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Abstract

The parameter estimation of gravitational wave (GW) events detected by LIGO and Virgo

relies on analytical waveform models, possibly calibrated (or informed) by Numerical Rel-

ativity simulations. The effective-one-body (EOB) model is one of the main analytical

models available that can be efficiently used for analyzing both black hole and neutron

star binaries. In this script we I) improve it in its various sectors, with the final aim

to build a model that includes all the physical information available: in particular, the

higher subdominant multipole information, that is useful to optimize GW data analysis’

angular resolution [1, 4, 5, 7]; II) use it to develop high-order fast PN approximants for

Bayesian analysis in LIGO and Virgo pipelines [3]; III) use it to study the self-spin effects

of binary Neutron Stars on their own waveform [2]. One of the central building blocks of

the EOB model is the factorized and resummed (circularized) multipolar post-Newtonian

(PN) waveform introduced in Ref. [8] for nonspinning binaries. In Ref. [4], we extend up

to ` = 6 (i.e. to high multipoles) the resummation approach of Nagar and Shah [9], since it

has a better analytical/numerical relativity agreement than its precursor [8]. Ref. [4], up-

dated to the case of a spinning particle of Schwarzschild problem in Ref. [5], has been used

in order to update the spin-aligned, quadrupolar EOB model TEOBResumS, a C code [1]

available in the LIGO Advanced Library (LAL) and cited in the GW catalogue [10], to

a multipolar version [7]. Therefore, following the EOB-PN expansion technique defined

in [11], Ref. [3] leads to a fast and accurate 5.5PN phenomenological approximant that, by

including more point-mass information than the standard 3.5PN one, optimizes the tidal-

parameter estimation of BNS data analysis. In Ref [2], we incorporate the EOS-dependent

self-spin terms in TEOBResumS at next-to-next-to-leading (NNLO) order, together with

other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). Here,

with the same toolbox used in Ref. [3], we study the EOS dependence of the self-spin

effects and show that the next-to-leading order (NLO) and NNLO monopole-quadrupole

corrections yield increasingly phase-accelerating effects compared to the corresponding LO

contribution; that the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN)

EOS-dependent self-spin effects makes their action stronger than the corresponding EOB

description; and, finally, we obtain a tail-augmented TaylorF2 approximant that yields

an analytically simplified, EOB-faithful, representation of the EOS-dependent self-spin

phasing that can be useful to improve current PN-based (or phenomenological) waveform

models for inspiralling neutron star binaries.
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Main notation and conventions

GW: Gravitational Wave

GR: General Relativity

NR: Numerical Relativity

PN: Post-Newtonian

PM: Post-Minkowsian

MPM: Multipolar Post-Minkowskian

BH: Black Hole

EOB: Effective-One Body

IMR: Inspiral-Merger-Ringdown

LO: Leading Order

NLO: Next-to-Leading Order

NNLO: Next-to-Next-to-Leading Order

BBH: Binary Black Hole

BNS: Binary Neutron Star

ODE: Ordinary Differential Equation

PDE: Partial Differential Equation

SPA: Stationary Phase Approximation

STF: Symmetric Traceless Free

CMM: Campbell Macek Morgan

ADM: Arnowitt Deser Misner

RWZ: Regge Wheeler Zerilli

TOV: Tolman Oppenheimer Volkoff
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EOS: Equation of State

CFL: Courant Friedrichs Lewy

NP: Newman Penrose

HH: Hawking Hartle

FP: Finite Part

QNMs: Quasi-Normal Modes

ISCO: Innermost Stable Circular Orbit

LSO: Last Stable Orbit

NQC: Next-to-Quasi Circular

Res: Residue

SCRI: Null infinity

Vectorial notation: bold letters (~v ≡ v), latin indexes. Versors normal
to a surface are indicated as n. In this work, the hat symbol ˆ on a
letter marks the STF projection (2.28) of the vector; it is not a versor
notation.

Partial derivative
∂

∂xµ
≡ ∂µ ≡,µ (1)

Minkowski Metric Tensor

ηµν ≡ diag(−,+,+,+) (2)

Laplacian (in Cartesian coordinates)

∇2 = (∂x, ∂y, ∂z) (3)

D’Alambert operator

2 = ηµν∂µ∂ν (4)
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GR Metric

ds2 = gµνdx
µdxν (5)

Affine Connection

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) (6)

Riemann Tensor

Rσ
µην = ∂ηΓ

σ
µν − ∂νΓσµη + ΓσγηΓ

γ
µν − ΓσγνΓ

γ
µη (7)

Ricci Tensor

Rµν = Rλ
µλν (8)

Ricci Scalar

R = gµνRµν (9)

Stress-energy Tensor

Tµν = m

∫
dτ√−guµuνδ

4(xα −Xα(τ)) (10)

where m is the mass of a point particle, τ the proper time, Xα(τ) the
particle’s wordline and uα(τ) = dXα

dτ
the 4-velocity.

Einstein field equations

Rµν −
1

2
gµνR = 8πTµν (11)

Covariant Derivative of a rank 2 Tensor

hαβ;σ = ∂σh
αβ + Γασηh

ηβ + Γβσηh
αη (12)

Euler Gamma Function

Γ(z) =

∫ ∞
0

e−ttz−1dt (13)
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Euler logarithm

eulerlogm(x) ≡ γE + log 2 +
1

2
log x+ logm (14)

where γE = 0.57721... is the Euler-Mascheroni constant.

Hypergeometric function

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑
n=0

βnz
n

n!
(15)

with β0 = 1 and

βn+1

βn
=

(n+ a1)(n+ a2)...(n+ ap)

(n+ b1)(n+ b2)...(n+ bq)
(16)

Total mass of a binary

M = m1 +m2 (17)

Reduced mass of a binary

µ =
m1m2

M
(18)

Mass ratio of a binary

q =
m2

m1

(19)

Symmetric mass ratio of a binary

ν ≡ µ

M
=

m1m2

(m1 +m2)2
(20)

Taylor-expansion of order n

Tn

Magnitude of the spins of the constituent binary

S1,2
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Dimensionless binary spin notation

χ1,2 ≡
S1,2

m1,2

χS/A ≡
1

2
(χ1 ± χ2)

X1/2 ≡
m1,2

M
=

1

2
(1±

√
1− 4ν)

ã1,2 ≡ X1,2χ1,2

â0 ≡ ã1 + ã2

ã12 ≡ ã1 − ã2

Test mass/particle limit of a binary

ν → 0

m1 � m2

ã2 → 0

Therefore, the body 2 becomes a test particle (i.e. an idealized model
of a small object whose mass is so small that it does not appreciably
disturb the ambient gravitational field).
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Chapter 1

Preliminary overview

1.1 Introduction

General Relativity [12], the actual theory of gravitation, which incorporates
the Newtonian laws as a weak-field limit, predicts the existence of gravita-
tional waves (GWs). In analogy with the theory of electromagnetism, these
perturbations occur when a mass that moves in spacetime, which is compa-
rable to an elastic medium, accelerates. The first theoretical prediction of
gravitational waves was made by Einstein himself in 1916 [13]. From the
experimental point of view, the first, unsuccessful, attempts to detect gravi-
tational waves were made by Weber in the 1960s [14, 15, 16].
Thanks to the progress of experimental radio astronomy and to the theo-
retical work of Damour and Deruelle [17, 18], the first observational proof
of the existence of GWs was given by the observations of the energy loss
of the binary pulsar system PSR B1913+16 made by Taylor and Weisberg
in 1982 [19, 20]. This discovery opened deeper theoretical studies regard-
ing GWs: if one wants to detect a “pure” gravitational wave signal from
a binary merger1, then he must deal with the intrinsic complexity of Gen-
eral Relativity, finding solutions that go beyond Einstein’s quadrupole for-
mula [13]. In order to do that, during the 1980s and the 1990s, Damour,
Blanchet and collaborators led important advances in the Post-Newtonian
(PN), Post-Minkowskian (PM) and Multipolar Post-Minkowskian (MPM)
frameworks [21, 22, 23, 24, 25, 26]. This kind of computations are analytical.

1Black Hole (BH) and Neutron Star (NS) mergers are the ideal candidates for GW
detections since gravity is a very weak force compared to electromagnetism.

1
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Having said that, another way to deal with strong gravity is Numerical Rel-
ativity (NR): in this case, spacetime is discretized and Einstein’s equations
(Eq. 11) are solved using a supercomputer. A NR simulation with ∼30
GW cycles can take O(105 − 106) CPU-hours, so it is much more expensive
than analytical techniques. But it takes precisely into account the strong-
curvature and high-velocity effects that enter into play during binary mergers,
that are the most (known) violent events in the universe.
NR is very complex, and the first complete up to ringdown non-axisymmetric
Inspiral-Merger-Ringdown (IMR)2 simulation was made by Pretorius in 2005 [27].
Almost five years before this important achievement, after some great exper-
imental efforts, LIGO in the United States and VIRGO in Italy were com-
pleted. These ground-based experiments, with limited sensitivity, needed
hundred of thousands of GW templates almost as fast as an analytical for-
mula3, but also precise in the high-velocity field regime (i.e. where PN the-
ory, built around low-velocity approximation, fails). The Effective one-Body
(EOB) formalism by Buonanno and Damour (1998) [28], which consist into
a mapping of resummed PN expressions into a simpler, “one-body” problem,
provided the first complete IMR analytical GW template in 2000 [29]. The
EOB model, that is the main topic of this PhD thesis, is a very flexible tool-
box, since it can be informed with NR waveforms or new additional PN, PM
or gravitational self-force information; or be used to build phenomenologi-
cal [30] or PN approximants4 [11, 3]. A constant improvement of this model,
since its numerical-calibrated/informed versions [31, 32, 33, 30, 34, 35, 36, 37]
are fundamental in the parameter estimation of GW events [38, 39, 40, 41,
42, 43, 10], is necessary in order to improve future events’ data analysis.

1.2 What is a gravitational wave?

According to GR, gravitation is curvature. Intuitively, a GW is a ripple in
the curvature of spacetime, that is a dynamical structure affected by the
matter and energy within it. The interaction between matter, energy and

2In Fig.1.1 we can see the three phases of a binary coalescence: I) a slow inspiral
phase; II) a merger phase, that is defined as the peak of the dominant-quadrupolar GW
signal; III) a ringdown phase (BH only), that is characterized by the dumped gravitational
oscillations emitted by the final BH.

3See Sec. 1.5 for details.
4See chapter 7.
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spacetime is mathematically described by the field equation

Rµν −
1

2
Rgµν = 8πTµν (1.1)

where gµν is the metric tensor, Rµν is the Ricci tensor (a function of the metric
and its first and second derivatives) and R is the Ricci scalar, the contrac-
tion of the Ricci tensor. Tµν is the stress-energy tensor, which describes the
distribution of matter and energy within the spacetime. If the distribution
of matter and energy varies in time, then the curvature, as described by the
metric gµν , also varies in time. This variation in the metric will propagate
outward from the varying matter and energy distribution through the rest
of spacetime as GWs which stretch and squeeze spacetime itself, causing the
measured distance between two points to grow and shink at different times.
The strain, or fractional change in length, is used to quantify the effect of
GWs in time. Let’s consider two freely falling reference points separated by
a distance L. When a gravitational strain h passes by, the wave will produce
a time-dependent variation in L, 4L(t) = h(t)L. So, if one can measure the
distance between two points to high enough precision, filtering the noise due
to other factors, this may be the evidence of a GW. The most important
way to “control noise” in this case is to perform these distance measurement
experiments at two or more widely separated locations. We then require that
multiple sites measure a strain at the same time (within some coincidence
window to allow for the fact that a GW can arrive at the different locations
at slightly different times), and that the measured strains are all of consistent
strength and functional form h(t).

In electrodynamics, one can describe the electromagnetic waves emitted
from a source electromagnetic potential by expanding the potential in mul-
tipoles. If these multipoles vary in time, they can create electromagnetic ra-
diation. Because electromagnetic charge is conserved, the electric monopole
(i.e. total charge) will not vary and cannot produce electromagnetic waves.
However, if the electric dipole of the potential varies in time, this will pro-
duce radiation. Higher derivatives of higher multipoles can also contribute
to it. In GR, one can use an analogous approach to describe GWs in terms of
multipoles of the stress-energy tensor (the analogue of the source in the elec-
tromagnetic formalism) of a source. Because mass-energy (mass monopole),
linear momentum (mass dipole) and angular momentum (current dipole) are
conserved, they cannot contribute to GWs. So, the second time derivative
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Figure 1.1: Estimated gravitational-wave strain amplitude from GW150914.
This shows the full bandwidth of the waveforms, and the inset images show
numerical relativity models of the black-hole horizons as the black holes coa-
lesce (source: Ref [38])

of the mass quadrupole is the lowest order contribution to radiation. This
represents the dominant contribution to GWs, with higher time derivatives
of higher order multipoles giving smaller corrections.
Gravity is much weaker than the other fundamental forces of nature, so one
must have very large masses undergoing extreme accelerations to produce
detectable GWs. Here emerges the importance of compact binaries (like a
pair of BHs, a pair of neutron stars (NSs) or a BH and a NS, inspiralling
and merging each other to form a final object) as candidates for gravitational
laser interferometers. To see quantitatively how difficult it is to detect GWs
and why we do not see them without a complex and expansive experimental
and data-analysis work, let’s consider the leading order expression for the
strain of GWs emitted by the Hulse-Taylor binary [14]

h(t) ∼ 2.3610−22

(
M

10M�

) 5
3 ( ν

0.25

)( Forb
100Hz

) 2
3
(

100Mpc

Deff

)
(1.2)

where M = m1 + m2 is the total mass of the binary, ν = m1m2

M2 the sym-
metric mass ratio, Forb the orbital frequency of the binary and Deff the
effective distance between the binary and detector. For the example in the
above equation we get a strain O(10−22). If a ∼ 2m long freely falling test
apparatus is impinged upon by a GW from our example source, it will be
stretched and squeezed by O(10−22)m. Considering the closest extra-solar
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stars from Earth (∼1 pc away), then the GWs would only warp our appa-
ratus by O(10−14)m. This should make it quite clear that GWs’ amplitudes
from astrophysical sources are very weak and can be only detected by high-
precision experiments.

1.3 Linearized theory of gravity

1.3.1 Einstein’s equations in flat space

Linearized gravity theory is the weak field limit of General Relativity. In
this approximation the spacetime is made up by a flat background described
by the Minkowski metric ηµν = diag(−1, 1, 1, 1). In this context the grav-
itational wave that propagates in the spacetime is represented by a small
perturbation hµν . So we can write the metric as

gµν = ηµν + hµν , (1.3)

with |hµν | << 1. Since hµν → hµ′ν′ = Λµ′
µ Λν′

ν hµν , where Λ is a Lorentz trans-
formation, hµν is a rank 2 tensor. Starting from the perturbed metric 1.3,
one can compute the linearized Einstein field equations. Firstly, Christoffel
symbols (6), by substituting Eq. (1.3) and ignoring the second order terms
in the perturbation, can be written as

Γλµν =
1

2
(∂νh

λ
µ + ∂µh

λ
ν − ∂λhµν). (1.4)

Secondly, neglecting the quadratic terms in hµν as before, the Ricci tensor
(8) becomes

Rµν = ∂ηΓ
η
µν − ∂νΓηµη. (1.5)

Using Christoffel symbols and the simmetry of the second derivatives one
obtains

Rµν =
1

2
[∂η∂µh

η
ν + ∂η∂νh

η
µ − ∂η∂ηhµν − (∂ν∂µh

η
η + ∂ν∂ηh

η
µ − ∂ν∂ηhµη)]

=
1

2
(∂η∂µh

η
ν + ∂ν∂

ηhµη − ∂η∂ηhµν − ∂ν∂µhηη). (1.6)

Calling h ≡ hηη and 2 ≡ ∂ηη we have that

Rµν =
1

2
(∂µ∂ηh

η
ν + ∂ν∂ηh

η
µ −2hµν − ∂µ∂νh). (1.7)
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Rewriting all terms apart from 2hµν as derivatives of the vector

Vµ = ∂ηh
η
µ −

1

2
∂µh, (1.8)

one obtains

Rµν =
1

2
(−2hµν + ∂µVν + ∂νVµ). (1.9)

Using the harmonic gauge condition Vµ = ∂ηh
η
µ − 1

2
∂µh = 0, the previous

equations becomes a linear wave equation in vacuum that holds for all ten
independent components of hµν :

2hµν = 0. (1.10)

Plane waves h = exp{ikx} with speed of light c are solutions of 1.10, but
since the components of hµν can’t be all equal to zero in order to have a

gravitational propagation, necessarily kηk
η = 0 → ω2

c2
= |~h|2. One can also

generalize this result with sources, including the RHS of Einstein’s equations
(Eq. 11). Since we have found that 2Rµν = −2hµν , that by contraction with
the metric becomes 2R = −2h, we can write that

2
(
hµν −

1

2
ηµνh

)
= −2(Rµν −

1

2
ηµνR)

= −2κTµν , (1.11)

where κ = 8π (in Eq. 11 we have adopted that G = 1). Defining h̄µν ≡
hµν − 1

2
ηµνh, the harmonic gauge condition becomes ∂µh̄µν = 0, and the

linearized Einstein equation yields

2h̄µν = −2κTµν . (1.12)

1.3.2 Polarizations of gravitational waves

We now consider a plane wave hµν = Cµν exp{ikx}, where the symmetric
matrix Cµν is defined as the polarization tensor. We now define the trans-
verse traceless (TT) gauge setting, along with the harmonic gauge condition
∂µh̄µν = 0 (that constraints the polarization tensor along with the wave
equation), the two constraints h0a = 0 and h = 0, with a = 1, 2, 3 (we denote
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roman letters as 3-dimensional indices).
The harmonic gauge condition then becomes

V0 = ∂µh
µ
0 = ∂0h

0
0 = −iωC00e

ikx = 0 (1.13)

Va = ∂µh
µ
a = ∂bh

b
a = −ikbCabeikx = 0. (1.14)

From the equations of above, we deduce that C00 = 0 and kbCab = 0, i.e.
the transversality of the polarization tensor. If we choose the plane wave
propagating in the z direction, ~k = k~ez, the z row and column of the polar-
ization tensor vanishes too. Accounting for h = 0 and Cµν = Cνµ, only two
independent elements are left,

C =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 (1.15)

For a plane wave that propagates on the z axis, the two independent com-
ponents C11 and C12, that are usually denoted as h+ and h×, characterize
completely the wave along with the frequency ω, and represent the two de-
grees of freedom of the gravitational field in the vacuum. Since we can always
find a system of coordinates in which a single particle is stationary at the
first order in hµν , we will consider a systems of two near particles A and B,
with a 4-velocity described by the vectorial field Uµ(x) and with a separation
vector Sµ. The geodesic deviation equation of the system, which describes
how much the two objects A and B distance themselves under the oscillating
gravitational field of the wave, is

D2

dτ 2
Sµ = Rµ

νρσU
νUρSσ. (1.16)

At the first order in hTTµν , D → ∂, where D/dτ is the derivative with respect
to the proper time of the particle. If the particles are in slow motion, one
can write Uµ = (1, 0, 0, 0) plus correction of order hTTµν and beyond. Since
Eq. 7 is of the first order, such corrections are negligible and in the equations
for (ν, ρ) 6= (0, 0) RHS is equal to zero. Besides that, since we are in a slow
motion approximation, τ = x0 = t, so

∂2Sµ

∂t2
= Rµ

00σS
σ. (1.17)
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The components of the Riemann tensor in this case will be

Rµ00σ =
1

2
(∂0∂0h

TT
µσ + ∂σ∂µh

TT
00 − ∂σ∂0h

TT
µ0 − ∂µ∂0h

TT
σ0 ). (1.18)

Since hTTµ0 = 0, the terms beyond the first in the equation from above vanish.
So Eq. 1.16 for two slow particles at the first order is

∂2Sµ

∂t2
=

1

2
Sσ

∂2

∂t2
hTTµσ . (1.19)

From here we deduce that, if the gravitational wave popagates along the z-
axis, the separation along t and z between the two particles is not altered,
since

hTTµσ = Cµ
σe
−iω(t−z) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 e−iω(t−z) (1.20)

implies

∂2S0

∂t2
=

1

2
Sσ

∂2

∂t2
hTT0
σ = 0 (1.21)

∂2S3

∂t2
=

1

2
Sσ

∂2

∂t2
hTT3
σ = 0. (1.22)

Figure 1.2: The effects of the two polarizations, h+ and h×, on a ring of
particles in the plane orthogonal to the direction of propagation.
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Now we analyze separately the effects of the two polarizations h+ and h×.
Two particles that are initially separated in the direction x1(x2) oscillate in
the direction x1(x2) if perturbed by a gravitational wave with h× = 0:

∂2S1

∂t2
=

1

2
S1 ∂

2

∂t2
(h+e

−iω(t−z)) = 0→ S1(t) =

(
1 +

1

2
h+e

−iω(t−z)
)
S1(0),

(1.23)

∂2S2

∂t2
=

1

2
S2 ∂

2

∂t2
(h+e

−iω(t−z)) = 0→ S2(t) =

(
1 +

1

2
h+e

−iω(t−z)
)
S2(0).

(1.24)

Viceversa, two particles that are initially separated in the direction x1(x2)
oscillate in the direction x2(x1) if perturbed by a gravitational wave with
h+ = 0:

S1(t) = S1(0) +
1

2
h×e

−iω(t−z)S2(0), (1.25)

S2(t) = S2(0) +
1

2
h×e

−iω(t−z)S1(0). (1.26)

The quantities h+ and h× are two independent linear polarization modes of
the gravitational waves. One can define the clockwise and counterclockwise
circular polarizations as

hR =
1√
2

(h+ + ih×), (1.27)

hL =
1√
2

(h+ − ih×). (1.28)

The effect of a gravitational wave perturbation on a bunch of particles dis-
posed on a ring is shown at Fig. 1.2. These particles assume an elliptical
form that seems to rotate5 clockwise (hR) or counterclockwise (hL).

1.4 Detecting gravitational waves

GW astronomy exploits multiple, widely separated detectors to distinguish
GWs from local instrumental and environmental noise to provide source sky

5More precisely, the particles move with small epycicles around their initial position.
It is their collective motion that gives the impression of a real rotation.
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localization and to measure wave polarizations. Each LIGO site operates a
single Advanced LIGO detector, a modified Michelson interferometer that
measures GW strain as a difference in length of its orthogonal arms. Each
arm is formed by two mirrors, acting as test masses, separated by 4 km.
The differential length variation 4L(t) = δLx − δLy = h(t)L alters the
phase difference between the two light fields returning to the beam splitter,
transmitting an optical signal proportional to the GW strain to the output
photodetector.

Figure 1.3: Simplified diagram of an Advanced LIGO detector (not to scale).
A gravitational wave propagating orthogonally to the detector plane and lin-
early polarized parallel to the 4-Km optical cavities will have the effect of
lengthening one 4-Km arm and shortening the other during one half-cycle of
the wave; these length changes are reversed during the other half-cycle.The
output photodetector records these differential Fabri-Perot cavity length varia-
tions. Inset (a): Location and orientation of the LIGO detectors at Hanford,
WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each
detector near the time of the signal detection; this is an amplitude spectral
density, expressed in terms of equivalent gravitational-wave strain amplitude
(source: Ref [38]).

In order to achieve sufficient sensitivity to measure GWs, the detectors
include several enhancements to the basic Michelson interferometer. For fur-
ther technical details about this experimental subject, the main reference is
Ref. [38], that we have closely followed in order to write this (purely infor-
mative) section.
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1.5 The data analysis of gravitational wave

experiments

1.5.1 A little remark

The aim of this section, in which we will briefly summarize Bayesian data
analysis, is to motivate the necessity of continuous analytical model improve-
ment in the context of gravitational wave experiments. In ground-based
interferometers like LIGO and Virgo, the signal to noise ratio

〈output|htemplate〉 =

∫
df

Sn(f)
o(f)h∗template(f), (1.29)

where o(f) is the detector’s output, Sn(f) the broadband noise of the de-
tector and htemplate the template of the expected signal, is very low. This
means that the gravitational signal that we want to observe is buried into
the noise. In order to extract it, along with the values of the parameters
that it intrinsecally contains, hundreds of thousands of templates of a “more
truthful as possible” model are needed. In Bayesian analysis, the prior hy-
pothesis, the model, must be of a “certain level of truth” to be plausible
when compared to the data. This is evident from Fig. 1.4, where we can
see a comparison between the data and two waveform models with different
“levels of truth”. The model with more physics (cyan), i.e. that is a better
approximation of General Relativity - that is our theoretical “truth” for what
concerns gravitation - represents a more tight and precise waveform than the
dummy, unphysical one (blue).

1.5.2 Bayesian Analysis

Considering the LIGO and Virgo experimental framework, complete infor-
mation about parameter estimation and model selection6 is given in Refs.
[45] and [46], that we follow in this short overview.

6Parameter estimation means to use the experimental data in order to estimate the
unknown parameters of the source, whereas model selection means to decide which of
several models is more probable in light of the observed data.
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Figure 1.4: For illustrative purposes, the figure shows the time-domain data
(sampled at 2048 Hz) and reconstructed waveforms of GW150914, whitened
by the noise power spectral density for the H1 (top) and L1 (bottom) detec-
tors. The lighter, narrower shaded region (cyan) is the result from the mod-
eled analyses using IMRPhenom and EOBNR template waveforms. The cyan
region is tighter with respect to a damped-gaussian model (blue). The uncer-
tainty is greater for this minimal-assumption reconstruction due to greater
flexibility in its waveform model. The agreement between the reconstructed
waveforms using the two models is found to be 94+2

−3%, and is consistent
with expectations for the SNR at which GW150914 was observed (source:
Ref. [44]).

Bayesian inference describes the state of knowledge about an uncertain hy-
pothesis H as a probability, denoted P (H) ∈ [0, 1], or about an unknown
parameter as a probability density, denoted p(θ|H), where

∫
p(θ|H)dθ = 1.

The relation between the prior distribution p(θ|H) and the posterior dis-
trubution p(θ|d,H), where d is the data given by the experiment, is given
by

p(θ|d,H) =
p(θ|H)p(d|θ,H)

p(d|H)
. (1.30)

This equation is named as Bayes theorem, and is the heart of Bayesian in-
ference. Since models have many parameters, it is more correct to define an
array of parameters θ = {θ1, θ2, ..., θN}. In this case, the joint probability
distribution p(θ|d,H) describes the collective knowledge about all parame-
ters as well as their relationships. Results for a specific parameter are found
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by marginalising over the unwanted parameters,

p(θ1|d,H) =

∫
dθ2...dθNp(θ|d,H). (1.31)

The probability distribution can be used to find the mean

〈θi〉 =

∫
θip(θi|d,H)dθi. (1.32)

Model selection is performed by comparing the fully marginalized likelihood,
or “evidence”, for different models. This quantity is denoted as Z and is
defined as the integral of the likelihood L(d|θ) multiplied by the prior over
all parameters of the model H:

Z = p(d|H) =

∫
dθ1...dθNp(d|θ, H)p(θ|H). (1.33)

One can compare two competing models computing the ratio of posterior
probabilities

Oij =
P (Hi|d)

P (Hj|d)
=
P (Hi)Zi
P (Hj)Zj

, (1.34)

where Bij = Zi/Zj is the “Bayes factor” between the two models i and j,
which shows how much more likely the observed data d is under model i
rather than model j. The choice of two competing a priori hypothesis is
common in bayesian model selection since one cannot exhaustively enumer-
ate the set of exclusive models describing the data.
The Bayesian analysis concepts that we have described above are simple.
But in practice, dealing with large amount of data in a multi-dimensional
model framework (like gravitational interferometers or particle physics ex-
periments), requires to stochastically sample the parameter space. So pa-
rameter estimation or model selection must be done using Markov chain
Monte Carlo (MCMC) and Nested Sampling techniques. Besides that, an
accurate description of these methods is not in the aims of this PhD thesis.

1.5.3 Waveform models

In gravitational wave experiments, the Bayesian inference is made with dif-
ferent models of the GW signal that is expected to be emitted during a
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compact-binary merger. These models differ in their computational com-
plexity, the physics they simulate, and their regime of applicability. The
ramification of the Ligo Advanced Library (LAL) that interfaces with wave-
form models for data analysis is called LALInference.
Each waveform model takes as input a parameter vector θ and produces as
output h+,×(θ), either a time domain h(θ; t) or frequency-domain h(θ; f)
signal. The parameter vector θ contains at least the following parameters:

• Masses of the two components of the binary, m1 and m2. One can
define a reparametrization of the mass plane into the chirp mass, that
is

M =
(m1m2)3/5

(m1 +m2)1/5
. (1.35)

Assuming that m1 ≥ m2, one can define the mass ratio

q =
m2

m1

, (1.36)

and the symmetric mass ratio

ν =
m1m2

(m1 +m2)2
. (1.37)

The objects (1.35) and (1.36) are easy to sample in a data analysis
process since they are less correlated, while (1.37) has a crucial role in
the EOB model (see Chapt. 4), but since its Jacobian is singular at
m1 = m2, it is not used to sample the distribution of masses in the
parameter space.

• The luminosity distance to the source dL;

• The right ascension α and declination δ of the source;

• The inclination angle ι between the system’s orbital angular momentum
and the line of sight.

• The polarization angle ψ which describes the orientation of the pro-
jection of the binary’s orbital momentum vector onto the plane on the
sky.

• The time of coalescence of the binary tc;
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• The orbital phase φc of the binary at the reference time tc.

So nine parameters are necessary to describe a circular non-spinning binary.
If we wish to add the spin in our models, six additional parameters are
included:

• Dimensionless spin magnitudes ai, defined as ai ≡ |Si|
m2
i

and in the range

[0,1], where Si is the spin vector of the object i;

• Two angles for each Si specifying its orientation with respect to the
plane defined by the line of sight and the initial orbital angular mo-
mentum.

If we assume that the spin vectors are aligned or anti-aligned with the
orbital angular momentum, the spin-orientation angles are fixed, and the
spin magnitudes alone are used, with positive/negative signs corresponding
to aligned/anti-aligned configurations (11 parameters). We stress that in this
PhD thesis we will always assume that the spins are aligned, neglecting the
precession modelization.
Some examples of models that one can find in LALInference are:

• Time-domain and frequency-domain inspiral-only post-Newtonian ap-
proximants (see Sec. 2.7).

• Frequency-domain inspiral-merger-ringdown phenomenological wave-
form model calibrated to Numerical Relativity, like IMRPhenomD [30].

• Time-domain inspiral-merger-ringdown effective-one-body (EOB) mod-
els calibrated to numerical relativity, that will be the main subject of
this PhD dissertation starting from Chapt. 4.

We stress that many of these waveform models have additional options, such
as varying the post-Newtonian order of amplitude or phase terms.

1.6 The gravitational self-force

The gravitational self-force (GSF) describes the effect of a particle’s own
gravitational field on its motion. In this section we would like to remind the
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physical aspects of Self-Force, since it is a non-negligible effect for the mod-
elization of compact binary systems [47]. A detailed overview of the subject
is given in Ref. [48].
While the motion is geodesic in the test-mass limit, in the GSF formalism it
is accelerated to the first order of particle’s mass. So GSF is fundamental for
the Laser Interferometer Space Antenna (LISA), which will be sensitive to
low-frequency gravitational waves. Among the sources for this detector is the
motion of small compact objects around massive (galactic) black holes. To
calculate waves emitted by such systems requires a detailed understanding
of the motion, beyond test-mass approximation. This first step was solved
by Mino, Sasaki and Tanaka [49], and then by Quinn and Wald [50]. The
equations of motion are now known as the MiSaTaQuWa equations. So-
phisticated calculations that are similar - but more complex, since we must
take into account the nonlinearities of spacetime - to QFT’s regularization
processes for the self-energy of an electron are necessary in order to obtain
an analytical GSF expansion for a binary system. Since some PN GSF in-
formation enters into the EOB formalism as a “more physics to take into
account” ingredient for its dynamical sector (see Sec. 4.2), we give here, for
completeness, a Newtonian description of self-force (we closely follow Sec. V
of Ref. [48]), which is useful to introduce it to the reader without getting lost
into very deep and complex technical arguments that are not in the aim of
this thesis.
Let’s consider, in Newtonian theory, a large mass M at position ρ(t) relative
to the centre of mass, and a small mass m at position R(t). We assume that
m� M and the centre of mass condition reads mR +Mρ = 0. We denote
the position of an arbitrary field point by x, and r ≡ x is its distance from
the centre of mass. We shall also let R ≡ |R| and ρ ≡ |ρ|.
In a test-mass description of the problem, the smaller mass moves in the
gravitational field of the larger mass, which is placed at the origin of the
coordinate system. The background Newtonian potential is

Φ0(x) = −M
r

(1.38)

and the background gravitational field is g0 = −∇Φ0 = −Mx/r3. In this
description, the smaller mass m moves according to d2R/dt2 = g0(x = R).
If the motion is circular, the angular velocity of the small body is Ω2

0 =
M/R3, where R is the orbital radius. These results are in close analogy with
a relativistic description in which the smaller mass is taken to move on a
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geodesic of the background spacetime, in a test-mass approximation.
The Newtonian potential that takes into account the gravitational effects
produced by the smaller mass is

Φ(x) = − M

|x− ρ| −
m

x−R , (1.39)

and for m � M this can be expressed as Φ(x) = Φ0(x) + δΦ(x), with a
perturbation given by

δΦ(x) = − M

|x− ρ| +
M

r
− m

x−R . (1.40)

This gives rise to a field perturbation δg that exerts a force on the smaller
mass. This is the particle’s “bare” self-acceleration, and there is a corre-
spondence with the analogous relativistic problem. The last term on the
right-hand side of Eq. (1.40) diverges at the position of the smaller mass.
But since the gravitational field produced by this term is isotropic around
R(t), we know that this field will exert no force on the particle. This term
can be identified as the singular “S” part of the perturbation,

ΦS(x) = − m

|x−R| , (1.41)

and the remainder as the regular “R” potential,

ΦR(x) = − M

|x− ρ| +
M

r
. (1.42)

The full perturbation is given by δΦ(x) = ΦS(x) + ΦR(x), and only the “R”
potential affects the motion of the smaller mass. These physical consideration
and the split between a regular and singular have again a correspondence with
the relativistic problem.
One can check that at the first order in m/M Eq. (1.42) simplifies to

ΦR(x) = m
R · x
r3

. (1.43)

This simplification occurs because of the centre-of-mass condition, which
implies that ρ is formally of order m/M � 1. The “R” part of the field
perturbation is then

gR(x) = m
3(R · x)x− r2R

r5
, (1.44)
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and evaluating this at the particle’s position yields a correction to the back-
ground field g0(x = R) = −MR/R3 given by gR(x = R) = 2mR/R3. The
force still points in the radial direction but the active mass has been shifted
from M to M−2m. The angular velocity becomes Ω2 = (M−2m)/R3. This
can be cast in a more recognizable form if we express the angular velocity
in terms of the total separation s ≡ R + ρ = (1 + m/M)R between the two
masses. To first order in m/M we obtain Ω2 = (M + m)/s3, which is Ke-
pler’s third law. So the “R” part of the perturbation is responsible for the
finite-mass correction to the angular velocity.



Chapter 2

Approximation Methods for
General Relativity

2.1 Preamble

Due to its complexity, GR cannot be exactly solved. So, in order to do GW
theory, one must juggle between different approximation approaches, which
are very technical and hystorically ramified, at the point that each of them
is a research area on its own. In short, they are:

• Post Newtonian Approximation (PN): It was introduced in 1916 by
Einsten, Droste and Lorentz. It provides an excellent computation
tool when the physical systems are slow-moving (v

c
� 1) with a weak

gravitational field inside the source (GM
rc2
� 1). Both of these quantities

are treated as a small parameter, and the gravitational field equations
are solved iteratively. A PN series is a Taylor series with n PN orders
(beyond the leading order term), therefore “n-PN series” means that
the series will stop at the n-th power of the velocity parameter. (see
Sec. 2.2).

• Post Minkowskian Approximation (PM): Again, this method was in-
troduced by Einstein himself in 1916. It consists of an approximation
of the metric gµν in a postlinear way, i.e. by adding small curvature
corrections to the leading order (LO) flat spacetime represented by
the Minkowski metric ηµν . The small parameter of the expansion in
this case will be Newton’s coupling constant G. The first attempt to

19
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use this kind of expansion to go beyond linearity in the solution of Ein-
sten’s Equations 11 was made by Bertotti and Plebanski [51]. Then the
method was refined and pulled up to 1PM order (that is equivalent to
the 2.5PN order [52]) by Damour and Deruelle [17, 18], and this was the
main theoretical contribution to the discovery of PSR B1913+16 [19].

• Multipole Expansions: These expansions do not require a small param-
eter since they are expected to converge. This topic is very natural to
approach given the structural affinities between electromagnetism and
gravity as gauge field theories [53].

• Multipolar Post-Minkowskian Approximation (MPM): Since approxi-
mation methods for GR can’t be applied to arbitrary sources, but have
limited validity in space and time, by merging the PM formalism with
a multipolar expansion one solves the problem and gets a very powerful
analytical tool for the study of GR [22, 21, 54].

• W.K.B. Approximation (WKB): This is the well known high frequency
or shortwave approximation [55, 56].

• Small Perturbations: This is an expansion about an arbitrary curved
background rather than flat Minkowski spacetime. This topic is sub-
divided into two problems that lead to two different master equations:
the test particle on Schwartzschild one [57, 58] and the test particle on
Kerr one [59]. These equations can be solved numerically [60, 61] or
with PN expansions [62].

• Numerical Methods: These may be viewed as expansions in a parameter
determined by the ratio of the grid size to the typical length or time
scale in the problem. If one uses numerical methods to solve Eqs. (11)
directly, then we are speaking about numerical relativity (NR) [63]; if
one uses a numerical method to solve approximate equations like the
ones for the test particle case, then the name “NR” is not suitable.

In this thesis we will review the approaches that are useful for the GW
modelization framework (i.e. the ones that are related to the EOB approach
of Chapt. 4), that is one of the “last steps” in interfacing GR with GW data
analysis experiments. Therefore, from the above topics, we will not consider
the PM formalism and the WKB approximation, that are beyond the work
done in this dissertation.
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2.2 Post-Newtonian approximation

Let’s start from the virial theorem (〈E〉kin = 1
2
〈V 〉). It is easy to obtain from

it the relation

v2 =
GM

r
. (2.1)

Commonly, when we speak about a n-PN order approximation, this means
that up to the parameter (v

c
)2n and (GM

rc2
) beyond the leading order (LO)

have been retained and higher order terms have been discarded. From this
point of view, is necessary to consider the Kepler law at the LO

(rω)2 =
GM

r
, (2.2)

that in PN expanded form becomes

(rω)2 =
GM

r

[
1 + a1

(
GM

r

)
+ a2

(
GM

r

)2

+ a3

(
GM

r

)3

+O

(
GM

r

)4
]
,

(2.3)
which is truncated at 3PN order. The values of coefficients are usually written
in the harmonic gauge. Besides that, the important thing for us is that, using
Eq. (2.3), it is possible to compute any relevant quantity as a power series
either of the orbital frequency or the radius. Usually Eq. (2.3) is expandend
defining the parameter

v =

(
GMω

c3

)1/3

(2.4)

that, considering the gauge-invariant parameter in natural units x = (Mω)
2
3 ,

gives

v = x1/2. (2.5)

This quantity is really useful because it trasforms the PN expansions in
gauge-invariant ones that do not depend on the radius and the orbital veloc-
ity.
The PN approximation, besides, is an asymptotic expansion that is non-
convergent. Its validity is near the source, and far away from the source it
presents divergencies.
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2.3 Multipole Expansions

2.3.1 The quadrupole moment formalism

We mainly refer to Ref. [64] for the discussion of this topic. The lowest-order
wave generation formalism is the quadrupole formalism of Einstein [13] and
Landau & Lifshitz [65]. This formalism applies to a general isolated matter
source which is PN in the sense of existence of the small parameter ε ≡ 1

c
.

However, the quadrupole formalism is valid in the Newtonian limit ε → 0;
it can rightly be qualified as “Newtonian” because the quadrupole moment
of the matter source is Newtonian and its evolution obeys Newton’s laws
of gravity. In this formalism the gravitational field hTTij is expressed in a
transverse and traceless (TT) coordinate system covering the far zone of the
source at retarded times, as

hTTij =
2G

c4R
Pijab(n)

{
d2Qab

dT 2

(
T − R

c

)
+O

(
1

c

)}
+O

(
1

R2

)
(2.6)

where R = |X| is the distance to the source, T − R
c

is the retarded time,
n = X

R
is the unit direction from the source to the far away observer, and

Pijab = PiaPjb− 1
2
PijPab is the TT projection operator, with Pij = δij−ninj

being the projector onto the plane orthogonal to n.
The source’s quadrupole moment is

Qij(t) =

∫
d3xρ(x, t)

(
xixj −

1

3
δij|x|2

)
(2.7)

where ρ is the Newtonian mass density. The total gravitational power emitted
by the source in all directions around it is given by the Einstein quadrupole
formula

F ≡
(
dE

dT

)GW
=
G

c5

{
1

5

d3Qab

dT 3

d3Qab

dT 3
+O

(
1

c2

)}
(2.8)

where F stands for the total gravitational energy flux or gravitational “lu-
minosity” of the source. The total angular momentum flux is given by

Gi ≡
(
dJi
dT

)GW
=
G

c5

{
2

5
εiab

d2Qac

dT 2

d3Qbc

dT 3
+O

(
1

c2

)}
(2.9)

where εabc denotes the Levi-Civita symbol.
The gravitational analogue of the damping force of electromagnetism, which
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reacts on the source’s dynamics in consequence of the emission of GWs, is
given by

F reac
i =

G

c5

{
−2

5
xa
d5Qia

dt5
+O

(
1

c2

)}
. (2.10)

It is relevant to remember that the gravitational radiation reaction is gauge-
dependent, so the expression of the force depends on the coordinate system
which is used. Let’s now consider the energy and angular momentum of a
matter system made of some perfect fluid:

E =

∫
d3x ρ

[ |v|2
2

+ Π− U

2

]
+O

(
1

c2

)
(2.11)

Ji =

∫
d3x ρεiabx

avb +O
(

1

c2

)
(2.12)

The specific internal energy of the fluid is denoted Π, and obeys the usual
thermodynamic relation dΠ = −Pd(1

ρ
) where P is the pressure and ρ the

mass density; the gravitational potential obeys Poisson equation ∇U =
−4πGρ. Using the usual equation of motion ρdv

i

dt
= −∂iP + ρ∂iU + F reac

i

and continuity equation ∂tρ + ∂i(ρv
i) = 0, one can compute the mechanical

losses of energy and angular momentum from the time derivatives of E an
Ji. The conservative PN corrections are neglected, but the radiation-reaction
contribution F reac

i is added in order to be consistent with the physics of the
process. The result is

dE

dt
=

∫
d3x viF reac

i = −F +
df

dt
, (2.13)

dJi
dt

=

∫
d3x εiabxaF

reac
b = −Gi +

dgi
dt
, (2.14)

where the total time derivatives of f and gi are made of quadratic products
of derivatives of the quadrupole moment. Looking only for secular effects,
one can apply an average over time on a typical period of variation of the
system, obtaining

〈dE
dt
〉 = −〈F〉, (2.15)

〈dJi
dt
〉 = −〈Gi〉, (2.16)
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where the brackets denote the time averaging over an orbit. These balance
equations encode the secular decreases of energy and angular momentum by
gravitational radiation emission. Using the binary’s Newtonian energy and
angular momentum,

E = −Gm1m2

2a
(2.17)

J = m1m2

√
Ga(1− e2)

m1 +m2

, (2.18)

where a and e are the semi-major axis and eccentricity of the orbit and m1

and m2 are the two masses, from the energy balance equation (2.17) one
obtains the secular evolution of a and, changing from a to the orbital period
P using Kepler’s third law1, the secular evolution of the orbital period P ,
namely

〈dP
dt
〉 = −192π

5c5

(
2πG

P

)5/3
m1m2

(m1 +m2)1/3

1 + 73
24
e2 + 37

96
e4

(1− e2)7/2
. (2.19)

The last factor, depending on the eccentricity, comes out from the orbital av-
erage and is known as the Peters & Mathews [66] “enhancement” factor. The
secular evolution of the eccentricity e is deduced from the angular momentum
balance equation (2.18), as

〈de
dt
〉 = −608π

15c5

e

P

(
2πG

P

)5/3
m1m2

(m1 +m2)1/3

1 + 121
304
e2

(1− e2)5/2
. (2.20)

Interestingly, the system of equations (2.19)-(2.20) can be thoroughly inte-
grated in closed analytic form. This yields the evolution of the eccentric-
ity [67]:

e2

(1− e2)19/6

(
1 +

121

304
e2

)145/121

= c0P
19/9, (2.21)

where c0 denotes an integration constant to be determined by the initial con-
ditions at the start of the binary evolution. When e << 1 the latter relation
gives approximately e2 ∼ c0P

19/9.
It is important to stress that if for a long while it was thought that the

1GM = Ω2a3, where M = m1 + m2 is the total mass and Ω = 2π
P is the orbital

frequency.
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quadrupole formalism was sufficient for the observation of all compact bina-
ries, it is only the first order approximation of a more complex PN multipole
series that contains (part of) the theoretical information necessary to ad-
vanced detectors and strong-field regime sources [68, 69, 70]. Having said
that, the quadrupole formalism contains the basic physical properties of co-
alescing compact binaries. Looking at Eq. (2.19) and Eq. (2.20), one can
deduce that the two compact binaries steadily lose their orbital binding en-
ergy by emission of gravitational radiation; as a result, the orbital separation
between them decreases, and the orbital frequency increases. Thus, the fre-
quency of the GW signal, which equals twice the orbital frequency for the
dominant harmonics, “chirps” in time (i.e. the signal becomes higher and
higher pitched) until the two objects collide and merge, as what was predicted
for the first time by Dyson [71]. The orbit of most inspiralling compact bina-
ries can be considered to be circular, apart from the gradual inspiral, because
the gravitational radiation reaction forces tend to circularize the motion ra-
pidily. This effect is due to the emission of angular momentum by GWs,
resulting in a secular decrease of the eccentricity of the orbit. That being
said, the main point about modelling the inspiralling compact binary is that
a model made of two structureless point particles, characterized solely by two
mass parameters ma and possibly two spins Sa, with a = 1, 2, is sufficient
in first approximation. Indeed, most of the non-gravitational effects usually
plaguing the dynamics of binary star systems, such as the effects of a mag-
netic field of an interstellar medium, are dominated by gravitational effects.
The main reason for a model of point particles is that the effects due to the
finite size of the compact bodies are small.

2.3.2 STF tensor approach

Before introducing the multipolar expansion of the gravitational field, which
is the “next natural step” after the definition of the quadrupolar approxima-
tion, we review the “language” in which this expansion is written.
The multipole expansions of a field are common objects that are used in
different fields of physics (see for example electromagnetism [72]), and for
what concerns GWs, it was introduced by Thorne [53] in 1980 and refined by
Damour and Iyer [26] ten years after. In this PhD thesis we’ll always refer
to the latter approach, that is briefly overviewed here following the more
detailed Ref. [73].
Firstly, let’s remind thatALB

L =
∑

i1...i`
Ai1...i`B

i1...i` ; δij = δij = diag(+1,+1,+1);
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xL = xi1 ...xi` ; ni = xi

r
(unit radial vector); nL = ni1 ...ni` ; ∂L = ∂i1...i` ;

`!! = `(`− 2)(`− 4)...2 or 1.
Let’s consider a Cartesian tensor

AL = A(i1....i`) =
1

`!

∑
σ

Aiσ(1)...iσ(`) (2.22)

its symmetric part is denoted by (...) parenthesis, and σ runs over all the `!
permutations of (1, 2, 3...`). Usually, the STF part of a tensor is denoted by
angular brackets A<L> (as in the previous Poisson PDE example) or by a
more explicit STFL. The STF part of a tensor, which is not STF, is obtained
computing its symmetric part

SL =
1

`!

∑
σ

Aiσ(1)...iσ(`) (2.23)

and removing all traces

A<L> =

[ `2 ]∑
n=0

alnδ(i1i2δi3i4 ...δi2n−1i2nSi2n+1...i`)j1j1...jnjn (2.24)

where

a`n =
(−)n`!(2`− 2n− 1)!!

(`− 2n)!(2`− 1)!!(2n)!!
(2.25)

and
[
`
2

]
is the largest integer less than or equal to `

2
. The first term in (2.24)

is SL (a`0 = 1), and the subsequent terms are obtained by tracing SL over
one, two...

