way to auto-
matically identify an infinite number of hidden classes, as well as anomalous and/or
unique outlying patterns.

4 Conclusion

In the present work we have introduced an adaptive semi-parametric Bayesian clas-
sifier, capable of detecting an unbounded number of hidden classes in the test set.
By means of robust procedures, prior knowledge for the known groups is reliably
incorporated in the model specification. The methodology has been then effectively
employed in the detection of a novel wheat variety in X-ray images of grain kernels.
Future research directions will consider data-tailored extensions to the general
“known classes + novelty” mixture framework introduced in this paper: a flexible
specification for adaptive classification of functional data is being developed.
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