[
`
2

]
pair of indeces. For ` = 2 and ` = 3 is simple to obtain

A<i1i2> =
1

2
(Ai1i2 + Ai2i1)−

1

3
δi1i2Ajj (2.26)

and

A<i1i2i3> = A(i1i2i3) −
1

5
(δi1i2A(jji3) + δi2i3Ajji1 + δi3i1Ajji2) (2.27)

The proof of Eq. (2.24) follows by noting that the STF tensor is constructed
by tracing successively over 0,1,2... pairs of indices. The coefficient of each
of these type of terms is determined by tracing both sides of Eq. (2.24)
over a pair of indices, two pairs etc. The left hand side yields zero, while a
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contraction on the kth term on the right hand side yields a S contracted (k)
times or (k+ 1) times. Consequently, cancellation of terms after contraction
will occur only between successive terms, leading to a relative sign between
them. Thus, if

Ŝi1...in = Si1...in − a2δ(i1i2Si3i4...in)j1j1 + a4δ(i1i2δi3i4Si5i6...in)j1j1j2j2 (2.28)

+ ...+ (−)ka2kδ(i1i2δi3i4 ...δi2k−1i2kSi2k+1...in)j1j1...jkjk ...

nothing that (a`k = (−)ka2k), after some algebra we obtain

a2(k+1) =
(n− 2k)(n− 2k − 1)

2(k + 1)(2n− 2k − 1)
a2k, (2.29)

which using a0 = 1 yields

a2k =

(
n
2k

)(
n
k

)(
2n
2k

) . (2.30)

This leads directly to (2.25) determining the a`n.
In general, the set of all STF Cartesian tensors of rank ` generates an ir-
reducible representation of weight ` and dimension (2` + 1) of the group of
proper rotations SO(3), and any reducible tensor of rank p can be decom-
posed in a sum of pieces each of which belongs to an irreducible representation
and hence is expressible in terms of some building brick STF tensor of rank
less than or equal to p.
If ei denotes the Cartesian basis vectors, the basis of the (2`+1)-dimensional
vector space of STF rank `-tensors is made of the STF parts of the `-fold
tensorial products

(e1 + ie2)⊗ (e1 + ie2)...⊗ (e1 + ie2)⊗ e3 ⊗ e3...⊗ e3 (2.31)

And their complex conjugates. Remembering that eji = δji and defining
δ+
im
≡ δ1

im + δ2
im , for m > 0 one can choose a basis

Ŷ`mL = A`mE`m
<L> (2.32)

where
E`m
L = δ+

i1
δ+
i2
...δ+

im
δ3
im+1

...δ3
i`

(2.33)

and

A`m = (−)m(2`− 1)!!

√
2`+ 1

4π(`−m)!(`+m)!
. (2.34)
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This constant is chosen in order to respect the orthonormality relation∑
i1...i`

Ŷ`mL (Ŷ`m′L )∗ =
(2`+ 1)!!

4π`!
δmm′ . (2.35)

This is consistent with the standard normalization rule for the spherical
harmonics Y`m ∫

dΩY`mY
∗
`′m′ = δ``′δmm′ . (2.36)

If
Ylm = Ŷ`mL nL, (2.37)

for m < 0
Ŷ`mL = (−)m(Ŷ`|m|L )∗. (2.38)

The (2.37) formula is very important because it allows to easily compute the
usual spherical harmonics by the canonical basis of the vector space of STF
tensors Ŷ`mL . Starting from Eq. (2.24) and using Eq. (2.33), a straightforward
calculation shows that

E`m
<L> =

(`−m)!

(2`− 1)!!

[ `−m2 ]∑
k=0

(−)k(2`− 2k − 1)!!

(2k)!!(`−m− 2k)!
δ(i1i2 ... (2.39)

δi2k−1i2kδ
+
i2k−1

...δ+
i2k+m

δ3
i2k+m+1

...δ3
i`)
.

Hence, one can obtain an alternative canonical basis expression

Ŷ`mL = c`m

[ `−m2 ]∑
k=0

a`mkδ(i1i2 ...δi2k−1i2kδ
+
i2k−1

...δ+
i2k+m

δ3
i2k+m+1

...δ3
i`)
, (2.40)

where

c`m = (−)m

√
(2`+ 1)(`−m)!

4π(`+m)!
(2.41)

and

a`mk =
(−)k(2`− 2k)!

2`k!(`− k)!(`−m− 2k)!
. (2.42)

Now, a deeper insight to the relation beetween Ŷ`mL is useful in this discussion.
For m ≥ 0, the usual spherical harmonics can be written as

Y `m = c`me
imφP`m(cos θ), (2.43)
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where

P `m(cos θ) = (sin θ)m
[ `−m2 ]∑
j=0

a`mj(cos θ)`−m−2j. (2.44)

The Y `m’s generate an irreducible representation of the rotation group of
weight ` and dimension (2`+1). As previously seen, the set of all STF tensors
of rank ` is also an irreducible representation of dimension (2`+1). To exhibit
the one-one mapping between the spherical harmonics and the STF tensors
as written by Thorne [53], one can express the cartesian components of the
unit radial vector n̂ as

nx + iny = sin θ cosφ+ i sin θ cosφ = sin θeiφ (2.45)

nz = cos θ,

and rewrite

Y `m = c`m

[ `−m2 ]∑
j=0

a`mj(nx + iny)
mn`−m−2j

z . (2.46)

This is consistent with Eq. (2.37). The above formula allows one to use
either the spherical harmonics or the STF tensors to expand any function of
θ and φ on the unit sphere centered on the coordinate origin. One can have

f(θ, φ) =
∞∑
`=0

m=∑̀
m=−`

F `mY`m(θ, φ) (2.47)

or

f(θ, φ) =
∞∑
`=0

FLnL. (2.48)

The expansion coefficients in both schemes are related via

FL =
m=∑̀
m=−`

F `mŶ`mL (2.49)

or

F `m = 4π

(
`!

(2`+ 1)!

)
FLŶ`m∗L . (2.50)

Let’s now consider an arbitrary reducible tensor TP ; one can decompose it
into a finite sum of terms in the form ALP B̂L, where ALP is a tensor invariant
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under SO(3), made up of products of εijk and δij, and B̂L is an irreducible
STF `-tensor of rank ` ≤ p obtained by first contracting TP with δ’s and
ε’s before applying the STF projection. This decomposition corresponds to
expressing the repeated direct product of representations in term of direct
sums of irreducible representations

Ds ⊗D` = D|`−s| ⊕D|`−s+1| ⊕ ...⊕D`+s, (2.51)

that is common in group theory textbooks as an example involving the quan-
tum mechanics angular momentum addition rule J = L+ S.
The consideration from above is a generalization of the decomposition of an
arbitrary matrix into its trace, antisimmetric part and symmetric traceless
part

Tab = T<ab> + T[ab] +
1

3
δabT. (2.52)

The only two possible contractions of Tab with invariant tensors in this case
are T = δabT

ab and T̃ a = 1
2
εabcTbc, and (2.52) is equivalent to a sum of

irreducible pieces since T[ab] = εabcT̃c.

2.3.3 Application to linearized gravity

In the following, we will use capital letters (for example X) in order to
distinguish the coordinates in the region outside the source with the ones
inside the source (lowercase letters). This means that one arbitrary radiation
source S(x, t) is spatially confined to the region |x| < r0, i.e. S(x, t) = 0 if
|x| > r0.
The vacuum field equations of linearized gravity in the harmonic gauge (1.10)
may be conveniently written, considering also the R.H.S. of Eq. (11) as

2h̄µν(X, T ) = −16πG

c4
Tµν(X, T ). (2.53)

If the source T µν is compact supported in the region exterior to the source
we have the following multipole expansions for h̄µν [73]:

h̄00(X, T ) =
4G

c4

∞∑
`=0

(−)`

`!
∂L

(
FL(U)

R

)
(2.54)

h̄0i(X, T ) =
4G

c4

∞∑
`=0

(−)`

`!
∂L

(
GiL(U)

R

)
(2.55)
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h̄ij(X, T ) =
4G

c4

∞∑
`=0

(−)`

`!
∂L

(
HijL(U)

R

)
, (2.56)

where

FL(U) ≡
∫
d3xx̂L

∫ 1

−1

dzδ`(z)T̃ 00 (2.57)

GiL(U) ≡
∫
d3xx̂L

∫ 1

−1

dzδ`(z)T̃ 0i (2.58)

HijL(U) ≡
∫
d3xx̂L

∫ 1

−1

dzδ`(z)T̃ ij, (2.59)

where T̃ µν = T µν(x, U + rz
c

). Since GiL is reducible, it may be decomposed
into three irreducible pieces (for convenience the numerical factors are ab-
sorbed in the “bricks”):

G
(+)
L+1 ≡ G<L+1> (2.60)

G
(0)
L ≡

`

`+ 1
Gab<L−1εiL>ab (2.61)

G
(−)
L−1 ≡

2`− 1

2`+ 1
GaaL−1 (2.62)

such that
GiL = G

(+)
iL + εai<i`G

(0)
L−1>a + δi<i`G

(−)
L−1>. (2.63)

Similarly, HijL is also reducible and can be decomposed into six irreducible
pieces:

H
(+2)
L+2 ≡ H<L+2> (2.64)

H
(+1)
L+1 ≡

2`

`+ 2
STFL+1(H<ci`>dL−1εi`+1cd) (2.65)

H
(0)
L ≡

6`(2`− 1)

(`+ 1)(2`+ 3)
STFL(H<ai`>aL−1) (2.66)

H
(−1)
L−1 ≡

2(`− 1)(2`− 1)

(`+ 1)(2`+ 1)
STFL−1(H<ca>bcL−2εi`−1ab) (2.67)

H
(−2)
L−2 ≡

2`− 3

2`+ 1
H<ac>acL−2 (2.68)

KL ≡
1

3
HaaL (2.69)
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such that

HijL = H
(+2)
ijL + STFLSTFij(εaii`H

(+1)
ajL−1 (2.70)

+ δii`H
(0)
jL−1 + δii`εaji`−1

H
(−1)
aL−2 + δii`δji`−1

H
(−2)
L−2 ) + δijKL.

By neglecting the technical details and long calculations of Ref. [26], at this
point the crucial step is to perform the gauge transformation that preserves
harmonicity; then, by using the conservation laws for mass, center of mass
and angular momentum of the source, one obtains that h̄αβ in the canonical
gauge is determined by two sets of unknown functions ML = {ML, SL} and
given by

h̄00
can(X, T ) =

4

c2

[
∞∑
`=0

(−)`

`!
∂L

(
ML(U)

R

)]
(2.71)

h̄0i
can(X, T ) = − 4

c3

{ ∞∑
`=1

(−)`

`!

[
∂L−1

(
ṀiL−1(U)

R

)
(2.72)

+
`

`+ 1
εiab∂aL−1

(
SbL−1(U)

R

)]}

h̄ijcan(X, T ) =
4

c4

{ ∞∑
`=2

(−)`

`!

[
∂L−2

(
M̈ijL−2(U)

R

)
(2.73)

+
2`

`+ 1
∂aL−2

(
εab(iṠj)bL−2(U)

R

)]}
,

where the “mass multipole moments” (that in this case substitute the charge
multipole moments of electromagnetism) for ` ≥ 0 are given by

ML(U) = G

∫
d3x

∫ 1

−1

dz

{
δ`x̂Lσ̃ −

4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1x̂aL

∂

∂U
σ̃a (2.74)

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2x̂abL

∂2

∂U2
T̃ ab
}
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and the ”spin multipole moments” (that in gravity substitute the magnetic
multipole moments of electromagnetism) for ` ≥ 1 are given by

SL(U) = GSTFL

∫
d3x

∫ 1

−1

dz

{
δ`x̂L−1εi`abx

aσ̃b (2.75)

− 2`+ 1

c2(`+ 2)(2`+ 3)
δ`+1εi`abx̂acL−1

∂

∂U
T̃ bc
}
,

where σ ≡ T 00+T ss

c2
, σa ≡ T 0a

c
and the tilde has the same meaning as before.

For some interesting analogies between Einstein’s theory of gravity and elec-
tromagnetism - i.e. the “gravitomagnetism” topic -, see Sec. 3.1.2 of this
dissertation.
Let’s now consider ` = 0. By STF-decomposing Eq. (2.75) we obtain the
following expression which is equivalent to the static multipole

Mc2 =

∫
d3x

∫ 1

−1

dzδ0(T̃ 00 − znaT̃ 0a) (2.76)

=

∫
d3xT 00(x, t)

and for ` = 1

Mi =

∫
d3x

∫ 1

−1

dzδ1[xi(T̃ 00 − znaT̃ 0a)− rz(T̃ 0i − znbT̃ ib)] (2.77)

=

∫
d3xxiT 00(x, t).

Considering also Eq. (2.76),

Si =

∫
d3x

∫ 1

−1

dzδ1εiabxa(T̃
0b − zncT̃ bc) (2.78)

= εiab

∫
d3xxaT 0b(x, t).

Therefore, in the linearized gravity case, the efficiency of the STF techniques
has allowed to obtain closed form expressions for the spin and mass moments
in terms of the stress energy distribution of the source. Furthermore, it
encompasses the static moment as well. It is important to keep in mind
that ML and SL are the canonical multipolar moments, whereas the source
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moments, which are written in terms of the source variables in a consistent
way with Eqs (2.75) and (2.76), are

IL(U) =

∫
d3x

∫ 1

−1

dz

{
δ`x̂LΣ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1x̂aL

∂

∂U
Σa (2.79)

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2x̂abL

∂2

∂U2
Σab

}
(x, u+

zr

c
)

and

JL(U) = STFL

∫
d3x

∫ 1

−1

dz

{
δ`x̂L−1εi`abx

aΣb (2.80)

− 2`+ 1

c2(`+ 2)(2`+ 3)
δ`+1εi`abx̂acL−1

∂

∂U
Σbc

}
(x, u+

zr

c
),

where the source densities are defined from the PN expansion (denoted by
an overbar) of the pseudo-tensor τµν by

Σ =
τ̄ 00 + τ̄ ii

c2
, (2.81)

Σi =
τ̄ 0i

c
, (2.82)

and

Σij = τ̄ ij. (2.83)

Source multipoles are valid in the “near zone” (distances from the source
that are short compared to the gravitational wavelength), while radiative
multipoles (that we will discuss in the next section) are valid in the “far
zone” (distances that are large compared to the physical size of the source).

2.3.4 The radiative multipole moments

If one moves far away from the source, the emitted spherical waves will
become like plane waves. GWs are transversal in respect to the direction
of propagation, therefore, there is a symmetric and traceless tensor in the
local plane tangent to the field irradiated in form of spherical wavefronts
and orthogonal to the versor n normal to them. We want to project the
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wave on this plane in a STF form. Given the direction n, one can define the
projection operation

Pij(n) = δij − ninj. (2.84)

Doing twice this operation it is easy to obtain the TT projection operator

Pijab = Pia(n)Pjb(n)− 1

2
Pij(n)Pab(n). (2.85)

Using Eqs (2.71),(2.73) and (2.74) one can define

hTTij =
4G

c2R
Pijab(n)

∞∑
`=2

1

c``!

{
nL−2UabL−2(U)− 2`

c(`+ 1)
ncL−2εcd<aVb>dL−2(U)

}
,

(2.86)
where UL(U) are the mass-type radiative multipole moments and VL(U) the
current-type radiative multipole moments. Radiative coordinates are such
that the retarded time U ≡ T − R

c
becomes asymptotically a null coordinate

at future null infinity. The multipole decomposition from above represents
the generalization of quadrupole formalism and at this point it is necessary
to put it in relation with the source parameters. At Newtonian level, the
mapping between radiative multipole moments and source parameters is

Uij(U) = Q
(2)
ij (U) +O

(
1

c2

)
, (2.87)

where Qij is the Newtonian quadrupole moment. In linearized gravity, gen-
eralizing this case,

UL = I
(`)
L (2.88)

and
VL = J

(`)
L . (2.89)

Keeping in mind Eqs (2.79) and (2.80), (2.86) becomes

hTTij =
4G

c2R
Pijab

{
I

(2)
ab +

1

3c
I

(3)
abcn

c+
4

3c
εcd<aJ

(2)
b>cn

d+
1

12c2
I

(4)
abcdn

cnd+...

}
, (2.90)

where I
(2)
ab ≡ Q

(2)
ab . It is possible to compute the energy flux from the radiative

multipole moments using the formula

F =
∞∑
`=2

[(U̇L)2 + (V̇L)2], (2.91)
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that in terms of the source multipole moments becomes

F =
∞∑
`=2

1

c2`

[
(I

(`+1)
L )2 +

1

c2
(J

(`+1)
L )2

]
. (2.92)

Let’s now introduce two unit polarization vectors p and q, orthogonal and
transverse to the direction of propagation n. Then the two “plus” and “cross”
polarization states of the asymptotic waveform are defined by

h+ =
1

2
(pipj − qiqj)hTTij (2.93)

and

h× =
1

2
(piqj + pjqi)h

TT
ij . (2.94)

Although the multipole decomposition (2.86) is completely general, it will
also be important, having in view the comparison between PN and numeri-
cal results, to consider separately the various modes (`,m) of the asymptotic
waveform as defined with respect to a basis of spin-weighted spherical har-
monics of weight -2. Those harmonics are function of the spherical angles
(θ, φ) defining the direction of propagation n, and given by

Y `m
(−2) =

√
2`+ 1

4π
d`m(θ)eimφ, (2.95)

where

d`m =

k2∑
k=k1

(−)k

k!
e`mk

(
cos

θ

2

)2`+m−2k−2(
sin

θ

2

)2k−m+2

(2.96)

with

e`mk =

√
(`+m)!(`−m)!(`+ 2)!(`− 2)!

(k −m+ 2)!(`+m− k)!(`− k − 2)!
, (2.97)

where k1 = max(0,m− 2) and k2 = min(`+m, `− 2). Thus we decompose
h+ and h× onto the basis of such spin-weighted spherical harmonics, which
means

h+ − ih× =
∞∑
`=2

∑̀
m=−`

h`mY `m
−2 (θ, φ). (2.98)
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Using the orthonormality properties of these harmonics we can invert the
latter decomposition and obtain the separate modes h`m from a surface in-
tegral,

h`m =

∫
dΩ[h+ − ih×]Ȳ `m

−2 (θ, φ), (2.99)

where the overbar refers to the complex conjugation. We can also relate h`m

to the radiative multipole moments UL and VL. The result is

h`m = − G√
2Rc`+2

[
U `m − i

c
V `m

]
, (2.100)

where U `m and V `m denote the radiative mass and current moments in stan-
dard (non-STF) guise. These are related to the STF moments by

U `m =
4

`!

√
(`+ 1)(`+ 2)

2`(`− 1)
α`mL UL (2.101)

and

V `m = − 8

`!

√
`(`+ 2)

2(`+ 1)(`− 1)
α`mL VL. (2.102)

Here α`mL denotes the STF tensor connecting together the usual basis of
spherical harmonics Y `m to the set of STF tensors n̂L = n<i1 ...ni`>. Both
Y `m and n̂L are basis related by

n̂L(θ, φ) =
l∑

m=−`

α`mL Y `m(θ, φ) (2.103)

and

Y `m(θ, φ) =
(2`+ 1)!!

4π`!
ᾱ`mL n̂L(θ, φ). (2.104)

Remembering (2.37), Y`mL = (2`+1)!!
4π`!

ᾱ`mL , and the tensorial coefficient α`mL can
be computed as α`mL =

∫
dΩn̂LȲ

`m.

2.4 The MPM approach

The multipolar post-Minkowskian (MPM) expansion [22] is an algorithmic
procedure for generating iteratively the most general solution to Eq. (11)
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in the form of a post-Minkowskian (or non-linearity) expansion whose coeffi-
cients are themselves given by a multipole expansion that is physically valid
outside the compact support of the source. A MPM metric is a formal series
in powers of G:

Gαβ ≡ √ggαβ = ηαβ +Ghαβ1 +G2hαβ2 + ...Gnhαβn + ... (2.105)

such that each term hαβn admits a multipolar expansion associated with the
SO(3) group of rotations

hαβn =
∑
`≥0

hαβnLn̂
L(θ, φ), (2.106)

where n̂L is the STF part of nL. This expansion is equivalent to an expansion
in Y`m. Inserting the PM expansion into the Einstein tensor density

2g

(
Rαβ − 1

2
gαβR

)
= 2gTαβ (2.107)

in vacuum, one has the following hierarchy of equations:

2fh
αβ
n = ∂αHβ

n + ∂βHα
n − ηαβ∂µHµ

n +Nαβ
n (h1h2...hn−1) (2.108)

where Hn = ∂βh
αβ
n is the harmonicity of hαβn and Nαβ

n is a non-linear func-
tion of previous hn and its first and second derivatives. Choosing harmonic
coordinates such that Hα

n = 0, one must select the MPM metrics which are
stationary in the past and Minkowskian at spatial infinity, so for t ≤ −T
∂hαβn
∂t

= 0 and limr→∞ h
αβ
n = 0. This allows for a well-defined iteration at any

order incorporating Fock’s no incoming radiation condition. Note that

N1 = 0 (2.109)

N2 ∼ h1∂
2
1 + ∂h1∂h1 (2.110)

Nn =
n∑
a=2

∑
m1+m2+...ma=n;mb<n

“∂∂”hm1hm2 ...hma (2.111)

where the two partial derivatives have to be distributed among the h′ns with
possible repetition (the quote marks are there to highlight this fact).
To construct the most general solution of the above equation one can proceed
as follows:
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1. Take the more general gauge transformation of the solution maintain-
ing the harmonic-gauge condition and satisfying 2ωµ1 = 0, with ωα1
arbitrary gauge vector,

hαβ1 [MW ] = hαβcan1[M] + ∂αωβ1 [W ] + ∂βωα1 [W ]− ηαβ∂µωµ1 [W ], (2.112)

with

h00
can1[M] = − 4

c2

[
∞∑
`=0

(−)`

`!
∂L

(
ML(u)

r

)]
(2.113)

h0i
can1[M] =

4

c3

{ ∞∑
`=1

(−)`

`!

[
∂L−1

(
ṀiL−1(u)

r

)
(2.114)

+
`

`+ 1
εiab∂aL−1

(
SbL−1(u)

r

)]}

hijcan1[M] = − 4

c4

{ ∞∑
`=2

(−)`

`!

[
∂L−2

(
M̈ijL−2(u)

r

)
(2.115)

+
2`

`+ 1
∂aL−2

(
εab(iṠj)bL−2(u)

r

)]}
,

where u = t− r
c
, and

ω0
1 =

4

c2

[
∞∑
`=0

(−)`

`!
∂L

(
WL(u)

r

)]
, (2.116)

ωi1 =− 4

c3

{ ∞∑
`=1

(−)`

`!

[
∂iL

(
XL(u)

r

)
(2.117)

− 4

c3

{ ∞∑
`=1

(−)`

`!

[
∂L−1

(
YiL−1(u)

r

)
+

`

`+ 1
εiab∂aL−1

(
ZbL−1(u)

r

)]}
,

where W = {WL, XL, YL, ZL} are the gauge multipole moments that
parametrize our general MPM solution and M = {ML(t), SL(t)} a set
of two time-varying tensors that does not have physical meaning except
the time-independent M , which is the ADM mass of the system (i.e.
the mass at infinity).
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2. Starting with hαβ1 [M] one computes the effective non-linear source
N2(h1) for h2. The inhomogenous wave equation for h2 cannot be solved
by the ordinary retarded (ret) integral since the domain of definition of
the right hand side is not R4 but the open domain D(r > r0). Instead
of using a truncated retarded integral, the explicit solution is given by
complex analytic continuation. Each term in the multipolar expansion
of N2 in the exterior region r > r0 > 0 is a function of r which can
be analytically continued for 0 ≤ r0 and has a tempered singularity at
r = 0 (less than some r−k where k is a positive integer). Since N2 →∞
as r → 0, one still cannot use the ordinary retarded integral to solve
wave equation. This problem is solved choosing a complex number B

such that Re(B) is large enough that
(
r
r0

)B
N2 is a continuous function

on R4 (r0 is an arbitrary length scale). The ordinary retarded integral
of this quantity is well-defined for B and can be analytically continued
all over the complex plane except for multiple poles at integer values
of B. If one denotes

I(B) = 2−1
ret

(
r

r0

)B
N2, (2.118)

then the Laurent expansion of this function near B = 0 defines two
quantities: pαβ2 , the finite part of the Laurent expansion of I(B) near
B = 0, and qαβ2 , a particular solution of the homogeneous wave equation
such that pαβ2 + qαβ2 satisfies the harmonicity condition.

3. Generalizing to higher orders one has

hαβn = pαβn + qαβn (2.119)

pαβn = FPB=0

{
2−1
ret

(
r

r0

)B
Nn(h1, h2, ...hn−1)

}
(2.120)

∂βq
αβ
n = −ResB=0

{
2−1
ret

(
r

r0

)B
ni
r
N iα
n

}
, (2.121)

where the operator FP2−1
ret (FP means “finite part”) is a convenient

generalization of the usual retarded integral operator 2−1
ret when dealing

with singular sources.
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The full solution of vacuum Einstein field equations in the form of the post-
Minkowskian expansion series is then2

hαβ =
∞∑
n=1

Gnhαβn [ML, SL,WL, XL, YL, ZL]. (2.122)

At this point, the solution from above still does not have any physical mean-
ing. In particular, ML and SL are arbitrary functional parameters that have
been inserted in order to mediate between the source (that is described by
the “source” multipole moments (2.79) and (2.80)) and the radiation in the
exterior zone (see Eq. (2.86)), where the PN approximation loses validity.
More precisely, in the near zone r << λ, r > rsource, each hn admits an
asymptotic expansion for c → ∞ on scale functions (log c)pc−q. This is a
near zone expansion of the exterior field or a PN expansion of the PM field.
The PN assumption according to which hn admits a PN expansion along
simple powers of c−1 is inconsistent with the non-linear structure of GR. In
the far zone r →∞, t− r

c
fixed, one has an asymptotic expansion along scale

functions (log r)pr−q. This does not imply absence of asymptotic simplicity,
since we are in the harmonic coordinates which are not good radiative co-
ordinates (this is why in section (2.6) the radiative multipole moments have
been chosen with the so-called radiative coordinates).
Let’s now consider Eq. (2.122). The most general solution is parametrized
by two and only two sets of moments. The simplest MPM construction, here
referred to as “canonical”, is obtained by annulling all the gauge moments
in Eq. (2.122):

hαβcan =
∞∑
n=1

Gnhαβn [ML, SL, 0, 0, 0, 0]. (2.123)

This means that the iteration now begins at linearized order with the solution
hcan1[ML, SL]. To preserve the non-linear effects on subsequent iterations, the
two canonical moments must be related to the source and gauge moments. In
order to do this, one posits that Eqs (2.122) and (2.123) have to be isometric
(i.e. to differ by a coordinate trasformation). It can be shown that this yields

2The explicit MPM construction leading to (2.122) is quite complicated in practice but
now entirely performed with the software Mathematica together with the tensor package
xAct.
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unique relations of the type

ML = IL +ML[I, J,W,X, Y, Z] (2.124)

SL = JL + SL[I, J,W,X, Y, Z], (2.125)

whereML and SL denote some non-linear functionals of the source and gauge
moments that are at least quadratic and start only at 2.5PN order. When the
relations from above are satisfied, the two sets of moments M = {ML, SL}
and {I, J,W,X, Y, Z} describe the same matter source. Since only the radia-
tive moments (2.86) or their derivatives have physical meaning in terms of
quantities measurable by an array of detectors, the canonical moments are
then matched with the radiative ones (here denoted by Mrad ≡ {UL, VL}):

Mrad =Mrad[M]. (2.126)

Now the radiative multipole moments are correlated with the source ones,
and the non-linearities of GR are preserved in the iterations. The complex
non-linear equations resulting from the matching procedure are contained in
Blanchet’s review [64]. At a conceptual level, it is fundamental to observe
that, doing the multipolar expansion of hαβ under the hypothesis of matching
(Th. 5 of Ref. [64]), the source and gauge moments can be computed in the
form of integrals over the source (Eq. (106) of Ref. [64]), obtaining some
non-linear PN series that are valid even far away from the source. Once the
multipoles at a certain level of approximation are computed, one can obtain
the energy flux emitted by the source using the formula

F =
∞∑
`=2

G

c2`+1

[
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!
U̇2
L +

4`(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!
V̇ 2
L

]
.

(2.127)
The flux from above has been exactly computed using MPM methods up to
4.5PN for the orbital, comparable-mass case [74], and up to 3.5PN for the
comparable-mass, quadratic-in-spin [75][11] case, that includes a LO cubic-in-
spin 3.5PN piece [76]. This information, beyond its fundamental theoretical
importance, is useful in order to build PN approximants for GW experiments
(see Sec. 2.7). In Ref. [11] and Chapt. 7, it is used for this purpose with
some extra-phenomenological terms that have been computed with the EOB
approach (see Chapt. 4).
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2.4.1 Tail effects in generation of gravitational radia-
tion

The phenomenon of tail effects in gravity (i.e. the backscattering of GWs
into the curved spacetime), that has an analogue in covariant Maxwell theory
on a differentiable, curved, manifold, has been studied in detail by Blanchet
and Damour [24]. Tails are the consequence of the non-locality of spacetime:
gravity generates gravity, and this fact influences the propagation of gravity
even from the remote past of a source. In other words, the gravitational field
backscatters off the curvature of spacetime which is nothing more than the
wave-field itself. From a (curved) light-cone point of view, the propagation
proceeds not only along the cone’s “velocity of light borders”, but also within
it (this is the “scattered propagation” or “tail” into the spacetime). The ef-
fect has various orders: if gravity generates gravity that generates gravity,
we will have a tail-of-tail term into our PN expansion. In this context, the
non-linearities in the MPM formalism enter through higher-order istanta-
neous interactions between multipoles and by hereditary contributions. For
the purposes of this dissertation, let’s consider the tail terms only, which
correspond to quadratic interactions and arise at 1.5 PN order. The tails
come from the interaction between the mass monopole M and a non-static
multipole ML or SL (with ` ≥ 2). The MPM formalism gives the following
contributions, which have to be added to any mass and current multipole
momements,

U tail
L (TR) =

2GM

c3

∫ TR

−∞
M

(`+2)
L (τ)

[
log

(
TR − τ

2b

)
+ κ`

]
(2.128)

V tail
L (TR) =

2GM

c3

∫ TR

−∞
S

(`+2)
L (τ)

[
log

(
TR − τ

2b

)
+ π`

]
, (2.129)

where TR = t− r
c
− 2GM

c3
log
(
r
cb

)
+O

(
1
r

)
is a relation that takes into account

the logarithmic deviation of the MPM solutions at infinity. Besides that, b is
an arbitrary costant time scale unrelated to the r0 introduced in Eq. (2.118);
κ` and π` are two numerical constants depending on `; M is the ADM mass
(i.e. the mass of the physical system at infinity).
In the two integrals the matching between the radiative multipoles and the
canonical ones is explicit. The calculation of hereditary integrals requires
knowing the dynamics of the binary system in the past: for example, in
Ref. [77] it was assumed that at very early times the binary system was
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formed from freely falling BHs moving initially on some hyperbolic-like or-
bits (this ensures the convergence of the integrals). As it was discussed in
section 2.4, computing these integrals can lead to the tail term in the source’s
energy flux. It is important to stress that tail terms can also be computed
by expanding the waveform sector of the EOB formalism (See Chapt. 4 and
Ref. [11] for details).

2.5 Small Perturbations

2.5.1 Perturbation theory on a Schwarzschild back-
ground

Following Ref. [57], let’s consider a background metric gµν with a small per-
turbation hµν . The contracted Ricci tensor of Eq. (11) will be, as usual,
called Rµν if calculated from gµν and Rµν +δRµν if calculated from gµν +hµν ,
where

δRµν = −δΓβµν;β + δΓβµβ;ν (2.130)

with

δΓαβγ =
1

2
gαν(hβν;γ + hγν;β − hβγ;ν). (2.131)

From the condition δRµν = 0 one gets a second-order differential equation
on the hµν . This equation is a generalization in a curved space of the known
Schrödinger equation for a massless particle of spin 2 (the graviton) in a flat
space. When the background metric is given by the ordinary Schwarzschild
one around a fixed spherically symmetrical center of mass

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2, (2.132)

where M is the mass of the source in natural units and x0 = t, x1 = r, x2 = θ
and x3 = φ, then Rµν = 0. In general, one can do perturbation theory nearby
a given exact metric gµν substituting the expansion

g′µν = gµν + εhµν + ε2h(2)
µν + ... (2.133)

with ε << 1 in Rµν = 0, choosing an opportune gauge transformation
and keeping terms order by order in ε. Returning to our Schwarzschild-
background Schrödinger-like equation and working only at first order, it
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makes sense to expand the perturbations in spherical (tensor) harmonics.
The symmetry of the metric allows angular momentum3 to be defined. The
angular momentum is investigated by studying rotations on the two-dimensional
manifold x0 = t = constant, x1 = r = constant. Under a rotation of the
frame around the origin, the ten components of the perturbing tensor trans-
form like 3 scalars (h00, h01, h11), 2 vectors (h02, h03;h12, h13), and a rank-two
tensor, when considered as covariant quantities on the sphere. A typical
scalar function has the form

φ`m = constant× Y`m(x2, x3) = constant× Y`m(θ, φ), (2.134)

with wave parity (−)` and “angular momentum” `, whose projection on the
z-axis is m. For vectors we have two distinct types with opposite parity: for
parity (−)` we have

ϕ`m,µ = constant× ∂

∂xµ
Y`m(x2, x3), (2.135)

while for parity (−)`+1 we have

φ`m,µ = constant× ενµ
∂

∂xν
Y`m(x2, x3). (2.136)

Here the labels µ and ν run over the values 2 and 3, and the object ενµ has
the values ε22 = ε33 = 0, ε32 = − 1

sinx2
and ε23 = sinx2. For tensors we have, for

parity (−)`,

ψ`mµν = constant× Y`m;µν (2.137)

φ`mµν = constant× γµνY`m, (2.138)

where γ22 = 1, γ23 = γ32 = 0 and γ33 = sin2 x2, and, for parity (−)`+1,

χ`mµν =
1

2
constant× [ελµψ`mλν + ελνψ`mλµ]. (2.139)

Anyone of these terms can be multiplied by an arbitrary function of r and
t, without changing its trasformation properties under a rotation. The trace
of ψ`mµν has the value gµνψ`mµν = −`(` + 1)Y`m(θ, ψ) × constant. From

3Regge labels ` as angular momentum because in fact he is applying the quantum me-
chanic formalism to a classical problem. In reality, ` labels the multipole of the expansion,
like what has been explained in Sec. 2.3.3
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the results from above, it follows that the most general perturbation with
parity (−)`+1 is of the form of Eq. (12) of Ref. [57], while the (−)` one is
of the form of Eq. (13) of the same Ref. Since these expressions are too
complicated, one can reduce them to a more suitable form choosing a suit-
able gauge transformation. Following the mathematical analogies between
covariant electromagnetism and GR, one can define the Regge-Wheeler gauge
transformation

h′µν = hµν + ξµ;ν + ξν;µ, (2.140)

which is very similar to the well-known gauge transformation for the elec-
tromagnetic field. The gauge vector ξα is chosen in order to simplify each
wave consistently with the properties of the spherical harmonics previously
discussed. The results are, for the odd parity wave of total “angular momen-
tum” ` and projection m = 04,

hodd
µν =


0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

Sym Sym 0 0

× exp(−ikt)
(

sin θ
∂

∂θ

)
P`(cos θ), (2.141)

while, for the even-parity wave

heven
µν =


H0

(
1− 2M

r

)
H1 0 0

H1 H2

(
1− 2M

r

)−1
0 0

0 0 r2K 0
Sym Sym 0 r2K sin θ

×exp(−ikt)P`(cos θ),

(2.142)

where P`(cos θ) are the Legendre polynomials of grade `; H0, H1, H2 and K
some t and r-dependent arbitrary gauge functions; k = ω

c
the propagation

constant of the perturbation with frequency ω. Let’s now substitute (2.141)
and (2.142) in Einstein’s equations Rµν = 0. For R23 = 0 and R13 = 05,

eliminating h0, definingQ ≡ (1−2M)h1
r

and choosing the “tortoise coordinates”

4Since we are working in the vacuum case, m can be fixed to 0 in order to eliminate
the angular component ψ from the equations. Once the wave equation in the vacuum will

be obtained, a source term S
(even/odd)
`m can be put in the right part of the equation. In this

case, a posteriori one has m 6= 0.
5The equation resulting from R03 = 0 is a combination of the first two.
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r∗ = r + 2M log
(

r
2M
− 1
)
, one gets

d2Q

dr2
∗

+ Veff,odd(r)Q = 0, (2.143)

or, in the time domain,

(2 + Vodd(r))Ψodd = 0, (2.144)

with 2 = ∂2
r∗ − ∂2

t and Vodd(r) =

[
− `(`+1)

r2
+ 6M

r3

] (
1− 2M

r

)
. This is known

as the Regge-Wheeler equation. The even parity one, known as the Zerilli
equation [58], has generically the same form,

(2 + Veven(r))Ψeven = 0, (2.145)

but the potential is different: Veven(r) =
(

1−2M
r

)
2λ2(λ+1)r3+6λ2Mr2+18λM2r+18m3

r3(λr+3M)2
,

with λ = 1
2
(`− 1)(`+ 2). The Zerilli and Regge-Wheeler equations each de-

scribe one of the two degrees of freedom of linearized gravity propagating in
a (non-rotating) BH background. With minor modifications they also de-
scribe electromagnetic and scalar fields. The derivations we followed were in
the Regge-Wheeler gauge (2.140), but the quantities of interest, the Ψ’s, are
gauge invariant quantities that can be expressed in terms of the metric per-
turbations in any gauge. It is worthwhile mentioning that approaches that
are “manifestly gauge invariant” to these equations can be constructed [78].
Let’s now consider for illustrative purposes the Green’s function solution for
the Regge-Wheeler-Zerilli (RWZ) equation (Ψeven/odd ≡ Ψ),

Ψ(x, t) =

∫
dy[G(x, y; t)Ψ̇(y, 0) + Ġ(x, y, t)Ψ(y, 0)], (2.146)

where G(x, y; t) is the Green function of the time-domain RWZ equation. It
can be obtained via Fourier transform from the frequency domain Green’s
function, which is easier to obtain,

G̃(x, y; t) =

∫ ∞
0

dtG(x, y; t)eiωt. (2.147)

One way of obtaining the frequency-domain Green’s function is by contruct-
ing two independent solutions f(ω, x) and g(ω, y) to the homogeneous equa-
tion, one of them satisfying the left boundary condition and the other one
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the right boundary condition, multiplying and dividing by the Wronskian,

G̃(x, y; t) =

{
f(ω,x)g(ω,y)
W (f,g)

, x < y
f(ω,y)g(ω,x)
W (f,g)

, y < x,
(2.148)

where W (f, g) = f ′g − g′f . To construct the time-domain Green’s function
we use the inverse Fourier transform, which for t > 0 requires following a
contour encircling the lower half of the complex ω plane. Examining the
singularity structure of the Green’s function in that domain we can see that

1. The Green’s function will have poles wherever the Wronskian vanishes.
At these points, f and g are linearly dependent, meaning that one is
finding a solution that satisfies outgoing boundary conditions at both
the horizon and at infinity. Such solutions are the quasinormal modes
(QNMs)of the system and have complex frequency with negative imag-
inary part. There is generally an infinite collection of such periodic
solutions, and the “most general solution” can be expressed as a super-
position of QNMs

Ψ =
∞∑
n=1

Λne
iωnt, (2.149)

where Λn is an unknown complex amplitude (or real amplitude and
a phase constant), ωn the complex frequency labeled by the tones n
(n = 0 is the fundamental one and for n > 1 we have an infinite num-
ber of overtones) emitted by a BH when perturbed by a test-particle
falling inside it (i.e. after the plunge phase). Physically speaking, after
crossing the light-ring the QNMs are excited (see Fig. 2.1), and the
BH “sounds like a bell”. This is the reason why the last phase of a
binary BH collision (i.e. after the plunge and the merger) is called the
“ringdown” phase. At this point, the inspiral-merger-ringdown process
illustrated in Fig. 1.1 is more clear. Finally, it is important to stress
that one can do a ringdown analysis fitting appropriately Eq. (2.149)
to numerical and/or experimental data.

2. If the potential is of compact support in x, one can impose the outgoing
boundary condition immediately outside the domain of the potential.
One can then integrate the differential equation for a finite amount
of x range to obtain f and g. Therefore, these two functions cannot
have singularities. This is also true if the potential decays fast with
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x. If the potential has a slower than exponential tail, f and g will
have singularities in the complex plane. These singularities have the
form of a branch cut along the negative imaginary ω axis. When these
singularities reach ω=0, they produce the power-law tails examined in
Sec. 2.4.1. As the PN/MPM formalism, perturbation theory tells to
us that tails are induced by the non-linearity of spacetime (roughly
speaking, GWs meet a potential wall and then backscatter).

Figure 2.1: Plot of the Zerilli potential for a fixed multipole ` in function of
the tortoise coordinates r∗. At the peak located in r∗ = 0, which corresponds
to the value 3M , the test-particle falling radially into the BH will begin to
excite the QNMs of the BH. The peak is located at the light-ring (i.e. at
the innermost unstable circular photon orbit) of the Schwarzschild BH . The
“ringdown” phase can be viewed as waves bounching around the potential wall
of the Zerilli potential, like indicated by the arrows in the figure.

2.5.2 Perturbations of rotating black holes

The analogue of RWZ equations 2.144 and 2.145 for a Kerr BH, which is the
most interesting case for experimental studies, was deduced by Teukolsky in
1973 [59]. In order to obtain a perturbative equation like the RWZ one, doing
a spherical-harmonics expansion like in the nonspinning case is impossible,
since the Kerr metric does not have spherical symmetry. The solution of
the problem was to use the Newman-Penrose (NP) formalism in order to get
a separable wave equation for a Kerr BH [59]. We will not overview here
the derivation of Teukolsky’s master equation because it is strictly related
to the use of the NP formalism (which is, roughly speaking, spinor calculus
applied to GR), which is beyond the purposes of this thesis. Following the
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computations of Ref. [59] one can derive[
(r2 + a2)2

4 − a2 sin2 θ

]
∂2ψ

∂t2
+

4Mar

4
∂2ψ

∂t∂φ
+

[
a2

4 −
1

sin2 θ

]
∂2ψ

∂φ2
(2.150)

−4−s ∂
∂r

(
4s+1∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[
a(r −M)

4 +
i cos θ

sin2 θ

]
∂ψ

∂φ

− 2s

[
M(r2 − a2)

4 − r − ia cos θ

]
∂ψ

∂t
+ (s2 cot2 θ − s)ψ = 4πΣT.

Here s is the “spin weight” of the field. It is equal to 0 for a test scalar field;
to ±1 for a test electromagnetic field; to ±2 for a gravitational perturbation,
which is the case of our interest.
Eq. (2.150) is considerably more involved to handle than the nonspin-
ning (2.144) and (2.145) ones. To begin with, let’s consider first the vacuum
case (T = 0). The master equation can be separated by writing

ψ → e−iωteimφS(θ)R(r). (2.151)

The equations for R and S are

4−s d
dr

(
4s+1dψ

dr

)
+

(
K2 − 2is(r −M)K

4 + 4isωr − λ
)
R = 0 (2.152)

and

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
(2.153)

+

(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ + s+ A

)
S = 0,

where K ≡ (r2 +a2)ω−am and λ ≡ A+a2ω2−2amω. Eq. (2.153), together
with boundary conditions of regularity at θ = 0 and π, constitutes a Sturm-
Liuville eigenvalue problem for the separation constant A =s A`m(aω). For
fixed s, m and aω, we label the eigenvalues by `. The smallest eigenvalue has
` = max(|m|, |s|). From Sturm-Liuville theory, the eigenfunctions sS`m are
complete and orthogonal on 0 ≤ θ ≤ π for each m, s and aω. When s = 0,
the eigenfunctions are the spheroidal wave functions S`m(−a2ω2, cos θ) [79].
When aω = 0, the eigenfunctions are the spin-weighted spherical harmonics

sY`m =s S`m(θ)eimφ, and A = (` − s)(` + s + 1) [80]. In the general case,
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the eigenfunctions are “spin-weighted spheroidal harmonics”, which are dif-
ferent from the more common spherical harmonics used in the nonspinning
approach, because they contain implicitily the spin-information of the phys-
ical system.
When the sources are present (T 6= 0), we can use the eigenfunctions of
Eq. (2.153) to separate Eq. (2.150) by expanding

4πΣT =

∫
dωε`m(r)sS`m(θ)e−iωt, (2.154)

ψ =

∫
dωψ`m(r)sS`m(θ)e−iωt. (2.155)

Then ψ`m satisfies Eq. (2.152) with ε`m(r) as source term on the right-hand
side. So the full master equation is separable only in the frequency demain.
If one is interested to compute the energy flux carried off by outgoing GWs,
the process, as outlined in Ref. [62], is the following. The radial functions
ψ`m(r) then satisfy a second order ordinary differential equation

Dψ`m(r) = 4πT`m(r). (2.156)

In the case of a spinning particle on a circular orbit around a Schwarzschild
black hole, the source term here takes the schematic form

T`m =A0δ(r − rp) + A1δ
′(r − rp) + A2δ

′′(r − rp)
+ A3δ

′′′(r − rp). (2.157)

If we have a pair of homogeneous solutions satisfying retarded boundary
conditions at the horizon and at infinity, R−`m and R+

`m respectively, then the
general solution to this equation is given by

ψ`m(r) = C+
`mR

+
`m(r) + C−`mR

−
`m(r), (2.158)

where

C±`m =
1

W

∫
R∓`mT`m∆−2dr

= B0R
∓
`m(rp) +B1R

∓
`m
′(rp) +B2R

∓
`m
′′(rp)

+B3R
∓
`m
′′′(rp). (2.159)

The Bi = Bi(rp, σ) are determined by completing the integral, W is the
invariant Wronskian of the two solutions and ∆ = r(r − 2M). Normalizing
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the homogeneous solutions so that R+ ∼ r3eiωr
∗

as r → ∞, the energy flux
emitted at radial infinity is given simply by

dE∞

dt
=
∑
`m

F`m =
∑
`m

|C+
`m|2

4πm2Ω2
(2.160)

where Ω is the orbital frequency given in Eq. (9.4).

2.6 Numerical Methods

2.6.1 Numerical Relativity (NR) simulations for Bi-
nary Black Holes

In this subsection, following Sec. 9 of Ref. [81], we will overview the recipe
that enabled Frans Pretorius [27] to simulate successfully in 2005 the last
plunging orbit, leading to merger and ringdown, of a BBH, and to extract
the corresponding waveform.
Of particular importance for the mathematical development of NR was Ref. [82],
in which Choquet-Bruhat proved the existence of local-in-time solutions
to the harmonic-coordinates-reduced Einstein’s equations, and from here
showed how to construct solutions of the full field equations (11) i) by solving,
on an initial Cauchy hypersurface, the harmonic coordinates version of the
constraints of Einstein’s equations; ii) by proving that these constraints ho-
mogeneously propagate off the initial Cauchy hypersurface. More precisely,
the harmonic-coordinates condition used in Ref. [82] was of the form

C(0)
µ = 0, (2.161)

where C
(0)
µ ≡ −gµν2xν , with 2xµ ≡ 1√

g
∂ν(
√
ggνη∂ηx

µ). Then the harmonic-

coordinates-reduced Einstein equations for the evolution of gµν read

1

2
gησgµν;ησ + gησ(;µgν)σ;η + ΓηνσΓσµη = −8π

(
Tµν −

1

2
gµνT

)
. (2.162)

The diagonal-hyperbolic nature of the second-derivative term 1
2
gησgµν;ησ al-

lowed Fourès-Bruhat to prove the existence of local-in-time solutions of Eqs. (2.162).
To get then the solutions of Eqs. (11), one further needs to show how to sat-
isfy, in addition, the conditions (2.161) everywhere in spacetime. This leads
to the wave equation

2Cµ
(0) = −Rµ

νC
ν
(0). (2.163)
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The latter propagation equation for the constraints is homogeneous. There-
fore, if C

(0)
µ , and their time-derivatives, vanish on some initial time Cauchy

hypersurface t = x0 = 0, they will continue to vanish for all times [82].
The system obtained from writing Einstein equations in harmonic coordi-
nates, i.e. Eqs. (2.162), besides its mathematical consistency, is not nu-
merically satisfactory, since the original harmonic coordiante conditions can
sometimes develop “coordinate patologies” of their own. An in-principle
remedy for avoiding such patologies was advocated by Garfinkle [83] and,
earlier, by Friedrich [84], but with a different motivation. It consists in
generalizing the harmonic-coordinates condition 2xµ = 0 to a generalized
form 2xµ = Hµ(x), where the Hµ(x) are some suitable “source functions”.
One must then either specify the Hµ(x)’s as explicit functions of the four
spacetime coordinates, or give dynamical equations determining their evolu-
tion (and helping in avoiding coordinate patologies). Besides that, a second
modification of the standard harmonic-coordinate approach was introduced
in 2005 in order to simulate with success the BBH coalescence [27]. This
additional modification was requested because the numerical evolution of
Einstein’s equations in generalized harmonic coordinates was generally nu-
merically unstable. When using Friedrich-Garfinkle ’s generalized harmonic
coordinates the constraints (2.161) are replaced by

Cµ ≡ gµν(H
µ −2xµ) = 0. (2.164)

Pretorius’ additional modification [27] consists in adding extra terms propor-
tional to the constraints Cµ in Einstein’s equations (2.162):

1

2
gησgµν;ησ + gησ(;µgν)σ;η +H(µ,ν) −HσΓσµν + ΓηνσΓσµη

+ κ(n(µCν) −
1

2
gµνn

σCσ) = −8π

(
Tµν −

1

2
gµνT

)
. (2.165)

Here nµ ≡ gµνnν denotes the unit timelike vector normal to the t = constant
hypersurfaces, and κ denotes an adjustable parameter. If the metric is
evolved using (2.165), the constraints Cµ ≡ gµνCν will satisfy

2Cµ = −Rµ
νC

ν + 2κ∇νn
(νCµ), (2.166)

which generalizes Eq. (2.163). When κ > 0, the extra κ-dependent terms
in (2.166) tend to damp the evolution of the constraints Cµ6. For this rea-

6This means that they tend to make them tend exponentially towards zero when evolv-
ing them in the future of the initial Cauchy hypersurface.
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son, the extra-terms proportional to κCµ are called constraint damping terms.
It is important to stress that this idea, that was the key for the success of
Pretorius’s BBH IMR simulation, was already surfaced in Refs. [85] and [86].
The landmark paper [27] had a huge impact in NR waveform development,
but some groups, like the authors of Refs. [87] and [88], did not use the same
mix of methods of Ref. [27], but Brugmann [89]’s trick to represent BHs as
“punctures” of the spacetime to move across the numerical grid, without
the need of the BH horizon-excision method used by Pretorius. They also
used a different formulation of Eqs. (11) going under the name of BSSN, for
Baumgarte-Shapiro-Shibata-Nakamura.
On the other hand, the Caltech-Cornell group, the main provider of accurate
BBH waveforms for LIGO, did use a mix of methods comparable to Preto-
rius’ one, with generalized harmonic coordinates, excision and a constraint
damping method similar to the one used in Ref. [27]. The Caltech-Cornell
Spectral code (SPEC) was constructed in a sequence of works, and notably
in Refs. [90], [91] and [92].

2.6.2 Numerical resolution of Teukolsky’s equation: time
domain (TD) approach

For the purposes of this thesis, i.e. for the analytical work done in Chapter 9,
two codes where employed to solve Eq. 2.150, a time-domain (TD) one and
a frequency domain (FD) one. In Chapter 8, where we do almost the same
resummation work of Chapter 9, but in the nonspinning test-particle case, we
use numerical Teukolsky waveforms provided directly by Hughes [93], which
has used its own time-domain code. These kind of resolution methods are
very similar; therefore, for simplicity, here we give an overview of the “most
common” TD approach, leaving the details about an FD code in Chapter. 9.
For a more complete treatment of Hughes’ code, the reader should refer to
Ref [93] and references therein.
Firstly, we observe that Eq. (2.150) is separable in the frequency domain.
The first numerical computation of gravitational perturbations of Kerr space-
time in the time domain is by Krivan et al. in 1997 [94]. They use Boyer-
Lindquist coordinates and solve Eq. (2.150) as a fully first-order system in
2+1 dimensions after a decomposition into azimuthal angular modes. The
system is discretized using a second-order convergent Lax-Wendroff scheme
which has favorable dissipative properties for numerical stability. The com-
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putational boundaries are placed at finite radii and close to the horizon us-
ing a tortoise transformation of the radial coordinate. The errors from the
boundaries are mitigated by using a large computational domain.
In Ref. [60], a better approach to this problem is discovered (i.e. the Teukode
in its first incarnation is born). The idea is to use a spacelike foliation that
penetrates the horizon in a regular way and asymptotically approaches null
infinity so that one can compute both the ingoing and the outgoing radi-
ation. This technique removes the two largest systematic uncertainties of
Krivan’s method (and of any other based only on Boyer-Lindquist coordi-
nates), namely (i) the inner and outer numerical boundary errors, and (ii)
finite-radius-extraction (and/or interpolation) errors. On the computational
side, this approach is efficient because the computational domain is much
smaller than the one needed in standard Boyer-Lindquist tortoise coordi-
nates. In Ref. [61] a new foliation of Kerr spacetime which leads to more
efficient numerical computations than [60] is introduced (in this paper an
upgraded Teukode is presented). A general framework for the construction
of explicit, hyperboloidal coordinates with scri-fixing (i.e. fixing the spa-
tial coordinate location of null infinity) for stationary, weakly asymptotically
flat spacetimes (including BH spacetimes) was presented in Ref. [95]. The
transformation from standard coordinates {t, r} to hyperboloidal coordinates
{t̄, r̄} can be written as

t = t̄+ h(r̄),

r =
r̄

Ω(r̄)
, (2.167)

where h(r̄) is the height function and the explicitly prescribed Ω(r̄) acts both
as a radial compactification and a conformal factor. Asymptotic conditions
derived in Ref. [95] make sure that the resulting metric is regular.
The steps to build the latest Teukode version are the following:

1. One chooses as hyperboloidal coordinates (2.167) the “HH”” coordi-
nates {τ, ρ}, which are constructed from the metric in Boyer-Lindquist
coordinates by imposing the ingoing coordinates boundary7, and de-
manding invariance of the coordinate expression for outgoing charac-
teristics in spatially compactifying coordinates [96]. This requirement

7The ingoing (iK) Kerr coordinates {t̃, r, θ, ϕ} are obtained through the transformation
dt̃ = dt+ 2Mr

4 dr, dϕ = dφ+ a
4dr.
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is given by

t̃− (r + 4M log r) = τ − (ρ+ 4M log ρ). (2.168)

For any choice of spatial compactification through ρ, the above require-
ment determines the foliation. Then one chooses the simplest conformal
factor with a variable scri location S and set

h(ρ) =
ρ

Ω
− ρ− 4M log Ω

Ω(ρ) = 1− ρ

S
. (2.169)

The event horizon ρ+ is located at

ρ+ =
a2S +MS2 +

√
M2S4 − a2S4

a2 + 2MS + S2
. (2.170)

The HH coordinates with a specific choice of S are denoted HHS

coordinates. For computational purposes, the most efficient value of S
is S = 10 [61].

2. Since GWs propagate along null geodesics and their structure in the
Kerr spacetime is rather complicated, they are approximated by Schwarzschild
null geodesics. The retarded and advanced time coordinates in Schwarzschild
spacetime, u and v, are defined by u = t − r∗ and v = t + r∗, where
r∗ is the tortoise coordinate defined in Sec. 2.5.1. These coordinates
in Kerr spacetime are used to connect the particle’s dynamics with the
measured gravitational radiation. This approximation agrees with the
general practice in NR, where null geodesics in a binary BH spacetime
are approximated by their Schwarzschild counterparts for extrapola-
tiong gravitational waveforms [97]. For the retarded coordinate one
gets

u(τ, ρ) = τ−ρ−4M log

(
Sρ+ 2Mρ− 2MS

S

)
+2M log(2M), (2.171)

and for the advanced coordinate

v(τ, ρ) = τ + ρ
S + ρ

S − ρ − 4M log

(
S − ρ
S

)
− 2M log(2M). (2.172)
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3. One substituses the formulas (2.167) in the master equation (2.150),
rescaling suitably the unknown variable for regularity of the coefficients
at the horizon and at null infinity [61]. Eq. (2.150) is then transformed
in 2+1 form separating each Fourierm-mode in the azimuthal direction.
The resulting equation has the general form

Cττ∂ττψ+Cτρ∂τρψ+Cρρ∂ρρψ+Cθθ∂θθψ+Cτ∂τψ+Cθ∂θψ+Cρ∂ρψ+C0ψ = Ss,
(2.173)

with coefficients C(ρ, θ;m, s) depending on the background coordi-
nates, the spin weight s, and the azimuthal mode-index m. The in-
dex m in the variable ψm has been suppressed for brevity. The source
term Ss depends on the spin-weight s, the background metric, and the
stress-energy tensor Tµν of the matter perturbation. The method to
compute it in the time domain, which is different from the one in the
frequency domain that we presented in Sec. 2.5.2, is illustred in Sec 3.2
of Ref. [61].
In the time domain, the GW strain h = h+ − ih× (where the polar-
izations h+ and h× are defined in Eqs (2.93) and (2.94)) is found by
integrating the asymptotic relation

ḧ = 2ψ4 (2.174)

for each m-mode. The integration gives rhm(u, θ) along scri. One can
also compute the (spin weighted with s = −2) multipoles rhlm(u),
defined through Eq. (2.99)

rh =
∑
`=2,m

rh`m−2Y`m(θ, φ) =
∑
`=2,m

√
(`+ 2)!

(`− 2)!
Ψ`m−2Y`m(θ, φ), (2.175)

by mode-projecting rhm(u, θ) in the θ-direction. The complex quanti-
ties Ψ`m = Ψeven

`m + iΨodd
`m in Eq. (2.175) are the RWZ variables of Eqs

(2.144) and (2.145). The energy flux at scri is given by

Ė =
1

16π

∫
S2

dΩ|rḣ|2 =
1

16π

∑
m

∫ 1

−1

dξ|rḣm|2, (2.176)

where ξ = cos θ and the mode decomposition of h express the flux in
terms of the 2+1 fields. The angular momentum ~J = (Jx, Jy, Jz) flux
is given by

J̇i = − 1

16π
Re

{∫
S2

dΩ(rḣ)∗Ji(rh)

}
, (2.177)
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where Ji are the spin 2 quantum mechanical operators, in particular
Jz = ∂φ. For equatorial orbits Jx = Jy = 0, so the relevant quantity is

J̇z =
1

16π
Im

{∑
m

m

∫ 1

−1

dξ(rḣm)∗(rhm)

}
. (2.178)

At the horizon one must follow the Hawking-Hartle method [98], like in
the frequency domain case, to obtain the variation of the horizon mass
and, if desidered, of the horizon angular momentum (see Eqs (37) and
(38) of Ref. [61]).

4. Finally, for numerical integration Eq. (2.173) is written as a first-order
in time, and second order in space system with reduction variables
u = {ψ, ∂τψ}. The domain (x, θ) ∈ [x+, xS]× (0, π), where x is the ra-
dial coordinate and x+(xS) is the location of the horizon (null infinity),
is uniformly discretized with Nx × Nθ points. The spatial derivatives
are represented by finite differences up to eighth order of accuracy. The
stencils in the radial direction are centered in the bulk of the domain
and lopsided/sided at the boundaries. The angular grid is staggered
and ghost points are employed to implement the boundary conditions
on the axis. The ghost points are filled according to the parity condi-
tion π = (−1)m+s.
A standard fourth order Runge-Kutta integrator is employed for time
advancing the solution. The time step is chosen according to a Courant-
Friedrichs-Lewy (CFL) condition of type4t = CCFLmin(hx, hθ), where
hx is the grid spacing in direction x and the factor CCFL accounts for
the maximum coordinate speed of the PDE system. The angular inte-
grals for l-mode projections are computed with the Simpson rule, while
integrals in time with the trapezoidal rule. The δ-functions appearing
in the stress-energy tensor are discretized for simulating a source that
is effectively not moving on the computational domain. In cases like
inspiral-plunge the δ-functions are used in their gaussian representation
(See Sec. 4.3 of Ref. [61]).

2.7 Post-Newtonian approximants

We firstly remark that this is not a direct approximation method for GR,
but, instead, it is an approximation method for the PN series itself, that
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has a rough and practical use in GW data analysis (see Subsec. 1.5.3). In
fact, we have not considered it in the preamble of this chapter, but since it
is fundamental in the papers presented in Chapters 6 and 7 of this thesis, we
will give here a complete overview of the topic, following Ref. [99].
Given PN expansions of the motion and gravitational radiation from a small
binary system with M < 4M�, one needs to compute an accurate mathemat-
ical model for the evolution of the GW phase φGW = p[t;λi], involving the set
of parameters {λi} carrying information about the emitting binary system.
In the adiabatic approximation the phasing formula is easily derived from
the energy and flux functions. Indeed, the standard energy-balance equa-
tion dEtot

dt
= −F gives the following parametric representation of the phasing

formula:

t(v) = tref +M

∫ vref

v

dv
E ′(v)

F(v)
, (2.179)

φ(v) = φref + 2

∫ vref

v

dv v3E
′(v)

F(v)
, (2.180)

where tref and φref are integration constants and vref an arbitrary reference
velocity. From the view point of computational purposes it is more efficient
to work with the following pair of coupled, non-linear, ordinary differential
equations (ODE’s) that are equivalent to the above parametric formulas:

dφ

dt
− 2v3

M
= 0, (2.181)

dv

dt
+
F(v)

ME ′(v)
= 0. (2.182)

The energy and flux nth order PN Taylor approximants are denoted by ETn
and FTn , and defined by

ETn ≡ EN(x)
n∑
k=0

Êk(ν)xk, (2.183)

FTn ≡ FN(x)

[ n∑
k=0

F̂k(ν)vk +
n∑
k=6

L̂k(ν) log

(
v

v0

)
vk
]
, (2.184)

where EN(x) = −1
2
νx and FN(x) = 32

5
ν2x5 are the Newtonian-order pref-

actors, ν ≡ m1m2

M2 is the symmetric mass ratio of the binary with total mass
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M = m1 +m2. The problem is to construct a sequence of approximate wave-
forms hAn (t;λk), starting from the PN expansions of E(v) and F(v). There
are at least three ways of doing that:

1. Taylor T1: One can retain the rational polynomial
FTn
ETn

and integrate

the two ODE’s numerically. The phase formula so obtained is then
denoted by φ

(1)
Tn

(t):

dφ(1)

dt
− 2v3

M
= 0, (2.185)

dv

dt
+
FTn(v)

ME ′Tn(v)
= 0. (2.186)

2. Taylor T2: One can re-expand the rational function
FTn
ETn

appearing

in the phasing formula and truncate it at order vn, in which case the
integrals (2.179) and (2.180) can be worked out analytically, to obtain
a parametric representation of the phasing formula in terms of polyno-
mial expressions in the auxiliary variable v

φ
(2)
Tn

(v) = φ
(2)
ref + φvN(v)

n∑
k=0

φ̂vkv
k, (2.187)

t
(2)
Tn

(v) = t
(2)
ref + tvN(v)

n∑
k=0

t̂vkv
k, (2.188)

where the subscript v in the coefficients indicates that v is the expansion
parameter.

3. Taylor T3: Finally, the second of the polynomials in the Taylor T2
equations can be inverted and the resulting polynomial for v in terms
of t can be substituted in φ(2)(v) to arrive at an explicit time-domain
phasing formula

φ
(3)
Tn

(t) = φ
(3)
ref + φtN

n∑
k=0

φ̂tkθ
k (2.189)

F
(3)
Tn

(t) = F t
N

n∑
k=0

F̂ t
kθ
k, (2.190)

where θ =
[
ν(tref−t)

(5M)

]−1/8

and F ≡ dφ
2πdt

= v3

πM
is the instantaneous GW

frequency.
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The coefficients of these expansions are obviously determinated by substitut-
ing the PN energy and the flux at a certain PN order in the formal expressions
and doing the respective computations.

Stationary Phase Approximation and Taylor F2

The most commonly used Taylor approximant is the Fourier representation
computed using the stationary phase approximation (SPA) for chirp signals.
Let’s consider a signal of the form

h(t) = 2a(t) cosφ(t) = a(t)[e−iφ(t) + eiφ(t)], (2.191)

where φ(t) is the implicit solution of one of the phasing formulas of the above

Taylor approximants. The quantity 2πF (t) = dφ(t)
dt

defines the instantaneous
GW frequency F (t), and is assumed to be continuously increasing (F (t) > 0).
Now the Fourier transform of h(t) is defined by

h̃(f) ≡
∫ ∞
−∞

dte2πifth(t) =

∫ ∞
−∞

a(t)[e2πft−φ(t) + e2πft+φ(t)]. (2.192)

For positive frequencies only the first term on the right contributes and yields
the following usual SPA:

h̃uspa(f) =
a(tf )√
Ḟ (tf

ei[ϕf (tf )−π
4

], (2.193)

where ϕf (t) ≡ 2πft − φ(t) and tf is the saddle point defined by solving for

t the condition
dϕf (t)

dt
= 0, i.e. the time tf when the GW frequency F (t)

becomes equal to the Fourier variable f . Eq. (2.179) yields for tf the value

tf = tref +M

∫ vref

vf

dv
E ′(v)

F(v)
, (2.194)

where vf ≡ (πMf)1/3. Using the above equation and φ(tf ) in eq. (2.196)
one finds that

ψf (tf ) = 2πftref − φref + 2

∫ vref

vf

(v3
f − v3)

E ′(v)

F(v)
dv. (2.195)

The computational advantage of Eq. (2.195) is that in the frequency domain
there are no equations to solve iteratively; the Fourier amplitudes are given
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as explicit functions of frequency. The Taylor F2 method consist in using
PN expansions of the energy and flux, but re-expanding the ratio E′(v)

F(v)
in Eq.

(2.195) in which case the integral can be solved explicitly. This leads to the
following Taylor-like, Fourier domain phasing formula:

ψf (tf ) = 2πftref − φref + τN

5∑
k=0

τ̂k(πMf)(k−5)/3, (2.196)

where τN is the Newtonian prefactor τN = 3
128ν

.



Chapter 3

Tidal properties of Neutron
Stars

3.1 Tidal responses of a Neutron Star

3.1.1 Newtonian Tidal Force

When a very big object undergoes the gravitational force from another body,
this force may significantly vary on its surface. Therefore, the form of the
object is deformed without any volume variation. If we suppose that the
giant body is spherical, tidal forces will stress it into an ellipsoid, with the
major axis aligned to the object that produces the force of gravity.
Tidal laws follow the 1

r3
rule. Let’s consider two bodies in orbit around

each other. It is possible to approximate tidal force to a Newtonian level by
differentiating Newton’s law of gravity with respect to the distance:

dF =
2GMm

r3
dr � r, (3.1)

where M is the mass of the principal body, m the mass of the orbiting body
and r the radius of the orbit.
In this case the tidal forces will be 2dF to the axis that binds the two center
of mass of the bodies, and since the sign is positive, they will be directed to
the external part of the body; on the contrary, on the plane perpendicular
to the binding axis, the force is internal, and defined as −dF .
In General Relativity, the exact tidal force in each point of a body’s surface
is described by Weyl’s tensor, which is obtained by subtracting the trace to

63
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Riemann’s tensor (7):

Cµνρσ = Rµνρσ −
1

2
Rµρgνσ +

1

2
Rµσgνρ +

1

2
Rνρgµσ −

1

2
Rνσgµρ

+
1

6
R(gµρgνσ − gµσgνρ). (3.2)

This tensor, which describes the tidal deformation of a body without volume
variations, vanishes when contracted with a pair of indexes (µρ) or (νσ).
Using the antisymmetric tensor notation A[µν] ≡ 1

2
(Aµν −Aνµ), we can write

Weyl’s tensor in a more compact form:

Cµνρσ = Rµνρσ −Rµ[ρgσ]ν +Rν[ρgσ]µ +
1

3
Rgµ[ρgσ]ν . (3.3)

3.1.2 Gravitomagnetism

The term “gravitomagnetism” [100, 101](GM) commonly indicates the col-
lection of those gravitational phenomena regarding orbiting test particles,
precessing gyroscopes, moving clocks and atoms and propagating electromag-
netic waves [102, 103] which, in the framework of GR, arise from non-static
distributions of matter and energy.
Let’s consider, in the weak-field and slow motion approximation, the “match-
ing” multi-chart approach developed by Damour, Soffel and Xu [104, 105,
106, 107] in the nineties. Here the motion and radiation of a compact body
is splitted into an inner problem, where the worldine LA1 is “skeletonized”,
and into an outer problem, where we have a worldtube τA ⊂ V4 that wraps
LA (V4 is the atlas where all the considered bodies move). The two problems
are then matched after a multipolar expansion. The local system of coordi-
nates, that is bound to the bodies, is defined as a chart Xα

A : τA → <. In
short, in the outer problem one solves field equations in which the worldlines
are provided with some global characteristics such as mass, spins and higher
multipole moments, while in the inner problem one obtains the near-wordline
behavior of the outer solution from a study of the influence of the other bod-
ies on the structure of the fields in an inner world tube around each body.
The resulting metric parametrization for the local chart at 1PN, using the

1The index A refers to the number of bodies that we are considering. If we are interested
in a binary system, then A = 2.
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DSX notation where T ≡ X0
A/c, is the following:

GA
00(X) = − exp

(
−2WA

c2

)
, (3.4)

GA
0a(X) = − 4

c3
WA
a , (3.5)

EA
a (X) = ∂aW

A +
4

c2
∂TW

A
a , (3.6)

BA
a (X) = εabc∂b(−4WA

c ), (3.7)

where a, b, c = 1, 2, 3. The gauge-invariant fields E, B and W satisfy the
familiar equations2

∇ ·B = 0, (3.8)

∇×E = − 1

c2
∂TB, (3.9)

∇ ·E = − 3

c2
∂2
TW +O

(
1

c4

)
, (3.10)

∇×B = 4∂TE +O

(
1

c2

)
. (3.11)

We can naturally define the vector B as the gravitomagnetic field, and the
vectorE as the gravitoelectric field. The metric potentialWµ = (W,Wi) is re-
lated to the gravitational quadripotential Aµ by the relation Aµ ≡ (A0, Ai) ≡
(cW,−4Wi). Defining Λ(X) as an arbitrary function, this potential has the
same gauge invariance of its electromagnetic analogue:

W ′ = W − 1

c2
∂tΛ (3.12)

W ′
i = Wi +

1

4
∂iΛ. (3.13)

The gravitational force density will be defined as analogue of electromag-
netism’s Lorentz force,

F ≡ ΣE +
1

c2
Σ×B, (3.14)

2Gravitomagnetic Maxwell’s equations are defined as Eqs. (3.8),(3.9), (3.10) and (3.11)
at 1PN order, in the flat spacetime. This means that the curvature effects typical of GR
are contained in the corrections O

(
1
c4

)
and O

(
1
c2

)
.
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where the quadrivector Σµ is related to the stress-energy tensor by

Σ(T,X) ≡ T 00 + T bb

c2
(3.15)

and

Σa(T,X) ≡ T 0a

c
. (3.16)

Looking at the equation (3.14), we can say that the tidal force is split into
two compenents, a gravitomagnetic one, proportional to the current den-
sity (3.16), and a gravitoelectric one, proportional to charge density (3.15)3.
In the case of a multipolar expansion using spherical harmonics (Y`m), the
even-parity part (` + m = even) is related to the mass/charge, so it can be
defined as “electric”, while the odd parity part (` + m = odd), is related
to the angular momentum/current, so it can be defined as “magnetic”. In
Ref. [6], we compare the effects of gravitomagnetic and gravitoelectric tides
using the EOB formalism and we find, like what was previously hinted in
Ref. [108], that they are ∼ O(10−2) orders of magnitude negligible for data
analysis purposes (see Fig. 2 there).

3.1.3 Love Numbers theory

Having in mind Eqs. (3.4), (3.5), (3.6) and (3.7), following Ref. [108] one
defines, in the local frame of each body A, two sets of gravitoelectric and
gravitomagnetic relativistic tidal moments, GA

L and HA
L , as

GA
L(T ) ≡ [∂〈L−1E

A,ext−gen
a`〉 (T,X)]Xa→0, (3.17)

HA
L (T ) ≡ [∂〈L−1B

A,ext−gen
a`〉 (T,X)]Xa→0, (3.18)

where EA,ext−gen
a and BA,ext−gen

a denote the externally-generated parts of the
local gravitoelectric and gravitomagnetic fields EA

a and BA
a , while the angu-

lar brakets on the indexes refer to the STF notation that we have introduced
in Sec. 2.3.3. The formal limit Xa → 0 refers to the “skeletonized”4 match-
ing performed in the outer problem [104]. The multipole moments of the
inner zone, that are internally generated, are the symmetric traceless free

3T bb is the trace of the spatial part of Tµν .
4XA

outer → 0 can be visualized as the limit in which the world tube is large with respect
to the radius of the body A.
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(STF) tensors MA
L (T ) (mass moments) and SAL (T ) (spin moments). They

asymptotically decrease as R ≡ |X| → ∞, and in the stationary case they
are related with the internally-generated metric potentials by the multipolar
expansions

W int−gen,A(X) = G
∑
`≥0

(−)`

`!
∂L

(
MA

L

R

)
, (3.19)

W int−gen,A
a (X) = G

∑
`≥1

`

`+ 1

(−)`

`!
εabc∂bL−1

(
SAcL−1

R

)
− 1

4
∂a(Λ

A − λ), (3.20)

where ΛA−λ is a gauge transformation5. Substantially, the matching between
the outer (Eqs. (3.17) and (3.18)) and the inner problem (Eqs. (3.19) and
(3.20)) leads to the following equations:

MA
L = µA` G

A
L (3.21)

SAL = σA` H
A
L . (3.22)

Here we have defined two tidal-polarizability coefficients µ` (gravitoelectric,
even parity) and σ` (gravitomagnetic, odd parity), as previously done in the
DSX formalism [104]. These coefficients relate the tidal induced multipole
moments MA

L and SAL to the corresponding external tidal fields GA
L and HA

L .
More practically, µ2 is the tidal polarizability associated to the quadrupole
moment, and is equivalent to Hinderer’s λ coefficient [109, 110], while σ2 is
the analogue of Favata’s γ coefficient [111].
In terms of the finite-size corrections to the leading point-particle effective
action Spointmass = −∑A

∫
MAdsA, the two tidal effects parametrized by

µ` and σ` correspond to nonminimal wordline couplings proportional to the
quantities

Spointmass,electric ∼ µA`

∫
dsA(GA

L)2, (3.23)

Spointmass,magnetic ∼ σA`

∫
dsA(HA

L )2. (3.24)

5This transformation can be gauged-away by considering the internal-produced mag-
netic field of the binary.
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These leading quadrupolar corrections can be reproduced (see Refs [112, 104])
as the following nonminimal coupling involving the Weyl tensor (Eq. (3.3)):

Spointmass,electric ∼ µ2

∫
dsEαβEαβ, (3.25)

Spointmass,magnetic ∼ σ2

∫
dsBαβBαβ, (3.26)

where Eαβ ≡ uµuνCµανβ and Bαβ ≡ uµuνC∗µανβ, with u = dzµ/ds and

C∗µανβ ≡ 1
2
ε ρσ
µν Cρσαβ (i.e. the dual of Eq. (3.3)).

Considering a strongly self-gravitating NS, one wants then to determine µA`
and σA` as functions of the compactness CA ≡

(
GM
c2R

)
A

. The starting point
of the process, Eqs. (3.21) and (3.22), are the most general coefficients that
can exist in the (parity preserving) case of a nonspinning NS. The tidal prop-
erties of a spinning NS will involve other tidal coefficients, proportional to
the spin, and associated to a mixing between gravitoelectric and gravitomag-
netic effects. They would correspond, for example in the quadrupolar case,
to nonminimal worldline couplings quadratic in the Weyl tensor and linear
in the spin tensor SAµν .
Up to now we have only considered tidal coefficients with a direct dynamical
meaning. For completeness, we stress that there exist also a “shape” Love
number h` that measures the proportionality between the external tidal in-
fluence and the deformation of the geometry of the surface of the considered
NS. It is defined as (

δR

R

)
`

= h`
Udisturb
` (R)

gR
, (3.27)

where the L.H.S. of the equation is proportional to the Legendre polynomial
P`(cos θ), which represents the fractional deformation of the areal radius
R of the NS. The quantity Udisturb

` (R) ∝ R`P`(cos θ) represents the usual,
external, Newtonian tidal potential deforming the star, formally evaluated
at the radius of the star, whereas g ≡ GM/R2 represents the usual Newtonian
surface gravity of the body. For a more complete treatment of the shape Love
number, that is not in the aims of this PhD thesis, the reader should refer
to Refs. [108] and [113].
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3.1.4 Computing µ` and σ`

Following Ref. [108], let’s consider the metric of an isolated, nonrotating NS,

G
A(0)
αβ dXαdXβ = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2, (3.28)

where the index (0) reminds us that the body is not perturbed. The local
spherical coordinates of the A-body frame are denoted by (t, r, θ, ϕ), with
dΩ2 ≡ dθ2 + sin2 θdϕ2. Introducing the radial dependent mass parameter
m(r) by

eλ(r) ≡
(

1− 2m(r)

r

)−1

, (3.29)

and considering a perfect fluid energy-momentum tensor

Tµν = (e+ p)uµuν + pgµν , (3.30)

the spherically symmetric metric coefficients ν(r), m(r) and the pressure p(r)
satisfy the Tolman-Oppenheimer-Volkoff (TOV) equations of stellar equilib-
rium

dm

dr
= 4πr2e, (3.31)

dp

dr
= −(e+ p)

m+ 4πr3p

r2 − 2mr
, (3.32)

dν

dr
=

2(m+ 4πr3p)

r2 − 2mr
. (3.33)

These equations are integrated from the center outward once that a bar-
itropic EOS relating p to e is provided (see Subsec. 3.1.5 for comparisons
between models of various EOS).
Since the background geometry of the problem is spherical, the metric per-
turbation

GA
αβ(X) = G

A(0)
αβ (X) +Hαβ(X), (3.34)

can be decomposed into spherical harmonics. The metric is expanded in
even-parity and odd-parity tensor harmonics as

Hαβ = Heven
αβ +Hodd

αβ . (3.35)
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In the Regge-Wheeler gauge Hµν → Hµν + ξµ;ν + ξν;µ, where ξµ is a gauge
vector, and following standard definitions for the expansion coefficients and
the sign conventions, for the even parity case one obtains

Heven
αβ dXαdXβ = −[eνH`m

0 dt2 + 2H`m
1 dtdr +H`m

2 eλdr2 + r2K`mdΩ2]Y`m.
(3.36)

For what concerns the odd parity case, the nonvanishing components of Hodd
αβ

are Hodd
tA = h0ε

B
A∇BY`m and Hodd

rA = h1ε
B
A∇BY`m where (A,B) = (θ, ϕ) and

where εBA is the mixed form of the volume form on the sphere S2
r . The

next step is, considering the adiabatic tides case (i.e. the perturbations are
stationary), to solve Einstein’s Equations (11) together with the perturbed
hydrodynamical equations∇αδTαβ[e, p] = 0, so as to describe a star deformed
by an external tidal field.
The problem to compute gravitomagnetic and gravitoelectric Love numbers
is different for the even and the odd parity perturbations. Let’s consider
them separately.

• Even parity case: The metric perturbations reduce to two functions
H = H0 = H2, and K (with H1 = 0). The fluid perturbations are
described by the logarithmic enthalpy function h = δp/(e + p). The
relation, in absence of entropy, with the metric function H is given by
δh = 1

2
H. Then the problem to convert the first order radial differential

eqations relating H ′, K ′, H and K to a single second order master
equation was solved by Lindblom, Mendell and Ipser [114]:

H ′′ + C1H
′ + C0H = 0. (3.37)

Taking the stationary limit (ω → 0) of the results given in Appendix
A of Ref. [114] one obtains the coefficients C1 = C1(r; ν, λ,m, p, e) and
C0 = C0(`; ν, λ, p, e) , that are given in Eqs. (28) and (29) of Ref. [108].
Eq. (3.37) generalizes the quadrupolar Eq. (15) of Ref. [110] to higher
multipolar orders (in fact the coefficient C0 is `-dependent).
The metric variable K can be expressed as a linear combination of H
and H ′, namely

K = α1H
′ + α2H, (3.38)

where the coefficients α1 and α2 can be computed by taking the sta-
tionary limit of the results given in Appendix A of Ref. [114].
The electric-type tidal response coefficient µ`, defined by Eq. (3.21),
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can be obtained by going through three steps: i) numerically solving
Eq. (3.37) within the NS; ii) analytically solving the same equation in
the exterior of the star; iii) matching the interior and exterior solu-
tions across the star surface, taking into account the definition (3.21)
to normalize the ratio between the two parts of H(r), Hgrowing ∼ r`

and Hdecreasing ∼ µ`r
−(`+1).

– i) Eq. (3.37) is numerically integrated, along with TOV equa-
tions (3.31) (3.32) (3.33), from the center r0 ∼ 10−6 outwards,
starting with some central values of m, p, ν, H and H ′. For H,
one obviously takes starting values at H(r0) = r`0 and H ′(r0) =
`r`−1

0 . The latter boundary conditions follow from the analysis
of Eq. (3.37) around r = 0, which shows that H(r) ' r` is the
most general regular solution around r = 0. The internal integra-
tion’s output is the value, for each `, of the internal logarithmic
derivative

yint(r) ≡ rH ′

H
(3.39)

at the star’s surface r = R,

y` ≡ yint(R). (3.40)

– ii)The exterior form of Eq. (3.37) with e = p = 0 and m(r) = M
can be rewritten as an associated Legendre equation with ` = `
and m = 2 [57, 58]:

(x2 − 1)H ′′ + 2xH ′ −
(
`(`+ 1) +

4

x2 − 1

)
H = 0, (3.41)

where x ≡ r/M − 1. The general solution of this equation can be
written as

H = aP P̂`2(x) + aQQ̂`2(x), (3.42)

where the hat indicates that the Legendre functions have been
normalized so that Q̂`2 ' 1/x`+1 ' (M/r)`+1 and P̂`2 ' x` '
(r/M)` when x → ∞ or r → ∞. The integration constants aQ
and aP are determinated by matching to the internal solution.
Defining a` ≡ aQ/aP the exterior logarithmic derivative yext ≡
rH ′/H reads

yext
` (x) = (1 + x)

P̂ ′`2(x) + a`Q̂
′
`2(x)

P̂`2(x) + a`Q̂`2(x)
. (3.43)
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– iii)When γ < ∞, it is correct to impose the continuity of H and
H ′ at the star’s surface r = R (the incompressible limit γ → ∞
is singular at that point). This continuity implies the continuity
of the logarithmic derivative rH ′/H. This leads to the condition
yext(R) = yint(R) = y`, which determines the value of the ratio
a` = aQ/aP in terms of the compactness C = M/R of the star

a` = −
(
P̂ ′`2(x)− Cy`P̂`2(x)

Q̂′`2(x)− Cy`Q̂`2(x)

)
x=1/C−1

. (3.44)

The ratio a` ≡ aQ/aP can be related to the tidal coefficient µ` by
comparing (modulo an overall factor -2)

Hgrowing(r) = apP̂`2(x)Y`m ' aP

( r
M

)`
Y`m, (3.45)

Hdecreasing(r) = aQQ̂`2(x)Y`m ' aQ

( r
M

)−(`+1)

Y`m, (3.46)

respectively to

W ext−gen =
1

`!
X̂LGA

L =
1

`!
r`n̂LGA

L (3.47)

and Eq. (3.19). The radial unit vector from above is defined as
na ≡ Xa/r. Since

∂Lr
−1 = (−)`(2`− 1)!!n̂Lr−(`+1), (3.48)

and ML = µ`GL and GLn̂
L ∝ Y`m(θ, ϕ), we see that

(2`− 1)!!Gµ` =
aQ
aP

(
GM

c2

)2`+1

= a`

(
GM

c2

)2`+1

. (3.49)

The dimensions of Gµ` are [length]2`+1. By scaling this quantity
by the (2`+ 1)-th power of the star radius R we have

(2`− 1)!!
Gµ`
R2`+1

≡ 2k` = a`C2`+1. (3.50)

This is the traditional “Newtonian” way of proceeding, and leads
to the introduction of the dimensionless “second tidal Love num-
ber” k`.
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One can finally write k` as

k` =
1

2
C2`+1a` (3.51)

= −1

2
C2`+1

(
P̂ ′`2(x)− Cy`P̂`2(x)

Q̂′`2(x)− Cy`Q̂`2(x)

)
x=1/C−1

. (3.52)

The dimensionless Love number has the advantage of having a
weaker sensitivity on the compactness C ≡ GM/c2R. Besides
that, the dimensionless quantity which will most directly enter
the gravitational-wave phase of a BNS is Gµ`/(GM/c2)2`+1 ∼
a` ∼ C−(2`+1)k`. Using the Legendre polynomial formulas that
are present in common literature one can solve Eq. (3.51) for
2 ≤ ` ≤ 4, that are reported in Eqs. (50), (51) and (52) of
Ref. [108].

• Odd parity case: The gravitational potential well generated by the
stress-energy tensor of a star does affect the radial propagation of the
external odd-parity tidal fields, and adds an asymptotically decreasing
tidal response to the incoming tidal field. This phenomenon is decribed
by the static limit of Cummingham, Price and Moncrief equation [115,
116]. In the stationary limit this equations reads

ψ′′ +
eλ

r2
[2m+ 4πr3(p− e)]ψ′ − eλ

[
`(`+ 1)

r2
− 6m

r3
+ 4π(e− p)

]
ψ = 0.

(3.53)
In terms of the variables (h0, h1) entering the odd parity perturbations,
the odd-parity master function ψ can be taken to be either e(ν−λ)/2h1/r,
or the combination r∂th1 − r3∂r(h0/r

2). Since h1 vanishes in the sta-
tionary limit, ψ yields

ψ = r3∂r

(
h0

r2

)
= rh′0 − 2h0. (3.54)

The magnetic-type tidal coefficient σ` can be obtained in three steps
that are analogue to the even-parity case from above.

– i) The internal value of the odd-parity master function ψ is ob-
tained by numerically integrating Eq. (3.53), together with TOV
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equations. The boundary condition in this case are obtained from
the behavior ψ ∝ r`+1 of the general regular solutions in r = 0.
Like the previous case, the main output of the internal integra-
tion procedure is to compute, for each value of `, the value of the
internal logarithmic derivative of ψ at the star surface:

yodd
` ≡ yint

` (R) ≡
[
rψ′int

ψint

]
r=R

. (3.55)

– ii) Similar to the even-parity case, there exist two types of exterior
solutions: a growing one and a decreasing one. We respectively
normalize them in order to have ψP (r̂) ' r̂`+1, and ψQ(r̂) ' r̂−`

as r̂ →∞, where r̂ ≡ r/M . In the quadrupolar case the growing
analytical exterior solution of Eq. (3.53) is the polynomial

ψ`=2
P (r̂) = r̂3, (3.56)

while the decreasing one can be expressed in terms of an hyper-
geometric function F (a, b; c; z) (15) as

ψ`=2
Q (r̂) = −1

4
r̂3∂r̂

[
r̂−4F

(
1, 4; 6;

2

r̂

)]
. (3.57)

The normalization of ψQ(r̂) is such that ψQ(r̂) ' r̂−2 as r → ∞.
For a = 1, b = 4 and c = 6 one can rewrite the hypergeometric
function as a polynomial with the form

ψ`=2
Q (r̂) = A3r̂

3 log

(
r̂ − 2

r̂

)
+A2r̂

2 +A1r̂+A0 +A−1r̂
−1. (3.58)

For an arbitrary `, the general exterior solution of Eq. (3.37) can
be written as

ψext = bPψP (r̂) + bQψQ(r̂), (3.59)

which is the analogue of the even-parity one (3.42). This result
allows one to compute the logarithmic derivative yodd = rψ′/ψ of
ψ in the exterior domain, namely

yext
odd(r̂) = r̂

ψ′P (r̂) + b`ψ
′
Q(r̂)

ψP (r̂) + b`ψQ(r̂)
, (3.60)

where b` ≡ bQ/bP .
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– iii) Similarly to the even-parity case, by imposing the continuity
of ψ, ψ′ and therefore yodd = rψ′/ψ at the star’s surface, one
obtains

b` = −
(
ψ′P (r̂)− CyoddψP (r̂)

ψ′Q(r̂)− CyoddψQ(r̂)

)
r̂=1/C

, (3.61)

that is the odd-parity analogue of a`. In the present odd-parity
case, the tidal response coefficientGσ` has the dimension [length]2`+1,
like a`, and for a general ` we have b` ∼ Gσ`(GM/c2)−(2`+1). The
odd parity analogue of k` will be obtained by scaling Gσ` by the
(2` + 1)-th power of the star radius R, and will therefore involve
the new dimensionless combination

j` ≡ C2`+1b`

= −C2`+1

(
ψ′P (r̂)− CyoddψP (r̂)

ψ′Q(r̂)− CyoddψQ(r̂)

)
r̂=1/C

. (3.62)

The Regge-Wheeler metric function h0 entering Eq. (3.54) parametrizes
the the time × angle off diagonal component of the metric per-
turbation

H0A ∝ h0(r)εBA∇BY`m(θ, ϕ), (3.63)

where A,B = 2, 3 = θ, ϕ are indices on the background coordi-
nate sphere S2

r of radius r. The metric on S2
r is γABdx

AdxB =
r2dΩ2, while εBA ≡ γBCεAC denotes the mixed form of the volume
form 1

2
εABdx

A ∧ dxB = r2 sin θdθ ∧ dϕ on S2
r . Let’s now con-

sider the 3-dimensional component of the gravitomagnetic field
Ba ∝ εabc∂bH0c. Its radial component is the pseudoscalar

n ·B = naBa ∝ naεabc∂bH0c ∝ εAB∇AH0B. (3.64)

By substituting Eq. (3.63) this equation yields

n ·B ∝ −h0(r)εABεCA∇B∇CY`m = `(`+ 1)
h0(r)

r2
Y`m, (3.65)

where one used εABεCA = γBCεBC and the fact that γAB∇A∇BY`m =
−`(` + 1)r−2Y`m, where the factor r−2 comes from the fact that
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γAB is the metric on a sphere of radius r, than an unit sphere.
This leads to

ψ = r3∂r

(
h0

r2

)
∝ r3∂r(n ·B). (3.66)

Focusing on the growing or decreasing asymptotic terms in the
odd-parity metric, we can now compare the definition of b`, namely

ψ ∝
[
r`+1 + b`

(
GM

c2

)2`+1

r−`

]
Y`m(θ, ϕ), (3.67)

to the stationary limit of the general gravitomagnetic fields in
a local A frame (that are shown in Eqs. (2.19) and (4.16) of
Ref. [105]),

Ba = Bext−gen
a +Bint−gen

a

=
∑
`

1

`!
XLHaL +

∑
`

4G
(−)`

`!

`

`+ 1
∂aL

(
SL
r

)
. (3.68)

Inserting now SL = σ`HL, contracting Ba with na, and recalling
that one has na∂a = ∂r and ∂L(r−1) = (−)`× (2`−1)!!r−(`+1), one
finds

n ·B =
∑
`

1

(`− 1)!
r`−1HLn

L +
∑
`

4Gσ`
(−)`

`!

`

`+ 1
∂r∂L

(
HL

r

)
=
∑
`

1

(`− 1)!

[
r`+1 − 4Gσ`(2`− 1)!!

1

r`+2

]
nLHL, (3.69)

so that

r3∂r(n ·B) =
∑
`

1

(`− 2)!

[
r`+1 + 4Gσ`(2`− 1)!!

`+ 2

`− 1

1

r`

]
nLHL.

(3.70)
The comparison with Eq. (3.67) yields the final result

Gσ` =
`− 1

4(`+ 2)

j`
(2`− 1)!!

R2`+1, (3.71)

where j` ≡ C2`+1b`. In the ` = 2 quadrupolar case we have

Gσ2 =
1

48
j2R

5 =
1

48
b2

(
GM

c2

)5

, (3.72)

where the explicit expression of j2 is given by Eq. (73) of Ref. [108].
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3.1.5 Polytropic Equations of State

The Equation of State (EOS) framework is mainly discussed in Refs. [117,
118] and references therein. In this section, following the references from
above, we briefly overview this topic in order to clarify what is explained in
Chapters 5 and 6.
Since the temperature of Neutron Stars (NS) is far below the Fermi energy
of their constituent particles, their matter is described by the one-parameter
EOS that governs cold matter above nuclear density. This EOS, besides
being the correct choice, has a large uncertainty, since the pressure p as a
function of the mass density ρ is uncertain by as much as an order of mag-
nitude above nuclear density. The phase of the matter in the core of a NS is
similarly uncertain, so there exists various models of EOS that depend from
physical models of the nucleus. The correspondigly large number of funda-
mental parameters needed to accomodate the models’ Lagrangians has meant
that studies of astrophysical constraints have induced a separation between
“allowed” and “excluded” EOS lists. In Ref. [117] it is shown that if one
uses phenomenological rather than fundamental parameters, one can obtain
a parametrized EOS in which the astrophysical constraints are described as
constraints on the parameter space. This implies that the number of param-
eters are smaller than the number of the “true” NS properties, but at the
same time large enough to accurately approximate the EOS candidates.
One can define a parametrized EOS by specifying the stiffness of the star in
three density intervals, measured by the adiabatic index

Γ =
d log p

d log ρ
. (3.73)

A fourth parameter translates the p(ρ) curve up or down, adding a con-
stant pressure or, equivalently, fixing the pressure at the endpoint of the first
density interval. The EOS is then matched below nuclear density to the
(presumed known) EOS. An EOS with Γ = constant is a polytrope, so a
parametrized EOS is still polytropic, but with different polytropic intervals.
Several studies [119, 120, 121, 122, 123] have considered piecewise polytropic
equations to approximate NS EOS candidates. Ref. [117] uses a small num-
ber of parameters to fit a wide variety of fundamental EOS. In literature
these candidates are usually the following:

• Potential-method EOSs, as PAL6 [124] and Sly [125];
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• Variational-method EOSs like AP1-4 [126], FPS [127] and WFF1-3 [128];

• Brueckner-Hartree-Fock EOSs, that are subdivided in nonrelativistic
(BBB2 [129]) and relativistic (BPAL12 [130], ENG [131] and MPA1 [132])
ones;

• Relativistic mean-field theory EOSs: MS1-2 and MS1b, which is iden-
tical to MS1 except with a low simmetry energy of 25 MeV [133]).

A polytropic EOS has the form

p(ρ) = KρΓ, (3.74)

where ρ is the rest-mass density, K a constant of proportionality and Γ the
adiabatic index. The energy density ε is fixed by the first law of thermody-
namics (c ≡ 1):

d
ε

ρ
= −pd1

ρ
. (3.75)

The integral of Eq. (3.75) given Eq. (3.74) is

ε

ρ
= (1 + a) +

1

Γ− 1
KρΓ−1, (3.76)

where a = constant. But since limρ→0
ε
ρ

= 1, a = 0 and

ε = ρ+
1

Γ− 1
p. (3.77)

A parametrized EOS like the one introduced in Ref. [117] is a piecewise
polytrope above a density ρ0, satisfying Eqs. (3.74) and (3.76) on a sequence
of density intervals, each with its own Ki and Γi. An EOS is piecewise
polytropic for ρ ≥ ρ0 if, for a set of dividing densities ρ0 < ρ1 < ρ2 < ...,
the pressure and energy density are everywhere continuous and satisfy the
conditions

p(ρ) = Kiρ
Γi ,

d
ε

ρ
= −pd1

ρ

ρi−1 ≤ ρ ≤ ρi. (3.78)
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Then, for Γ 6= 1,

ε(ρ) = (1 + ai)ρ+
Ki

Γi − 1
ρΓi (3.79)

with

ai =
ε(ρi−1)

ρi−1

− 1− Ki

Γi − 1
ρΓi−1
i−1 . (3.80)

The specific enthalpy h is defined as (ε + p)/ρ and is given in each density
interval by

h(ρ) = 1 + ai +
Γi

Γi − 1
Kiρ

Γi−1. (3.81)

The internal energy e = ε
ρ
− 1 is then

e(ρ) = ai +
Ki

Γi − 1
ρΓi−1 (3.82)

and the sound velocity vs is

vs(ρ) =

√
dp

dε
=

√
Γip

ε+ p
(3.83)

Each piece of a piecewise polytropic EOS is specified by three parameters:
the initial density, the coefficient Ki, and the adiabatic index Γi. However,
when the EOS at lower density has already been specified up to the chosen
ρi, continuity of pressure restricts Ki+1 to the value

Ki+1 =
p(ρi)

ρΓi+1
i

(3.84)

Thus each additional region requires only two parameters, ρi and Γi+1.
The fitting procedure for piecewise polytropic equations (see Sec. IV of
Ref. [117]) is beyond the aim of this work; the important thing to stress is
that there is a general agreement on the low density EOS for cold matter, so
each choice of a piecewise polytropic EOS above nuclear density is matched
to a SLy equation [125] in order to get a “realistic” fitted equation. These
phenomenological equations can be employed in comparisons between nu-
merical and analytical models; in this case there are shown some tables with
the different adiabatic indexes Γi associated to each polytropoc interval, the
dividing density (ρ0) between the low density part of the EOS (the “crust”)
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and the high density one; the gravitoelectric Love Numbers associated to the
EOS. For preliminary or theoretical-oriented works, a rather good representa-
tion of the overall characteristics of NSs for a polytropic equation like (3.74)
is Γ ∼ 2 [108].

3.2 Quadrupole-monopole responses of a Neu-

tron Star

In a BNS system, the spinning motion of the body A induces a distortion
in its mass distribution which creates another distortion in the gravitational
field outside the star, measured by the STF tensor Cab

QA. The quadrupole
term in the gravitational potential affects the orbital motion of the compan-
ion, and this effect can modify the rate of the inspiral of a spinning BNS (i.e.
it enters in the phase of our gravitational signal, see Chapt. 6). In literature
this interaction is often named “quadrupole-monopole” effect, as it was in-
troduced by Poisson [134].
Assuming that the spinning body A is axially symmetric about the direction
of ŜA, where the hat indicates an unit vector, the quadrupole-moment tensor
can be expressed as

Qab
A = CQA(ŝaŝb − 1

3
δab), (3.85)

where CQA 6= 1 for a NS and CQA = 1 for a BH (so in the latter case we get
the standard formula (2.7)). In Newtonian theory this is given in terms of the
mass density ρ by QA =

∫
A
ρ(x)|x|2P2(ŝ·x̂)d3x, where P2(x) = 1

2
(3x2−1). In

GR, CQA is defined in a coordinate-invariant manner in terms of the falloff
behavior of the metric outside the star. The general relativistic definition
reduces to the Newtonian one when the gravitational field is weak every-
where inside the star. The LO quadrupole-moment contribution computed
by Poisson [134] reads

σqm = −5

2

∑
A

CQA
χ2
Am

2
A

M2
[3(L̂ · ŜA)2 − 1], (3.86)

and has been studied in a data analysis context in Ref. [135]. We refer the
reader to Chapt. 6 for an original study of the effects on the phase of NLO
and NNLO quadrupole-monopole terms [136].
Finally, for the purposes of this work, it is useful to remind that there exist
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some phenomenological correlations between the mass, the moment of in-
ertia and the quadrupole moment of a BNS [137]. Roughly speaking, the
moment of inertia I quantifies how fast a NS can spin given a fixed spin
angular momentum S; the quadrupole moment Q describes how much a NS
is deformed away from sphericity, and the Love number characterizes how
easy or difficult it would be to deform a NS. The quadrupole moment scalar
defined as Qspin ≈ −CQ(m,EOS)χ2 depends from the equation of state,
and so from the Love Number. The (phenomenological) relation that binds
these quantities allowing us to compute the CQ(λ) scalar that enters at the
quadratic-order in the spin given a Love number λ (and so an EOS) is the
fitting formula [137]

log yi = ai + bi log xi + ci(log xi)
2 + di(log xi)

3 + ei(log xi)
4, (3.87)

where the coefficients are given by Table 3.1

Table 3.1: Estimated numerical coefficients for the fitting formula of the
I-Love, I-Q and Q-Love (dimensionless) relations given in Ref [137] for
Eq. (3.87).

yi xi ai bi ci di ei

I λ 1.47 0.0817 0.0149 2.87×10−4 -3.64×10−5

I Q 1.35 0.697 -0.143 9.94×10−2 -1.24×10−2

Q λ 0.194 0.0936 0.0474 -4.21×10−3 1.23×10−4

For gravitational-wave modelization we are interested to the last row of
the table, where we can see the relation between the quadrupole-monopole co-
efficients CQ(λ) and the Love number λ of the associated EOS (see Chapt. 5).
It is important to stress that Yunes and Yagi’s relations (3.87) do not de-
pend sensitively on the NS’s internal structure. They are “universal” in the
sense that phenomenologically they depend most sensitively on the internal
structure far from the core, where all realistic EOS mostly approach each
other. Beyond that, as the NS compactness increases, the fitting formula
approaches the parameter configuration of a BH, which does not have an
internal-structure dependence.



82



Chapter 4

The Effective one-Body model

4.1 Introduction and motivations

In this Chapter, we mainly follow one of the best seminars on the topic, i.e.
Damour’s 2016 Séminaire Poincaré session [81], updating it with the actual
state-of-the-art EOB developments when necessary.
High-order PN-expanded analytical results, if used as they are, are insuffi-
cient for allowing one to describe the last orbits, and the merger of BBHs or
BNSs. The issue is that the velocity parameter ε = v/c ≡ x1/2 ≡ (GMΩ/c3)

1
3

becomes of order unity near the end of the inspiral, so that the various PN-
expanded representations of both the dynamics, and the GW emission, of the
type c0 +c1v/c+c2v

2/c2 +c3v
3/c3 + ...+cnv

n/cn, become numerically useless
before one can reach the merger. Some authors, led by Thorne, suggested in
1998 that only NR will have solved the problem: near the merger, one must
use NR simulations only [138], even if that method is slow and incompatible
with bayesian analysis’ high number of template requirements. On the other
hand, the same year Damour and collaborators proposed to simply use re-
summation to ‘cure” the divergent PN results’ pathologies [139].
A resummation method consists in replacing a Taylor-like truncated expan-
sion by some non-polynomial funtion of v/c, defined so as to incorporate
some of the expected non-perturbative features of the exact results. In 1999-
2000 a new approach to the resummation of the conservative dynamics of
binary systems was introduced [28, 140, 141]. This approach, named “Effec-
tive one-Body (EOB) model”, is constituted by three different bricks: the
dynamical sector, which was inspired by an approach to electromagnetically

83
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interacting quantum two-body systems introduced by Brézin, Itzykson and
Zinn-Justin [142]; the radiation-reaction force F sector, that was initially in-
spired by the Padé resummation of the flux function introduced in Ref. [139]
and then improved (along with the waveform, which is the square-root of the
flux) in Refs. [8, 143, 9], and by Chapters 8 and 9 of this work; a waveform
sector inspired by the work of Davis, Ruffini and Tiomno [144], which dis-
covered the transition between the plunge signal and a ringing tail when a
particle falls into a BH. Additional motivation for the EOB treatment of the
transition from plunge to ringdown for a BBH came from Ref. [145].

4.2 EOB dynamics

The EOB is a general-relativistic generalization of the Newtonian fact that
the relative dynamics of a two-body system with masses m1, m2 and po-
tential V (x1 − x2), is equivalent to the dynamics of a test-particle of mass
µ = m1m2/|x1 − x2| and position x = x1 − x2 subject to the same poten-
tial V (x). In a gravitational two-body interaction, since V (x1 − x2) =
−Gm1m2/|x1 − x2|, the identity m1m2 ≡ µM (where M ≡ m1 + m2)
means that the gravitational two-body Newtonian interaction is equivalent
to the dynamics of a test-particle mass µ attracted by a larger, central mass
GM = G(m1 +m2). This fact is generalized into a GR framework by consid-
ering an “effective” metric geff

µν(x
λ;GM, ν) such that the geodesic dynamics

of a test-particle of mass µ within it is equivalent, when Taylor-expanded in
powers of c2, to the original, relative PN-expanded dynamics, which is de-
scribed by the PN-expanded Hamiltonian in the ADM formalism [146, 147].
Looking at Appendix E of Ref. [146], one can observe that the full 4PN
Hamiltonian is very complex, and that it takes several sheets of paper. The
EOB approach to the relativistic two-body problem introduces strong sim-
plifications thanks to mapping of the real comparable-mass binary system
dynamics into the effective test-particle one.
Let’s now explain the idea, proposed in Ref. [28], which defines the EOB
approach. It consists, like what was emphasized by John Wheeler, in think-
ing “quantum mechanically” into a classical mechanics framework. Instead
of thinking in terms of a classical Hamiltonian H(q,p), and of its clas-
sical bound orbits, we can think in terms of the quantized energy levels
E(n, `) of the quantum bound states of the Hamiltonian operator H(q̂, p̂).
Here ` will be the discrete angular momentum quantum number (we remind
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that L2 = ~`(` + 1)), while n represents the principal quantum number
n = ` + nr + 1, where nr (the radial quantum number) denotes the number
of nodes in the radial wave function. The third quantum number m (which
satisfy the constraint −` ≤ m ≤ ` ) does not enter the energy levels be-
cause of the spherical symmetry of the two-body interaction in the center
of mass frame. By considering the rescaled (i.e. Ĥ ≡ H/µ) non-relativistic
Newtonian Hamiltonian

ĤN(r,p) =
p2

2
− 1

r
, (4.1)

where the scaled variables are defined as r = (x1−x2)/GM and p = p1/µ =
−p2/µ, one obtains the well-known eigenvalue

E0(n, `) = −1

2
µ

(
GMµ

n~

)2

, (4.2)

which depends only on n. When considering the PN corrections to H0 one
gets a more complicated expression of the form

Erelative
PN (n, `) = −1

2
µ
α2

n2

[
1 +

α2

c2

(c11

n`
+
c20

n2

)
+
α4

c4

( c13

n`3
+

c22

n2`2
+
c31

n3`
+
c40

n4

)
+
α6

c6

( c15

n`5
+ ...+

c60

n6
+ ...

)]
,

(4.3)

where α ≡ GMµ/~ = Gm1m2/~, and where the “classical” limit where
the quantum numbers n and ` are large is considered. The 2PN version of
Eq. (4.3) had been derived in Ref. [148], while the 3PN one in Ref. [149]. The
dimensionless coefficients cpq are functions of the symmetric mass ratio (1.37),
for instance c40 = 1

8
(145 − 15ν + ν2). This kind of Hamiltonian in classical

mechanics (n, ` → ∞) is called “Delaunay Hamiltonian”. It is expressed in
terms of the action variables J = `~ = 1

2π

∮
pϕdϕ, and N = n~ = Ir + J ,

with Ir = 1
2π

∮
prdr.

The PN-expanded energy levels (4.3) encode, in a gauge invariant way, the
relative dynamics of a real binary. Therefore, at this point one must analyze
the effective dynamics of a test-particle body of mass µ and then find a
mapping between the two. Let’s consider the effective ν-deformed geodesic
equation in some external Schwartzschild metric with spherical symmetry

geff
µνdx

µdxν = −A(R; ν)c2dT 2 +B(R; ν)dR2 +R2(dθ2 + sin θdϕ2), (4.4)
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where the a priori unknown metric functions A(R; ν) and B(R; ν) will be
constructed in the form of expansions in the parameter GM/c2R,

A(R; ν) = 1 + ã1
GM

c2R
+ ã2

(
GM

c2R

)2

+ ã3

(
GM

c2R

)3

+ ã4

(
GM

c2R

)4

+ ...,

B(R; ν) = 1 + b̃1
GM

c2R
+ b̃2

(
GM

c2R

)2

+ b̃3

(
GM

c2R

)3

+ ..., (4.5)

where the dimensionless coefficients ãn, b̃n depend on ν. The Newtonian
limit constraint is ã1 = −2. It is important to stress that since ν can be
viewed as a deformation parameter away from the test-mass limit, the ef-
fective metric (4.5) must reduce to the standard Schwartzschild metric for
ν → 0:

A(R; ν = 0) = 1− 2GM

c2R
= B−1(R; ν = 0). (4.6)

By requiring that the dynamics of the effective body of mass µ satisfy the
mass-shell condition

gµνeff p
eff
µ p

eff
ν + µ2c2 +Q(peff

µ ) = 0, (4.7)

where Q(p) is at least quartic in p, and then by solving the corresponding
Hamilton-Jacobi equation

gµνeff

∂Seff

∂xµ
∂Seff

∂xν
+ µ2c2 +Q

(
∂Seff

∂xµ

)
= 0,

Seff = −Eefft+ Jeffϕ+ Seff(R), (4.8)

one can compute in the n, ` → ∞ limit the effective Delaunay Hamiltonian
Eeff(Neff , Jeff), with Neff = neff~, Jeff = `eff~ (where Neff = Jeff + Ieff

R , with
Ieff
R = 1

2π

∮
peff
R dR, P eff

R = ∂Seff(R)/dR). This yields a result in the form

Eeff(neff , `eff) = µc2 − 1

2
µ
α2

n2
eff

[
1 +

α2

c2

(
ceff

11

neff`eff

+
ceff

20

n2
eff

)
+
α4

c4

(
ceff

13

neff`3
eff

+
ceff

22

n2
eff`

2
eff

+
ceff

31

n3
eff`eff

+
ceff

40

n4
eff

)
+
α6

c6

(
ceff

15

neff`5
eff

+ ...+
ceff

60

n6
eff

)
+ ..

]
, (4.9)
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where the dimensionless coefficients ceff
pq are now functions of the unknown

external metric coefficients ãn and b̃n.
At this point, one needs a rule to correlate the real two-body dynamics,
summarized by Eq. (4.3), and the effective one-body one, summarized in
Eq. (4.9). Since in quantum mechanics the action variables are quantized
(Nreal = n~, Neff = neff~, etc.) it is natural to identify n = neff and ` = `eff .
Starting from this observation, Ref. [28] proposed a genaral map between the
real energy levels and the effective ones, namely

Eeff

µc2
− 1 = f

(
Erelative

real

µc2

)
=
Erelative

real

µc2

[
1 + α1

Erelative
real

µc2
+ α2

(
Erelative

real

µc2

)2

+ α3

(
Erelative

real

µc2

)3

+ ...

]
. (4.10)

Figure 4.1: Sketch, due to Damour [81], of the correspondance between the
quantized energy levels of the real and effective conservative dynamics. n
denotes the principal, “energy” quantum number, while ` denotes the relative
orbital angular momentum. Though the EOB method is purely classical, it
uses the Bohr-Sommerfield quantization conditions of the action variables IR
and J to motivate the identification between n and ` in the two dynamics.

The identification of Eeff(n, `)/µc2 with 1 + f(Erelative
real (n, `)/µc2) yields a

system of equations for determining the unknown EOB coefficients ãn, b̃n, αn,
as well as the coefficients parametrizing a general quartic mass-shell defor-
mation Q (which is introduced at the 3PN order [141]). In Ref. [141] this
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system of equations was solved, for example, at 3PN order. Here the three
EOB potentials A, D and Q describing the two-body dynamics where given
by very simple functions of the EOB “gravitational potental” u ≡ GM/c2R,
i.e.

A3PN(R) = 1− 2u+ 2νu3 + a4νu
4,

D3PN(R) ≡ (A(R)B(R))3PN = 1− 6νu2 + 2(3ν − 26)νu3,

Q3PN(q,p) =
1

c2
2(4− 3ν)νu2 p

4
r

µ2
, (4.11)

where

a4 =
94

3
− 41

32
π2 ' 18.6879027, (4.12)

as computed in Ref. [141]. Eqs. (4.11) remarkably condense the information
of the (complex) 3PN ADM Hamiltonian [150, 151] into simple equations.
This is due not only to the reformulation of the PN-expanded Hamiltonian
into an effective dynamics, but also follows from several remarkable cancel-
lations taking place in the ν-dependence of the EOB A(u; ν) potential.
The map between the real center-of-mass energy of the binary system Erelative

real =
Hrelative = E tot

relative −Mc2 and the effective one Eeff is found to have the com-
pact form

Eeff

µc2
= 1 +

Erelative
real

µc2

(
1 +

ν

2

Erelative
real

µc2

)
=
s−m2

1c
4 −m2

2c
4

2m1m2c4
, (4.13)

where s = (E tot
real)

2 ≡ (Mc2 +Erelative
real )2 is Mandelstam’s invariant s = −(p1 +

p2)2.
It is important to stress that the large value of the a4 coefficient prevents
the PN-expanded, deformed potential A3PN to be qualitatively similar, as
ν → 1/4, to the Schwarzschild potential ASchwarz(u) = 1 − 2u in exhibiting
an “horizon” zero (i.e. the ν = 1/4 case was not smoothly connected with the
ν = 0 case) . This disagreement was solved in Ref [141] by Padé-resumming
the potential, i.e. by replacing A3PN with the rational function

A1
3(R) ≡ P 1

3 [A3PN(R)] =
1 + n1u

1 + d1u+ d2u2 + d3u3
, (4.14)

where P n
m denotes a Padé approximant of order (n,m) and the coefficients

n1 and (d1, d2, d3), as prescribed by the theory of Padé resummation, are
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determined by the condition that the first four terms of the Taylor expansion
of A1

3 in powers of u coincide with A3PN.
The full analytical EOB potential, since the 4PN ADM Hamiltonian is known [146],
is

A4PN(u; ν) = A3PN + ν(ac5(ν) + alog
5 (ν) log u)u5, (4.15)

where the value of the 4PN-level logarithmic coefficient

alog
5 (ν) =

64

5
, (4.16)

was derived in Refs [47, 152, 153] using the results of Ref. [154]. The value
of the ac5(ν) = ac05 + νac15 piece, where

ac05 = −4237

60
+

2275

512
π2 +

256

5
log 2 +

128

5
γ,

ac15 = −221

6
+

41

32
π2, (4.17)

was derived in Ref. [155]. The existence of this term is related to the tail
effects discussed in Sec. 2.4.1; the second, ν-dependent, term of Eq. (4.17) was
derived by Bini and Damour from the 4PN infra-red convergent near-zone
computation of Ref. [156], while the first ν → 0 term ac05 , that is connected
with the infrared-divergent effects in the far zone, was not under control in
the result of Ref. [156]. Therefore, in Ref. [155] a mix of techniques using the
RWZ and GSF approaches were used [62].
At this point, following Ref. [157], the resummed, full analytical point-mass
EOB potential is given by

A0(u; ν) = P 1
5 [A4PN(u; ν)]. (4.18)

4.3 EOB waveform and radiation reaction dur-

ing the inspiral phase

In the previous section we have described how the EOB method encodes the
conservative part of the relative orbital dynamics into the dynamics of an
“effective” particle. Let us now briefly discuss how to complete the EOB dy-
namics by defining some resummed expressions describing radiation reaction
effects, and the corresponding waveform emitted at infinity. We are inter-
ested circularized binaries, which have lost their initial eccentricity under the



90

influence of radiation reaction. The relative dynamics is evolved using phase
space dimensionless variables (r, pr, ϕ, pϕ), associated to polar coordinates in
the equatorial plane θ = π/2. We denote by r the relative separation. Its
conjugate momentum, pr is replaced by pr∗ = (A/B)1/2 pr, with respect to
the “tortoise” (dimensionless) radial coordinate r∗ =

∫
dr(A/B)−1/2, where

A and B are the EOB potentials. The real EOB Hamiltonian is obtained by
first solving Eq. (4.13) to get Htotal

real =
√
s in terms of Eeff , and then by solv-

ing the effective Hamilton-Jacobi equation to get Eeff in terms of the effective
phase space coordinates qeff and peff . The result, which represents the heart
of the EOB formalism, is given by two nested square roots (it is common to
put c = 1 here):

ĤEOB =
Hreal

EOB

µ
=

1

ν

√
1 + 2ν

(
Ĥeff − 1

)
. (4.19)

At this point we are interested in the form of Ĥeff for the more general case
of a spinning binary system. The EOB Hamiltonian for the coalescence of
two spinning BHs was introduced by Damour in Ref. [158]. Here the crucial
functions, which determine the strength of the spin-orbit coupling, are the
gyro-gravitomagnetic functions GS and GS∗ , that account for the spin-orbit
interaction and are ν-dependent deformations, properly resummed, of the
corresponding functions entering the Hamiltonian of a spinning particle in
Kerr background [159]. The spin-spin coupling was inserted, at next-to-
leading order, in a special resummed form involving the centrifugal radius
rc [159] that mimics the same structure present in the Hamiltonian of a test
particle on a Kerr spacetime.

The dimensionless phase-space variables are related to the dimensional
ones (R,PR, ϕ, Pϕ) by

r =
R

GM
, pr∗ =

PR∗
µ
, pϕ =

Pϕ
µGM

, t =
T

GM
. (4.20)

The spin dependence in the spin-orbit sector of the EOB dynamics is ex-
pressed using the following combinations of the individual spins

S = SA + SB, (4.21)

S∗ =
MB

MA

SA +
MA

MB

SB. (4.22)
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With these definitions in hand, we can split the full effective Hamiltonian as

ĤSO
eff = Ĥorb

eff + ĤS
eff (4.23)

with

Ĥorb
eff =

√
p2
r∗ + A

(
1 +

p2
ϕ

r2
c

+ z3

p4
r∗

r2
c

)
(4.24)

for what concerns the orbital case, and

ĤSO
eff = pϕ

(
GSŜ +GS∗Ŝ∗

)
(4.25)

for the spin-orbit coupling. Here, we introduced the dimensionless spin vari-
ables Ŝ ≡ S/M2, Ŝ∗ ≡ S∗/M

2, z3 = 2ν(4 − 3ν) and rc is the centrifugal
radius [159] that incorporates next-to-leading (NLO) spin-spin terms [160].
It formally reads

r2
c = r2 + â2

0

(
1 +

2

r

)
+ δâ2, (4.26)

where â0 is the dimensionless effective Kerr parameter

â0 ≡ Ŝ + Ŝ∗ = XAχA +XBχB = ãA + ãB , (4.27)

and the NLO spin-spin contribution is included in the function δâ2 that
explicitly reads [161, 159]

δâ2 =
1

r

{
5

4
(ãA − ãB)â0XAB −

(
5

4
+
ν

2

)
â2

0

+

(
1

2
+ 2ν

)
ãAãB

}
. (4.28)

Following Refs. [162, 159], the latest EOB model by Nagar, Damour and
collaborators, which is presented in detail in Chapter 5, works at next-
to-next-to-leading order (NNLO) [163] in the spin-orbit coupling and uses
the Damour-Jaranowski-Schäfer gauge [164, 162], so that (GS, GS∗) are only
functions of (r, p2

r∗) and not of the angular momentum pϕ. This simplifies
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Hamilton’s equations1, which formally read

dϕ

dt
= Ω =

∂ĤEOB

∂pϕ
, (4.29a)

dr

dt
=
(A
B

)1/2 ∂ĤEOB

∂pr∗
, (4.29b)

dpϕ
dt

= F̂ϕ, (4.29c)

dpr∗
dt

=−
(
A

B

)1/2
∂ĤEOB

∂r
, (4.29d)

and explicitly become

dϕ

dt
=Ω =

1

νĤEOBĤorb
eff

[
A
pϕ
r2
c

+ Ĥorb
eff

(
GSŜ +GS∗Ŝ∗

)]
, (4.30a)

dr

dt
=

(
A

B

)1/2
1

νĤEOBĤorb
eff

[
pr∗

(
1 + 2z3

A

r2
c

p2
r∗

)
+

+ Ĥorb
eff pϕ

(∂GS

∂pr∗
Ŝ +

∂GS∗

∂pr∗
Ŝ∗

)]
, (4.30b)

dpϕ
dt

= F̂ϕ, (4.30c)

dpr∗
dt

=−
(
A

B

)1/2
1

2νĤEOBĤorb
eff

[
A′ + p2

ϕ

(A
r2
c

)′
+

+ z3 p
4
r∗

(A
r2
c

)′
+ 2Ĥorb

eff pϕ

(
G′SŜ +G′S∗Ŝ∗

)]
, (4.30d)

where the prime indicates the partial derivative with respect to r, i.e. (· · · )′ ≡
∂r(· · · ). Above, F̂ϕ ≡ Fϕ/µ denotes the radiation reaction force entering
the equation of motion of the angular momentum (that is not conserved)
and that relies on a special factorization and resummation of the multipolar
waveform [8] (see below).

1Note that this gauge choice is not made in the tidal EOB model by Buonanno and
collaborators, which is named SEOBNRv4T and follows Ref. [165].
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4.4 EOB waveform and radiation reaction re-

summation

Several methods have been tried during the development of the EOB formal-
ism to resum the radiation reaction F̂ϕ (starting from the high-order PN-
expanded results that have been obtained in the literature). In Refs. [166,
167] it was introduced a parameter-free resummation procedure, perfected in
Ref. [8] and further investigated, introducing new techniques, in Ref. [9] and
Chapters 8 and 9.
The results discussed in Ref. [8] are twofold: on the one hand, the work gener-
alized to a multipolar case the quadrupolar factorized resummed waveform of
Refs. [166, 167] by using the currently known (at the time) PN-expanded re-
sults of Refs. [168, 169, 170, 171] as well as the higher PN terms which where
known in the test-mass limit [172, 173]; on the other hand, it introduced a
resummation procedure considering a theoretical quantity, denoted by ρ`m(x)
and named “relativistic waveform amplitude”, which enters into the multipo-
lar waveform only through its `-th power, i.e. (ρ`m(x))`. Here x is the usual
invariant PN-ordering dimensionless frequency parameter x ≡ (GMΩ/c3)2/3.
The main novelty introduced by Ref. [8] is to write the (`,m) multipolar
waveform emitted by a circularized compact binary as

h
(ε)
`m =

GMν

c2R
n

(ε)
`mc`+ε(ν)x(`+ε)/2Y `−ε,−m

(π
2
,Φ
)
Ŝ

(ε)
eff T`me

iδ`mρ``m. (4.31)

Here ε denotes the parity of `+m (ε = π(`+m)), i.e. ε = 0 for “even-parity”
(mass generated) multipoles (` + m = even), and ε = 1 for “odd-parity”
(current generated generated) ones (`+m = odd); the Y `m(θ, φ) are the usual
scalar spherical harmonics (as defined by Eqs. (2.7) and (2.8) of Ref. [53] and

Eqs. (4) and (5) of Ref. [169]); n
(ε)
`m and c`+ε(ν) are numerical coefficients; Ŝ

(ε)
eff

is a µ-normalized effective source; T`m is a resummed version [166, 167] of
an infinite number of “leading logarithms” entering the tail effects discussed
in Sec. 2.4.1, which is based on a work of Asada and Futamase [174]; δ`m is
a supplementary phase (which corrects the phase effects not included in the
tail factor T`m, which is a complex number). Now we will give the explicit
expression of the terms of Eq. (4.31) as prescribed by Ref. [8]. Firstly, the
numerical coefficients are given by

c`+ε(ν) = X`+ε−1
2 + (−)`+εX`+ε−1

1 (4.32)
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and

n
(0)
`m = (im)`

8π

(2`+ 1)!!

√
(`+ 1)(`+ 2)

`(`− 1)
, (4.33)

n
(1)
`m = −(im)`

16πi

(2`+ 1)!!

√
(2`+ 1)(`+ 2)(`2 −m2)

(2`− 1)(`+ 1)`(`− 1)
. (4.34)

The Newtonian part of Eq. (4.31) is defined as

h
(N,ε)
`m ≡ GMν

c2R
n

(ε)
`mc`+ε(ν)x(`+ε)/2Y`−ε,−m(

π

2
,Φ) , (4.35)

so that (4.31) can be rewritten as

h
(ε)
`m = h

(N,ε)
`m Ŝ

(ε)
eff T`me

iδ`mρ``m, (4.36)

where ĥ
(ε)
`m = Ŝ

(ε)
eff T`me

iδ`mρ``m is the Post-Newtonian part of the multiplicative
expression. The source factor, like what happens in the RWZ formalism, is
given by Ŝ

(0)
eff (x) = Ĥeff(x) for the even parity case ` + m = even and by

Ŝ
(1)
eff (x) = ĵ(x) = x1/2j(x) for ` + m = odd, where, for circular orbits, the

angular momentum j is given by

j(u) =
A′(u)

(u2A(u))′
, (4.37)

where the PN relation between u and x can be found by solving

MΩ(u) =
1

µ

Hreal
EOB

∂j
=
MA(u)j(u)u2

Hreal
EOBĤeff

, (4.38)

where we remind that the relation between x and the orbital frequency Ω is
given by x = (GMΩ/c3)2/3.
The explicit expression of the tail factor T`m is

T`m(x) =
Γ(`+ 1− 2i

ˆ̂
k)

Γ(`+ 1)
e(π+2 ln(2kr0)i)

ˆ̂
k , (4.39)

where

k = mΩ, (4.40)

ˆ̂
k = mGHEOBΩ, (4.41)
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with r0 = 2GM/
√
e. For extensions of the nonspinning factorized waveform

of Ref. [8] to the spinning case, see Refs. [175, 176, 177]. It is important
to stress that the factorized EOB waveform (4.31) absorbs high-order PN-
expanded waveform computations, both in the test-particle ν → 0 (such
as the “japanese” ones in Refs. [173, 172, 178, 179]) and comparable mass
ν 6= 0 cases (such as the “french” ones in Refs. [171, 75, 180, 181]). In order to
maximize the amount of PN waveform information to resum by using (4.31),
in Refs like [175] or Chapter 8 , the comparable mass PN series (which usually
are at low PN orders) are summed to the test-mass ones (which usually can
be found at higher orders). This process is named hybridization, and can be
visualized, for example, as

ĥPN,hyb
`m = 1+c`m1 (ν 6= 0)x+c`m3/2(ν 6= 0)x3/2+c`m2 (ν → 0)x+c`m5/2(ν → 0)x3+...

(4.42)
It is important to stress that the case from above is purely indicative, since
the amount of comparable mass and/or test particle PN information (i.e. the
orders that one can find in literature) depend from the state of knowledge of
the PN expansion itself.
The perfomance of the resummed factorized EOB waveform can be seen in
Fig. (1) of Ref. [143], that we reproduce here in Fig. 4.2. This figure is a
comparison between a very accurate SpEC waveform (for equal-mass, non-
spinning BBH) and a NR-completed EOB waveform(in which the 5PN-level
coefficient a6(ν) in the EOB A(u; ν) potential was NR-fitted, as well as some
non-quasi-circular corrections to the (`,m) = (2, 2) quadrupolar waveform;
see Sec. 4.5 below). The agreement between the red (EOB) and black (NR)
curves is remarkably good (they are superposed nearly everywhere, except
just after the merger).

Finally, Eq. (4.31) leads to the definition of a resummed radiation reaction
force Fϕ defined as

Fϕ = − 1

Ω
F (`max), (4.43)

where the circularized GW flux F (`max) is defined as

F (`max) =
2

16πG

`max∑
`=2

∑̀
m=1

(mΩ)2|Rh`m|2. (4.44)

For each multipole, the Newtonian prefactor of the flux can be written in
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Figure 4.2: Fig. (1) of Ref. [143]. This figure illustrates the agreement be-
tween NR (black online) and EOB-based (red online) quadrupolar comparable
mass metric waveforms.

closed form as

F
(N,ε)
`m =

1

8π
x3m2(−)`+ε

∣∣∣Rh(N,ε)
`m

∣∣∣2 (4.45)

4.5 IMR EOB waveforms: merger, ringdown

and NR completion

From the very beginning [140], the EOB formalism proposed a specific strat-
egy for desribing the complete waveform emitted during the entire coalescence
process, covering inspiral, merger and ringdown. After some time, when nu-
merical simulations where able to describe the late inspiral and the merger
of BBHs, this analytical prediction was then confirmed by NR.
Within the EOB theory, the instant of the (effective) merger of the two BHs
is the time tm where the orbital frequency Ω(t) reaches its maximum. For
t ≤ tm the inspiral-plus-plunge (or simply insplunge) waveform, hinsplunge(t),
is built by using the inspiral EOB dynamics illustrated in the previous sec-
tion. For t ≥ tm, the merger-plus-ringdown waveform is described by a
superposition of quasi-normal modes (QNM), which are complex frequencies
of a final Kerr BH of mass Mf and spin parameter af ,(

Rc2

GM

)
hringdown
`m (t) =

∑
N

C+
Ne

σ+
N (t−tm), (4.46)
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where σ+
N = αN + iωN , and where the label N refers to indices (`, `′,m, n),

with (`,m) being the Schwarzschild-background multipolarity of the met-
ric waveform h`m, with n = 0, 1, 2... being the “overtone number” of the
considered Kerr-background Quasi-Normal-Mode, and `′ the degree of its
associated spheroidal harmonics S`′m(aσ, θ). The excitation coefficients C+

N

of the QNM’s in Eq. (4.46) are determined by using a simplified represen-
tation of the transition between plunge and ringdown obtained by follow-
ing Ref. [167], i.e. by smoothly matching on a (2p + 1)-toothed “comb”
(tm−pδ, ..., tm− δ, tm, tm+ δ, ..., tm+pδ) centered around the merger and tm,
the inspiral-plus-plunge waveform to the above ringdown waveform.
Finally, one defines a complete, quasi-analytical EOB waveform (covering the
full process to inspiral from ringdown) as

hEOB
`m = θ(tm − t)hinsplunge

`m (t) + θ(t− tm)hringdown
`m (t), (4.47)

where θ(t) denotes Heaviside’s step function. The final result is a wave-
form that essentialy depends only on the choice of a resummed EOB A(u)
potential, and, less importantly, on the choice of resummation of the main
waveform amplitude factor f22 = (ρ22)2.
The early comparisons between 3PN EOB waveforms and NR-computed
waveforms showed a satisfactory agreement between the two, within the
relatively large NR uncertainties [182, 183]. Despite that, when NR’s un-
certainties were reduced, and it started to give highly accurate waveforms,
it became clear that the 3PN-level analytical knowledge incorporated in the
EOB theory was not accurate enough for providing waveform agreeing with
NR ones within the accuracy needed for the upcoming gravitational wave
signals’ detection and data analysis. This problem was solved by introduc-
ing some additional fitting parameter in the unknown analytical terms of
EOB potential, i.e. Eq. (4.15) (at the time of the first EOB/NR works the
analytical terms up to 4PN of the A-potential were not known). The first
EOB/NR attempt was done in Ref. [184], where the (at the time) unknown
A-potential parameter ã5(ν) = a5ν entering a Padé resummed 4PN potential
A1

4(u; a5, ν) = P 1
4 [A3PN(u) + νa5u

5] was determined via a fit with NR. This
strategy was then pursued in subsequent works. In Ref. [143] it was shown
that the introduction of a further 5PN coefficient ã6(ν) = a6ν, entering a
Padé resummed 5PN-level A-potential like before, gave a closer agreement
with accurate NR waveforms. The updated determinations of the EOB A
potential are given by Ref. [31] (in the context of the EOB model devel-
oped by Buonanno and collaborators) and by Ref. [159] (in the context of
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the EOB model developed by Damour itself and collaborators). The dy-
namical differences of the two existing spin-informed EOB models in their
last-updated versions, SEOBNRv4 [36] and TEOBResumS [1] (which is described
here in Chapt. 5), are explained for the first time in Ref. [185].
Refs. [166] and [167] have introduced in the EOB/NR context another type
of flexibility parameters, which are named next-to-quasi-circular (NQC) cor-
rections. These parameters account for uncalculated modifications of the
quasi-circular EOB inspiral waveform, and are linked to the deviations from
an adiabatic quasi-circular motion. These parameters are of various types,
and subsequent works [186, 187, 143, 188, 189, 176] have explored several
ways of introducing them. For each (`,m), these waveform corrections, that
we label as ĥNQC

`m , depend on 4 parameters that are NR-informed by requir-
ing osculation between, say, the EOB waveform (which will depend from the
unknown A-potential coefficients like ã6 and obviously by the NQC factors
that are defined in the specific problem) and the NR one (as illustrated in
Eq. (4.48), one considers the amplitude and frequency, and their first time
derivatives) close to merger. Then, for consistency between waveform and
flux, the NQC factor also enters the radiation reaction and one iterates the
procedure a few times until the procedure converges. We focus here only on
the ` = m = 2 waveform mode, as what has been done in Chapt. 5. In this
case, the NQC factor reads

ĥNQC
22 = (1 + a1n1 + a2n2)ei(b1n′1+b2n′2), (4.48)

where (a1, a2, b1, b2) are the free parameters while (n1, n2, n
′
1, n

′
2) are explicit

functions of the radial momentum and its time derivative that are listed in
Eq. (96) of Ref. [159]. On the EOB time axis, t, the NQC parameters are
determined at a time defined as

tEOB
NQC = tpeak

Ωorb
−∆tNQC , (4.49)

where Ωorb was called the pure orbital frequency in Ref. [159] (see Eq. (100)
there) and is defined, from Eq. (4.30a) of Sec. 4.2, as

Ωorb ≡
1

HEOB

∂Ĥeff
orb

∂pϕ
=

pϕu
2
cA

HEOBĤeff
orb

, (4.50)

where uc = 1/rc. In previous work [159, 34, 37], it was found that ∆tNQC

needed to be informed by NR simulations for large, positive spins. In Sec. 5.2.2
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of Chapt. 5 it is shown that this was the result of a small, though nonnegligi-
ble, implementation mistake, so that here the authors fix ∆tNQC = 1 always,
except for some corner cases defined in Ref. [1].
Since EOB waveforms are much faster to compute than NR waveforms (it
takes more than a month to compute a reasonably long and accurate NR
waveform), LIGO has used several banks of EOB/NR templates (correspond-
ing initially2 to different versions of spinning EOB/NR models deveoped by
the group of Buonanno [31]) for their search and data analysis pipelines. The
parameters of these models (See Sec. 1.5.3) are discretized in order to build
an adequately dense bank of hundred of thousands of waveforms (∼ 250000
for the first detection, GW150914) covering the space of expected physi-
cal parameters (up to BH masses to 100M�). Since an analytically-defined
EOB/NR waveform in the time domain requires a numerical integration of
the model’s dynamical ODEs, this process may take a minute, some seconds
in the best case, but this time, even if very small if compared to the com-
putational times of NR, is still not sufficient for the utilization of Bayesian
data analysis (See Sec. 1.5.2). To feed these demands, parametrized, “Re-
duced Order” Fourier domain versions of the spinning EOB/NR have been
obtained [190]. An alternative method to maximize the velocity of EOB/NR
templates is the “rush” approximation of the EOB inspiral waveform de-
scribed in Ref. [191].

2Only recently [10] the EOB model of Nagar and collaborators, TEOBResums [1], which
is described in Chapter. 5, has been added to the LIGO Advanced Library LAL
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Chapter 5

The TEOBResumS model [1]

5.1 Introduction

The purpose of this work is to introduce TEOBResumS, a state-of-the art EOB
model, informed by BBH NR simulations, that is fit to describe the dynamics
and waveforms from nonprecessing coalescing binaries, both black holes and
neutron stars. For BBH binaries, TEOBResumS is an improvement of the model
of Refs. [37, 34, 159] implementing a refined phenomenological representation
of the postmerger waveform (ringdown). The latter is built from an effective
fit of many spin-aligned NR waveform data available in the SXS catalog [192]
obtained with the SpEC code [193, 194, 195, 196, 197, 198, 199, 200, 201, 202,
203] and, notably, also incorporates test-particle results1. We show here the
performance of the model over the SXS [192] and BAM waveform catalogs (the
latter consisting of simulations produced using the BAM code [204, 205]), and
check its robustness also outside NR-covered regions of the parameter space.

For BNSs, we built on our previous efforts [206] (see also [207, 208])
and merged together into a single EOB code, tidal and spin effects, so
as to produce a complete waveform model of spinning BNSs. We show
that the EOB waveform is accurate up to BNS merger by comparing with
state-of-the art, high end, NR simulations. The tidal-and-spin model uses
most of the existing analytical knowledge. In particular, we incorporate
in the EOB model equation-of-state (EOS) dependent self-spin effects at
leading-order (also known as spin-induced quadrupole moment or monopole-

1In doing so, we corrected a minor coding error in the numerical implementation that
had affected the ` = 5, m = odd flux modes from Ref. [159].
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quadrupole couplings [134]). TEOBResumS has been the first EOB model
to have these effects. As such, it was used for validating the phenomeno-
logical waveform model, PhenomPv2 NRTidal, that incorporates similar self-
spin effects [209] and that was recently used for a detailed study of the
parameters of GW170817 [210, 211]. However, while TEOBResumS was un-
der internal LVC review, leading-order self-spin effects were also included
in SEOBNRv4T, though in a different fashion for what concerns the Hamilto-
nian [36, 212, 213, 214]. A targeted comparison between the two models for
BNS configurations is described in Sec. 5.6.

This chapter, in which we reproduce some sections of Ref. [1] for the aims
of this thesis, is organized as follows: in Sec. 5.2 we compare the perfor-
mance of the BBH EOB model against the SXS [192] and BAM NR data, test
its robustness over a large portion of the parameter space; in Sec. 5.3 we
discuss the BNS case, focusing on our analytical strategy to incorporate in
a consistent, and resummed, way both tidal and spin effects, including the
self-spin ones. In this respect, Sec. 5.4 compares the EOB description with
the corresponding nonresummed PN-based expressions. Section 5.6 collects
selected comparisons (photon potential and, notably, faithfulness) between
TEOBResumS, SEOBNRv4 and SEOBNRv4T. To probe our model we also present,
in Sec. 5.5, a case study done on the GW150914 event [38]. Since Ref. [1] is
complemented by several technical appendices that are beyond the purposes
of this thesis, we neglect them and we adress the interested reader to the
original paper. Among these, the case of mixed black-hole and neutron-star
binaries is discussed in Sec. 5.8.

5.2 Binary Black Holes

5.2.1 Main features

The details about the structure of the TEOBResumS model can be found in
Ref. [159, 34, 37]. We refer to Sec. 4.2 of Chapt. 4 for the visualization of
the dynamical equations of the EOB formalism. Following the choice made
in previous work [159], we set F̂r∗ = 0 explicitly, so that the radial flux
does not appear in the r.h.s. of Eq. (4.29d). Note that the effect of the
absorption due to the horizon is explicitly included in the model at leading
order (see Eqs. (97)-(98) of [159]). The relative dynamics is initiated using
post-post-adiabatic (2PA) initial data [166, 215].
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The multipolar waveform strain is computed out of the dynamics with
the following convention

h+ − ih× =
1

R
`max∑
`=2

`+m∑
`=−m

h`m −2Y`m(θ, φ), (5.1)

where −2Y`m(θ, φ) are the s = −2 spin-weighted spherical harmonics. In
the following text, for consistency with previous work, we shall often use the
Regge-Wheeler-Zerilli [216] normalized waveform Ψ`m = h`m/

√
(`+ 2)(`+ 1)`(`− 1).

The strain multipoles h`m are written in special factorized and resummed
form [8, 175, 159]. Following the notation of [159], they read

h`m = h
(N,ε)
`m Ŝ

(ε)
eff ĥ

tail
`m f`mĥ

NQC
`m , (5.2)

where ε denotes the parity of `+m, h
(N,ε)
`m is the Newtonian (or leading-order)

contribution, Ŝ
(ε)
eff the effective source, ĥtail

`m the tail factor, f`m the residual

amplitude correction and ĥNQC
`m the next-to-quasi-circular (NQC) correction

factor. We recall that ĥNQC
`m accounts for corrections to the circularized EOB

waveform that explicitly depend on the radial momentum and that are rele-
vant during the plunge up to merger [167], see Eq. (4.48) of Sec. 4.5.

On top of the NQC corrections to the waveform, TEOBResumS is also NR-
informed in the nonspinning and spinning sector of the dynamics. Section
IIIA of Ref. [37] gives a comprehensive summary of the analytical flexibility of
the model, while Sec. IIIB and IIIC of [37] illustrate how the NR information
is injected in the model. The nonspinning sector of TEOBResumS fully coin-
cides with Sec. IIIB of Ref. [37]: the orbital interaction potential A, taken at
formal 5PN order, is Padé resummed with a (1, 5) Padé approximant and it
incorporates an “effective” 5PN parameter ac6(ν) = 3097.3ν2−1330.6ν+81.38
that was determined by EOB/NR comparisons with a set of nonspinning
SXS simulations. More precisely this specific functional form dates back to
Ref. [34], it was based on the SXS NR simulations publicly available at the
time (see Table I of [34]) and never changed after. We address the reader
to Sec. III of Ref. [34] for details and in particular to Eq. (1) there for the
explicit analytical form of the orbital interaction potential.

The spinning sector of the model is flexed by a single NNNLO effective
spin-orbit parameter c3 that enters both GS and GS∗ (see e.g. Eqs. (19)-(20)
of [37]). Finally, the factorized waveform is then complemented by a descrip-
tion of the post-merger and ringdown phase [217, 218]. The model of [37],
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though informed by a rather sparse number of NR simulations, proved to be
rather accurate, reliable, and robust against a set of 149 public NR simula-
tions by the SXS collaboration [192] (see specifically Tables V-IX therein).
It also showed, however, its drawbacks, mostly restricted to the merger and
post-merger part that was obtained through fit of only a sparse number
(≈ 40) of NR simulations, most of them clustered around the equal-mass,
equal-spin case. Here these problems are overcome by making crucial use
of all the NR information available in order to devise better fits of the NR
data to describe the post-merger-ringdown part of the waveform. This will
be discussed in the forthcoming section.

5.2.2 Improvement over previous work

The BBH sector of the TEOBResumS model improves the version of the one
discussed in Ref. [159, 34, 37] on the following aspects: (i) improved (and cor-
rected) ` = 5 flux; (ii) related new determination of the NNNLO spin-orbit
parameter c3; (iii) more robust description of the postmerger and ringdown
waveform; (iv) more robust and accurate fits of the NR point used to deter-
mine the NQC waveform corrections.

Flux multipoles: the ` = 5, m = odd modes

We start the technical discussion of the BBH sector of TEOBResumS by point-
ing out a coding error in its Matlab numerical implementation that has af-
fected (though marginally) the spin-dependent sector of the model as soon
as it was conceived back in 2013 [159], with effects on Refs. [159, 34, 37, 209].
We found that there was a missing overall factor XAB =

√
1− 4ν in the ` = 5,

m = odd multipolar waveform amplitudes that, once squared, contributed
to the radiation reaction force F̂ϕ. Such small, though non-negligible, dif-
ference in the radiation reaction resulted in an inconsistency between the
nonspinning and spinning sector of the model, that are implemented through
a different set of routines. The effect of this error was more important for
spins of large amplitude, both aligned with the angular momentum. Once
this error was corrected, we had to redetermine, through comparison with
NR waveform data, the function c3(ãA, ãB, ν), that describes the NNNLO
spin-orbit effective correction [159, 34, 37]. In doing so, we found that the
correct implementation of the ` = 5 modes brings a simplification to the
model: there is no need of ad-hoc NR-calibrating the additional parameter
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∆tNQC when χA = χB > 0.85, as it was necessary to do in Ref. [34] [see also
Sec. IIIC of Ref. [37], Eqs. (24)-(25) therein]. As in the nonspinning case,
we can choose ∆tNQC = 1 for all configurations, without any special tweaks
needed for the high-spin case.

New determination of c3

It was possible to inform a new function c3(ãA, ãB, ν) with the limited set of
27 SXS NR simulations (see Table 5.1), most of which are the same used in
Ref. [37]. The determination of c3(ãA, ãB, ν) is based on two steps. First,
for each of the 27 SXS configurations of Table 5.1 one determines, tuning
it by hand, a value of c3 such that the dephasing between EOB and NR
waveform at merger is within the NR uncertainty. Such first-guess values of
c3 are then globally fitted with a suitable functional form that, as in [37], is
chosen to represent a quasi-linear behavior in the spins. More precisely, the
new representation of c3 is given by

c3(ãA, ãB, ν) = p0
1 + n1â0 + n2â

2
0

1 + d1â0

+
(
p1ν + p2ν

2 + p3ν
3
)
â0

√
1− 4ν

+ p4 (ãA − ãB) ν2, (5.3)

where

p0 = 43.371638, (5.4a)

n1 = −1.174839, (5.4b)

n2 = 0.354064, (5.4c)

d1 = −0.151961, (5.4d)

p1 = 929.579, (5.4e)

p2 = −9178.87, (5.4f)

p3 = 23632.3, (5.4g)

p4 = −104.891. (5.4h)

Table 5.1 lists, for the configuration chosen, both the first-guess value of c3,
that yields an EOB/NR phase agreement within the NR error at merger,
as well as the value obtained from the fit (5.3). The last column lists the
relative error (cfirst guess

3 − cfit
3 )/cfit

3 . As it will be shown below, despite the fact
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that for some configurations the first-guess value and the corresponding one
obtained from the fit are significantly different, the EOB/NR unfaithfulness
(see below) is still considerably smaller than the usually accepted limit of
1%. We note however that the global fit can be further improved, if needed,
by incorporating more NR datasets and/or changing the functional form of
Eq. (5.3). We shall briefly discuss an example at the end of next section.

Post-merger and ringdown

Let us come now to discussing the improved representation of the post-merger
and ringdown, that in [37] relied on the, rather simplified, fits presented
in [218]. For completeness, we also recall that the NR-based phenomeno-
logical description of the waveform is attached at the inspiral part, NQC-
modified, at tEOB

NQC given by Eq. (4.49) above. The new fits for the ` = m = 2
merger and postmerger waveform are detailed in Appendix F of Ref. [1]. Let
us briefly summarize their new features. First, the major novelty behind the
fitting procedure is that it is done by exploiting the rather simple behavior
that the merger2 waveform strain amplitude and frequency (Amrg

22 , ωmrg
22 ) show

when plotted versus the spin-variable Ŝ = (SA + SB)/M2. This allows one
to capture the full dependence on mass ratio and spins by means of rather
simple two-dimensional fits versus (ν, Ŝ). In addition, we use a larger set of
NR waveforms than in previous work: more precisely, we use 135 spin-aligned
NR waveforms3 from the publicly available SXS catalog [192] obtained with
the SpEC code [193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203] whose
parameters are summarized in the Tables V-IX of Ref. [37]. These waveforms
replace and update the set of 39 waveforms used in [218]. In particular, the
SXS waveforms used are corrected for the effect of the spurious motion of the
center of mass, as pointed out in Ref. [219] as well as in Sec. V [37]. These SXS
waveform data are complemented by 5 BAM waveforms with mass ratio q = 18,
where the heavier BH is spinning with χA = (−0.8,−0.4, 0,+0.4,+0.8) and
by test-mass waveform4 data [61] obtained from new simulations with an im-
proved version of the test-particle radiation reaction, now resummed accord-

2As in previous work, the merger time is defined as the peak of the waveform strain
amplitude A22 ≡ |h22|.

3Out of the 149 waveforms listed in Ref. [37], 14 are older simulations whose parameters
are covered by simulations more recently released. These 14 waveforms were not used in
the determination of the new merger and postmerger parameters.

4Note that the phenomenological representation of the fit with the template proposed
in Refs. [217, 218] is not accurate for high-spin and larger-mass ratio limit waveforms,
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ing to Refs. [9, 4]. The model is completed by the fit of the spin and mass of
the remnant BH of Ref. [220], and by accurate fits of the quasi-normal-mode
(QNM) frequency and inverse-damping times versus the dimensionless spin of
the remnant BH. These are fits of the corresponding data extracted from the
publicly available tables of Berti et al. [221, 222]. This is an improvement
with respect to previous work, where the final QNM frequencies were ob-
tained simply by interpolation the publicly available data of Ref. [221, 222].
We address the reader to Appendix F of Ref. [1] for precise technical details.

The NR waveform point used to obtain NQC parameters

Using all available information listed above, it was also possible to obtain

more accurate fits of the NR waveform point
(
ANQC

22 , ȦNQC
22 , ωNQC

22 , ω̇NQC
22

)
,

used to compute the NQC parameters (a1, a2, b1, b2) entering the ` = m = 2
NQC waveform correction factor discussed above. These fits replace those of
Sec. IVB of [37] for q ≥ 4 and are listed together with the details of the new
improved postmerger fits in Appendix F of Ref. [1].

5.2.3 Comparison with NR data

Let us evaluate the global accuracy of the BBH model that incorporates the
new fit for c3, Eq. (5.3), as well as the new fits for the NQC point and post-
merger part. We do this by computing the usual EOB/NR unfaithfulness F̄
defined as

F̄ (M) ≡ 1− F = 1−max
t0,φ0

〈hEOB
22 , hNR

22 〉
||hEOB

22 || ||hNR
22 ||

, (5.5)

where (t0, φ0) are the arbitrary initial time and phase and ||h|| ≡
√
〈h, h〉.

The inner product between two waveforms is defined as

〈h1, h2〉 ≡ 4<
∫ ∞
fNR
min(M)

h̃1(f)h̃∗2(f)/Sn(f) df, (5.6)

where h̃(f) denotes the Fourier transform of h(t), Sn(f) is the zero-detuned,
high-power noise spectral density of Advanced LIGO [223] and fNR

min(M) =

and needs to be modified, including more parameters, to be more flexible. That is the
reason why in the current representation test-mass data are only used to improve the
representation of merger quantities (Amrg

22 , ωmrg
22 ), and not of the postmerger ones.
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Figure 5.1: Unfaithfulness, Eq. (5.5), comparison between TEOBResumS and
SXS waveforms, using the design-sensitivity noise curve of Advanced LIGO.
This figure is the updated version of Fig. 7 of Ref. [37]. Thanks to the joint
action of (i) the correct implementation of the ` = 5, m = odd modes of
the radiation reaction and the related new determination of the NNNLO
effective spin orbit parameter c3 and (ii) the improved treatment of the
postmerger part of the signal as well as of the improved NQC determi-
nation, there are no outliers above the 1% limit. Remarkably, it is found
max (F̄ ) . 2.5 × 10−3 all over the SXS catalog except for a single outlier,
(q, χA, χB) = (3,+0.85,+0.85), with max (F̄ ) ' 7.1× 10−3.

f̂NR
min/M is the starting frequency of the NR waveform (after the junk radi-

ation initial transient). Both EOB and NR waveforms are tapered in the
time domain so as to reduce high-frequency oscillations in the corresponding
Fourier transforms. We display F̄ (M), for 10M� ≤M ≤ 200M�, in Fig. 5.1
for the 171 SXS waveform data and in Fig. 5.3 for the 18 BAM datasets. Let
us discuss first the TEOBResumS/SXS comparison, Fig. 5.1. To better appre-
ciate the improvement brought by the correct implementation of the ` = 5,
m =odd flux modes and the post-merger fits, this figure should be com-
pared with Fig. 7 of [37]. Figure 5.1 illustrates that max(F̄ ) . 2.7 × 10−3

all over the waveform database except for a single outlier, (3,+0.85,+0.85),
where max(F̄ ) = 7.1 × 10−3. Note however that the performance is much
better than the minimal accepted limit of 3% (light-blue, dotted, horizon-
tal line) or the more stringent 1% limit (black, dotted, horizontal line) that
is taken as a goal by SEOBNRv4 (see Fig. 2 in [36]); in fact, it is the low-
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Figure 5.2: Same as Fig. 5.1, but including an additional term proportional
to νâ2

0

√
1− 4ν in the functional form Eq. (5.3) using to fit the cfirst guess

3 values
of Table 5.1. One has max (F̄ ) < 2.5×10−3 all over the SXS catalog of public
NR waveforms.

est ever value of max
[
max (F̄ )

]
obtained from SXS/EOB comparisons. We

note that the reason why F̄ ' 7.1 × 10−3 for (3,+0.85,+0.85) is entirely
due to the fact that the global representation of c3 yielded by Eq. (5.3) is
not that accurate in that corner of the parameter space, and yields the value
14.38 instead of 16.5 (see line #23 of Table 5.1). Interestingly, we have ver-
ified that, by using the value 16.5, the value of F̄ (M) significantly drops,
being smaller than 10−4 at M = 10M� and just growing up to 2 × 10−4 at
M = 200M�. This illustrates that our analytical representation of c3 is ac-
tually very conservative. It would be easy, by either incorporating more
datasets in the global fit and/or improving the functional form of (5.3)
to reduce the discrepancy between the first-guess and fitted value of c3.
As a simple attempt to do so, we slightly changed the functional form of
c3(ãA, ãB, ν) so as to introduce nonlinear spin-dependence away from the
equal-mass, equal-spin case. For example, to introduce such nonlinearities
in spin in a simple way, one easily checks that the addition to Eq. (5.3)
of only one term quadratic in â0 of the form p5νâ

2
0

√
1− 4ν, where p5 is

a further fitting coefficient, is by itself sufficient to obtain c3 = 17.28 for
(3,+0.85,+0.85), with a corresponding value of max(F̄ ) = 5× 10−4 reached
at M = 200M�. Once this term is included, the new fitting coefficients that
parametrize the sector of c3 away from the equal-mass, equal-spin limit read
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Figure 5.3: Unfaithfulness comparison between TEOBResumS and the set of
BAM waveforms mostly presented in Refs. [224, 30, 225] and listed in Table 5.2
for completeness. The case (8,+0.85,+0.85), where a new, high-resolution,
BAM waveform was produced explicitly for this work, is meaningfully above
the 3% limit and calls for an improvement of the model in that specific corner
of the parameter space.

(p1, p2, p3, p4, p5) = (917.59,−8754.35, 20591.0,−78.95, 83.40). For complete-
ness, we evaluated again the EOB/NR F̄ with this new fit. The result is
displayed in Fig. 5.2. It is remarkable to find that max(F̄ ) < 2.5 × 10−3 all
over the SXS catalog. It is also interesting to note that the two curves for
(3,+0.85,+0.85) and (2,+0.85,+0.85) are essentially flat, which illustrates
that all the difference with the previous case was coming from the slightly
inaccurate representation of the spin-orbit coupling functions, now corrected
by the improved representation of c3.

Let us turn now to discussing TEOBResumS/BAM comparisons, Fig. 5.3.
These waveforms cover a region of the parameter space, for large mass ra-
tios, that is not covered by SXS data (see Table 5.2). Hence, we use them
here as a probe of the phasing provided by TEOBResumS. In general, BAM

waveforms in the current database are shorter than the SXS ones and have
larger uncertainties. This is also the case for the (8,+0.85,+0.85) configura-
tion, that yields the largest NR/EOB disagreement, max(F̄ ) ' 5.2%, which
is above the usually acceptable level of 3%. However, though this waveform
is much longer (≈ 18 orbits) than the one previously used in [37], it was also
obtained at higher resolution, so that its error assessment is similar to those
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Figure 5.4: Effect of changing the value of the effective NNNLO spin-orbit
parameter c3 for the (8,+0.85,+0.85) configuration. Time-domain evolution
of frequency and amplitude. The 5.2% value of F̄ in Fig. 5.3 comes entirely
from the value c3 = 28.7 obtained by extrapolating from the SXS-based fit
of Eq. (5.3). A smaller value of the parameter, c3 = 23, succeeds in getting
a good EOB/NR agreement (F̄ ' 1.3× 10−3) . Despite this, both the NQC
and post-merger sectors are correctly represented by the model because of
the robust NR-informed fits.

used for the IMRPhenomD waveform model [30, 225], with a mismatch error
of less than 10−3. The EOB/NR difference seen in Fig. 5.3, originates then
in the EOB model, notably during the inspiral, and not in the NR data. To
explicitly see that the origin of such EOB/NR discrepancy comes from the
EOB-driven inspiral dynamics and not from the ringdown part5, we display
in Fig. 5.4 the waveform frequency and amplitude versus time. The figure
compares three datasets: (i) the BAM data (black); (ii) the TEOBResumS wave-
form with the value of c3 ≈ 28.7 obtained from Eq. (5.3) (blue, dash-dotted,
lines) and c3 = 23. Note that while the c3 = 28.7 waveform was obtained by
iterating on NQCs parameter (i.e., the NQC correction is also added to the
flux for consistency with the waveform and then an iterative procedure is set
until the values of (a1, a2) are seen to converge [37]), the c3 = 23 one was not

5This is the contrary of what was stated in [37]. The reason for this is that the BAM

waveform used there was shorter than the one we are using now.
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(see below). The waveforms are aligned in the (0.2, 0.35) frequency interval
region. The figure clearly illustrates that the simple action of lowering c3

(i.e. making the spin-orbit interaction less attractive, see discussion in [37])
is effective in getting the TEOBResumS waveform closer to the BAM one: the
waveform becomes longer and the frequency behaviors get qualitatively more
similar up to merger. Note also that the postmerger part is perfectly con-
sistent with the NR one. This is a remarkable indication of the robustness
of our post-merger fits since the (8,+0.85,+0.85) BAM dataset was not used
in their construction. We mentioned above that the curves corresponding to
c3 = 23 were obtained without iterating on the amplitude NQC parameters
(a1, a2). The reason for this is that the value of the NQC parameters are
rather large because of the lack of robustness of the resummed waveform
amplitude in this corner of the parameter space and they effectively tend
to compensate the action of c3, that should be lowered further. The con-
sequence of this is that, when c3 is chosen to be below 20, (a1, a2) become
so large that the iteration procedure is unable to converge. The use of the
improved factorized and resummed waveform amplitudes of Refs. [9, 4], that
display a more robust and self-consistent behavior towards merger for high,
positive spins is expected to solve this problem.

To summarize, the message of the analysis illustrated in Fig. 5.4 goes as
follows: (i) on the positive side, the figure illustrates that, even if we had not
included (8,+0.85,+0.85) data to obtaining the postmerger fit parameters,
the resulting model is rather accurate also for this choice of parameters; (ii)
on the negative side, it also tells us that the dataset (8,+0.85,+0.85) brings
us new, genuine, NR information that is currently not incorporated in the
model, but it should be in order to properly capture the correct phasing
behavior in this corner of the parameter space6. In principle, improving the
model would be rather straightforward, as it would just amount to adding
a new value of c3 in Table 5.1, corresponding to an acceptable BAM/EOB
phasing up to merger, and redoing the global fit. However, because of the
aforementioned problems in obtaining a consistent determination of the NQC
parameters, we shall postpone this to a forthcoming study that will (partly)
use the factorized and resummed waveform amplitudes of Ref. [4].

Finally, Fig. 5.5 illustrates another difference between TEOBResumS and
BAM waveforms. The figure compares the analytical and numerical frequen-

6We note in passing that SEOBNRv4 also used BAM datasets with (8,+0.85,+0.85),
though different from the one we used here, for its calibration.
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Figure 5.5: Frequency and amplitude comparison between TEOBResumS and
BAM for (18,−0.80, 0). The full waveform amplitude develops a slightly un-
physical feature due to the action of the NQC parameters. The frequency
(as well as F̄ ) is unaffected by this.

cies and amplitudes for (18,−0.80, 0). The waveforms are aligned around
merger. Although the frequencies are perfectly consistent, the analytical
amplitude (red line) shows a qualitatively incorrect behavior before merger.
Although such feature in the amplitude might be interpreted as due to an
incorrect determination of the NQC corrections, it is actually of dynami-
cal origin. More precisely, it comes from the orbital frequency Ω crossing
zero and then becoming negative due to a somewhat large values of the
gyro-gravitomagnetic functions (GS, GS∗) for small values of the EOB radial
separations. Since the spins are negative, the spin-orbit part of the orbital
frequency progressively compensates the orbital one, until dominating over
it so that Ω < 0 around merger time. We have tracked back the origin of this
problem to the fact that, following Ref. [159], the argument of the functions
(ĜS, ĜS∗) (see Eqs. (36)-(37) of [159]) were chosen, by construction, to be
1/rc, instead of of 1/r, so as to effectively incorporate higher-order spin-orbit
corrections. Although it is not our intention to discuss this subject in more
detail here, we have actually verified that going back to the standard 1/r de-
pendence of these functions is sufficiently to reduce and/or cure completely
(as it is the case for the configuration (11,−0.95,−0.50) discussed below)
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Figure 5.6: Global picture of the maximum value of the EOB/NR faithful-
ness F , Eq. (5.5) over SXS and BAM NR data. The only outlier above 3%,
(8,+0.85,+0.85), is omitted from the figure.

this somewhat unphysical feature7. Although the behavior of the modulus
in Fig. 5.5 has not practical consequences, it is important to mention that
similar features may occur systematically for binaries with large q and large
spins, anti-aligned with the orbital angular momentum. This statement will
be recalled below when discussing the performance of the model outside the
NR-covered region of the parameter space. Finally, a global representation
of the results of Figs. 5.1-5.3 is given in Fig. 5.6, that displays the maximum
value of the EOB/NR faithfulness F , reached for each dataset varying the
total mass M , all over the SXS and BAM waveform catalogs, only excluding
the (8,+0.85,+0.85) outlier for readability.

7Please note, however, that, likewise the case of a test-particle plunging over a highly
spinning black hole whose spin is anti-aligned with the orbital angular momentum [61, 226],
by continuity there might exist BBH configurations where the orbital frequency is actually
due to change its sign while approaching merger. This is however not the case of the
(18,−0.80, 0) binary under consideration, since the positive-frequency QNMs branch is
still more excited than the negative frequency one. The contribution of this latter is not,
however, negligible, as illustrated by the large amplitude oscillation in the NR frequency
displayed in Fig. 5.5.
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Figure 5.7: Comparing the effect of using ∆tNQC = 1 and ∆tNQC = 4 for
(q, χ1, χ2) = (11,−0.95,−0.50). The use of ∆tNQC = 4 makes the behavior of
the waveform amplitude at merger consistent with the NR-fitted postmerger
behavior.

5.2.4 Waveform robustness outside the NR-covered re-
gion of parameter space

The model was tested to be robust in the most demanding corners of the
parameter space, notably for large mass ratios (though we limit ourselves to
q ≤ 20) and large values of the spin magnitudes. In particular, no obvious
problem was found for large mass ratios and when the spins are positive.
The absence of ill-defined behaviors in the waveform is mostly due to the
use of robust fits across the whole parameter space and to the fact that the
NQC corrections are able to effectively reduce the residual inaccuracies in
the EOB waveform. However, this comes at the price of large NQC pa-
rameters (far from being order unity, as noted above for the specific case of
(8,+0.85,+0.85)) since they have to strongly correct a waveform in a regime
where the radial momenta are small. Large NQC parameters prevent the
necessary iterative procedure of recomputing the flux from converging. We
thus remove the NQC corrections to the flux, although in this way it becomes
mildly inconsistent with the waveform.

As anticipated above, when the mass ratio is moderately large (q ≥ 8)
and spins are equally large but anti-aligned with the angular momentum,
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Figure 5.8: Calculation of F̄ between EOB waveforms with ∆tNQC = 1 and
∆tNQC = 4 at the boundary of the region of the parameter space defined
by Eqs. (5.7)-(5.8). The consistency between the two types of waveforms is
excellent.

the waveform amplitude may develop artifacts prompted by the underly-
ing orbital frequency being small and eventually crossing zero (and thus
strongly affecting the NQC amplitude correction factor) as we found for the
(8,−0.80, 0) configuration. For example, Fig. 5.7 illustrate the type of qual-
itatively incorrect features that the waveform can develop towards merger
due to the incorrect action of the NQC factor. In the figure we show, with a
red and an orange line, the amplitude and frequency for (11,−0.95,−0.50)
as generated by the model described above. The black dashed line is the bare
EOB-waveform amplitude, without the NQC factor. We have explicitly ver-
ified that Ω crosses zero also in this case. Although, as we mentioned above,
the theoretically correct way of solving this problem is to modify the spin-
orbit sector of TEOBResumS, one finds that, if the standard value ∆tNQC = 1
is increased to ∆tNQC = 4, the weird behavior disappears and the inspi-
ral EOB waveform amplitude can be connected smoothly to the postmerger
part obtained via the global fit of the NR waveform data. The same kind
of EOB/NR inconsistency also appears for configurations with even higher
mass ratios and large, negative, spins. In some extreme situations, it can
also affect the frequency. We performed a thorough scan of the parameter
space and we concluded that a pragmatical approach to solve this problem
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is simply to impose ∆tNQC = 4 for a certain sample of configurations. More
precisely, we found that the ubiquitous ∆tNQC = 1 should be replaced by
∆tNQC = 4 when

8 < q < 11 and χA < −0.9, (5.7)

11 < q < 19 and χA < −0.8. (5.8)

Note that, despite being independent of the value of χB, such simplified
conditions allow to generate waveforms that present a sufficiently sane and
smooth behavior around the merger up to mass ratio q = 20 and spins
χA = χB = ±0.95. Finally, the last question is about the magnitude of the
uncertainty that one introduces by choosing ∆tNQC = 4 instead of ∆tNQC = 1
at the boundary of the region of the parameter space defined by Eqs. (5.7)-
(5.8). We evaluated this by (i) choosing several configurations at the inter-
face, on the (ν, χA) square, and by computing F̄ between EOB waveforms
with ∆tNQC = 1 and ∆tNQC = 4. We find values of F̄ (see Fig. (5.8)) on aver-
age around 10−3, which means that having a discontinuous transition has in
fact no practical consequences. Evidently, the radical solution to this prob-
lem will eventually be to change the argument of the gyro-gravitomagnetic
functions (ĜS, ĜS∗) as mentioned above. In this respect, we have checked
that doing so for the case (11,−0.95,−0.50) of Fig. 5.7 allows one to (i)
avoid the orbital frequency Ω crossing zero and (ii) consequently recovering
a qualitatively excellent modulus around merger simply keeping ∆tNQC = 1.
Since such an improved TEOBResumS model will have also to rely on a differ-
ent determination of c3 to be consistent with all NR simulations, we postpone
a detailed treatment to future work.

Finally, we test the robustness of the merger waveform provided by TEOBResumS

on several specific configurations. In Fig. 5.9 we cover that portion of the pa-
rameter space listed in Table I of Ref. [36] (and notably covered by nonpublic
SXS NR simulations). In addition, Figs. 5.10-5.11 systematically explore sev-
eral configurations corresponding to the conditions given by Eqs. (5.7)-(5.8).
The figure stresses that neither the amplitude nor the frequency show any
evident pathological behavior around merger. This makes us confident that
TEOBResumS waveforms should provide a reasonable approximation to the
actual waveform for that region of the parameter space. Evidently, like the
case of (8,+0.85,+0.85) mentioned above, this does not a priori guarantee
that, had we at hand long NR simulations for such parameters, we would
get a phasing consistent with the numerical error, since modifications of c3
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might be needed. However, we think that constructing a waveform without
evident pathologies is already a good achievement seen the lack of NR-based
complementary information in these corners of the parameter space.

5.3 Binary Neutron Stars

General relativity predicts that the GW signal emitted by the quasi-circular
inspiral and plunge of BNSs is a chirp-like signal qualitatively similar to
that of a BBH system, but modified due to the presence of tidal effects. At
leading PN order, the latter arise because the gravitational field of each star
induces a multipolar deformation on the companion that makes the binary
interaction potential more attractive. This means that, compared to the
pure space-time BBH process, the coalescence process is faster. Quadrupolar
leading-order tidal interactions enter the dynamics at the 5th post-Newtonian
order [227, 106, 228, 229, 157, 230]. The impact on the phase evolution,
however, is significant already at GW frequencies fGW & 150Hz [231] and
becomes the dominant effect towards the end of the inspiral [232]. The
magnitude of the tidal interaction is quantified by a set of dimensionless
tidal polarizability coefficients for each star. The dominant one is usually
addressed in the literature as “tidal deformability” and is defined as

Λ2 =
2

3
k2

(
c2

G

R∗
M∗

)5

, (5.9)

where k2 is the quadrupolar gravito-electric Love number (see Sec. 3.1.4 and
Chapt. 3 in general for details about the tidal phenomenology of NSs) and
(R∗,M∗) are the NS areal radius and mass [110, 108, 233].

5.3.1 Main features

Our starting point for describing the BNS evolution up to the merger is the
model discussed in Ref. [206], where the point-mass A0 potential (formerly
denoted as A(r) and discussed in Sec. 4.2 of this thesis) is augmented by
a gravitational self-force (GSF)-informed tidal contribution [234]. Follow-
ing [157], the complete EOB potential is written as

A = A0 + A
(+)
T , (5.10)
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where

A
(+)
T (u; ν) ≡ −

4∑
`=2

[
κ

(`)
A u

2`+2Â
(`+)
A + (A↔ B)

]
(5.11)

models the gravito-electric sector of the interaction, with u ≡ 1/r. In the
expression above, the ` = 2, 3, 4 tidal coupling constants are defined as

κ
(`)
A = 2

XB

XA

(
XA

CA

)2`+1

kA` , (5.12a)

κ
(`)
B = 2

XA

XB

(
XB

CB

)2`+1

kB` , (5.12b)

in which CA,B = MA,B/RA,B are the compactness of the two stars, RA,B their

areal radii, while kA,B` are the dimensionless relativistic Love numbers [227,
110, 108, 233, 231].

At leading order, tidal interactions are fully encoded in the total dimen-
sionless quadrupolar tidal coupling constant

κT2 ≡ κ
(2)
A + κ

(2)
B . (5.13)

The above parameter is key to discovering and to interpreting EOS quasi-
universal relations for BNS merger quantities [232, 235, 236]. In GW experi-
ments, however, one often measures separately (ΛA,ΛB) and the masses [237,
238, 43]. The expression relating κT2 to (ν,ΛA

2 ,Λ
B
2 ) can be easily obtained by

inserting Eq. (5.9) into Eq. (5.13) and reads

κT2
(
ν; ΛA

2 ,Λ
B
2

)
=

3

8
ν

[ (
ΛA

2 + ΛB
2

) (
1 + 3X2

AB

)
+
(
ΛA

2 − ΛB
2

)
XAB

(
3 +X2

AB

) ]
. (5.14)

The relativistic correction factors Â
(`+)
A formally include all the high PN

corrections to the leading-order tidal interaction. The particular choice of

Â
(`+)
A defines a particular TEOB model. For example, the PN-expanded next-

to-next-to-leading-order (NNLO) tidal model is given by the, fractionally
2PN accurate, expression

Â
(`+)
A (u) = 1 + α

(`)
1 u+ α

(`)
2 u2 [NNLO] , (5.15)
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with α
(2),(3)
1,2 6= 0 computed analytically and α

(4)
1,2 = 0 [239]. This TEOBNNLO

model has been compared against NR simulations in [240, 206]. Significant
deviations are observed during the last 2-3 orbits before merger at dimen-
sionless GW frequencies Mω22 & 0.8, that roughly correspond to the GW
frequency of the stars’ contact.

The TEOBResum model is defined from TEOBNNLO by replacing the ` = 2
term in (5.15) with the expression

Â
(2+)
A (u) = 1 +

3u2

1− rLRu
+

XAÃ
(2+)1SF
1

(1− rLRu)7/2
+
X2
AÃ

(2+)2SF
2

(1− rLRu)p
, (5.16)

where p = 4 and the functions Ã
(2+)1SF
1 (u) and Ã

(2+)2SF
2 (u) are given in [234],

obtained by fitting to numerical data from [241]. The key idea of TEOBResum

is to use as pole location in Eq. (5.16) the light ring rLR(ν;κ
(`)
A ) of the

TEOBNNLO model, i.e., the location of the maximum of ANNLO(r; ν; κ
(`)
A )/r2.

TEOBResum is completed with a resummed waveform [8] that includes the
NLO tidal contributions computed in [157, 242, 243]. TEOBResum is consis-
tent with state-of-the-art NR simulations up to merger [206]. Consistently
with the BBH case, we here conventionally define the BNS merger as the peak
of the ` = m = 2 amplitude of the strain waveform. The results of [206] span
a sample of equation of states (EOS) and consequently a large range of the
tidal coupling parameters. Such results were later confirmed by Hotokezaka
et al. [244, 245]. Similarly, Ref. [246] showed that TEOBResum is consistent
with an alternative tidal EOB model that does not incorporate GSF-driven
information but instead includes a way of accounting for the f -mode oscil-
lations of the NS excited during the orbital evolution [212]. A ROM version
of TEOBResum of Ref. [206] exists [247] and it is implemented in LAL under
the name TEOBResum ROM. In conclusion, despite a certain amount of approx-
imations used to build the model, we take the tidal EOB-model of Ref. [206]
as our current best waveform approximant for coalescing nonspinning BNS
up to merger. In the next Section, we use TEOBResum as a starting point
to construct a BNS waveform model that puts together both tidal and spin
effects.

5.3.2 EOB formalism for self-spin term

The spins of the two NSs (or in general of two deformable bodies) can be
easily incorporated in the formalism of Ref. [159]. Let us describe a two-step
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procedure starting from the case where the spin-spin terms are not present.
This corresponds to posing the centrifugal radius rc = r in the framework of
Ref. [159], i.e. Eq. (4.26) above. In this case, moving from spinning BBHs to
spinning BNSs is procedurally straightforward, since the only trivial change
is to replace the point-mass potential with the tidally augmented one. The
gyro-gravitomagnetic function GS and GS∗ are the same as in the BBH case,
and are resummed taking their Taylor-inverses as discussed in [159]. A choice
needs to be made for what concerns the NNNLO effective parameter c3, that
for BBHs was tuned using NR data. Here we decide to simply fix it to
zero. The reason behind this choice is that c3 is an effective correction that
depends on spin-square terms that are different in BBHs and BNSs and thus
it is safer to drop it here. We have indeed explored the effect of keeping
the BBH value of c3 for χA = χB = 0.1 comparing with the BNS NR data
corresponding to the SLy EOS and 1.35M� + 1.35M�. We find that such
effect is not significant because it enters at high PN order in a frequency
regime that is not really reached in a BNS system.

For what concerns spin-spin effects, it turns out that it is very easy to
incorporate them into the EOB model at leading-order (LO) also in the
presence of matter objects like NSs8. When we talk of spin-spin interaction,
let us recall that the PN-expanded Hamiltonian is made by three terms:
the mutual interaction term, HSASB , and the two self-spins ones HSASA and
HSBSB . These two latter terms originate from the interaction of the monopole
mB with the spin-induced quadrupole moment of the spinning black hole of
mass mA and vice versa. For a NS, the same physical effect exists, but the
spin-induced quadrupole moment depends on the equation of state (EOS) by
means of some, EOS-dependent, proportionality coefficient [134]. As we have
seen above, for BBHs, Ref. [159] introduced a prescription to incorporate into
the EOB Hamiltonian all three spin-spin couplings (at NLO) in resummed
form, by including them inside a suitable centrifugal radius rc. This quantity
mimics, in the general, comparable-mass case, the same quantity that can be
defined in the case of the Hamiltonian of a test particle around a Kerr black
hole. In this latter case, this takes into account the quadrupolar deformation
of the hole due to the black hole rotation. For comparable-mass binaries,
this may be thought as a way of incorporating the quadrupolar deformation

8Since the spin magnitude of each NS composing the binary is expected to be small
(χ . 0.1), we may a priori expect this order of approximation to be sufficient, although
the corresponding Hamiltonian at NLO has been obtained recently with different ap-
proaches [248].
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of each black hole induced by its rotation. At LO, the definition of the
centrifugal radius of Eq. (4.26) simply reads

r2
c = r2 + â2

0

(
1 +

2

r

)
. (5.17)

where we recall that the dimensionless effective Kerr spin is

â0 = ãA + ãB (5.18)

with ãA,B = XA,BχA,B. The use of these spin variables is convenient for
several reasons: (i) the analytical expressions for spin-aligned binaries are
nicely simplified and shorter compared to other standard notations 9; (ii)
in the large mass ratio limit MB � MA, one has that ãA becomes the di-
mensionless spin of the massive black hole of mass MA ≈ M , while ãB just
reduces to the usual spin-variable of the particle σ ≡ SB/(MAMB).

Next-to-leading order spin-spin effects can be incorporated in a different
fashion depending on whether the spins are generic or aligned with the orbital
angular momentum. This is still ongoing work that needs further investiga-
tion [249]. In the case of two NSs the recipe we propose here to include
spin-spin couplings at LO is just to replace the definition of the effective spin
â0 in Eq. (5.17) by the following quadratic form of ãA and ãB

â2
Q = CQAã

2
A + 2ãAãB + CQBã

2
B (5.19)

where CQA and CQB parametrize the quadrupolar deformation acquired by
each object due to its spin 10. For a black hole, CQ = 1 and in this case
Eq. (5.19) coincides with Eq. (5.18). For a NS (or any other “exotic” object
different from a black hole, like a boson star [251]) CQ 6= 1 and needs to
be computed starting from a certain equation of state (see below). We can
then follow Ref. [159] and the EOB Hamiltonian will have precisely the same
formal structure of the BBH case. In particular, the complete equatorial A
function entering Ĥeff

orb reads

A(r, ν, Si, κi, CQi) =

[
1 + 2uc
1 + 2u

Aorb(uc, ν, κi)

]
uc(u,Si,CQi)

, (5.20)

9Like, for example, the symmetric χS ≡ (χA + χB)/2 and antisymmetric χS ≡ (χA −
χB)/2 combinations of the dimensionless spins, or S` ≡ SA+SB and Σ` = XBSB−XASA
are typically used to express PN results.

10The notation CQi we adopt here is mediated from Ref. [248] and we remind the reader
that this quantity is identical to the parameter a in Poisson [134] and CES2 of Ref. [250].
It is also the same parameter called κi in Bohé et al. [75].
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where uc ≡ 1/rc is obtained from Eq. (5.17) and (5.19) and we indicated
explicitly the dependence on the various EOS-dependent parameters. Note
that Aorb is here depending explicitly on the tidal parameters κi, because this
is meant to be the sum of the point-mass A function plus the tidal part of
the potential used in Ref. [206] but everything is now taken as a function of
uc instead of u. One easily checks that, by PN-expanding the spin-dependent
EOB Hamiltonian, as given by Eqs. (23), (24) and (25) of [159], the LO spin-
spin term coincides with the corresponding one of the ADM Hamiltonian
given in Eqs. (8.15) and (8.16) of [248], that in our notation just rereads as

ĤADM
ssLO

= − 1

2r3
ADM

{
CQAã

2
A + 2ãAãB + CQBã

2
B

}
, (5.21)

i.e ĤADM
ss = −â2

Q/(2r
3
ADM) using Eq. (5.19). Since at this PN order the

useful relation between the ADM radial separation rADM and the EOB radial
separation is just r = rADM, it is immediate to verify the equivalence of the
two results.

Incorporating the full LO spin-spin interaction in the waveform, including
monopole-quadrupole terms, is similarly straightforward. First, following
Ref. [159], Eq. (80) there, we recall that, for BBHs, this is done by including
in the residual amplitude correction to the (2, 2) waveform a spin-dependent
term of the form

ρSSLO
22 = cSS

LOx
2 =

1

2
â2

0x
2. (5.22)

The monopole-quadrupole effect is then included by just replacing â2
0 by â2

Q

from Eq. (5.19). One then verifies that, after PN-expanding the resummed
EOB flux, the corresponding LO spin-spin term coincides with the LO term
for spin-aligned, circularized binaries, given in Eq. (4.12) of Ref. [75]. Such
Newton-normalized, spin-spin flux contributions, once rewritten using the
(ã1, ã2) spin variables, just gets simplified as

F̂LO
SS =

{
ã2
A

(
1

16
+ 2CQA

)
+

31

8
ãAãB + ã2

2

(
1

16
+ 2CQB

)}
x2, (5.23)

so that the A↔ B-symmetry is apparent11. This can be obtained by directly
expanding the EOB-resummed flux as defined in Ref. [159]. Actually, for this

11To obtain this result from Eq. (4.12) of Ref. [75] we recall the connection between the
notations and spin variables: κi = CQi; κ± ≡ κA±κB ; S` = XAãA+XB ãB ; Σ` = ãB−ãA;
δ = XA −XB =

√
1− 4ν and thus XA = (1 +

√
1− 4ν)/2
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specific calculation, it is enough to consider the (2, 2) and (2, 1) waveform
modes, the first at LO in the spin-spin and spin-orbit interaction, while the
latter only at LO in the spin-orbit interaction. The corresponding residual
amplitudes, taken from Eqs. (79), (84), (86), (89) and (90) of [159], read

ρ22 = ρorb
22 + ρS

22, (5.24)

XABf21 = XAB

(
ρorb

21

)2
+ f̃S

21, (5.25)

where ρS
22 is assumed here to incorporate only the LO spin-orbit and spin-spin

contribution

ρS
22 = cLO

SOx
3/2 + cLO

SS x
2

= −
[
â0

2
+
XAB

6
(ãA − ãB)

]
x3/2 +

1

2
â2
Qx

2, (5.26)

f̃S
21 = −3

2
(ãA − ãB). (5.27)

One verifies that, by keeping the orbital terms consistently, using these ex-
pressions in Eq. (74) and (75) of [159], one eventually obtains Eq. (5.23)
above. As a further check, we have also verified that the use of Eq. (5.19) is
also fully consistent with the calculation of the multipolar waveform ampli-
tude h22 that was done by S. Marsat and A. Bohé and kindly shared with us
before publication [252].

At this stage, we have a complete analytical model that is able to blend,
in a resummed (though approximate) way spin and tidal effects. The model
is complete once all the EOS dependent information, schematically indi-
cated by Λ is given. More precisely, the procedure is as follows: for a given
choice of the EOS, one fixes the compactness C (or the mass of the NS),
which defines its equilibrium structure. Then, following Ref. [108] (see also
Refs. [110, 233, 231]), one computes the corresponding dimensionless Love
numbers (k2, k3, k4) as they appear in the EOB potential. At this stage, the
only missing piece is the EOS-dependent coefficient CQ for the two objects.
Luckily, this can be obtained easily by taking advantage of the so-called I-
Love-Q quasi-universal relations found by Yunes and Yagi [253, 137], that
are listed in Table 3.1. We remind to the reader that CQ is 1 for a BH but
it is larger for a NS, depending on the EOS one is expecting a relevance of
the monopole-quadrupole interaction terms. This was already pointed out
by Poisson long ago [134] and more recently by Harry and Hinderer [135].
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5.3.3 Comparison with NR data

We verify the accuracy of TEOBResumS against error-controlled NR waveforms
obtained from the evolution of spinning and eccentricity reduced initial data
using multiple resolutions. Initial data are constructed in the constant ro-
tational velocity formalism using the SGRID code [254, 255]. The residual
eccentricity of the initial data is reduced to typical values e ∼ 10−3 − 10−4

following the procedure described in [256]. The main properties of the BNS
configurations discussed in this work are listed in Table 5.3. The initial
data are then evolved with BAM [257, 258] using a high-order method for the
numerical fluxes of the general-relativistic hydrodynamics solver [259].

The BAM waveforms employed here were produced and discussed in [260,
261]. We perform multiple resolution runs, up to grid resolutions that allow
us to make an unambiguous assessment of convergence. We find a clear
second order convergence in many cases and build a consistent error budget
following the convergence tests [259]. For this work we additionally checked
some of the waveforms by performing additional simulation with the THC

code [262, 263]. The comparison with an independent code allows us to check
some of the systematics uncertainties that affect BNS simulations [240, 262,
263]. We find that the two codes produce consistent waveforms. Results are
summarized in Appendix D of Ref. [1].

Figures 5.12 and 5.13 illustrate EOB/NR phasing comparison. The EOB
waveforms are aligned, fixing a relative time and phase shift, to the NR
ones in the inspiral region marked by two vertical lines on the left panels
that correspond to the same frequency interval (ωL, ωR) on both the EOB
and NR time series [264]. The alignment frequency intervals are (ωL, ωR) =
(0.039, 0.05) for BAM:0095; (0.0365, 0.045) for BAM:0039 and (0.038, 0.05)
for BAM:0064. The shaded areas in the top panels mark the NR phasing
uncertainty as estimated in Appendix D of Ref. [1]. For reference, the green,
vertical line indicates the time at which the 700 Hz frequency is crossed.
The figure clearly illustrates that: (i) EOB and NR waveforms are fully
compatible up to our conventionally defined merger point, the peak of the
|h22| waveform amplitude, over the full range of values of κT2 considered as
well as for spins. Interestingly, the leftmost panel of Fig. 5.12 also shows
that the EOB-NR phase difference towards merger is acceptably small (<
1 rad), but also significantly larger than the NR uncertainty. This illustrates
that, for the first time, our NR simulations are finally mature to inform the
analytical model with some new, genuinely strong-field, information that can



126

be extracted from them. The figures show that for the EOB dynamics, we
typically underestimate the effect of tides in the last orbit, since the phase
of the NR data is evolving faster (stronger tides). However, the opposite
is true for BAM:0095. This result is consistent with the ones of Ref. [206]
for the same physical configuration (but different simulations, leftmost panel
of Fig. 3) where one had already the indication that for compact NS, tidal
effects could be slightly overestimated with respect to the corresponding NR
description. Informing TEOBResumS with the BAM simulations is outside the
scope of the current work. However, we want to stress that this is finally
possible with our improved simulations.

5.4 Contribution of self-spin terms to BNS

inspiral

Now that we could show the consistency between the TEOBResumS phasing
and state-of-the art NR simulations, let us investigate in more detail the ef-
fect of spins on long BNS waveforms as predicted by our model. First of all,
let us recall that inspiralling BNS systems are not likely to have significant
spins. The fastest NS in a confirmed BNS system has dimensionless spins
∼ 0.04 [265]. Another potential BNS system has a NS with spin frequency
of 239 Hz, corresponding to dimensionless spin 0.2. The fastest-spinning,
isolated, millisecond pulsar observed so far has χ = 0.04 [265]. However, it
is known that even a spin of 0.03 can lead to systematic biases in the esti-
mated tidal parameters if not incorporated in the waveform model [266, 267].
Those analyses are based on PN waveform models. A precise assessment of
these biases using TEOBResumS is given in Chapters 6 and 7. Since the most
important theoretical novelty of TEOBResumS is the incorporation of self-spin
effects in resummed form, our aim here is to estimate their effect in terms of
time-domain phasing up to merger 12, notably contrasting the TEOBResumS

description with the standard PN one.

Before doing so, let us mention that LO, PN-expanded, self-spin terms [134]
in the TaylorF2 inspiral approximant (see Sec. 2.7 for details) have been
used in parameter-estimation studies by Agathos et al. [238], and, more re-
cently, by Harry and Hinderer [135]. The LO term (2PN accurate) to the

12Note that it is currently not possible to reliably extract self-spin information from
numerical simulations [268, 260].
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frequency-domain phasing was originally computed by Poisson [134]. Cur-
rently, EOS-dependent, self-spin information is computed in PN theory up to
3.5PN order, so that one can have the corresponding 3.5PN accurate terms
in the TaylorF2 approximant. Let us explicitly review their computation.
Given the Fourier transform of the quadrupolar waveform as

h̃22 ≡ Ã(f)e−iΨ(f), (5.28)

the frequency domain phasing of the TaylorF2 waveform approximant, that
assumes the stationary phase approximation, is obtained solving the inte-
gral given by Eq. (3.5) of Ref. [99], that here is given by Eq. (2.195). The
CQi-dependent quadratic-in-spin energy and flux available in the literature
at 3.5PN, the maximum PN order actually known in this particular case, are
given in Refs. [76] and [75] respectively, where their notation κ± corresponds
to κ+ = CQA + CQB and κ− ≡ CQA − CQB. It is important to stress that in
Ref. [248] a circularized spin-spin CQi-dependent Hamiltonian, equivalent to
the Multipolar post-Minkowskian (MPM) result of Ref. [76] (see their Ap-
pendix D), was computed via effective field theory (EFT) techniques. From
Eq. (2.195), by taking into account all the orbital pieces at the consistent
PN order [269, 270, 271, 147, 64], one gets that the self-spin contribution is
given by the sum of an LO term (2PN) [134], an NLO term (3PN) and a LO
tail13 term (3.5PN)

ΨPN
SS = ΨPN,LO

SS + ΨPN,NLO
SS + ΨPN,tail

SS . (5.29)

The LO tail term is computed here for the first time. It was obtained by
expanding, at the corresponding PN order, the EOB energy and flux adapting
the procedure discussed in [11]. These three terms explicitly read

ΨPN,LO
SS = − 75

64ν

(
ã2
ACQA + ã2

BCQB
) (ω

2

)−1/3

, (5.30)

ΨPN,NLO
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16
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512
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](ω
2
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, (5.31)

ΨPN,tail
SS = −75

8ν
π
(
ã2
ACQA + ã2

BCQB
) (ω

2

)2/3

, (5.32)

13See Refs. [154] and [24] for a physical insight to memory and tail effects in gravitational
radiation.
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where ω = 2πMf denotes the circularized quadrupolar gravitational wave
frequency.

To quantitatively investigate the differences between the PN-expanded
and EOB-resummed treatment of the self-spin contribution to the phase,
it is convenient to use the quantity Qω = ω2/ω̇, where ω = ω(t) is the
time-domain quadrupolar gravitational wave frequency, ω ≡ dφ/dt, where
φ(t) ≡ φ22(t) is the phase of the time-domain quadrupolar GW waveform
h22(t) = A(t)eiφ22(t). This function has several properties that will be useful
in the present context. First, its inverse can be considered as an adiabatic pa-
rameter εadiab = 1/Qω = ω̇/ω2 whose magnitude controls the validity of the
stationary phase approximation (SPA) that is normally used to compute the
frequency-domain phasing of PN approximants during the quasi-adiabatic
inspiral. Thus, the magnitude of Qω itself tells us to which extent the SPA
delivers a reliable approximation to the exact Fourier transform of the com-
plete inspiral waveform, that also incorporates nonadiabatic effects. Let us
recall [243] that, as long as the SPA holds, the phase of the Fourier trans-
form of the time-domain quadrupolar waveform Ψ(f) is simply the Legendre
transform of the quadrupolar time-domain phase φ(t), that is

Ψ(f) = 2πftf − φ(tf )− π/4, (5.33)

where tf is the solution of the equation ω(tf ) = 2πf . Differentiating twice
this equation one finds

ω2d
2Ψ(ω)

dω2
= Qω(ω), (5.34)

where we identify the time domain and frequency domain circular frequen-
cies, i.e., ωf = ω(t). Second, the integral of Qω per logarithmic frequency
yields the phasing accumulated by the evolution on a given frequency interval
(ωL, ωR), that is

∆φ(ωL, ωR) ≡
∫ ωR

ωL

Qωd logω. (5.35)

Additionally, since this function is free of the two “shift ambiguities” that
affect the GW phase (either in the time or frequency domain), it is perfectly
suited to compare in a simple way different waveform models [272, 272, 240,
215, 206]. Then, the self-spin contribution to the PN-expanded Qω is given
by three terms

QPN,SS
ω = QSSPN,LO

ω +QSSPN,NLO
ω +Q

SSPN,tail
ω , (5.36)
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that are obtained from Eqs. (5.30)-(5.32) and read

QSSPN,LO
ω = − 25
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ã2
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, (5.37)
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The corresponding function in TEOBResumS, QTEOBResumS,SS
ω is computed,

in the time domain, as follows. We perform two different runs, one with
CQi 6= 0 another with CQi = 0. In both cases we compute the time-domain
Qω and finally calculate

QTEOBResumS,SS
ω = Q

TEOBResumSCQi 6=0

ω −QTEOBResumSCQi=0

ω . (5.40)

Although the procedure is conceptually straightforward, since it only re-
quires the computation of numerical derivatives of the time-domain phase
φ(t), there are technical subtleties in order to obtain a clean curve to be
compared with the PN results. First of all, any oscillation related to residual
eccentricity coming from the initial data, though negligible both in φ(t) or
ω(t), will get amplified in Qω making the quantity useless. To avoid this
drawback, the use of the 2PA initial data of Ref. [215], discussed in detail
in Appendix C of Ref. [1], is absolutely crucial. Second, in order to explore
the low-frequency regime one has to get rid of the time-domain oversam-
pling of the waveform, since it eventually generates high-frequency (though
low-amplitude) noise in the early frequency part of the curve. To this aim,
the raw time-domain phase φ(t) was suitably downsampled (and smoothed).
Since the time-domain output of TEOBResumS is evenly sampled in time (but
not in frequency) such procedure had to be done separately on different time
intervals of the complete signal (e.g. starting from 20Hz) that are then joined
together again.

The outcome of this calculation is represented, as a black line, in Fig. 5.14.
As case study, we selected the BAM:0095 configuration of Table 5.3 with
χA = χB = 0.1. To orient the reader, the vertical lines correspond to 400Hz,
700Hz and 1kHz. The figure illustrates two facts: (i) the EOB-resummed
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representation of the self-spin phasing is consistent, as it should, with the
PN description when going to low-frequencies and (ii) it is stronger during
most of the inspiral (i.e. more attractive). More detailed analysis of the
self-spin effects in comparison with the various PN truncations displayed
in the figure are discussed in Sec. VI of Ref. [209], to which we address
the interested reader. One important information enclosed in the figure is
that the difference between the EOB and NLO (3PN) description of self-spin
effects is nonnegligible. It is likely that most of this difference comes from the
bad behavior of the PN-expanded NLO term. Note in fact that Q

SSPN,NLO
ω has

a quite large coefficient, 15635/4032 ' 4, (see Eq. (5.38)), that, e.g. at Mω ∼
0.04, eventually yields a contribution that is comparable to the LO one in the
PN series. For this reason, we are prone to think that the EOB description
of self-spin effects, even if it is based only on the (limited) LO self-spin term,
is more robust and trustable than the straightforward PN-expanded one.
Clearly, to finally settle this question we will need to incorporate in the EOB
formalism, through a suitable CQi-dependent expression of the δâ2 given in
Eq. (4.28), EOS-dependent self-spin effects at NLO. This will be discussed
extensively in a forthcoming study.

5.5 Case study: Parameter estimation of GW150914

We test the performance and faithfulness of our waveform model in a realistic
setting by performing a parameter estimation study on the 4096 seconds
of publicly available data for GW150914 [273]. To do so efficiently, we do
not iterate on the NQC parameters, so that the generation time of each
waveform from 20 Hz is ∼ 40 ms using the C++ version of TEOBResumS.
This worsens a bit the SXS/TEOBResumS unfaithfulness, as we illustrate in
Fig. 5.15, though the model is still compatible with the max F̄ ≈ 1% limit
and below the 3% threshold. The largest value of F̄ is in fact max F̄ ≈ 0.018,
that is obtained for (1,+0.40,+0.80). We define θ as the vector of physical
parameters necessary to fully characterize the gravitational wave signal. For
TEOBResumS and binary black hole systems, these are the component masses
(MA,MB), their dimensionless spin components (χA, χB) along the direction
of the orbital angular momentum, the three-dimensional coordinates in the
Universe – sky position angles and luminosity distance –, polarization and
inclination angles, and finally time and phase of arrival at the LIGO sites.
We operate within the context of Bayesian inference; given k time series of k
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detectors’ data d, we construct the posterior distribution over the parameters
θ as

p(θ|d1, . . . , dk, H, I) = p(θ|H, I)
p(d1, . . . , dk|θ,H, I)

p(d1, . . . , dk|H, I)
(5.41)

where we defined our gravitational wave model – TEOBResumS – as H and
I represents all “background” information which is relevant for the infer-
ence problem14. For our choice of prior distribution p(θ|H, I), we refer the
reader to Ref. [44]. Finally, we choose the likelihood p(d1, . . . , dk|θ,H, I) to
be the product of k wide sense stationary Gaussian noise distributions char-
acterised entirely by their power spectral density, which is estimated using
the procedure outlined in Ref. [273]. We sample the posterior distribution
for the physical parameters of GW150914 using the Python parallel nested
sampling algorithm in [274]. The cpnest model we wrote is available from
the authors on request. In Table 5.4 we summarize our results by reporting
median and 90% credible intervals. These numbers are to be compared with
what reported in Table I in Ref. [44] and Table I in Ref. [275]. We also list
them in the last column of Table 5.4 for convenience. As examples, we show
the whitened reconstructed waveforms in Fig. 5.16 and theM and mass ratio
posterior distribution in Fig. 5.17. We find our posteriors to be consistent
with what published by the LIGO and Virgo collaborations, albeit our in-
ference tends to prefer higher values for the mass parameters. However, no
statistically significant difference is found. We find that TEOBResumS is fit to
perform parameter estimation studies and that on GW150914 it performs as
well as mainstream waveform models.

5.6 Selected comparisons with SEOBNRv4 and

SEOBNRv4T

To complement the above discussion, let us collect in this section a few
selected comparisons between TEOBResumS and the only other existing state-
of-the-art NR-informed EOB models SEOBNRv4 and SEOBNRv4T [36, 212, 213,
214], that are currently being used on LIGO/Virgo data. The tidal sector of
the SEOBNRv4T model has been recently improved so as to also include EOS-
dependent self-spin terms in the Hamiltonian, though in a form different

14For instance, the assumption of stationary Gaussian detector noise is hidden in the
definition of I.
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from ours, and will be discussed in a forthcoming publication. For the BBH
case, our Fig. 5.1, when compared with Fig. 2 of [36], points out the excel-
lent compatibility between the two models at the level of unfaithfulness with
the SXS catalog of NR simulations, although the information (or calibra-
tion) of the model was done in rather different ways. For SEOBNRv4 it relies
on monitoring a likelihood function that combines together the maximum
EOB/NR faithfulness and the difference between EOB and NR merger times
(see Sec. IVB of [36]). By contrast, the procedure of informing TEOBResumS

via NR simulations relies on monitoring the EOB/NR phase differences and
choosing (with a tuning by hand that can be performed in little time without
the need of a complicated computational infrastructure, as explained in de-
tail in [37]) values of parameters such that the accumulated phase difference
at merger is within the SXS NR uncertainty obtained, as usual, by taking
the phase difference between the two highest resolutions. This is possible
within TEOBResumS because of the smaller number of dynamical parameters,
i.e. (ac6, c3), and the rather “rigid” structure that connects the peak of the
(pure) orbital frequency with the NQC point and the beginning of ringdown,
Eq. (4.49).

Once this is done, and in particular once one has determined a global
fit for c3, the EOB/NR unfaithfulness is computed as an additional cross
check between waveforms. Here we want to make the point that, even if
the models look very compatible among themselves from the phasing and F̄
point of view, they may actually hide different characteristics. As a concrete
example, we focus on the (effective) photon potential function A/r2, where A
is the EOB central interaction potential. In the test-particle (Schwarzschild)
limit, A = 1 − 2/r and A/r2 peaks at the light ring r = 3, which approxi-
mately coincides with (i) the peak of the orbital frequency; (ii) the peak of
the Regge-Wheeler-Zerilli potential; (iii) the peak of the ` = m = 2 wave-
form amplitude [167]. The location of the effective light ring (or the peak
of the orbital frequency) is a crucial point in the EOB formalism, since, as
in the test-particle limit, it marks the beginning of the postmerger wave-
form part eventually dominated by quasi-normal mode ringing. We recall
that TEOBResumS and SEOBNRv4 resum the A potential in different ways: it
is a (1,5) Padé approximant for TEOBResumS, while it is a more complicated
function resummed by taking an overall logarithm for SEOBNRv4 [276]. More-
over, while TEOBResumS includes a 5PN-accurate logarithmic term, SEOBNRv4
only relies on 4PN-accurate analytic information. In addition, both func-
tions are NR-modified by a single, ν-parametrized function that is deter-
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mined through EOB/NR phasing comparison. This is the 5PN effective
correction ac6(ν) mentioned above for TEOBResumS and the function K0(ν)
for SEOBNRv4. Explicitly, we are using ac6(ν) = 3097.3ν2 − 1330.6ν + 81.38
and K0 = +267.788247ν3 − 126.686734ν2 + 10.257281ν + 1.733598. As a
first comparison, we plot in Fig. 5.18 the q = 1 effective photon potential.
Right to the point, the figure illustrates that the two potentials are nicely
consistent among themselves, although the structure close to merger is dif-
ferent. The figure also includes the potential of the SEOBNRv2 model [31],
a model that has been used on GW150914 and that was characterized by
K0 = 103.2ν3−39.77ν2−1.804ν+1.712. Interestingly, the plot shows that the
*v4 potential peak is closer to the TEOBResumS one than the *v2 one. This
finding deserves some mention for several reasons. First, the TEOBResumS

nonspinning A function behind the photon potential of Fig. 5.18 was NR-
informed in Ref. [34] with the same nonspinning SXS NR simulations used
for SEOBNRv2 (plus a q = 10 dataset that became available after Ref. [31]).
Second, SEOBNRv2 uses only linear-in-ν 4PN information [152, 155] while
SEOBNRv4 uses the full 4PN information [271, 270], as for TEOBResumS. How-
ever, to our understanding, the SEOBNRv4 potential was also calibrated using
more nonspinning NR simulations (notably with q & 1) than for SEOBNRv2

(see Ref. [36]) and TEOBResumS. This suggests that the TEOBResumS potential
seems able to naturally incorporate some amount of strong-field information
that needs to be extracted from NR when a SEOBNRv*-like [276] potential
is employed. These findings merit further investigation.

In Fig. 5.19 we display the same comparison (though after omission of
the SEOBNRv2 curve) for different mass ratios, q = (1, 2, 3, 4, 6, 18). One sees
that both TEOBResumS and SEOBNRv4 curves are smoothly and consistently
connected to the Schwarzschild case. This accomplishes the basic paradigm
of the EOB formalism that the dynamics of the two-body problem is a con-
tinuous deformation of the dynamics of a test-mass on a Schwarzschild black
hole [28, 29], so that this limit should be properly incorporated by construc-
tion in the model and should be preserved by the addition of NR information.
However, the way the Schwarzschild limit is reached is rather different in the
two models. This is highlighted very well by the markers in Fig. 5.19. These
markers indicate the location of the effective light-ring, rLR, that is shown,
versus ν, in Fig. 5.20. The figure highlights that, while the rLR(ν) is approx-
imately linear for TEOBResumS (i.e. the Schwarzschild light-ring is reached at
constant speed in the space of the nonspinning configurations parametrized
by ν) the behavior of the corresponding quantity in SEOBNRv4 is more com-
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plicated, notably it is not monotonic in ν. This is not necessarily a problem
from the practical point of view of generating NR-calibrated waveforms that
are consistent with NR simulations. However, from the theoretical point of
view, this suggests a slight inconsistency within the model, because the lo-
cation of rLR for ν = 0.25 is the same as for ν ≈ 0.09. A priori, as it was
pointed out in the foundation of the EOB model [29, 141], one would ex-
pect that the location of the LR is simply monotonically pushed to smaller
radii (i.e. higher frequency) due to the repulsive effect of the higher PN
ν-dependent corrections that exist both at 2PN and at 3PN order. This is
also suggested by NR simulations, where one finds that the GW frequency
at merger (that in the EOB formalism is connected with the peak of the ef-
fective photon potential) is monotonically growing with ν (see e.g. Fig. 3 of
[277]). By contrast, TEOBResumS seems to consistently incorporate this fea-
ture by construction, even with the NR-informed function ac6(ν). However,
one sees that rLR(ν) is a quasi-linear function, though not exactly a straight
line. This suggests that it would be interesting to investigate to which ex-
tent one can take it as a straight line (since it depends on ac6) and how this
influences the EOB/NR phasing performances. We hope to address these
questions in future work. As a last remark, we note that one can just plug
the SEOBNRv4 A interaction potential within the TEOBResumS infrastructure
and, without changing anything else in the model, see whether or not the
differences of Fig. 5.19 reflect on the waveform. It is easily found that, espe-
cially when q > 1, the dynamics yielded by the two NR-informed potentials
are rather different (and somehow not compatible), non-negligibly affecting
the phasing. A detailed comparison of these aspects is interesting, and will
be possibly undertaken in future work.

As additional comparison between different EOB-based waveform mod-
els, we also computed the faithfulness (or match) F between TEOBResumS and
SEOBNRv4T, i.e., the tidal version of SEOBNRv4 [212, 213]. It has to be no-
ticed that SEOBNRv4T is conceptually different from TEOBResumS in that the
effects of enhancement of the tidal interaction due to couplings with the in-
ternal oscillation f -mode of the stars is incorporated in the model [229, 213].
In addition, it also includes EOS-dependent spin-spin terms, though not in
the resummed form involving the centrifugal radius [214]. As above, the
match here is the overlap maximized over the time (time shift) and fiducial
constant phase 15. The comparison was done in the part of the parame-

15Note that, due to an incorrect flag, these results were obtained omitting, in
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ter space that we expect to be astrophysically more relevant, namely, we
randomly draw parameters from the uniform distributions in the mass ratio
MA/MB ∈ [1, 2], the heaviest mass MA ∈ [1, 3]M�, the spins (along orbital
angular momentum) χA,B ∈ [−0.15, 0.15], and the tidal parameters for each
body ΛA,B ∈ [2, 1600]. Each waveform is computed from a nominal initial
frequency of 40 Hz. The most representative results are given in Fig. 5.21
where we show the points drawn in the (ΛA,MA) and (ΛB,MB) planes. The
match values, that are very high, are color-coded. The lowest match value
found is 0.9898.

To better clarify the meaning of Fig. 5.21 with complementary infor-
mation, we also depict in Fig. 5.22 the direct time-domain comparison be-
tween the two waveforms corresponding to the lowest match value, F =
0.9898. The parameters of this binary are MA = 2.99173181168, MB =
1.54656708774, χA = −0.00403135733793, χB = 0.104676230478, Λ2

A =
1595.82370308, Λ2

B = 410.054257357. The corresponding values the spin-
induced quadrupoles are CQA = 8.47884798 and CQB = 5.56870361. The
top panel of Fig. 5.22 shows the two h+ waveforms without any relative time
and phase shift. This is instead done in the bottom panel, with these shifts
dictated by the match calculation. One notes that, although the initial GW
frequency of the wave is chosen to be 40 Hz for both models (and the waves
seem to consistently start in the same way) the initial conditions between
the two models are different, as highlighted in Table 5.5. This difference
comes from the relation that connects the initial frequency f0 to the initial
radius r0. For TEOBResumS, for simplicity, one is using the simple (though
approximate in this context) Newtonian Kepler’s law

r0 =

(
πfMG

c3

)−2/3

. (5.42)

On the contrary, SEOBNRv4T correctly recovers r0 from Hamilton’s equations
(see Eqs. (4.8)-(4.9) of Ref. [279]). The difference in r0 is then responsible
for the difference in the other phase-space variable, that is mostly behind
the accumulated time-domain relative dephasing between the two waveforms
highlighted in Fig. 5.22. By contrast, what is not relevant for this case
is the fact that, while TEOBResumS implements 2PA initial data [166, 215]

TEOBResumS, the 3PN ν-dependent, spin-independent, terms in ρ31 and ρ33 as computed
in Ref. [278]. These terms were however correctly included to obtain all other results
presented so far.
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SEOBNRv4T only uses the post-adiabatic (PA) approximation [29]. Note that
the effect of the 2PA correction is very small at 40 Hz, since pcirc

ϕ is only
changed at the 7th decimal digit (see first row of Table 5.5). The last row
of Table 5.5 illustrates that, if f0 is slightly changed so to compensate for
the relativistic corrections that are not included in Eq. (5.42) and make
TEOBResumS start at the same initial radius of SEOBNRv4T, the fractional
difference between the angular momenta is ∼ 10−7 and between the radial
momenta is∼ 10−4. The TEOBResumS waveform corresponding to the last row
of Table 5.5 is now largely more consistent with the SEOBNRv4T even without
time and phase alignment (see bottom panel of Fig. 5.22). The corresponding
value of the match remains unchanged.

Since the C++ implementation of TEOBResumS that was used in [210]
was setting up the initial conditions using the simplified relation given by
Eq. (5.42) above, we have decided not to modify it in the publicly available
version of this code (see Appendix E of Ref. [1]). By contrast, we are using a
more correct relation between frequency and radius in the corresponding C
implementation of TEOBResumS: the radius is obtained by solving Eq. (4.30a)
for a given orbital frequency (assumed to be half of the nominal initial gravi-
tational wave frequency). In this way, we can greatly improve the agreement
with the corresponding SEOBNRv4T initial conditions. As an example, con-
sidering the case discussed above and detailed in Table 5.5, the initial radius
obtained in this way is found to be r0 = 50.296014.

5.7 An extreme BBH configuration: (8,−0.90, 0)

The SXS:BBH:1375 [280] dataset of the SXS collaboration with (8,−0.90, 0)
is very interesting because it allows us to test TEOBResumS in the most dif-
ficult region of the parameter space (i.e., when the spins are anti-aligned
with the orbital angular momentum) and, notably, it is marginally outside
the portion covered by the BAM simulations of Table 5.2 for q = 8. In fact,
it has Ŝ = −0.7111, to be compared with Ŝ = −0.6821 corresponding to
(8,−0.85,−0.85). The phasing comparison is illustrated in Fig. 5.23. We
remark the following. First, one sees that the phase difference (blue line)
oscillates around zero. This oscillation reflects the residual eccentricity of
the SXS waveform. Though it is rather small (i.e. ∼ 1.1× 10−3) it is visible
because the TEOBResumS waveform is started with essentially eccentricity free
initial data because of the 2PA approximation (see Appendix C of Ref. [1]).
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Second, the two waveforms dephase of about 1 rad up to the NR merger,
with the TEOBResumS plunging slightly slower than the SXS one. The phys-
ical meaning of this plot is, for example, that the spin-orbit coupling in
TEOBResumS is not strong enough. In our current framework, this is under-
stood as that the value of c3 deduced by fitting the choices of Table 5.1 might
be (slightly) too large. Before pushing this reasoning further, let us focus on
Fig. 5.24, that illustrates the nice agreement between the frequency and am-
plitude when the two waveforms are aligned around merger, on a frequency
interval (0.2,0.3).

Note in passing that the oscillation in the frequency is physical and is
due to the beating between positive and negative frequency quasi-normal-
modes [281]. This well-known feature is currently not included in the EOB
model. As a last check, we computed, as usual, the EOB/NR unfaithfulness,
Fig. 5.25. One finds that max (F̄ ) = 0.001027. This makes us conclude
that, even if the time-domain analysis suggests that the value of c3 should
be slightly reduced, we are not going to do it now since the value of F̄ is
already one order of magnitude smaller than the usual target of 0.01.

5.8 Black-hole – Neutron-star binaries

In this section we discuss the performances of TEOBResumS for the descrip-
tion of BH-NS waveforms. We stress that the model has not been devel-
oped for this type of waveforms and that this comparison is preliminary
to a forthcoming investigation. We focus on the two public SXS datasets
BHNS:0001 and BHNS:0002 that refer to a q = 2 and q = 6 nonspinning bi-
naries where the NS is described by a Γ = 2 polytropic EOS with K = 101.45
and K = 92.12 respectively. The dimensionless Love numbers are k2,3,4 =
(0.07524, 0.0220429, 0.0089129) and k2,3,4 = (0.0658832, 0.01873168, 0.007341026)
and the NS compactness CB = 0.144404 and CB = 0.1563007. The cor-
responding tidal parameters are Λ2,3,4 = (470.8450, 1095.9415, 2511.5797)
(BHNS:0001) and Λ2,3,4 = (798.8698, 2244.6773, 6217.96765) (BHNS:0002).
The values of the tidal coupling constant are κT2 = 0.50426 for BHNS:0001
and κT2 = 19.725 for BHNS:0002. Given the very small value of κT2 for
BHNS:0001, and following the reasoning of Ref. [157] (see discussion related
to Table I), we expect that dataset to behave essentially like a BBH binary
with the same mass ratio.

Let us focus first on the q = 2 binary, BHNS:0002 Fig. 5.26. This
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binary dynamics is characterized by tidal disruption that suppresses the
ringdown oscillation after merger. The left panel of the figure illustrates
that TEOBResumS with tides and no NQC captures well the waveform up to
merger, with a phase difference of ∼ −0.3 rad there. The “glitch” around
u/M ∼ 1300 is in the Lev3 NR data (notably not in the Lev2 ones), it is
perhaps due to a re-gridding, but it is not relevant for our comparison. The
phase uncertainty at merger, estimated by just taking the difference between
Lev3 and Lev2 resolutions [192], is of the order of 0.1 rad. This is of the
order of the error budget at merger estimated in Ref. [212], see Fig. 2 and
Fig. 3 there, that is of the order of ±0.5 rad. Hence, the BHNS waveform
obtained with TEOBResumS with tides is in agreement with the NR data up
to NR merger. Our result is comparable to those presented in Ref. [212], but
we stress here that we do not use NQC-calibration and that the model only
depends on the single parameter ac5(ν) informed by BBH data; TEOBResumS
is not fed by any strong-field information extracted from the BHNS:0002.

Figure 5.27 refers to the BHNS binary with larger mass ratio, q = 6.
To our knowledge, this is the first time an EOB/NR comparison is done
for this dataset, as it was not included in Refs. [212, 213]. The phasing
analysis (left panel of Fig. 5.27, alignment in the early inspiral) is telling
us that the EOB/NR phase difference is around −1.6 rad at NR merger.
The right panel illustrates that the TEOBResumS tidal waveform (red lines)
is sane, notably with value of the merger amplitude very close to the NR
one. On the same right panel we also superpose the q = 6 BBH TEOBResumS

amplitude and frequency (orange lines). This waveform has no tidal effects,
but it is completed by NQC and postmerger-ringdown. Once the TEOBResumS
BBH waveform is aligned to the SXS, see Fig. 5.28 one appreciates the high
compatibility between the two waveforms during the plunge and merger,
consistently with the analytical understanding that a BHNS system with
κT2 = 0.50426 is almost a BBH binary. This brings also us to the conclusion
that most of the EOB/NR dephasing found in the phasing comparison of
Fig. 5.27 is very likely not physical, but of numerical origin. Due to the lack
of different resolutions in the SXS catalog (notably the Lev2 dataset was
incomplete) we could not compute and estimate of the numerical error on
the BHNS:0001 waveform.

We conclude that the current design of TEOBResumS is very robust and
does not lead to unphysical features in extreme regions of the binary pa-
rameters. Hence, TEOBResumS is a good starting points for future BH-NS
development. We also suggest that, lacking an accurate model for BH-NS,
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TEOBResumS can be used for the analysis of BH-NS by turning on tides in
the regime 1 ≤ q . 4 − 6 while simply using the BBH waveform for larger
mass-ratios.
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Table 5.1: First-guess values of c3 compared with the values obtained from
the interpolating fit for the sample of 27 SXS NR datasets used to construct
the fit itself. The last column also lists the spin combination Ŝ, helpful in
characterizing the gravitational wave frequency at merger.

# (q, χA, χB) cfirst guess
3 cfit

3 ∆c3/c
fit
3 [%] Ŝ

1 (1,−0.95,−0.95) 93.0 92.31 0.75 −0.4750
2 (1,−0.90,−0.90) 89.0 89.44 -0.49 −0.4500
3 (1,−0.80,−0.80) 83.0 83.78 -0.93 −0.4000
4 (1,−0.60,−0.60) 73.5 72.83 0.92 −0.3000
5 (1,−0.44,−0.44) 64 64.45 -0.70 −0.2200
6 (1,+0.20,+0.20) 35 34.85 0.43 +0.1000
7 (1,+0.60,+0.60) 20.5 20.17 1.64 +0.3000
8 (1,+0.80,+0.80) 13.5 14.15 -4.59 +0.4000
9 (1,+0.90,+0.90) 11.5 11.52 -0.17 +0.4500
10 (1,+0.99,+0.99) 9.5 9.39 1.17 +0.4950
11 (1,+0.994,+0.994) 9.5 9.30 2.15 +0.4970
12 (1,−0.50, 0) 61.5 56.62 8.62 −0.1250
13 (1,+0.90, 0) 25.5 22.33 14.20 +0.2250
14 (1,+0.90,+0.50) 17.0 15.73 8.07 +0.3500
15 (1,+0.50, 0) 32.0 31.20 2.56 +0.1250
16 (1.5,−0.50, 0 62.0 57.97 6.95 −0.1800
17 (2,+0.60, 0) 29.0 26.71 8.57 +0.26̄
18 (2,+0.85,+0.85) 15.0 14.92 0.54 +0.472̄
19 (3,−0.50, 0) 63.0 61.15 3.03 −0.28125
20 (3,−0.50,−0.50) 70.5 66.63 5.81 −0.3125
21 (3,+0.50, 0) 28.0 28.02 -0.07 +0.28125
22 (3,+0.50,+0.50) 26.5 24.44 8.43 +0.3125
23 (3,+0.85,+0.85) 16.5 14.38 14.74 +0.53125
24 (5,−0.50, 0) 62.0 59.84 3.61 −0.3472̄
25 (5,+0.50, 0) 30.5 29.01 5.14 +0.3472̄
26 (8,−0.50, 0) 57.0 56.48 0.92 −0.3951
27 (8,+0.50, 0) 35.0 33.68 3.92 +0.3951
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Table 5.2: Portion of the parameter space covered by BAM NR simulations.

# (q, χA, χB) Ŝ
1 (2,+0.75,+0.75) 0.4167
2 (2,+0.50,+0.50) 0.2778
3 (3,+0.50,+0.50) 0.3125
4 (4,+0.75,+0.75) 0.51
5 (4,+0.50,+0.50) 0.34
6 (4,+0.25,+0.25) 0.17
7 (4, 0, 0) 0
8 (4,−0.25,−0.25) −0.17
9 (4,−0.50,−0.50) −0.34
10 (4,−0.75,−0.75) −0.51
11 (8,+0.85,+0.85) 0.6821
12 (8,+0.80, 0) 0.6321
13 (8,−0.85,−0.85) −0.6821
14 (10, 0, 0) 0
15 (18,+0.80, 0) 0.7180
16 (18,+0.40, 0) 0.3590
17 (18, 0, 0) 0
18 (18,−0.40, 0) −0.3590
19 (18,−0.80, 0) −0.7180

Table 5.3: Equal-mass BNS configurations considered in this work. From left
to right the column reports: the EOS, the gravitational mass of each star,
the compactness, the quadrupolar dimensionless Love numbers, the leading-
order tidal coupling constant κT2 , the corresponding value of the quadrupolar
“tidal deformability” for each object, ΛA,B

2 , Eq. (5.9), the dimensionless spin
magnitude and the spin-induced quadrupole momenta CQA,QB.

name EOS MA,B[M�] CA,B kA,B2 κT2 ΛA,B
2 χA,B CQA,QB

BAM:0095 SLy 1.35 0.17 0.093 73.51 392 0.0 5.491
BAM:0039 H4 1.37 0.149 0.114 191.34 1020.5 0.141 7.396
BAM:0064 MS1b 1.35 0.142 0.134 289.67 1545 0.0 8.396
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Figure 5.9: Sanity check of EOB waveform modulus (top) and frequency
(bottom) on the configurations considered in Table I of Bohé et al. [36].
Differently from what we do here, NR waveform data for these configurations
were used in [36] to calibrate SEOBNRv4. The behavior of both functions look
qualitatively and quantitatively consistent and robust. Waveforms are time-
shifted to be all aligned at merger time.
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Figure 5.10: Sanity check of EOB waveforms for large mass ratios and large
spins anti-aligned with the angular momentum. The good qualitative behav-
ior of the waveform around merger is guaranteed by the value of ∆tNQC given
by Eq. (5.7)-(5.8).
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Figure 5.11: Sanity check of EOB waveforms amplitude (top) and frequency
(bottom) for several mass ratios and large spins aligned with the orbital
angular momentum. The global consistency is highly satisfactory for both
amplitude and frequency.
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Figure 5.12: Phasing comparison between BAM and TEOBResumS waveforms for
the SLy and Ms1b equal-mass BNS configurations of Table 5.3. The EOB
and NR waveforms, once aligned during the early inspiral (approximately
over the first 1500M of evolution), are compatible, within the NR uncertainty
(gray area in the figures) essentially up to the NR merger point, defined as
the peak of the waveform amplitude |h22|. Note however that the errors are
larger for the MS1b configuration. The time marked by the vertical green
line corresponds to 700Hz.
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Figure 5.13: Phasing comparison between BAM and TEOBResumS waveforms,
effect of spin (H4 EOS, see Table 5.3). The figure refers to spinning binary
with dimensionless spins χA = χB ≈ 0.14. NR and EOB waveforms are still
compatible, within the NR uncertainty (gray area in the figures), up to the
NR merger point. The time marked by the vertical green line corresponds to
700Hz.
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Figure 5.14: EOS-dependent self-spin effects on the phasing through the
QSS
ω diagnostics. The figure contrasts the EOB description (incorporating

LO dynamical and dissipative effects) with various PN approximations (see
text) for the BAM:0095 tidal configuration with however χA = χB = 0.1. The
vertical lines mark respectively 400Hz, 700Hz and 1kHz. The EOB resummed
description enhances the effect during most of the inspiral, though it reduces
it towards merger. Consistency with all PN approximants is found in the low
frequency regime (20Hz), though the PN regime is not yet reached there.
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Table 5.4: Summary of the parameters that characterize GW150914 as found
by cpnest and using TEOBResumS as template waveform, compared with the
values found by the LVC collaboration [44]. We report the median value
as well as the 90% credible interval. For the magnitude of the dimensionless
spins |χA| and |χB| we also report the 90% upper bound. Note that we use
the notation χeff ≡ â0 for the effective spin, as introduced in Eq. (4.27).

TEOBResumS LVC

Detector-frame total mass M/M� 73.6+5.7
−5.2 70.6+4.6

−4.5

Detector-frame chirp mass M/M� 31.8+2.6
−2.4 30.4+2.1

−1.9

Detector-frame remnant mass Mf/M� 70.0+5.0
−4.6 67.4+4.1

−4.0

Magnitude of remnant spin âf 0.71+0.05
−0.07 0.67+0.05

−0.07

Detector-frame primary mass MA/M� 40.2+5.1
−3.7 38.9+5.6

−4.3

Detector-frame secondary mass MB/M� 33.5+4.0
−5.5 31.6+4.2

−4.7

Mass ratio MB/MA 0.8+0.1
−0.2 0.82+0.20

−0.17

Orbital component of primary spin χA 0.2+0.6
−0.8 0.32+0.49

−0.29

Orbital component of secondary spin χB 0.0+0.9
−0.8 0.44+0.50

−0.40

Effective aligned spin χeff 0.1+0.1
−0.2 −0.07+0.16

−0.17

Magnitude of primary spin |χA| ≤ 0.7 ≤ 0.69
Magnitude of secondary spin |χB| ≤ 0.9 ≤ 0.89
Luminosity distance dL/Mpc 479+188

−235 410+160
−180
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Figure 5.15: Unfaithfulness comparison between TEOBResumS and SXS wave-
forms obtained without iterating on the amplitude NQC parameters (a1, a2),
see Eq. (4.48). The performace of the model, where the parameters (ac6, c3)
were NR-tuned with the iterative determination of (a1, a2) (see Sec. 5.2.1),
is slightly worsened with respect to Fig. 5.1, although it is still compatible
with the 1% limit. Such simplified version of TEOBResumS is used for the
parameter estimation of GW150914, with results reported in Table 5.4.
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Figure 5.16: Reconstructed whitened GW waveforms in the Hanford (top
panel) and in the Livingston (bottom panel) detectors. The solid lines in-
dicate the median recovered waveforms. The cyan bands indicate the 90%
credible regions as recovered by our analysis. As a comparison we also overlay
the whitened raw strain for the two detectors.
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Figure 5.17: Two-dimensional posterior distribution forM and MB/MA for
GW150914 as inferred using cpnest and TEOBResumS. The contours indicate
the regions enclosing 90%, 75%, 50% and 25% of the probability.
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TEOBResumS. The improved NR calibration incorporated in SEOBNRv4 [36,
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Figure 5.19: EOB effective photon potential A(r)/r2 for SEOBNRv4 and
TEOBResumS for mass ratios q = (1, 2, 3, 4, 6, 18). The potentials are con-
sistent, though different at the peak, also for medium mass ratios. The
highest consistency is found for q = 18. The markers highlight the peaks of
the functions, i.e. the locations of the effective light-rings
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Figure 5.20: Dependence of the effective light-ring position, rLR, i.e. the
peak of A(r)/r2 in Fig. 5.19, versus ν. The behavior of the TEOBResumS

effective light-ring tends quasi-linearly to r = 3, while the structure of the
corresponding SEOBNRv4 function is more complex.
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Figure 5.21: The match computed between SEOBNRv4T and TEOBResumS.
The match values are color-coded. Based on 17300 randomly chosen points.
The plot highlights the high compatibility between the two models.

Table 5.5: Initial conditions used to start the two EOB dynamics behind
the waveforms of Fig. 5.22 which yield the lowest match value 0.9898. The
initial frequency was nominally fixed to be 40Hz in both models. From left
to right we have: the name of the model; the initial relative separation; the
corresponding value of the angular momentum; the corresponding value of
the circular angular momentum and the value of the radial momentum. The
initial values of the phase-space variables corresponding to 40Hz are slightly
different in the two models. Due to the Newtonian relation between frequency
and radius that we use in TEOBResumS, Eq. (5.42), the consistency between
initial configurations is recovered thanks to a slight modification in the initial
nominal frequency of TEOBResumS so that the values of r0/M coincide up to
the 5th decimal digit. See text for details.

Model f0 [Hz] r0 pϕ pcirc
ϕ pr

TEOBResumS 40.000000 50.230212 7.3060375 7.3060378 −2.2938× 10−5

SEOBNRv4T 40.000000 50.296059 7.3105268 7.3105268 −2.2856× 10−5

TEOBResumS 39.921474 50.296059 7.3105277 7.3105279 −2.2848× 10−5
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Figure 5.22: Time-domain comparison between SEOBNRv4T and TEOBResumS

for the case that delivers the lowest match, F = 0.9898. Top panel: same
initial nominal frequency, first two lines of Table 5.5, the two waveforms are
aligned by choosing a suitable relative time and phase shift. The first two
rows of the plot show the waveforms before alignment, while the second ones
after the alignment. Bottom panel: initial data for TEOBResumS consistent
with those of SEOBNRv4T, see second and third row of Table 5.5. The two
waveforms nicely agree directly, without the need of the additional alignment.
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Figure 5.23: Phasing comparison between TEOBResumS and SXS dataset
SXS:BBH:1375. Alignment in the early inspiral (vertical lines). A EOB-
NR phase difference of −1.3 rad is accumulated up to NR merger.
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Figure 5.24: Complement to Fig. 5.23: excellent agreement between ampli-
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around merger.
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Figure 5.25: Unfaithfulness calculation for the system of Fig. 5.23. One finds
that max (F̄ ) = 0.001027
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Figure 5.26: Phasing (left) and amplitude and frequency comparison (right)
between TEOBResumS and BHNS:0002 waveform for a BHNS merger with
mass ratio q = 2, with MB = 1.4M�. Reference [212] indicates that the
accumulated phase errors to merger are about∼ ±0.5 rad. The TEOBResumS

tidal waveform is well consistent with the NR one up to merger, even in the
presence of tidal disruption.
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Figure 5.27: Left panel: TEOBResumS and NR phasing for BHNS:0001, with
q = 6 and MB = 1.4M�. A phase difference of ' −1.6 rad is accumulated
up to merger. Right panel: frequency and amplitude plot. The orange line
corresponds to the TEOBResumS BBH (point-mass, no tides) waveform com-
pleted with NQC corrections and ringdown. Note that the frequency growth
with tides (red-dashed) is almost indistinguishable from the corresponding
curve without tides.
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Chapter 6

Nonlinear-in-spin effects in
EOB waveform models of
spin-aligned inspiralling
BNS [2]

6.1 Introduction

Gravitational wave (GW) signals of BNS can be used to put constraints on
the equation of state (EOS) of degenerate matter in these extreme environ-
ments. In fact, when a NS is part of a binary system, their mutual tidal
interaction deform the stars, affecting the dynamics of the system and the
emitted GWs. On August 17, 2017, the first binary neutron star (BNS) in-
spiral has been detected by the LIGO-Virgo interferometers [43]. One of the
important outcomes of this discovery was the measurement of the neutron
star radii and EOS from the GW signal [210, 211] obtained by extracting
from the data the tidal polarizabilities (or deformabilities) related to the NS
Love numbers [227, 229, 108, 243].

When NSs are spinning, the rate of the inspiral can be modified by an
additional EOS-dependent effect, since each NS acquires a quadrupole mo-
ment due to its own rotation, as explained in Sec. 5.4. The importance of
such spin-induced-monopole-quadrupole effects on BNS inspirals was pointed
out long ago [134] and recently revived [135] in a data-analysis context, em-
phasizing that it is important to incorporate such self-spin terms in BNS
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waveform templates to avoid parameter biases in the case of highly spinning
BNS systems. In addition, it was also recently pointed out that self-spin ef-
fects might be useful to test the binary black hole nature of the compact ob-
jects [282, 283]. Consistently with these findings, the analysis of GW170817
was done with waveform models that do include EOS-dependent self-spin
effects. These were incorporated in resummed form in the SEOBNRv4T [213]
and TEOBResumS [1] effective one body (EOB) models and in TaylorF2-like
post-Newtonian (PN) form in the PhenomPv2NRTidal model [260, 209]. Both
descriptions have their drawbacks and can be improved. On the one hand,
the PhenomPv2NRTidal description is incorporating self-spin terms up to
next-to-leading order (NLO), but it is biased by the fact that the PN ap-
proximation breaks down at some stage in the relativistic regime close to
merger. On the other hand, the EOB description is robust up to merger,
but only the leading order (LO) self-spin effects (both in the EOB Hamil-
tonian and flux) were included in the models. Although one of the main
results of Ref. [209] was to show good consistency between TEOBResumS and
PhenomPv2NRTidal, this was not a precise apple-with-apple comparison be-
cause of the additional NLO self-spin effects included in PhenomPv2NRTidal

and not in TEOBResumS. Furthermore TEOBResumS actually takes into ac-
count an infinite number of self-spin tail terms (in the waveform and flux),
that are absent in PhenomPv2NRTidal, so that the precise question about
which model is analytically more complete requires an elaborate study. In
particular, none of the current waveform models that use a 3.5PN-accurate
inspiral description (like TaylorF2 or PhenomPv2NRTidal [209]) are using
the EOS-dependent 3.5PN-accurate self-spin tail term, although it is avail-
able analytically [1]. Such a term can be obtained by suitably expanding
the EOB energy and flux along circular orbits, adapting the procedure of
Ref. [11] (see also [243]), that allowed one to cross check the 4.5PN, non-
spinning, tail term in the flux formerly obtained from an ab initio PN cal-
culation [74]. Finally, we mention that state-of-the-art NR simulations of
coalescing BNSs [284, 240, 263, 206, 285, 259, 286] are currently barely able
to resolve spin-quadratic effects close to merger [287, 268] and are too short
to measure their cumulative effect during many inspiral orbits. As a con-
sequence, we can only rely on analytical models for their description for
LIGO/Virgo targeted analyses.

The purpose of this work is then to address and answer the questions that
remained open in Refs. [1, 209]. We do so by extending the EOS-dependent
self-spin sector of TEOBResumS to NLO and next-to-next-to-leading order
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(NNLO), suitably recasting in EOB form recent PN calculations of Levi and
Steinhoff [288, 289, 136]. For simplicity, this is done in the circular ap-
proximation by exploiting the gauge-invariant relation between energy and
angular momentum rather than by deriving the explicit canonical transfor-
mation that maps the Arnowitt-Deser-Misner (ADM) Hamiltonian [290] into
the EOB Hamiltonian. This new knowledge allows us to produce a consistent
phasing comparison with the TaylorF2 approximant. We find that the phase
accelerating effect of the spin-induced quadrupole moment terms is enhanced
by the NLO contribution, although the magnitude of the effect as predicted
by TEOBResumS is always smaller than in the corresponding TaylorF2 de-
scription. Remarkably, a TaylorF2 approximant that also incorporates the
LO self-spin tail effect yields a self-spin phasing that is essentially equivalent
to the NLO TEOBResumS one up to frequency Mω ' 0.05 independently of
the EOS choice. We also show that the LO quartic-in-spin effects entering
the circularized Hamiltonian recently computed by Levi and Steinhoff [136]
are already contained in the TEOBResumS Hamiltonian of Ref. [159] in the
black-hole (BH) case, due to the use of the centrifugal radius. The corre-
sponding correction to the centrifugal radius yielded by the octupolar and
hexadecapolar EOS-dependent spin-induced effects (in the non binary BH
case) is explicitly obtained.

6.2 Nonlinear-in-spin effects within TEOBRe-

sumS

The EOS-dependent self-spin contribution at LO in TEOBResumS was dis-
cussed extensively in Sec. 5.3.2. We consider binary systems in which the
two bodies are labeled by (A,B). Their masses and dimensional spins are de-
noted MA,B (with MA ≥ MB) and SA,B ≡ MA,BaA,B respectively. The total
mass is M = MA +MB and the reduced mass µ = (MAMB)/M . We also re-
mind the reader the following notation: the mass ratio q ≡MA/MB ≥ 1, the
symmetric mass ratio ν = µ/M , the mass fractions XA,B ≡MA,B/M and the
shorthand XAB ≡ XA −XB =

√
1− 4ν. Finally, we make use of the dimen-

sionless spin variables ãi ≡ ai/M ≡ Si/(MiM) together with their symmetric
and antisymmetric combinations1 ã0 = ãA + ãB and ãAB = ãA − ãB.

1Note the difference between ãi ≡ ai/M and the usually introduced dimensionless spin
âi ≡ χi ≡ ai/Mi. Note also that in Refs [9, 4, 1] we had denoted ã0 as â0.
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6.2.1 Hamiltonian: quadratic-in-spin terms

In TEOBResumS [217, 1], which is limited to the case of spin-aligned (non-
precessing) binaries, spin-quadratic effects are treated introducing the “cen-
trifugal radius” rc, considered as a function of the Boyer-Lindquist-type
EOB radial variable r, and of the spin variables. For BBHs, the func-
tion rc(r, ãA, ãB) incorporates both LO and NLO spin-quadratic effects [160,
161, 217]; by contrast only LO spin-quadratic effects were considered for
extended objects like NSs [1]. We hence start by generalizing the expres-
sion of the centrifugal radius in order to take into account both NLO and
NNLO, EOS-dependent, self-spin effects, exploiting the PN-expanded re-
sults of Refs. [288, 289, 136]. The generalized formula for the centrifugal
radius (4.26) that formally takes into account both NLO and NNLO spin-
quadratic effects reads

r2
c (r, ãA, ãB)NNLO = r2 + ã2

Q

(
1 +

2

r

)
+
δa2

NLO

r
+
δa2

NNLO

r2
, (6.1)

where we are using a dimensionless radial coordinate r ≡ R
M

, and we intro-
duced the effective spin variable

ã2
Q ≡ CQAã

2
A + 2ãAãB + CQBã

2
B. (6.2)

CQA and CQB are coefficients that parametrize the quadrupolar deformation
acquired by the NSs due to their own rotation. For binary black holes, CQi =
1, so ã2

Q reduces to ã2
0. The parameters δa2

NLO and δa2
NNLO encode the NLO

and NNLO spin-spin information respectively. As mentioned above, work-
ing in the circular approximation for simplicity, we compute them exploiting
the functional relation between binding energy and orbital angular momen-
tum, that is explicitly given, in PN-expanded form, in Refs. [288, 289, 136].
In practice, one computes the PN-expanded EOB dynamics along circular
orbits, that will explicitly depend on (δa2

NLO, δa
2
NNLO), and then fixes these

coefficients by comparison with the PN-expanded relation of Ref. [136].
The main elements of the Hamiltonian of TEOBResumS that are useful for

this calculation are augmented in detail in Sec. 4.2. Since we are consider-
ing nonprecessing systems, the dynamics is described by the dimensionless
phase-space variables (r, pr∗ , ϕ, pϕ). We use ϕ to denote the orbital phase,
while the (dimensionless) radial and angular momentum are respectively de-
fined as pr∗ = PR∗/µ and pϕ = Pϕ/(µM). The µ-rescaled EOB Hamiltonian
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is given by Eq. (4.19). The explicit expressions of (GS, GS∗) can be found
in Refs. [162, 217]. These expression only retain, in the spin-orbit part of
the Hamiltonian, terms that are linear in the spins. However, the complete
TEOBResumS model is based on the prescription of Refs. [159, 34, 1] to effec-
tively incorporate, in resummed form, also higher odd-powers of the spins
(spin-cubed, spin5 etc.) by suitably replacing the u-dependence of the func-
tions (GS, GS∗) with dependence on uc. We shall see in Sec. 6.2.2 below that
TEOBResumS delivers a reasonable approximation to the actual LO spin-cubic
part of the ADM Hamiltonian of Ref. [136]. In Sec. 6.5 we give possible EOB
transcriptions of the results of [136].

The orbital part of the effective Hamiltonian is given by Eq. (4.24). Here
A is the effective metric potential, whose PN expansion in the non-spinning
limit is given by Eq. (4.15), with coefficients (4.12), (4.16) and (4.17). In
TEOBResumS, this effective metric is resummed using a Padé approximant,
namely (4.18). When spins are present, the metric is built upon the Kerr
one and reads

A(u;Si) =
1 + 2uc
1 + 2u

Aorb(uc). (6.3)

We hence start considering circular orbits (pr∗ = 0) and compute the circu-
lar angular momentum, j, using the condition ∂uĤeff = 0, that yields the
following equation

{[(
Au2

c

)′]2

− 4Au2
c

(
G̃′
)2
}
j4

+

[
2A′

(
Au2

c

)′ − 4A
(
G̃′
)2
]
j2 + (A′)

2
= 0, (6.4)

where the prime indicates (·)′ ≡ ∂u(·). By expanding the solution of Eq. (6.4)
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in series of u and up to the second order in spin one obtains

j(u) =
1√
u

+
3

2

√
u− 3

8
(7ã0 +XABãAB)u+

[
27

8
− 3

2
ν + ã2

Q

]
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)
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+
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+
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+
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(
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(6.5)
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This truncated series can be inverted so to obtain u(j), which reads

u(j) =
1

j2
+

3

j4
− 3

4
(7ã0 +XABãAB)

1
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+
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(6.6)

By placing this expanded expression of u into the EOB Hamiltonian, one can
finally obtain the gauge-invariant relation between the binding energy and
angular momentum. The binding energy per reduced mass is in fact defined
as Eb = (E −M)/µ, where E = νĤEOB, and is given as a polynomial in
inverse powers of j, i.e.,

Eb(j) = − 1

2j2

(
1 +

8∑
n=1

cn
jn

+O
[
j−9
])

. (6.7)

Explicitly, from the expansion of the EOB Hamiltonian along circular orbits
we get
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Eb(j) =− 1
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XABã0ãAB +

(
19

2
+
ν

2

)
δa2

NLO + δa2
NNLO

]
1

j8
+O

[
j−9
]}

,

(6.8)

where we see that the c6 and c8 coefficients explicitly depend on δa2
NLO

and δa2
NNLO. The corresponding quantities in Eq. (5.3) of Ref. [289], once

expressed in our spin variables2, explicitly read

2Note that Ref. [289] uses as dimensionless spin variables some quantities, SL−S
i , that

correspond to our Si/(MAMB). Furthermore, their deformation coefficients are denoted
by (CES2 , CBS3 , CES4), in order to highlight the spin order and their electric/magnetic
behavior. In our convention, they correspond to (CQ, COct, CHex) respectively, which puts
the emphasis on the multipole of the deformation. We also note that the λ constants by
Marsat (see Sec. B of Ref. [76]) are the same as Levi and Steinhoff’s CBS3 and our COct’s.
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2
A − CQBã2
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13 (1380 + 7ν) ã0ãAB + (1716 + 56ν)

(
CQAã
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(6.10)

Comparing Eqs. (6.9) and (6.10) to Eq. (6.8) one obtains
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8
ã2
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and
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B

)]
. (6.12)



166

Binary black hole limit

The BH case is recovered imposing CQA = CQB = 1 or, equivalently, ã2
Q = ã2

0

and (CQAã
2
A − CQBã2

B) = ã0ãAB. This yields

δa2
BBH NLO =− 9

8
ã2

0 −
1

8
(1 + 4ν) ã2

AB +
5

4
XABã0ãAB, (6.13)

δa2
BBH NNLO =−
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ã2
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(
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8
ν

)
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Eq. (6.13) agrees with the result for the same quantity obtained in Ref. [217]
(see Eq. (60) there) with a different method (see also [249]). The impact of
the newly computed δa2

NNLO in BBH systems will be analyzed elsewhere.

6.2.2 Hamiltonian: cubic-in-spin terms already included
in TEOBResumS

The LO cubic-in-spin contribution to the PN-expanded Hamiltonian (and
thus on the Eb(j) curve) was derived in Ref. [289]. This contribution is
not fully incorporated in the current version of TEOBResumS. However, one
should be aware that some cubic-in-spin terms are already included in the
model, because they naturally arise due to the presence of uc in the gyro-
gravitomagnetic functions GS and GS∗ that enter the spin-orbit sector of the
Hamiltonian (see Sec. 6.2.1). It is then interesting to check how these terms,
that are guessed by the resummed structure of the Hamiltonian, do compare
with the exact result of Ref. [289]. We now redo the calculations of Sec. 6.2.1,
this time keeping the cubic-in-spin terms, whose LO enters in the coefficient
of j−9 in the gauge-invariant relation Eb(j). In TEOBResumS, the former is
given by (

c
S3
LO

7

)TEOBResumS
= −

(
67

4
ã0 +

13

4
XABãAB

)
ã2
Q. (6.15)
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By contrast, the PN-expanded result from Ref. [289] reads(
c
S3
LO

7

)L−S

=− (2COctA + 15CQA + 3XABCQA) ã3
A

− [30 + 21CQA +XAB (6− 3CQA)] ã2
AãB

− [30 + 21CQB −XAB (6− 3CQB)] ãAã
2
B

− (2COctB + 15CQB − 3XABCQB) ã3
B, (6.16)

which is qualitatively different from Eq. (6.15) above because of the presence
of the spin-induced octupolar moments COctA,B. Comparing Eqs. (6.15) and
(6.16), we see that TEOBResumS does not automatically predict (through the
definition Eqs. (6.1), (6.2) used to incorporate spin-quadratic couplings) the
needed PN LO spin-cubic terms. We have, however, checked that the coeffi-
cients entering the two expressions are numerically sufficiently close to lead
to nearly equivalent physical predictions. This is especially evident in the
BBH case when COctA,B = CQA,B = 1. In this case the above equations read(

c
S3
LO

7

)TEOBResumS
=−

(
67

4
ã0 +

13

4
XABãAB

)
ã2

0, (6.17)(
c
S3
LO

7

)L−S

=− (17ã0 + 3XABãAB) ã2
0, (6.18)

with a fractional difference of 1/68 ≈ 1.47% between the first coefficients and
1/12 ≈ 8.3% for second ones. In practice, the Hamiltonian of TEOBResumS

incorporates this approximate description of cubic-in-spin terms, as well as
higher-order odd powers of the spins due to its resummed structure. In
Appendix 6.5 we propose possible EOB transcriptions of the full cubic-in-
spin information of Ref. [289].

6.2.3 Hamiltonian: quartic-in-spin terms

The quartic-in-spin contribution to the PN-expanded Eb(j) curve was also
computed by Levi and Steinhoff [136]. This corresponds to a 4PN effect,
i.e., it enters at order 1/j10. We can thus slightly modify the procedure of
Sec. 6.2.1 above so to apply it also to the recovery of the spin-quartic EOS-
dependent terms. We introduce a new parameter δa4

LO in the definition of r2
c

that now reads

r2
c = r2 + ã2

Q

(
1 +

2

r

)
+
δa2

NLO

r
+
δa2

NNLO

r2
+
δa4

LO

r2
. (6.19)
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We then proceed and compute the same formulas we showed before consis-
tently keeping all the quartic-in-spin term. The LO quartic-in-spin term,
O(1/j8) in Eb(j) reads(

c
S4
LO

8

)TEOBResumS
= 3ã4

Q + δa4
LO. (6.20)

The corresponding term from Ref. [288] reads(
c
S4
LO

8

)L−S

=
3

4

(
3C2

QA + CHexA

)
ã4
A

+ 3 (3CQA + COctA) ã3
AãB

+ 9 (CQACQB + 1) ã2
Aã

2
B

+ 3 (3CQB + COctB) ãAã
3
B

+
3

4

(
3C2

QB + CHexB

)
ã4
B, (6.21)

where COct and CHex are the spin-induced octupolar and hexadecapolar mo-
ments quoted above. From these two equation one obtains

δa4
LO =

3

4

(
CHexA − C2

QA

)
ã4
A

+ 3 (COctA − CQA) ã3
AãB

+ 3 (CQACQB − 1) ã2
Aã

2
B

+ 3 (COctB − CQB) ãAã
3
B

+
3

4

(
CHexB − C2

QB

)
ã4
B. (6.22)

To our knowledge CQ and COct have been calculated using numerical ap-
proaches [291, 292, 293]; by contrast, current knowledge about CHex relies on
both the slow-rotation approximation (if the NS dimensionelss spin is smaller
than 0.3) and on numerical calculations otherwise [294]. All this knowledge
(notably recasted in terms of EOS quasi-universal relations [253, 137, 294]
with the NS Love numbers [227, 106, 110, 108, 233]) allows us to evaluate
also the impact δa4

LO on the BNS phasing. Before doing so, we note that in
the BH limit (when CQ = COct = CHex = 1) δa4

LO vanishes. It is remarkable
that the resummed EOB Hamiltonian, thanks to the use of the deformed
Kerr structure provided by the EOB centrifugal radius [159], is proven to
correctly incorporate, at the LO, the quartic-in-spin behavior. We also point
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out, in passing, that the same structure is present also in the EOB Hamil-
tonian of Refs. [276, 165, 177], and thus the quartic-in-spin terms at LO are
also present in the SEOBNRv4 corresponding EOB model [295]

6.2.4 Waveform and flux

Recently, Marsat and Bohé have also computed several terms quadratic in
spin entering the post-Newtonian waveform [252]. Their work is yet un-
published, but they kindly gave us access to their most recent results. We
report below the corresponding contributions to the factorized waveform am-
plitude, as the EOS-dependent generalization of Eqs. (39), (43), (44) and (45)
of Ref. [4].

ρSS,LO
22 =

1

2
ã2
Qx

2, (6.23)

ρSS,NLO
22 =

{
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252
ã2
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f̃SS,LO
31 =

[
−4(CQAã

2
A − CQBã2
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2
XABã

2
Q

]
x2, (6.26)

f̃SS,LO
33 =

3

2
XABã

2
Qx

2. (6.27)

For this work, all these new terms (due to Marsat and Bohé) are incor-
porated in the flux and waveform of TEOBResumS.

Let us finally comment about the cubic-in-spin terms, that, at leading
order, contribute to both the ` = m = 2 and to the ` = 2, m = 1 quadrupolar
modes. The corresponding contribution to the flux was obtained by S. Marsat
in Ref. [76]. In Ref. [4] this information (though restricted to the BBH case)
was incorporated in the EOB waveform. Although the results of this paper
are obtained by omitting such LO spin-cube contribution, let us write here
the full terms entering ρS22 and f̃S21, that reduce to part of Eqs. (39) and (43)
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of Ref. [4] in the black hole limit CQA = CQB = COctA = COctB = 1.
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f̃S
3

21 =

(
3

2
ã2

0 −
3

4
ã2
Q

)
ãAB x5/2. (6.29)

6.3 Post-Newtonian phasing description

6.3.1 Reminder on the the TaylorF2 phasing approxi-
mant

In the previous section, we have extensively discussed the spin-quadratic
(and spin-quartic) contributions in both the Hamiltonian and waveform/flux
of TEOBResumS. Inspecting the expressions for, e.g., (δa2

NLO, δa
2
NNLO) one sees

that there are several terms that involve (CQA, CQB) and thus take into ac-
count the effect due to the spin-induced quadrupole moments both in the dy-
namics and in the radiation (cf. Eqs. (8.62)-(6.27)). In this section, we move
to the PN-based equivalents of these effects within the TaylorF2 phasing
approximant [99], see Sec. 2.7. Although our final goal is to compare the ef-
fect of the spin-induced quadrupole moment in TaylorF2 and in TEOBResumS,
here we aim at being as general as possible. So, for completeness we collect
all currently available spin-dependent analytical information that allows us
to push the complete spin sector of the TaylorF2 approximant up to 4PN
accuracy. This means considering linear and quadratic-in-spin effects that
also involve tail terms.

TaylorF2 (see Eq. (2.195)) is typically used at 3.5PN accuracy for the
orbital and spin-orbit part, while the spin-spin part is limited to 3PN order.
It was used in this form for GW data-analysis purposes (see, e.g., [210, 43]).
The complete extension of the approximant at 4PN is currently not possible
since the calculation of the ν-dependent part of the energy fluxes is currently
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incomplete. However, there are higher-order terms in TaylorF2, those involv-
ing the tail terms, that are analytically known. For example, Ref. [11] showed
how the 4.5PN-accurate term of the energy flux, that is a pure tail term, can
be obtained exactly by PN-expanding the EOB energy flux. Applying the
same procedure, one can have access to the 3.5PN-accurate, LO, spin-spin
tail term as well as to the 4PN-accurate, NLO, spin-orbit tail term. The
spin-spin and spin-orbit tail terms in the flux (and TaylorF2) are presented
here for the first time. After the integration of Eq. (2.195) the 4PN-accurate
spin-dependent part of the phasing reads

ΨF2
4PN,spin(f) = 2πftc − ϕc −

π

4

+
3

128ν
(πfM)−5/3

8∑
i=0

ϕi(πfM)i/3. (6.30)

As mentioned above, the orbital (spin-independent) part has the same struc-
ture, but the 4PN term is currently incomplete, so we omit its discussion
here. Following the procedure of Ref. [11], we construct the PN-expanded
total energy flux starting from the EOB-resummed prescription [8]

F =
∞∑
`=2

m∑
`=−m

FNewt
`m F̂`m (6.31)

using the orbital dynamical information at the consistent PN order [269,
270, 271, 147, 64], the spin information given in Ref. [75] and the new spin
waveform results computed by Marsat (Eqs. (18)-(22) from Sec. 6.2.4, [11,
4, 296]). The relation between the dynamics, the EOB residual relativistic
amplitudes (which can be derived from the PN waveforms) and the flux is
given in Ref. [8] (it is the square of Eq. (4.36), since the GW flux is the
square of the waveform):

F̂`m =
(
S

(ε)
eff

)2

|T`m|2(ρ`m)2`. (6.32)

In this equation, S
(ε)
eff is the effective source, that is the effective EOB energy

along circular orbits Êeff(x) ≡ Eeff/µ when ε = 0 (` + m=even) or the
Newton-normalized orbital angular momentum when ε = 1 (`+m=odd).
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6.3.2 Extracting tail effects from the EOB resummed
tail factor T`m

Of crucial importance for our present purpose is the (complex) tail factor
T`m that resums an infinite number of leading logarithms (see Sec. 2.4.1, 4.4
and Refs. [8, 278]). This factor automatically incorporates tail effects that
can be extracted from it and added to the lower-order PN results.

Expanding the formula (6.32) multipole by multipole and then summing
all the contributions up to ` = 4, one obtains the following expression for the
3.5PN spin-quadratic tail term in the flux

F̂SS,tail
3.5PN =

(
8ã2

Q +
1

8
ã2
AB

)
π x7/2, (6.33)

which reduces to Eq. (26) of Ref. [11] in the BH case, when ã2
Q = ã2

0. Adding
this new piece to Eq. (4.14) of Ref. [75], one obtains a full 3.5PN flux that
is used, together with the energy given by Eq. (3.33) of the same reference,
to compute the 3.5PN accurate spin-spin tail term at NLO (entering the ϕ7

coefficient in Eq. (6.30), as detailed below) by solving the integral given by
Eq. (2.195).

This resummed tail expansion procedure can be applied also to the spin-
orbit analogue of the flux. As we did previously, the fact that the EOB-
resummed tail amplitude T`m contains and infinite amount of PN information
when expanded, using consistently the ρ`m and f̃`m information computed
from Eqs. (8.62)-(6.27) and the point-mass ones from [4, 296], we can compute
again Eq. (6.32), but this time, for what concerns the dynamics, we add to
the orbital information of Refs. [147, 271, 270, 269] the spin-orbit one of
Refs. [76, 297]. The spinning angular momentum at NLO in the spin-orbit
coupling is given by Eq. (3.12) of Ref. [77]. This time we use the spin
residual relativistic waveform amplitudes up to ` = 4, and the purely orbital
ones from ` = 5 to ` = 7, truncating at the right PN order being careful
to account for the relative order of the Newtonian prefactors in the process
(see Appendix of [4]). Like in Ref. [11], the m = even flux information of
the ` = 7 multipoles is out of one PN order with respect to the result we
are searching for, so can be neglected in this computation. The new result



173

obtained this way yields 3

FSO,tail
5PN =

[(
220103
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8421757
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)
ã0
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)
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]
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and gives access to the new 4PN spin-orbit terms in the ϕ8 coefficient in the
PN-SPA phase.

6.3.3 Final 4PN-accurate TaylorF2 phasing coefficients

The complete calculation, at 4PN-accuracy, gives
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ϕSS; SOtail
6 = π

(
1880

3
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8 = π[1− log (πfM)]

[(
2388425

2268
− 9925

27
ν

)
ã0 +

(
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ν
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(6.40)

3By PN consistency, this procedure yields lower PN spin-orbit terms that are well known
in literature. Note also that the test-particle limit of (6.34) (in which ã0 = ãABXAB = ãA)
agrees with the result of Ref. [298], namely 23605

144 ãAπx
5.
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No. MA MB q χA χB ΛA ΛB CQA CQB Mωmrg ∆EOBφ

SLy-q1-sA01-sB01 1.35 1.35 1 0.1 0.1 389.96 389.96 5.48 5.48 0.1344 −2.04
SLy-q1-sA005-sB005 1.35 1.35 1 0.05 0.05 389.96 389.96 5.48 5.48 0.13446 −0.51
SLy-q1.2-sA005-sA008 1.6573 1.354 1.224 0.05 0.08 382.7 1312.1 5.45 7.99 0.12155 −1.04
Ms1b-q1-sA01-sB01 1.35 1.35 1 0.1 0.1 1545 1545 8.40 8.40 0.10616 −3.06
Ms1b-q1-sA005-SB005 1.35 1.35 1 0.05 0.05 1545 1545 8.40 8.40 0.10616 −0.76
H4-q1.25-sA005-sB008 1.91 1.528 1.25 0.05 0.08 499.6 1986 5.92 9.06 0.11508 −1.08

Table 6.1: BNS configurations used in this section. From left to
right the columns report: the name of the configurations; the individual
masses; the mass ratio; the individual spins, tidal parameters and spin-
induced quadrupole moments, that are obtained with the universal relations
of [253, 137]. Then, Mωmrg denotes the dimensionless GW frequency at the
EOB BNS merger, conventionally defined as the peak of the ` = m = 2 wave-
form amplitude. The last column lists the accumulated phase from 10 Hz to
BNS merger due to the presence of the self-spin effects. For obtaining these
numbers only the NLO self-spin terms, both in waveform and Hamiltonian,
were included in TEOBResumS.

In the above equations, we have explicitly emphasized in the definition of
each term its spin-orbit, spin-spin or spin-tail character. Note that ϕ6 and ϕ7

receive contributions from both tail and non-tail terms. The (ϕSStail
7 , ϕSOtail

8 )
terms are computed here from the first time.

6.3.4 Isolating the EOS-dependent quadrupole-monopole
terms

From the result above we can finally isolate the EOS-dependent quadrupole-
monopole terms (i.e., those proportional to CQi). These terms are the main
focus of the present paper. Multiplying by the Newtonian prefactor (see
Sec. 5.4) one obtains, at 3.5PN order, the quadratic-in-spin phase (5.29),
which is the sum of the LO, NLO and NNLO contributions (5.30) (5.31) (5.32).

Following previous practice (see Chapt. 5.4) we do so by the Qω func-
tion (5.34). The integral of Qω per logarithmic frequency yields the phasing
accumulated by the evolution on a given frequency interval (ωL, ωR). The
quadrupole-monopole contribution to the PN-expanded Qω we are interested
in here is given by the three terms given by Eqs. (5.37), (5.38) and (5.39).
The aim of the next section will be to investigate how this function com-
pares with the analogous quantity obtained from TEOBResumS with all the
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spin-dependent information detailed in the previous section.

6.4 Results: gauge-invariant phasing compar-

isons of the EOS-dependent self-spin ef-

fects

In Sec. 5.4 we presented a preliminary comparison between the various PN
truncations of the Q

SSQM
ω ’s and the corresponding quantity computed using

from the time-domain waveform generated by TEOBResumS including only the
self-spin information at LO in both the Hamiltonian and waveform/flux (see
Fig. 5.14). The main outcome of this preliminary comparison was to show, for
an illustrative BNS configuration, the consistency between the PN and EOB
descriptions, especially at low frequencies, with the latter being slightly more
phase-accelerating than the former. In this respect, Refs. [1, 209] showed the
existence of a nonnegligible difference with respect to the TaylorF2 phasing
with NLO (i.e., 3PN) self-spin effects. However, Ref. [209], see Sec. VI there,
stressed that a more definitive assessment of the EOB/PN performances
would need the incorporation of the NLO information in TEOBResumS. We
shall do so here, closely following what was done in Sec. 5.4. To start with,
we work at NLO in the self-spin within TEOBResumS, adding the correspond-
ing terms to both the Hamiltonian and the multipolar waveform amplitude
(and flux). For definiteness, we consider a few BNS configurations, that we
list in Table 6.1, ranging from stiffer to softer EOS. Similarly, we mainly ex-
plore values of the spins that are compatible with those expected for BNSs.
However, to stretch the limits of the model, we also consider a fast-spinning
configuration, with χA = 0.8 and χB = 0.4. We note that, although such a
configuration is unlikely to exist in a realistic binary system, these spin mag-
nitudes values were considered in the parameter estimation of GW170817
when considering high-spin priors analyses [43, 210].

The Qω(ω) is computed (from the time-domain phasing) in the same way
as briefly described in Ref. [1], though here we pushed the lower frequency
limit down to 5Hz, so as to unambiguously identify the frequency region
were the EOB and PN curve converge together. The code we used to do so
is TEOBResumS v0.1 that improves over v0.0 (see Ref. [1]) because of the
presence of the nonlinear spin terms discussed here4 The same terms are also

4Note that v0.1 also implements by default the EOS-dependent quartic-in-spin terms
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Table 6.2: Configuration SLy-q1.2-sA005-sA008 in Table 6.1. Indicative
time, τ , obtained with the v0.1 version of the public implementation of
TEOBResumS, needed for obtaining the complete waveform, from 5Hz up to
merger. To ease the computation (and to reduce the high-frequency noise
due to the oversampling of the inspiral part), the waveform is computed
joining together three pieces (starting at rmax and ending at rmin) obtained
with different sampling rates ∆t. Note that the value of τ also takes into
account the time needed to actually write the data on disk. Runs on an Intel
Core i5-8250 (1.6GHz) and 8GB RAM. The code was compiled with the g++
GNU compiler using O3 optimization.

f0 [Hz] rmax rmin ∆t−1 [Hz] ∆t/M τ [sec]
5 264.11 80 100 674.2 102.177
20 104.81 8 10000 6.742 1.622
200 22.58 merger 100000 0.674 1.4832

implemented in v1.0 which additionally contains the updated tidal model
of Ref. [6] and the post-adiabatic approximation to efficiently compute long
inspirals [191] (see Sec. 6.6 for additional details). With TEOBResumS v0.1

is is easy to compute such a long waveform with reasonable efficiency. In
practice, it is convenient to join together the waveforms computed on three
different frequency intervals. The intervals are chosen in a way that the two
pieces overlap on a common frequency interval. Table 6.2 illustrates our
choices for one specific configuration, SLy-q1.2-sA005-sA008 in Table 6.1,
and lists: the different running times τ (including the time needed to write the
file on disk); the sampling ∆t/M ; and the various intervals (in radius) where
the EOB dynamics is evolved. As explained in Sec. 5.4, in order to explore
the low-frequency regime one has to avoid the time-domain oversampling of
the waveform that naturally occurs from the ODE solver. To remove this,
the raw time-domain waveform phase is additionally downsampled and its
derivatives smoothed in order to get a clean and nonoscillatory Qω function.
The procedure is tedious, but straightforward and it is done separately on
different frequency intervals, with the final results eventually joined together.
To isolate the, CQi-dependent only, QSS

ω contribution within TEOBResumS we

of Sec. 6.2.3.



177

perform, for each configuration, two different runs, one with CQi 6= 0 another
one with CQi = 0. In both cases we compute the time-domain Qω and finally
calculate

QTEOBResumS,SS
ω = Q

TEOBResumSCQi 6=0

ω −QTEOBResumSCQi=0

ω . (6.41)

Illustrative results are shown in Fig. 6.1 for the two configurations SLy-q1-sA01-sB01
(left panel) and Ms1b-q1-sA01-sB01 (right panel). Each panel is sepa-
rated into two subpanels: the top part reports QSS

ω , with the EOB and
the three different PN truncations; the bottom panel reports the differences
∆QEOBPN

ω ≡ QSSEOB
ω − QSSPN

ω . To orient the reader, the vertical lines super-
posed to the plot correspond to 50, 400, 800 and 1200 Hz. As mentioned
in Ref. [1] the comparison between the time-domain EOB Qω and the fre-
quency domain PN-expanded Qω is meaningful as long as the SPA holds. In
other words, this is true until the adiabatic parameter given by 1/Qω is small
enough. We will briefly comment about this at the end of the section.

The main conclusions we draw from figure Fig. 6.1 are: (i) the EOB
description of the self-spin effects at NLO is more phase-accelerating than
the LO one (both PN or EOB, cf. Fig. 14 of Ref. [1]); (ii) it is however
less phase-accelerating than the standard TaylorF2 NLO one. This seems
to corroborate the suggestion made in Sec. VI of Ref. [209] that part of the
phasing accumulated by this approximant is due to its PN-nature. Since,
a priori, tidal effects might be degenerate with self-spin effects (since they
both accelerate the phasing), the use of the 3PN Taylor-expanded approxi-
mant may introduce biases in the measurement of the tidal parameters. This
will deserve further investigations in the future; (iii) on the other hand, our
comparisons show that the TaylorF2 phasing augmented with the tail fac-
tor is fully consistent with the EOB-resummed description up to frequencies
∼ 600 Hz. We have checked that the importance of the self-spin tail term in
reconciling the TaylorF2 with the EOB phasing description remains essen-
tially the same when changing the BNS model, though it slightly deteriorates
when the individual spins are increased. For example Fig. 6.2 refers to the
SLy-q1-sA04-sB08 configuration, with χA = 0.4 and χB = 0.8, which illus-
trates the ability of the tail-completed TaylorF2 approximant to reasonably
agree with the EOB phasing even in difficult corners of the parameter space.

Let us now explore the implications of the NNLO self-spin correction to
rc. [We recall that the corrections to rc only enter the Hamiltonian, and do
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not concern the waveform.] This is done in Fig. 6.3, which refers to configu-
rations SLy-q1.2-sA005-sB008, i.e., an unequal-mass binary with physically
motivated values of the spins and medium values of (CQA, CQB). The NNLO
term yields an additional acceleration of the phasing. However, the corre-
sponding modification of the NLO curve is smaller than the modification of
the LO curve brought by the NLO contributions. [This intuitively suggests
some type of convergence of the EOB Qω curves as the amount of analytical
information is increased.] Since the calculation of the self-spin terms in the
energy flux (and waveform) is currently not available at NNLO, we cannot
include in Fig. 6.3 the corresponding TaylorF2 curve. This raises the issue
of knowing to which extent the NNLO curve represents a faithful represen-
tation of the complete self-spin effects. We can venture an answer based on
the knowledge of what happens at NLO. Indeed, in the latter case one finds
that the effect of the NLO waveform amplitude terms is almost negligible:
the Qω curve obtained by switching off these terms is essentially superposed
to the one with the NLO waveform corrections. Based on this finding, we
expect that a similar situation will hold at the NNLO level.

Let us finally get an idea of the effect of the complete quartic-in-spin term
once included into rc. This can be done evaluating numerically COct and CHex

using the quasi-universal fits of Eq. (90) of Ref. [294] (see Sec. 3.2). Con-
sidering again the configuration SLy-q1.2-sA005-sB008 of Fig. 6.3 above,
one notes that the NNLO spin-square effect is determined by the coefficient
δa2

NNLO ' 0.108 entering rc. For the same configuration, the quartic-in-spin
LO coefficient of Eq. (6.22), that can be seen as a correction to δa2

NNLO, nu-
merically reads δa4

LO ' 3.05 × 10−4, so that its effect would be completely
negligible on the phasing analysis of Fig. 6.3. One also easily checks that one
would need to have χA = χB ≈ 0.29 so to have δa4

LO ≈ 0.1, thus yielding a
phasing correction, at the Qω level, comparable to the δa2

NNLO displayed in
Fig. 6.3.

6.5 Cubic-in-spin terms within the EOB Hamil-

tonian

In this Section, we discuss preliminary ways of incorporating in the EOB
Hamiltonian the LO cubic-in-spin contributions to the dynamics derived in
Ref. [289].
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As briefly mentioned in the main text, let us first recall that in TEOBResumS

some contributions cubic in spin are already incorporated in the EOB Hamil-
tonian via the presence of uc(r, ãi)-dependent factors in the gyro-gravitomagnetic
functions GS and GS∗ parametrizing the spin-orbit sector of the Hamiltonian
(see Sec. 6.2.1). Indeed, we have u2

c = u2(1 + (spin− quadratic)O(u2)) so
that the linear-in-spin couplings defined by GS(uc) and GS∗(uc) automati-
cally contain some O(u5) spin-cubic contributions. However, one checks (see
main text, Eqs. (6.15)-(6.16)) that the spin-cubic terms thereby already in-
corporated in the Hamiltonian are not the ones needed from the results of
Ref. [289]. This remark suggests a way of incorporating the needed spin-
cubic terms in a resummed manner, namely to introduce new definitions
of the function uc(r, ãi) to be used as inputs in modified definitions of the
gyro-gravitomagnetic functions GS and GS∗ . Say

GS = 2uu2
c,GS

ĜS(uc),

GS∗ =
3

2
(u2

c,GS∗
)3/2ĜS∗(uc),

(6.42)

where ĜS(uc) = 1 + O(uc) and ĜS∗ = 1 + O(uc) are PN correcting factors
[162, 217]. [The arguments uc entering ĜS(uc) and ĜS∗(uc) can be taken
as being any variable such that u2

c = u2(1 + (spin− quadratic)O(u2)).] We
found that this possibility a priori involves six parameters, parametrizing
the two different spin-quadratic expressions separately entering the modified
definitions of r2

c,GS
= r2 + spin− quadratic(1 + O(u)) and r2

c,GS∗
= r2 +

spin− quadratic(1 + O(u)), modelled on Eqs. (6.1), (6.2). This leaves the
freedom to arbitrarily choose two among these six parameters. This freedom
of choice can be used to simplify the resulting definitions. We have explored
this avenue. However, at this stage we did not find a unique, convincing way
of simplifying the two spin-quadratic expressions entering r2

c,GS
and r2

c,GS∗
.

We leave further studies along this avenue to future work.

Without committing ourselves to any specific resummed way of incor-
porating spin-cubic terms in the EOB Hamiltonian, we wish, however, to
display here the full information needed for such definitions. To do this we
will parametrize the spin-cubic contributions in the following 4-parameter,



180

non-committal form

HSO = pϕ

[
G̃(u, ãi) +

(
b30ã

3
A + b21ã

2
AãB

+ b12ãAã
2
B + b03ã

3
B

)
u5

]
, (6.43)

where

G̃(u, ãi) = 2u3ĜS(u)Ŝ +
3

2
u3ĜS∗(u)Ŝ∗. (6.44)

We then follow the procedure described in Section 6.2 to determine the
four parameters b30, b21, b12, b03 entering this parametrization. By calculating

the corresponding modified version of c
S3
LO

7 and comparing it to Eq. (6.15),
we obtain the simple expressions

b30 = COctA − 3CQA,

b21 = − 6,

b12 = − 6,

b03 = COctB − 3CQB. (6.45)

Let us note that if we consider the BH limit where CQ = COct = 1 the
needed modified spin-orbit coupling takes the very simple form

HSO BBH = pϕ

[
G̃(u)− 2(Ŝ + Ŝ∗)

3u5
]
. (6.46)

Let us also note that if we insist on utilizing the full TEOBResumS struc-
ture, keeping the cubic-in-spin terms that come from the use of rc(r, ãi), as
defined in Eq. (6.1) above, we must modify the expressions of the parameters
b30, b21, b12, b03 into

b′30 = COctA −
7

8
CQA −

1

8
XABCQA,

b′21 = − 7

4
+

17

8
CQA −XAB

(
1

4
− 1

8
CQA

)
,

b′12 = − 7

4
+

17

8
CQB +XAB

(
1

4
− 1

8
CQB

)
,

b′03 = COctB −
7

8
CQB +

1

8
XABCQB. (6.47)



181

In that case, the BBH case leads to the following very simple correction to
the spin-sector implied by the current TEOBResumS model:

HSO BBH = pϕ

[
G̃+

1

4
(Ŝ + Ŝ∗)

2Ŝ∗u
5

]
. (6.48)

We postpone a comparison of the various avenues mentioned here to a
later work.

6.6 Post-adiabatic dynamics

The EOB/PN comparisons done in the main text employ TEOBResumS v0.1,
that was implemented in C++. An equivalent, though tidally enhanced
model (see [6]) and computationally more efficient version of the model (im-
plemented in C) is v1.0. All our codes are publicly available at

https://bitbucket.org/account/user/eob_ihes/projects/EOB

TEOBResumS v1.0 optionally implements the post-adiabatic (PA) approx-
imation to efficiently deal with the long inspiral phase [191]. Following the
logic of Appendix B of Ref. [6], we here present the performance of the PA
evolution in the case of spinning neutron stars. The result presented here
are obtained incorporating (i) NLO spin-quadratic information in the wave-
form and (ii) NNLO spin-quadratic information in the Hamiltonian. This
should be considered as the default choice in TEOBResumS for what concerns
spinning BNS. Optionally, it is possible to switch on the EOS-dependence in
the quartic-in-spin correction to rc, Eq. (6.22), though this does not come as
default choice in the code.

Within TEOBResumS, the dynamics of a binary system is usually de-
termined by numerically solving the four Ordinary Differential Equations
(ODEs) of the Hamiltonian relative dynamics. The time needed to solve
these ODEs usually weighs as the main contribution to the waveform eval-
uation time. Using this C-implementation of TEOBResumS, a typical time-
domain BNS waveform requires ∼ 1 sec to be generated starting from a GW
frequency of 10 Hz by means of standard Runge-Kutta integration routines
with adaptive step-size that are publicly available through the GNU Scientific
Library (GSL). Thus, ODE integration as is cannot be used in parameter es-
timation runs that require the generation of 107 waveforms. Reference [191]
proposed a method of reducing the evaluation time by making use of the PA
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approximation to compute the system dynamics. In Ref. [6] we restricted
to non spinning BNS and we showed, for the first time, how a waveform
obtained from the complete ODE evolution compares with a waveform ob-
tained by stitching the PA dynamics to the complete dynamics for the last
few orbits up to merger (as suggested in [191]). For completeness, we here
present the same comparison for two illustrative, spinning, BNS systems.

Let us briefly summarize the approach of Ref. [191]. The PA approxima-
tion to the EOB dynamics was introduced in Refs. [28, 29] (and expanded in
Refs. [166, 215]) and is currently used to initialize the relative dynamics in
TEOBResumS with negligible eccentricity. Using this approximation, it is pos-
sible to analytically compute the radial and angular momentum of a binary
system, under the assumption that the radiation reaction force is small. This
is true in the early inspiral phase and progressively loses validity when the
two objects get close. The approach starts by considering the conservative
system, when the flux is null, and then computes the successive corrections
to the momenta. We denote as nPA the n-th order iteration of this pro-
cedure. Practically, to compute the PA dynamics, we first build a uniform

f0 [Hz] r0 rmin Nr ∆r τ8PA [sec] τODE [sec]
20 112.81 12 500 0.20 0.03 0.53
10 179.02 12 830 0.20 0.05 1.1

Table 6.3: Performance of TEOBResumS v1.0 for a BNS system with
1.35M� + 1.35M�, SLy EOS and χA = χB = 0.1. The waveform for the
χA = χB = −0.1 case is a little shorter but the evaluation times are com-
parable to the ones showed in the table. f0 and r0 denote the initial GW
frequency and radial separation. The 8PA dynamics is computed on a grid
withNr points and grid separation ∆r that ends at rmin and then is completed
by the standard ODE one. The evaluation times τ are determined using a
standard Intel Core i7, 1.8GHz and 16GB RAM. The code is compiled with
the GNU gcc compiler using O3 optimization.

radial grid from the initial radius r0 to an rmin up until which we are sure
the approximation holds. We then analytically compute the momenta that
correspond to each radius at a chosen PA order. Finally, we determine the
full dynamics recovering the time and orbital phase by quadratures. From
rmin we can then start the usual ODE-based dynamics using the PA quanti-
ties as initial data as it is usually done (at 2PA order) in TEOBResumS. With
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f0 [Hz] r0 τ int
8PA [sec] τ int

ODE [sec]
20 112.81 0.10 0.64
10 179.02 0.37 1.70

Table 6.4: Performance of the TEOBResumS v1.0 when the final waveform
is interpolated on a time grid evenly sampled at 1/(4096 Hz). We use the
standard spline interpolation routine implemented in the GSL library. The
considered system coincides with the one of Table 6.3.

this method one can avoid to numerically solving two Hamilton equations
(those for the momenta), while the orbital phase and time can be obtained
by quadratures over a rather sparse radial grid.

Figure 6.4 displays the performance of the PA approximation (at 8PA
order) for two, illustrative, spinning BNS systems with 1.35M� + 1.35M�
and SLy EOS. The figure shows the distance-normalized waveform strain
h ≡ R(h+ − ih×), where we recall that the multipolar decomposition of the
waveform reads

R(h+ − ih×) =
`max∑
`=2

∑̀
m=−`

h`m −2Y (θ,Φ), (6.49)

where h`m are the waveform (complex) multipoles and −2Y (θ,Φ) are the s =
−2 spin-weighted spherical harmonics (that are here evaluated at θ = Φ = 0).
In fig. 6.4 we evaluate h with `max = 8, i.e. retaining in the waveform the
same 35 multipoles that are used to compute the EOB radiation reaction. For
each binary, each subpanel displays the the waveform fractional-amplitude
difference (top), phase difference (medium) and real part of the waveform
strain. The left columns offer a global view, while the right columns focus
on the last few GW cycles up to merger. The vertical dashed line marks
the time where the PA evolution is stitched to the ODE evolution for the
last orbits where the PA approximation breaks down. Table 6.3 highlights
the performances of TEOBResumS v1.0 for such a case. Note that the initial
radius is determined by solving the circular Hamilton’s equations instead of
relying on the Newtonian Kepler’s law, as discussed in Sec. VI of Ref. [1].

The waveform computed using the PA dynamics (completed with the
ODE for the last few orbits) only takes around 50 milliseconds to be evalu-
ated. Such a time is comparable to the one needed by the surrogate models
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that are currently being constructed in order to reduce waveform evalua-
tion times (see e.g. [247]) and that, typically, only involve the ` = m = 2
mode. Finally, Table 6.4 illustrates the performance of TEOBResumS when
the waveform of above, which is obtained on a nonuniform temporal grid
(because the corresponding radial grid is evenly spaced), is interpolated on
an evenly spaced time grid, sampled at ∆t−1 = 4096 Hz, that is usually
neecessary to compute the Fourier transform with standard algorithms. It
is remarkable that the generation time of the full multipolar waveform is be-
low 1 sec also when the starting frequency is 10 Hz. Such interpolation is
done with the spline interpolant that is freely available in the GSL library
and looks to be the main routine responsible for the computational cost of
the waveform generation. We expect this can be further speed up exploting
vectorization or shared memory parallelization. Similarly, one expects that
the number of radial gridpoints needed might be lowered further by adopting
a quadrature formula at higher order (now a third-order one is implemented,
following Ref. [191]) to recover the orbital phase and time. Such technical
improvements will be explored extensively in forthcoming works.

6.7 Using Ŝ and Ŝ∗ as spin variables.

Finally, for completeness, we report here the results of Sec. 6.2 using Ŝ and Ŝ∗
as spin variables. First, the newly computed δa2

NLO and δa2
NNLO are written

as quadratic forms in (S, S∗) as
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δa2
NLO =

1

1− 4ν

{
[−4 + 9ν + (2− 5ν) (CQA + CQB) + (2− ν)XAB (CQA − CQB)] Ŝ2

+

[
−9

2
+ 11ν + (1− ν) (CQA + CQB)− (1 + ν)XAB (CQA − CQB)

]
Ŝ2
∗

+ [−2 + 22ν − 6ν (CQA + CQB)− 2νXAB (CQA − CQB)] ŜŜ∗

}
,

(6.50)

δa2
NNLO =

1

1− 4ν

{[
− 275

14
+

561

14
ν +

675

14
ν2

+

(
275

28
− 1633

56
ν +

207

28
ν2

)
(CQA + CQB) +

(
275

28
− 533

56
ν

)
XAB (CQA − CQB)

]
Ŝ2

+

[
−153

8
+

173

4
ν +

381

14
ν2 +

(
4− 47

8
ν +

207

28
ν2

)
(CQA + CQB)

−
(

4 +
17

8
ν

)
XAB (CQA − CQB)

]
Ŝ2
∗

+

[
−25

2
+

4727

56
ν − 163

14
ν2 −

(
387

14
− 207

14
ν

)
ν (CQA + CQB)

− 163

14
νXAB (CQA − CQB)

]
ŜŜ∗

}
. (6.51)

Note that the use of (S, S∗) leads to formally singular terms when ν = 1/4.
This singularity is actually reabsorbed by (Ŝ, Ŝ∗) when the limit is done
carefully taking into account the various mass terms. From these equations,
one can obtain the orbital angular momentum j as a function of u, namely
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j(u) =
1√
u

+
3

2

√
u− 3

(
Ŝ +

3

4
Ŝ∗

)
u

+

{
− 27

8
− 3

2
ν +

1

1− 4ν

[
−2ν +

(
1

2
− ν
)

(CQA + CQB) +
1

2
XAB (CQA − CQB)

]
Ŝ2

+
1

1− 4ν

[
−2ν +

(
1

2
− ν
)

(CQA + CQB)− 1

2
XAB (CQA − CQB)

]
Ŝ2
∗+

+
2

1− 4ν
[1− 2ν − ν(CQA + CQB)] ŜŜ∗

}
u3/2

+

[(
−15

2
+

5

4
ν

)
Ŝ +

(
−27

8
+

3

2
ν

)
Ŝ∗

]
u2 +

{
135

16
+

(
−433

12
+

41

32
π2

)
ν

+
1

1− 4ν

[
−1

2
− 31

4
ν +

(
11

4
− 27

4
ν

)
(CQA + CQB)

+

(
11

4
− 5

4
ν

)
XAB (CQA − CQB)

]
Ŝ2

+
1

1− 4ν

[
−99

32
+

21

8
ν +

(
3

2
− 7

4
ν

)
(CQA + CQB)

−
(

3

2
+

5

4
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XAB (CQA − CQB)
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Ŝ2
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+
1
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[
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4
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2
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2
ν (CQA + CQB)− 5

2
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ŜŜ∗
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+

[(
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8
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16
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(
−63

8
+
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8
ν +

15

32
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Ŝ∗

]
u3

+
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2835

128
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[
u4
]
. (6.52)
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Similarly, the inverse expression can be written as

u(j) =
1
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3
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Ŝ∗

]
1

j7

+

{
135 +

(
−311

3
+

41

16
π2

)
ν

+
1

1− 4ν

[
62− 619

2
ν +

(
16− 69

2
ν

)
(CQA + CQB) +

(
16− 5

2
ν

)
XAB (CQA − CQB)

]
Ŝ2
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. (6.53)
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Finally, the gauge-invariant link between the binding energy and the or-
bital angular momentum becomes
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Eb(j) =− 1

2j2

{
1 +

1

4
(9 + ν)

1

j2
− 4

(
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Ŝ∗

]
1

j5

+

{
3861

64
−
(

8833

192
− 41

32
π2

)
ν − 5

32
ν2 +

5

64
ν3

+
1

1− 4ν

[
32− 152ν − ν2 +

(
25

4
− 53

4
ν − ν2

2

)
(CQA + CQB)

+

(
25

4
− 3

4
ν

)
XAB (CQA − CQB)

]
Ŝ2
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Ŝ2

+
1

1− 4ν

[
252− 10203

8
ν +

2757

28
ν2 − 3

4
ν3 +

(
819

16
− 1473

16
ν +

1199

112
ν2 − 3

8
ν3

)
(CQA + CQB)

−
(

819

16
+

165

16
ν +

11

16
ν2

)
XAB (CQA − CQB)

]
Ŝ2
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ŜŜ∗
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. (6.54)
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Figure 6.1: Left panel: Sly EOS, MA = MB = 1.35, χA = χB = 0.1
and CQA = CQB = 5.48. Right panel: Ms1B EOS, MA = MB = 1.35,
χA = χB = 0.1 and CQA = CQB = 8.40. The grey vertical lines correspond

to 50, 400, 800 and 1200 Hz respectively. The additional Q
SSQM,tail
ω term in

TaylorF2 is crucial to get an excellent agreement between the PN-expanded
and EOB phasing for most of the inspiral.
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Figure 6.2: Closeness of the tail-completed TaylorF2 description of the phas-
ing to the EOB one, even when rather high values of the individual spins are
considered.
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Figure 6.3: The effect of the NNLO self-spin term incorporated in the EOB
Hamiltonian for one of the configurations of Table 6.1. Although the NNLO
term results in an acceleration of the inspiral with respect to the NLO model,
the curve is still above the NLO PN-expanded TaylorF2 one.
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Figure 6.4: Comparison between the waveforms (obtained summing all
modes up to `max = 8, see Eq. (6.49)) computed solving the ODEs with
the GSL rk8 routine with adaptive stepsize and the PA waveform completed
with the same ODE solver after r < rmin. We have considered BNS systems
with 1.35M�+ 1.35M� and SLy EOS (see first row of Table 6.1), starting at
initial frequency 10 Hz. Dimensionless spins are χA = χB = 0.1 (top) and
χA = χB = −0.1 (bottom). The parameters used for the PA run are listed in
Table 6.3. The dashed grey line marks the stitching point, rmin, between the
PA and ODE-based dynamics. Given the waveform strain as h ≡ Ae−iφ, we
defined the phase difference as ∆φODE−8PA ≡ φODE−φ8PA and the fractional
amplitude difference as ∆AODE−8PA ≡ (AODE−A8PA)/AODE. The larger dif-
ferences at the beginning of the evolution are partly due to the fact that the
complete ODE is started using only 2PA-accurate initial data.
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Chapter 7

Quasi-5.5PN TaylorF2
approximant for compact
binaries: point-mass phasing
and impact on the tidal
polarizability inference [3]

7.1 Introduction

The data-analysis of GW170817 [43] relied on gravitational waveform models
that incorporate tidal effects. The latter allow one to extract information
about the neutron star equation of state (EOS) via the inference of the
mass-weighted averaged tidal polarizability parameter Λ̃ [243, 237, 211, 210,
299]. The understanding of the systematic uncertainties on the measurement
of Λ̃ due to the waveform model/approximants have been the subject of
intensive investigation in recent years. For example, building on the work of
Favata [266], Wade et al. [300] investigated the performance of different PN
inspiral approximants within a Bayesian analysis framework for the advanced
detectors and found that the choice of approximant significantly biases the
recovery of tidal parameters. Later, a similar Bayesian analysis in the case of
LIGO and advanced LIGO detectors was carried out by Dudi et al. [301] who
concluded that the TaylorF2 3.5PN waveform model can be used to place
an upper bound on Λ̃. The same conclusion was drawn also by the study of
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the LIGO-Virgo collaboration [210].

Beside being interesting per se’ because done in the precise setup that is
relevant for data analysis, these studies collectively stress the paramount need
of having an analytically reliable description of the phasing up to merger.
The tidal extension of the effective-one-body (EOB) [28, 29] description for
coalescing compact binaries was introduced in [157] and developed during the
last ten years [206, 212, 213, 1, 6, 2] with the goal of providing robust binary
neutron star waveforms to be used in gravitational-wave inference. While
analytically more accurate, EOB waveform generation is usually slower than
PN. Different routes have been explored to speed up EOB approximants
(see Sec. 4.5). However, none of the methods described above provide us
with waveform generation algorithms faster than PN. Although it is well
known that inspiral PN approximants might be problematic, they retain the
advantage of being the most efficient for Bayesian inference.

One important source of systematics in BNS inspiral waveforms resides
in the description of the nontidal part (see e.g. [302]). The practice that
became common after the observation of GW170817 is to augment stan-
dard point-mass model with the tidal part of the phasing. A natural step
is thus to improve the accuracy point-mass PN approximant beyond the
current available technology. In this chapter we introduce a nonspinning,
point-mass, closed-form frequency-domain TaylorF2 waveform approximant
at quasi-5.5PN order (Sec. 7.2). The new approximant is obtained by PN-
expanding the adiabatic EOB dynamics along circular orbits. As such, it
delivers a phasing representation that improves the currently known 3.5PN
one. We show that, when applied in the GW data analysis context, the new
phasing description allows one to strongly reduce the biases in the recovery
of the tidal parameters that are usually present with the 3.5PN TaylorF2

point-mass (Sec. 7.3).

7.2 Quasi-5.5PN-accurate orbital phasing

Building upon Damour et al. [243], Ref. [11] illustrated how to formally obtain
a high-order PN approximant by PN-expanding the EOB energy EEOB and
energy flux FEOB along circular orbits. Stopping the expansion at 4.5PN,
allowed one to obtain a consistent 4.5PN approximant with a few parameters
needed to formally take into account the yet uncalculated ν-dependent terms
in the waveform amplitudes at 4PN. Here we follow precisely that approach,
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but we extend it to 5.5PN accuracy. To get the waveform phase in the
frequency domain along circular orbits, we start with the gauge-invariant1

description of the adiabatic phasing defined by

Qω ≡ EEOB(x)

(
dFEOB

dx

)−1

, (7.1)

where x ≡ (Mω)2/3, with ω the orbital frequency along circular orbits. The
high-order phasing approximant is obtained by Taylor-expanding the above
equation and then by solving Eq. (5.34), that we rewrite here in terms of the
frequency f as

d2Ψ5.5PN

d2f̂
=
Qω(f̂)

f̂ 2
, (7.2)

where f̂ ≡ Mf ≡ ω/2π. The double integration of Eq. (7.2) delivers
Ψ5.5PN(f̂) modulo an affine part of the form p + qf̂ , where (p, q) are two
arbitrary integration constants that are fixed to be consistent with the usual
conventions adopted in the literature for the 3.5 PN approximant [99].

We consider here only nonspinning binaries (the reader is referred Sec. 7.5
for the discussion of the spin case). The corresponding, circularized, EOB
Hamiltonian is given by Eq. (4.19), where the effective Hamltonian (4.24)
has been rewrited in terms of the orbital angular momentum along circular
orbits j, i.e. Ĥeff ≡ Heff/µ =

√
A(u)(1 + u2j2), where A(u) is the EOB

interaction potential (4.15) plus a 5PN term ν(ac6 + aln
6 lnu)u6 with ac6 an

analytically unknown coefficient. The orbital angular momentum along cir-
cular orbits j is obtained solving ∂uĤeff = 0. By PN-expanding one of
Hamilton’s equations, Mω = ∂ϕH

EOB, one obtains x(u) as a 5PN truncated
series in u, that, once inverted, allows to obtain the (formal) 5.5 PN accurate
energy flux as function of x by PN-expanding its general EOB expression
F =

∑∞
`=2

∑m
`=−m F

Newt
`m F̂`m, where FNewt

`m is the Newtonian (leading-order)

contribution and F̂`m is the relativistic correction. Each multipolar contribu-
tion within the EOB formalism comes written in factorized and resummed
form as Eq. (6.32). Here we use the relativistic residual amplitude (ρ`m) in-
formation reported in Eqs (7)-(18) of Ref. [11], where the unknown high-PN
coefficients (polynomials in ν) have been parametrized by some coefficients
c`m. We include for consistency all the coefficients to go up to the ` = 7,
m = even multipoles.

1In the sense that it is independent of time and phase arbitrary shifts.
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From Eq. (7.1) one obtains the following PN-expanded expression

Q̂PN
ω = 1 + b2x+ b3x

3/2 + b4x
2 + b5x

5/2

+ b6x
3 + b7x

7/2 + b8x
4 + b9x

9/2 + b10x
5 + b11x

11/2. (7.3)

The coefficients of this expansion, that are reported in full in Sec. 7.6, have
the structure bi ≡ b0

i + bi(ν), where b0
i is the ν-independent (test-particle)

part, fully known analytically, while the bi(ν) encode the ν-dependence that
is completely known at 3PN, while only partially known at 4PN because the
corresponding waveform calculation is not completed yet. The ν-dependence
beyond 3PN is formally incorporated by extending the analytically known
ρ`m function with additional ν-dependent coefficients and then reflects in
the coefficients bi(ν). Among these coefficients, those that depend on the
parameters that we have introduced in the computation are

b8 = b8(c3PN
21 , c4PN

22 ) (7.4)

b10 = b10(c3PN
21 , c4PN

22 , c5PN
22 ) (7.5)

b11 = b11(c3PN
21 , c4PN

22 ) . (7.6)

In the following analysis, we fix to zero ac6 as well as all the yet uncalculated,
ν-dependent, PN waveform coefficients entering Eq. (7.3) above. This entitles
us to use the definition of quasi-5.5PN approximant (this PN-order choice
is discussed in Sec. 7.4 and resumed in Fig. 7.5). Note however that in the
NR-informed EOB model, that we shall use to check the reliability of this
quasi-5.5PN approximant, all the waveform coefficients are equally fixed to
be zero; on the contrary, ac6 is informed by NR simulations and, as such,
effectively takes into account, to same extent, all this missing analytical
information. The importance of the ν-dependent waveform coefficients is, a
priori, expected to be low, as suggested in Table II of [4]. This is in accord
with the fact that an eventual tuning of some free parameters is better when
they tend to be small (see See Sec. 7.4).

7.2.1 Assessing the 5.5PN phasing accuracy

Let us now study the performance of TaylorF2 at 5.5PN versus the full EOB
phasing. We do so by comparing the corresponding Qω functions and taking
the differences, similarly to what was done in Ref. [209] for isolating the tidal
part of the EOB phasing and in Ref. [2] for isolating the quadratic-in-spin
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Figure 7.1: Comparison between the point-mass (nonspinning) orbital phas-
ing for q = 1 QEOB

ω −QPN
ω difference up to (approximate) merger time. The

vertical lines mark the 10Hz, 20Hz, 718Hz or 1024Hz for a (1.35 + 1.35)M�
binary. The quasi-5.5PN curve is always much closer to the EOB one than
the standard 3.5PN approximant.

part. Since we have in mind an application to a paradigmatic BNS system,
Fig. 7.1 only focuses on the q = 1 case. We show our results in terms of
differences between the EOB and the PN curves, QEOB

ω −QPN
ω . The top panel

of the figure illustrates the full phasing acceleration evolution, up to the peak
of the EOB orbital frequency that is identified with the merger. The bottom
panel is a close up on the inspiral part. The vertical lines corresponds (from
left to right) to 10Hz, 20Hz, 718Hz and 1024Hz for a fiducial equal-mass BNS
system with (1.35 + 1.35)M�. The 718Hz line corresponds to ω̂ = 0.06, that
roughly corresponds to the NR contact frequency [240]. The figure highlights
that the quasi-5.5PN approximant delivers a rather good representation of
the point-mass EOB phasing precisely up to ω̂ = 0.06. Table 7.1 reports the
phase difference

∆φ(ω̂0,ω̂1) =

∫ ω̂1

ω̂0

∆Qωd log ω̂ , (7.7)
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Table 7.1: EOB/PN phase difference accumulated between [f0, f1]. It is
obtained by integrating the ∆QEOBPN

ω ’s in Fig. 7.1 between the corresponding
values of log(ω̂). The limits of integration are denoted in Hz as we want to
ideally refer to the fiducial (1.35 + 1.35)M� binary system.

ω̂0 × 104 ω̂1 f0[Hz] f1[Hz] ∆φEOBPN
3.5PN ∆φEOBPN

5.5PN

8.35 0.086 10 1024 0.2718 0.1364
8.35 0.060 10 718 −0.1916 1.45× 10−3

16.7 0.086 20 1024 0.3009 0.1354
16.7 0.060 20 718 −0.1625 4.54× 10−4

20.0 0.086 24 1024 0.3110 0.1348

accumulated between the frequencies [ω̂0, ω̂1] (or equivalently [f0, f1] in phys-
ical units) marked by vertical lines in the plots. The numbers in the table
illustrate quantitatively how the 5.5PN phasing approximant delivers a phas-
ing description that is, by itself, more EOB compatible than the standarly
used 3.5PN one. Note that this is achieved even if the EOB incorporates the
effective, NR-informed, a6

c(ν) parameter, that is not included in the TaylorF2
approximant.

7.3 Application to Λ̃ inference

We focus now on a BNS system to study the implication of changing the PN-
accuracy of the point-mass baseline on the estimate of the tidal polarizability
parameter

Λ̃ =
16

13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

M5
, (7.8)

where Λi ≡ 2/3ki2 [c2/(GCi)]5 where Ci ≡ mi/Ri is the compactness of each
star and ki2 the corresponding quadrupolar Love number [227, 110, 233, 108],
see Sec. 3.1.4.

We construct equal-mass EOBNR hybrid BNS waveforms by matching
the TEOBResumS EOB tidal model [1] to state-of-the-art NR simulations of
the CoRe collaboration [209]. Note that the version of TEOBResumS used here
does not incorporate the analytical developments of Refs. [2, 6]. Two fiducial
waveforms are considered here corresponding to two nonspinning, equal-mass
(1.35M� + 1.35M�) BNS models described by the SLy and H4 EOS. The
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Table 7.2: Data behind Figs. 7.2 and 7.3. For each measured quantity, chirp
mass M, symmetric mass ratio ν and tidal polarizability Λ̃, the columns
report: the injected value; the minimum value of frequency considered, either
24Hz or 32Hz; the combination EOS-SNR; finally, the last three columns list
the median values measured with the three different waveform approximants
with the 90% credible interval. The last row of the table shows the average
waveform generation time for each approximant, assuming starting frequency
of 24Hz.

Injected Val. fmin EOS SNR TF2 3.5PN TF2 5.5PN IMRPh.D NRTidal

M 1.1752
24 Hz

SLy 30 1.17531.17551.1752 1.17531.17551.1752 1.17531.17551.1752

H4 30 1.17531.17551.1752 1.17531.17551.1752 1.17531.17551.1752

SLy 100 1.17531.17541.1752 1.17531.17541.1752 1.17531.17541.1752

H4 100 1.17531.17541.1752 1.17531.17541.1752 1.17531.17541.1753

32 Hz
SLy 30 1.17541.17571.1752 1.17541.17571.1752 1.17541.17561.1752

H4 30 1.17541.17561.1751 1.17541.17571.1752 1.17531.17561.1751

ν 0.25
24 Hz

SLy 30 0.246490.249960.23147 0.245580.249950.23135 0.246360.249970.23105

H4 30 0.247290.249970.2338 0.245810.249950.23162 0.24590.249960.23079

SLy 100 0.248570.249980.23744 0.247380.249950.23691 0.247030.249980.23292

H4 100 0.248770.249970.24083 0.247350.249950.23694 0.247020.249970.23307

32 Hz
SLy 30 0.246580.249960.23107 0.24670.249970.23247 0.245920.249970.23054

H4 30 0.246840.249970.23282 0.246020.249950.23194 0.245760.249960.23051

Λ̃

392

24 Hz

SLy 30 935.912547.71245.40 517.88971.32162.29 400.47761.30135.47

1110 H4 30 1690.563589.6632.12 987.291575.33422.78 1044.271459.18630.88

392 SLy 100 452.24694.52180.44 301.87459.52149.57 295.21410.31162.62

1110 H4 100 1405.421726.901065.20 894.931069.01711.92 1051.611195.12837.18

392
32 Hz

SLy 30 1007.472743.87267.25 572.291177.84156.79 419.89803.14144.15

1110 H4 30 1675.673464.08660.31 1042.611713.99416.23 1060.441509.45633.25

Average Time 22.9 ms 32.68 ms 60.13 ms

corresponding values of the tidal parameters are Λ̃ = 392.231 (Sly EOS) and
Λ̃ = 1110.5 (H4 EOS) [For equal masses Λ̃ = Λ1 = Λ2.] The waveforms
are injected at SNR of 30 and 100 into a fiducial data stream of the LIGO
detectors [303]. We assume the projected noise curve for the Advanced LIGO
detectors in the zero-detuned high-power configuration (ZDHP) [223] and no
actual noise is added to the data.

The injected waveform is recovered with three approximants:
(i) IMRPhenomD NRTidal [209], where the point-mass orbital phasing is ob-
tained by a suitable representation of hybridized EOB/NR BBH waveforms,
the PhenomD approximant [30]; (ii) TaylorF2 where the 3.5PN orbital phase
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is augmented by the 6PN (next-to-leading) tidal phase [242]; (iii) the same as
above where the 3.5PN orbital, nonspinning, phase is replaced by the quasi-
5.5PN one. The models are implemented in the
LSC Algorithm Library Suite (LALSuite). The LIGO-Virgo parameter-
estimation algorithm LALInference [45]) is then employed to extract the
binary properties from the signal. We use a uniform prior distribution in the
interval [1M�, 3M�] for the component masses, and a uniform prior between
−1 and 1 for both dimensionless aligned spins. We also pick a uniform prior
distribution for the individual tidal parameters Λ1,2 between 0 and 5000.

The outcome of the analysis is illustrated in Fig. 7.2 for the SLy EOS
and and Fig. 7.3 the H4 EOS. We compare the inference of the tidal pa-
rameter done on two frequency intervals, [24, 1024] Hz and [32, 1024]. Note
that we do not extend the analysis interval even further because we know
that the orbital part of the TaylorF2 approximants becomes largely inaccu-
rate at higher frequencies. For SNR = 30 one finds that the 3.5PN orbital
baseline induces a clear bias in Λ̃, while the quasi-5.5PN one agrees much
better with the PhenomD model as well as the expected value (vertical line
in the plots). Incrementing the SNR to 100, the statement only holds for
the softer EOS, since for the H4 case also the 5.5PN approximant is biased,
although still less than the 3.5PN one. The two figures are complemented by
Table 7.2, that, for each choice of configuration and SNR, lists the recovered
values with their 90% credible interval. The last row of the table also reports
the time needed to generate a single waveform during the PE process: inter-
estingly, the timing of the quasi-5.5PN TaylorF2 is comparable to the one
of the 3.5PN approximant, i.e. it remains approximately two times faster
than PhenomD NRTidal being consistent with this latter at SNR . 30. This
suggests that, for events similar to GW170817 or quieter, the quasi-5.5PN
TaylorF2 can effectively be used in place of PhenomD NRTidal to get an even
faster, yet accurate, estimate of the parameters.

7.3.1 Understanding waveform systematics of the in-
jections via the Qω analysis

Let us finally heuristically explain why the effect of the 3.5PN-accurate or-
bital baseline is to bias the value of Λ̃ towards values that are larger than the
theoretical expectation. Inspecting Fig. 7.1 one sees that the QEOB

ω −Q3.5PN
ω

is negative. This means that the PN phase accelerates less than the EOB
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one, namely the inspiral occurs more slowly in the 3.5PN phasing description
than in the EOB one. Loosely speaking, one may think that the gravitational
interaction behind the 3.5PN-accurate orbital phasing is less attractive than
what predicted by the EOB model. Evidently, this effect might be compen-
sated by an additional part in the total PN phasing that stems for a part of
the dynamics that is intrinsically attractive and that could compensate for
the inaccurate behavior of the 3.5 PN. Since eventually the phase difference
is given by an integral, two effects of opposite sign can mutually compensate
and thus generate a PN-based frequency phase that is compatible with the
EOB one. Since tidal interactions are attractive, the corresponding part of
the phasing is naturally able to compensate the repulsive character of the
orbital phasing. For this compensation to be effective, it may happen that Λ̃
has to be larger than the theoretically correct one that accounts for the tidal
interaction (at leading order) in the EOB waveform.

Such intuitive explanation is put on more solid ground in Fig. 7.4. The
figure refers to the SLy model and compares two EOB-PN Qω differences
∆QEOBPN

ω ≡ QEOB
ω − QPN

ω , where the QEOB
ω is the complete function, while

QPN
ω is obtained summing together the 3.5PN orbital phase and the 6PN-

accurate tidal phase [230]. When we use the theoretically correct value of
Λ̃ = Λ1 = Λ2 = 392.231 the phase difference in the interval ω̂ ∈ [ω̂0, ω̂1] =
[0.002, 0.06], corresponding to f ∈ [20, 718] Hz (dotted vertical line in the fig-
ure) for this binary, is ∆φ(ω̂0,ω̂1) ' −0.276 rad. By contrast, if the value of Λ̃
is progressively increased, the accumulated phase difference between [ω̂0, ω̂1]
gets reduced up to ∆φ(ω̂0,ω̂1) ' 2.429 × 10−4 for Λ̃ = 442.987. Note how-

ever that such analytically predicted “bias”in Λ̃ depends on the frequency
interval considered: if we extended the integration up to ω̂1 ' 0.08 (corre-
sponding to 957.4 Hz) one finds that a similarly small accumulated phase
difference ∆φ0.002,0.08 ' 5.0 × 10−5 is obtained for Λ̃ = 424.08, i.e. the an-
alytical bias is reduced. This fact looks counterintuitive: a result obtained
with a PN approximant is not, a priori, expected to improve when including
higher frequencies. By contrast, the fact that the analytic bias is (slightly)
reduced increasing ω̂1 just illustrates the lack of robustness as well as the lack
of predictive power of the approximant in the strong-field regime. Generally
speaking, one sees that the combination of 3.5PN orbital phase with 6PN
tidal phase may result in a waveform that is effectual with respect the EOB
one, in the sense that the noise-weighted scalar product will be of order unity,
but with an incorrect value of the tidal parameter. This simple example is
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Table 7.3: EOB/PN phase difference accumulated between [f0, f1]. It is
obtained by integrating the ∆QEOBPN

ω ’s in Fig. 7.5 between the corresponding
values of log(ω̂), also listed in the table. The limits of integration denoted in
Hz refer to the fiducial (1.35 + 1.35)M� binary system.

ω̂0 ×104 ω̂1 f0[Hz] f1[Hz] ∆φEOBPN
5PN ∆φEOBPN

4.5PN ∆φEOBPN
4PN

8.35 0.086 10 1024 1.0805 1.0109 1.6306
8.35 0.060 10 718 0.4984 0.469 0.9241
16.7 0.086 20 1024 1.079 1.0094 1.6235
16.7 0.060 20 718 0.4970 0.4675 0.9170
20.0 0.086 24 1024 1.0781 1.0085 1.6203

helpful to intuitively understand how the incorrect behavior of the point-mass
nonspinning phasing can eventually result in a bias towards larger values of
Λ̃. Interestingly, this value is close to the value obtained with SNR=100 (see
left-bottom panel of Fig. 7.2). Although the analysis of Fig. 7.4 certainly
cannot replace an injection-recovery study, it should be kept in mind as a
complementary tool to interpret its outcome within a simple, intuitive but
quantitative, framework.

7.4 Why quasi-5.5PN?

Post-Newtonian expansion are truncated asymptotic series, so it is not a
priori granted that by increasing the PN order one will automatically get
a better approximation to the exact result. The choice of using the quasi-
5.5PN TaylorF2 for the injection study of Sec. 7.3 was made after having
carefully analyzed all the previous quasi-PN orders beyond 3.5PN and hav-
ing compared each PN-truncation of the Qω function to the corresponding
outcome of TEOBResumS. The result of this analysis is shown in Fig. 7.5, that
illustrates how the quasi-5.5PN QEOB

ω −QPN
ω difference remains consistently

close to zero for a frequency interval that is much longer than for any other
lower-PN truncation. This finding justifies our choice of focussing on the
quasi-5.5PN approximant in the main text.

With this PN order, the first natural question that follows is whether
there is some simple way to improve the accuracy of the approximant just by
tuning some of its (many) free parameters. Before entering this discussion,
the simplest thing to do is to incorporate more analytical information, e.g.
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instead of using ac6 = 0 incorporating either the analytical gravitational self-
force value ac6(0), that was obtained in Refs. [152, 304]

ac6(0) = −1066621

1575
− 14008γ

105
+

246367π2

3072

− 31736 log(2)

105
+

243 log(3)

7
, (7.9)

or even the numerical-relativity informed one [34]

ac6,NR(ν) = 3097.3ν2 − 1330.6ν + 81.38. (7.10)

Although these two functions encode physically correct effect (though only
effectively for ac6,NR(ν)) they turn out, both, to increase the repulsive char-
acter of the approximant, without any real advantage. In practice, when the
values above are used, one get an acceptable EOB/PN agreement only up to
ω̂ ≈ 0.02.

From the PN point of view, we expect from Table II of [4] that the order
of magnitude of the various cPN

`m coefficient is small. This is the rational be-
hind our conservative choice of simply setting then to zero. Still, one could
think to use some of these coefficients, as well as ac6 as tunable parameter and
investigate whether it is possible to flex the quasi-5.5PN TaylorF2 approxi-
mant so as to reduce the EOB/PN disagreement even to frequencies higher
than 0.06.

As a proof of principle, we explored that this is the case considering the
q = 1 case and flexing, at the same time, both ac6 and c4PN

22 , that are, in
sense, the lowest-order unknown coefficients in the model. One easily finds
that fixing ac6 = 49 and c4PN

22 = 10.45 the integrated EOB/PN phase difference
in the point-mass sector accumulated on the interval [ω̂0, ω̂1] = [0.002, 0.08]
can be reduced from 0.085 rad to ' 10−4 rad.

7.5 Mass ratio and spin

Increasing the mass ratio or the spins (to mild values) of the binary does not
affect the robustness of the quasi-5.5PN, untuned, approximant. In Fig. 7.6
we see that the difference between the “exact” numerical Qω and the ana-
lytical one is still approximately flat for a qualitatively wide range of fre-
quencies. Beyond that, for what concerns the spin, we show in Figs. 7.7 a
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qualitative point-mass BNS case with realistic positive and negative spins.
In this case we put to zero the quadrupole-monopole interaction terms,
CQ1 = CQ2 = 0, removing the quadratic-in-spin PN corrections both in the
numerical TEOBResumS model and in the analytical approximant. So con-
tribution of the mixed χ1χ2 terms and the spin-orbit interaction is tested,
including for completeness also the new 4PN spin-orbit Taylor-F2 term com-
puted in Ref. [2], i.e. the Qω analogue of Eq. (48) there. While the spin-orbit
terms are already contained in TEOBResumS in a resummed form, we neglect
the spin cube and spin quartic PN corrections (see [2]) for simplicity, since
their effect does not affect our preliminary robustness test.

7.6 Quasi-5.5PN phasing coefficients

We report in this section the explicit expressions for the coefficients entering
Eq. (7.3). For simplicity, we put to zero all the cPN

`m ’s except c4PN
22 and c3PN

21 .
We have:
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The GW phase in the SPA is computed from the Qω using (7.2) and it is
given by the Taylor series

Ψ(f) =
3(πMf)−5/3

128ν

∑
i

ϕi(πMf)i ; (7.20)

with the coefficients:
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Figure 7.2: 1.35M� + 1.35M� binary with Sly EOS. Inference of Λ̃ with
different waveform model on different frequency intervals [fmin, fmax] with
different SNR. The vertical line corresponds to the injected value Λ̃SLy =
392.231. Irrespectively of the value of SNR, the 3.5PN baseline introduces a
strong bias (and spread) in the measure of Λ̃. By contrast this is practically
reabsorbed when using the quasi-5.5PN point-mass baseline. The dashed
vertical lines corresponds to 90% confidence level.
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Figure 7.3: 1.35M� + 1.35M� binary with Sly EOS. Inference of Λ̃ with
different waveform model on different frequency intervals [fmin, fmax] with
different SNR. The vertical line corresponds to the injected value Λ̃SLy =
1020.5. Irrespectively of the value of SNR, the 3.5PN baseline introduces a
strong bias (and spread) in the measure of Λ̃. By contrast this is practically
reabsorbed when using the quasi-5.5PN point-mass baseline. The dashed
vertical lines corresponds to 90% confidence level.
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Figure 7.4: Heuristic explanation of the bias on Λ̃: 1.35M� + 1.35M�
binary, Sly EOS, Λ̃ = 392.231. Shown is the gauge-invariant difference
∆QEOBPN

ω ≡ QEOB
ω − QPN

ω between the EOB Qω and the PN Qω with the
3.5PN orbital baseline augmented by the 6PN-accurate tidal phase. Increas-
ing the value of the tidal parameter to Λ̃ = 442.987 is very effective in reduc-
ing the phase difference accumulated between in the interval ω ∈ [0.02, 0.06]
(dotted vertical line) to a negligible value. Such ω̂ interval correponds to
f ∈ [24, 718] Hz for this binary. The upper frequency limit corresponds to
957.4 Hz.
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Figure 7.5: Comparison between the point-mass (nonspinning) orbital phas-
ing for q = 1 QEOB

ω −QPN
ω difference up to (approximate) merger time. The

vertical lines mark the 10Hz, 20Hz, 718Hz or 1024Hz for a (1.35 + 1.35)M�
binary. The quasi-5.5PN curve is always much closer to the EOB one than
the other PN order approximants. See Table 7.3 for the accumulated phase
differences.
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Figure 7.6: Robustness of the quasi-5.5PN TaylorF2 approximant. The
vertical lines correspond to the same four values of [ω̂1, ω̂2] listed in the first
two columns of Table 7.3.
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Figure 7.7: Robustness of the quasi-5.5PN TaylorF2 approximant: spins
aligned (top) and spins anti-aligned (bottom) with the orbital angular mo-
mentum. The EOB/PN agreement is always improved by the use of the
quasi-5.5PN orbital phasing. The vertical lines correspond to the same four
values of [ω̂1, ω̂2] listed in the first two columns of Table 7.3.
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Chapter 8

Factorization and resummation:
A new paradigm to improve
gravitational wave amplitudes.
II: the higher multipolar
modes [4]

8.1 Introduction

The parameter estimation of gravitational wave events [38, 39, 39, 40, 41, 42,
43] relies on analytical waveform models, possibly calibrated (or informed) by
Numerical Relativity simulations [31, 32, 33, 30, 34, 35, 36, 37]. The effective-
one-body (EOB) model is currently the only analytical model available that
can be consistently used for analyzing both black hole binaries and neutron
star binaries [157, 206, 247, 212, 213, 246]. One of the central building blocks
of the model is the factorized and resummed (circularized) multipolar post-
Newtonian (PN) waveform introduced in [8] for nonspinning binaries. This
approach was then straightforwardly generalized in [175] to spinning binaries.
Already Ref. [175] pointed out that, in the test-particle limit, the amplitude
of such resummed waveform gets inaccurate in the strong-field, fast velocity
regime, when the spin of the central black hole is & 0.7. In the same study,
an alternative factorization to improve the test-mass waveform behavior also
for larger values of the spin was discussed. More pragmatically, Ref. [305]

219



220

finally suggested to improve the analytical multipolar waveform amplitude
(and fluxes) of [175] by fitting a few parameters, describing effective high-
PN orders, to the highly-accurate fluxes obtained solving numerically the
Teukolsky equation [93]. Although this approach is certainly useful to reliably
improve the radiation reaction force that drives the transition from quasi-
circular inspiral to plunge [226, 61, 306] for a large mass-ratio binary, the
question remains whether the domain of validity of purely analytical results
can be enlarged in some way. This question makes special sense nowadays,
since PN calculations of the fluxes are available at high order [298, 307]
and one would like to use them at best. In addition, following for example
the seminal attitude of Refs. [167, 8], one has to keep in mind that the
test-particle limit should always be seen as a useful theoretical laboratory to
implement new methods and test new ideas that could be transferred, after
suitable modifications, to the case of comparable-mass binaries.

Reference [9] gave a fresh cut to this problem by exploring a new way
of treating the residual, PN-expanded, amplitude corrections to the wave-
forms (i.e., the outcome of the factorization of Refs. [8, 175]) that consists
of: (i) factorizing it in a purely orbital and a purely spin-dependent part;
(ii) separately resumming each factor in various ways, notably using the
inverse Taylor (“iResum”) approximant for the spin-dependent factor. Us-
ing the test-particle limit to probe the approach, Ref. [9] showed that such
factorization–and–resummation paradigm yields a rather good agreement be-
tween the ` = 2 numerical and analytical waveform amplitudes up to (and
often beyond) the last stable orbit (LSO). The contextual preliminary analy-
sis of the comparable-mass case of [9] also suggests that such improved wave-
form amplitudes are more robust than the standard ones and may eventually
need less important NR-calibration via the next-to-quasi-circular correction
factor [167].

The purpose of this chapter is to deepen and refine the investigation of
Ref. [9] as well as to generalize it to higher multipoles up to ` = 6. The chap-
ter is organized as follows. In Sec. 8.2 we review and improve the test-particle
results of [9] and generalize the procedure up to ` = 6 modes. Section 8.3
brings together all the PN-expanded results currently available for the spin-
dependent waveform amplitudes [297, 76, 75], notably written in multipolar
form, while Sec. 8.4 explicitly shows the spin-dependent part of the factor-
ized residual amplitudes, both in the standard form of [8, 175], and with the
factorization of the orbital terms. The approach to the resummation is un-
dertaken in Sec. (8.5), in particular by discussing the hybridization (notably
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of the orbital terms) with the test-particle information.

8.2 Test-particle limit: improving the resid-

ual multipolar amplitudes

The purpose of this Section is to review and improve the test-particle results
of Ref. [9] for the ` = 2 multipole and then generalize them to all multipoles
up to ` = 6. Each waveform multipole is written as Eq. (4.36), as explained
in Sec. 4.4 and references therein. Such PN correction is then written in
factorized form [159] as

ĥ`m(x) = Ŝ
(ε)
eff ĥ

tail
`m f`m(x, S1, S2). (8.1)

We briefly remind the reader that here the first factor, Ŝ
(ε)
eff , is the parity-

dependent effective source term [8], defined as the EOB effective energy along
circular orbits, for ε = 0, or the Newton-normalized orbital angular momen-
tum, for ε = 1; the second factor, ĥtail

`m ≡ T`me
iδ`m is a complex factor that

accounts for the effect of the tails and other phase-related effects [8, 308, 278];
the third factor, f`m is the residual amplitude correction. This latter factor
can be further resummed in various ways, that notably depend, when ν 6= 0
and S1,2 6= 0, on the parity of m. For example, the original proposal of [8],
implemented when the objects are nonspinning, was to first compute from
the f`m the (Taylor-expanded) functions

ρ`m ≡ Tn
[
(f`m)1/`

]
, (8.2)

where Tn[. . . ] indicates the Taylor expansion up to xn and then define the
resummed f`m by replacing their Taylor expansions with (ρ`m)`. When spins
are present, the ρ`m functions are naturally written as the sum of an orbital
(spin-independent) and a spin-dependent contribution as

ρ`m = ρorb
`m + ρS

`m. (8.3)

Reference [9] proposed then to improve the strong-field behavior of the ρ`m’s
functions by (i) writing them as the product of a purely orbital and purely
spin-dependent factors as

ρ`m = ρorb
`m ρ̂

S
`m, (8.4)
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where ρ̂S
`m ≡ Tn[1 + ρS

`m/ρ
orb
`m ], and then resumming each separate factor in a

certain way that we detail below 1. Although there is no first-principle rea-
son for treating the orbital and spin contributions as separate multiplicative
factors, such representation proved useful for interpreting the global behavior
of the ρ`m’s as well as for improving it near (or even below) the LSO. For
instance, it was argued that a sort of compensation between the spin and or-
bital factors should occurr in order to guarantee a good agreement between
the numerical and analytical functions close to the LSO, especially for large
and positive values of the black hole spin. To accomplish such effect, it is
necessary to resum each factor (or at least the spin-dependent one), that is
given by a truncated Taylor series, in a specific way. In particular, it was
suggested [9] that a simple and efficient method to temperate the divergent
behavior of ρ̂S

`m towards the LSO is to take its inverse Taylor series (or inverse
resummed representation, “iResum”) defined as

ρ̄S
`m =

(
Tn

[(
ρ̂S
`m(x)

)−1
])−1

. (8.5)

Reference [9] illustrated that, due to the large amount of PN information
available, it is possible to achieve satisfactory numerical/analytical agreement
using different truncated PN series as a starting point, though lower-PN
orders (e.g. 6PN) are preferable with respect to high-PN orders (e.g. 10PN
or 20PN)2. The analysis [9] also showed that, once that the factorization and
resummation paradigm is assumed, one is free to choose at what PN order to
work, provided the resummed amplitude shows a good agreement with the
numerical curves. For consistency with previous, EOB-related, works [159],
in [9] it was chosen to keep the orbital part at 5PN order, and in Taylor-
expanded form, together with the spin-dependent factor truncated at 3.5PN.
This choice was made so to be consistent with the spin-dependent information
used in the comparable-mass case. For the ` = m = 2 multipole, this yielded
rather acceptable analytical/numerical agreement (' 1%) up to the LSO for
all spin values between −0.99 and +0.99 (see Fig. 4 of [9]).

1To simplify the notation, note that we are using here the same symbol ρ`m, for both
the orbital-additive and orbital-factorized amplitudes. By contrast, Ref. [9] was addressing
with ρ̃`m the orbital-factorized amplitudes.

2It has to be stressed that the impact of high-PN information, i.e. larger than 10 PN,
has not been assessed throughly yet, except for preliminary investigations reported in
Ref. [9]. We are not going to do this in the current work, but we postpone it to future
studies.
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Here we relax the constraint of being consistent with previous EOB-
related works and present, instead, a new recipe to further improve ` = m = 2
results of Ref. [9] and extend them to higher multipolar modes. To do so,
we: (i) generally increase the PN order, possibly requiring it to be the same
for both the spin and orbital factors; (ii) resum the orbital factor using some
Padé approximant, to be chosen according to the PN order and the multipole;
(iii) resum the spin factor taking its inverse Taylor approximant (iResum)
as proposed in [9], see Eq. (8.5) above. We find that, modulo a few ex-
ceptions to be detailed below, a good compromise is reached by working at
relative 6PN order for each mode3 and then taking a Padé P 4

2 approximant4

for the orbital factor5. There are exceptions to this choice (see 2nd column
of Table 8.1). For example, the (2,1) mode is better represented using a
P 5

1 approximant, the (3,1) using a P 3
2 (i.e. keeping ρorb

32 at 5PN accuracy),
while for (4, 2), (5, 1) and (6, 1) the orbital factor in Taylor-expanded form
is preferable. These choices are made so that the analytical ρ`m’s remain
as close as possible to the numerical one up to the LSO (and possibly be-
yond). This is illustrated in Fig. 8.1, which displays all ρ`m’s functions up
` = 6. The figure collects five values of the dimensionless black-hole spin,
â = (−0.99,−0.5, 0,+0.5,+0.99). The analytical functions are depicted as
colored curves, while the numerical data are black. Both curves extend up to
the light-ring, while the filled circle mark the LSO location. The â = +0.99
curves extend up to the highest-frequency (purple, lowest curve) while the
â = −0.99 is at the top of each panel and is depicted red. The information
encoded in the figure is complemented by Table 8.1, that lists, for each multi-
pole, the Padé approximant adopted together with the numerical/analytical
fractional difference evaluated at the LSO. The figure also highlights that
the numerical/analytical agreement looks improvable (for large values of â)
for some subdominant modes, especially ρ31 and ρ62, where the analytical

3This means that the functions ĥ
(ε)
`m in Eq. (4.36) are taken at 6PN, i.e. as 6th-order

polynomials in x. This implies that the global PN-accuracy we retain is actually higher

than 6PN , because of the presence of the Newtonian prefactors h
(N,ε)
`m .

4To ease the notation, we indicate with Pnd the Padé approximant of order (n, d), where
n is the highest power of the numerator and d the highest power at the denominator of
the rational function.

5A priori one would like to use diagonal Padé approximants, since they are known to
deliver, in general, the closest approximation to the full function. However, we found that
spurious poles are always present in this case. This fact prevents us from making this
choice to preserve the simplicity of the approach.
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functions are systematically above the numerical ones towards the boundary
of the x-domain considered. The reason behind this behavior is that both
P 3

2 (ρorb
32 ) and P 4

2 (ρorb
62 ) develop a spurious pole on the real x-axis, at x ≈ 0.86

for the former and at x ≈ 0.82 for the latter. In this respect, we stress that
our choices about the PN truncation order and the consequent resummation
strategies should be seen as a compromise between simplicity (i.e. using rel-
atively low-order PN-information) and achievable accuracy (i.e. good global
agreement with the numerical functions). For example, one finds that the
numerical/analytical disagreement for ρ31 at the LSO for â = +0.99 can be
reduced to just −0.17% by: (i) taking ρorb

31 at only 4PN order and resumming
it with a P 3

1 approximant, while (ii) ρ̂S
31 is taken up to 8PN order and then

resummed as usual with its inverse Taylor series. Similarly, one also easily
finds that the global behavior of the (3, 3), (4, 4) and (5, 5) modes can be
improved by just keeping the orbital factor in Taylor-expanded form instead
of replacing it with its (4, 2) Padé approximant. To figure out the relevance
of any of these improvements, it is convenient to inspect the total energy
flux reconstructed using the resummed ρ`m’s. At a practical level, some an-
alytical/numerical differences that look large on the ρ`m’s are subdominant
within the flux and can be practically ignored. Figure 8.2 compares Newton-
normalized energy fluxes, with all multipoles summed together up to ` = 6
included, as follows: (i) the numerical flux, that can be considered as “ex-
act” since its numerical uncertainty is of 10−14 [309] (i.e. several orders of
magnitude smaller than the relative differences illustrated in Table 8.1); (ii)
the analytical flux that is obtained from the ρ`m’s shown in Fig. 8.1, where
the choices for the Padé of the orbital part are listed as non-bold face in
Table 8.1 (dot-dashed, orange line); (iii) the analytical flux obtained by tak-
ing the ρorb

33 , ρorb
44 and ρorb

55 as plain 6PN-accurate Taylor expansions; (iv) the
analytical flux where the 6PN-accurate ρ`m’s are neither further factorized
nor resummed, following the original paradigm of Refs. [8, 175]. The ver-
tical line marks the LSO location. The figure illustrates how changing the
treatment of the orbital part of the subdominant modes mentioned above
allows one to reduce the fractional difference around the LSO from 10% to
approximately 5%. It is also to be noticed the good qualitative behavior of
the flux also below the LSO, close to the light ring where the flux diverges.
By contrast, the flux obtained using the standard, nonresummed, ρ`m ampli-
tudes in the form of [8, 175], though pushed to higher PN order as discussed
above, is reliable only up to x ≈ 0.2. We also mention that, even though the
choice of P 3

1 (ρorb
31 )ρ̄S

31 with ρ̂S
31 taken at 8PN order can strongly reduce the
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numerical/analytical differences displayed in Fig. 8.1, in practice this does
not have any notable consequence on the total flux. The same statement also
holds for the (6, 2) mode: the near-LSO behavior of the analytical ρ62 can
be improved by working at 8PN, both in the spin and orbital factors (with a
P 6

2 approximant for this latter), without however producing any important
impact on the total flux computation.

Let us finally mention in passing that another way to improve the strong-
field behavior of the ρ`m’s (and thus of the flux) is by including some effective
high-PN order parameter that can be informed (i.e., calibrated or even fit-
ted) to the numerical data. This approach might be necessary, for example,
when dealing with precision calculations that require an accurate represen-
tation of the radiation reaction in the near-LSO regime, e.g., estimate of the
final recoil velocity when the central black hole is quasi-extremal with the
spin aligned with the orbital angular momentum [306]. As an exploratory
investigation dealing with just ρ22, we found that it is sufficient to introduce
a 6.5PN (effective) parameter at the denominator of ρ̄S

22 and tune it to re-
duce by more than an order of magnitude the fractional difference between
the analytical and numerical functions up to the LSO. More precisely, we
have that ρ̄S

22 has the structural form 1/(1+ âx3/2 + ......+ âc13/2x
13/2), where

âc13/2x
13/2 is formally the first spin-orbit term beyond what we are using in

this work. One easily checks that the value c13/2 = 5.1 is sufficient to obtain
a fractional disagreement of the order 0.15% at the LSO for â = +0.99. This
illustrative example suggests that there is a simple, though effective, way to
incorporate the information encoded in the numerical data within the ana-
lytical description of the waveform amplitudes. More work will be needed to
put this approach in a more systematic form. In particular one may hope
that a suitable modification of this method, probably with a few more pa-
rameters, could be used to obtain an accurate, semi-analytic, representation
of the circularized fluxes also up to the light-ring.
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8.3 Comparable masses: Post-Newtonian ex-

panded results

8.3.1 Waveform amplitudes: spin-orbit and quadratic-
in-spin terms

We start by summarizing here new results for the PN-expanded, nonprecess-
ing, multipolar waveform amplitudes up to: (i) next-to-next-to-leading-order
(NNLO) for the spin-orbit terms; (ii) next-to-leading-order (NLO) for the
spin-spin terms and (iii) for the leading-order (LO) spin-cube terms. These
waveform amplitudes were computed by A. Bohé and S. Marsat [252] as part
of a project that aims at obtaining the complete waveform at this PN order
(we recall that the corresponding calculation of the PN-expanded energy flux
is complete [310, 77, 76, 75]), and kindly shared with us before publication.
Here we only list the PN-expanded multipolar waveform amplitudes with
their complete, currently known, spin dependence. For completeness, we
also include the known, ν-dependent, orbital terms [169]. To start with, let
us set the notations and define our choice of spin variables. We denote with
ν = m1m2/M

2 the symmetric mass ratio, with M = m1 +m2 and we adopt
the convention that m1 ≥ m2. From the conserved norm, dimensionful, spin
vectors (S1,S2), PN results are usually expressed in terms of the spin combi-
nations S ≡ S1+S2 and Σ ≡M (S2/m2 − S1/m1). For spin-aligned binaries,
where ` indicates the unit vector normal to the orbital plane (i.e., the di-
rection of the orbital angular momentum), one deals with the projections of
the spin-vectors along `, i.e., S` = S · ` and Σ` = Σ · `. Then, it is common
practice to work with dimensionless spin variables χ1,2 ≡ S1,2/(m1,2)2 and in
the PN-expansions the spin vectors always appear divided by the square of
the total mass, so that one has

Ŝ` ≡
S`
M2

= (X1)2χ1 + (X2)2χ2, (8.6)

Σ̂` ≡
Σ`

M2
= X2χ2 −X1χ1, (8.7)

where we introduced the usual convenient notation Xi ≡ mi/M , which yields
X1+X2 = 1, X1X2 = ν and, since X1 ≥ X2, we have X1 =

(
1 +
√

1− 4ν
)
/2.

From the dimensionless spin variables, the waveform spin-dependence is
sometimes also written via their symmetric and antisymmetric combinations
(see e.g. [175, 177, 159, 36]), χS ≡ (χ1 + χ2) /2 and χA ≡ (χ1 − χ2) /2.
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Here, we express the waveform spin dependence using the Kerr parameters
of the two black holes divided by the total mass of the system, namely via
the variables

ãi ≡
ai
M

=
Si

Mmi

= Xiχi i = 1, 2. (8.8)

This choice is convenient for two reasons: (i) the analytical expression get
more compact as several factors

√
1− 4ν are absorbed in the definitions, and

one can more clearly distinguish the sequence of terms that are “even”, in
the sense that are symmetric under exchange of body 1 with body 2 and are
proportional to the “total Kerr dimensionless spin” â0 ≡ ã1 + ã2 from those
that are “odd”, i.e. change sign under the exchange of body 1 with body 2 and
are proportional to the factor

√
1− 4ν(ã1− ã2); (ii) in addition, one can infer

the (spinning) test-particle limit from the general ν-dependent, expressions
just by inspecting them visually. In fact, in this limit, m2 � m1, ã12 → 0 and
ã1 becomes the dimensionless spin of the massive black hole of mass m1 ≈M ,
ã1 → S1/(m1)2. Similarly, the spinning particle limit around Kerr is simply
obtained by putting ν = 0, since ã2 just reduces to the usual spin-variable
used in PN or numerical calculations [311, 312, 313, 314], σ ≡ S2/(m1m2).
To keep the expressions compact, we also define the following combinations
of the ãi of Eq. (8.8)

â0 ≡ X1χ1 +X2χ2 = ã1 + ã2, (8.9)

ã12 ≡ ã1 − ã2, (8.10)

X12 ≡ X1 −X2 =
√

1− 4ν. (8.11)

Equations (8.6)-(8.7) above then simply read

Ŝ` =
1

2
(â0 + ã12X12) , (8.12)

Σ̂` = −ã12. (8.13)

We report below the complete modulus of ĥ`m up to NNLO in the spin-orbit
coupling and up to NLO in the spin-spin coupling. Note however that for the
m = odd multipoles we defactorized the factor X12 (that is usually seen as

part of the Newtonian prefactor h
(N,ε)
`m ) to avoid the appearence of a fictitious

singularity when ν = 1/4 in the spin-dependent terms proportional to ã12

(see also [177]). To have a consistent notation, when m = odd we focus on
the quantities

h̃
(ε)
`m = X12ĥ

(ε)
`m. (8.14)
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In conclusion, the modulus of the Newton-normalized PN-expanded, multi-
polar, waveform we use as starting point reads:

|ĥ(0)
22 | = 1 +

(
−107

42
+

55

42
ν

)
x−

[
−2π + â0 +

1

3
ã12X12

]
x3/2

+

[
â2

0 −
2173

1512
− 1069

216
ν +

2047

1512
ν2

]
x2

+

[
−π
(

107

21
− 34

21
ν

)
− â0

(
163

126
+

46

63
ν

)
− ã12X12

(
157

126
+

22

21
ν

)]
x5/2

+

{
27027409

646800
− 113

63

(
ã2

1 +
271

113
ã1ã2 + ã2

2

)
− 2π

(
â0 +

1

3
ã12X12

)
+

2

3
π2 +

121

63
â0ã12X12 −

856

105
eulerlog2(x)

+

[
−278185

33264
+

20

21

(
ã2

1 +
24

5
ã1ã2 + ã2

2

)
+

41

96
π2

]
ν − 20261

2772
ν2 +

114635

99792
ν3

}
x3

+

[
â0

(
1061

168
+

4043

168
ν +

499

168
ν2

)
+ ã12X12

(
241

216
+

5135

1512
ν − 79

72
ν2

)]
x7/2,

(8.15)
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|h̃(1)
21 | = X12 −

3

2
ã12x

1/2 +X12

(
−17

28
+

5

7
ν

)
x+

[
ã12

(
18

7
+

33

14
ν

)
+X12

(
−43

14
â0 + π

)]
x3/2

+

[
ã12

(
â0 −

3

2
π

)
+X12

(
− 43

126
+ 2â2

0 − 2ã1ã2 −
509

126
ν +
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168
ν2
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x2

+

[
ã12

(
−131

72
+
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ν +
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126
ν2

)
+ â0X12

(
−331

504
+
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63
ν

)]
x5/2,

(8.16)

|h̃(0)
33 | = X12 +X12(−4 + 2ν)x+

[
ã12

(
−1

4
+

5

2
ν

)
+X12

(
−7

4
â0 + 3π

)]
x3/2

+X12

(
3

2
â2

0 +
123

110
− 1838

165
ν +

887

330
ν2

)
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+

[
ã12

(
−119

60
+

27

20
ν +

241
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ν2

)
+ â0X12

(
139

60
− 83

60
ν

)]
x5/2, (8.17)

|ĥ(1)
32 | = 1 +

1

1− 3ν

{
(â0 − ã12X12)x1/2 +

(
−193

90
+

145

18
ν − 73

18
ν2

)
x

+
1

6

[
â0(−39 + 73ν) + ã12X12(23 + 13ν) + 12π(1− 3ν)

]
x3/2

}
, (8.18)

|h̃(0)
31 | = X12 −

2

3
X12(4 + ν)x+

[
ã12

(
−9

4
+

13

2
ν

)
+X12

(
1

4
â0 + π

)]
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+

[
−4(ã2

1 + ã2
2) +X12

(
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3

2
â2

0

)]
x2

+
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(
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)
+X12â0

(
−79
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+
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36
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x5/2, (8.19)
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|ĥ(0)
44 | = 1 +

1

1− 3ν

{
1

330
(−1779 + 6365ν − 2625ν2)x

+
1

15

[
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]
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+
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x2

}
, (8.20)

|h̃(1)
43 | = X12 +

1

−1 + 2ν

{
5

4

[
ã12(1− 2ν)− â0X12

]
x1/2 +X12

(
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(8.21)

|ĥ(0)
42 | = 1 +

1

1− 3ν

{
1

330
(−1311 + 4025ν − 285ν2)x

− 1

15

[
2â0(1− 3ν) + ã12X12(38− 78ν)− 30π(1− 3ν)

]
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+

(
1038039

200200
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17160
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, (8.22)

|h̃(1)
41 | = X12 +

1

−1 + 2ν

{
5

4

[
ã12(1− 2ν)− â0X12

]
x1/2 +X12

(
101

33
− 337

44
ν +

83

33
ν2

)
x

}
.

(8.23)

8.3.2 Cubic-order spin effects

We are also going to incorporate leading-order spin-cube effects in the wave-
form amplitudes. To do so, we start from the corresponding energy fluxes,
that were recently obtained in Ref. [76]. The analytically fully known spin-
dependence of the energy flux has the following structure

FS =
32

5
ν2x5

[
x3/2fLO

SO + x2fLO
SS + x5/2fNLO

SO

+x3fNLO
SS + x7/2

(
fNNLO

SO + fLO
SSS

)]
. (8.24)

All terms, except the cubic ones, can be obtained by multiplying each mul-
tipolar amplitude of the previous section by its corresponding “Newtonian”
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term, taking the square and finally summing them together. The spin-cube
information we shall need in the next section is included in the fLO

SSS term
above, though one has to remember that fLO

SSS is actually given by two in-
dependent multipolar contributions, one coming from the cubic-in-spin mass
quadrupole and another from the cubic-in-spin current quadrupole. The full
term is given in Eq. (6.19) of [76], but, for the purpose of this paper, S. Marsat
kindly separated for us the two partial multipolar contributions, that read

f sss
22 = −2

3

(
â3

0 + 3â2
0ã12X12

)
x7/2, (8.25)

f sss
21 = −

[
1

12
â0ã

2
12

+

(
5

24
ã2

1 +
1

4
ã1ã2 +

5

24
ã2

2

)
ã12X12

]
x7/2. (8.26)

It is easy to verify that by taking the sum fSSS
22 + fSSS

21 one obtains Eq. (6.19)
of [76] once specified to the black-hole case, i.e. with κ+ = 2 = λ+, κ− =
0 = λ− and using Eqs. (8.6)-(8.7) above.

8.3.3 PN-expanded energy and angular momentum along
circular orbits

To implement the factorization of the waveform amplitudes (and fluxes) in
order to extract the f`m and ρ`m residual amplitude corrections, one needs the
PN-expanded effective source Ŝ

(ε)
eff , namely the effective energy and angular

momentum of the system along circular orbits. In addition, also the total,
real, energy is needed, since it enters the tail factor. Defined as µ ≡ m1m2/M
the reduced-mass of the system, the µ-normalized PN-expanded energy along
circular orbits reads

Êtot(x) ≡ Etot

µ
= Êorb(x) + ÊSO(x) + ÊSS(x), (8.27)
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and is written as the sum of an orbital term, a spin-orbit term (SO) and a
quadratic-in-spin term (SS). The 3PN-accurate orbital term reads

Êorb(x) = 1− 1

2
νx

{
1−

(
3

4
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ν

12
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x

+
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5184
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]
x3

}
, (8.28)

while the spin-orbit term is

ÊSO(x) = −1

6
(7â0 + ã12X12)νx5/2

+
1

4

[
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x9/2, (8.29)

and finally the quadratic-in-spin contribution

ÊSS(x) =
1

2
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0νx
3

+
1

36
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The Newton-normalized angular momentum incorporating up to NLO spin-
orbit terms reads

ĵtot(x) = 1 +
1

2

(
3 +

ν

3

)
x− 5

12
(7â0 + ã12X12)x3/2

+

[
1

8

(
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+
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[
−(77â0 + 35ã12X12) +

1
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(427â0 + 7ã12X12)ν

]
x5/2. (8.31)
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Finally, the PN-expanded effective energy along circular orbits is obtained by
PN-expanding the usual relation between the real and effective, µ-normalized,
energy along circular orbits [28],

Êeff =
Eeff

µ
= Tn

[
1 +

1

2ν
(Ê2

tot − 1)

]
. (8.32)

8.4 Factorized waveform amplitudes

8.4.1 Factorizing the source and tail factor: the resid-
ual amplitudes

Now that all the necessary analytical elements are introduced, we can finally
compute the residual amplitude corrections when ν 6= 0 by factorizing tail
and source from Eqs. (8.15)-(8.23), (8.25) and (8.26). Focusing first on the
even-m case, the PN-expanded ρ`m’s functions are obtained as

ρ`m(x; ν, ã1, ã2) = Tn

( |ĥ`m(x)|
|ĥtail
`m |Ŝ

(ε)
eff

)1/`
 , (8.33)

where Ŝ
(ε)
eff (x) is either Êeff when ` + m is even, or ĵtot when ` + m is odd,

while |ĥtail| is the modulus of the tail factor introduced in Eq. (4.39) whose
explicit expression is given in Eq. (8.37) below. The Taylor expansion Tn[. . . ]

is truncated at the same n-PN order of the |h(ε)
`m|. The functions ρ`m have

the form 1 + c`m1 x + . . . and, like in the test-particle case, are given as the
sum of orbital and spin terms as

ρ`m(x; ν, ã1, ã2) = ρorb
`m (x; ν) + ρS

`m(x; ν, ã1, ã2) . (8.34)

For the odd-m case, the same factorization yields the function

δmf`m = X12f
orb
`m + f̃S

`m, (8.35)

that is obtained as the following Taylor expansion

δmf`m = Tn

[
|h̃`m|
|ĥtail
`m |Ŝ

(ε)
eff

]
, (8.36)
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where, for consistency with notation used in Ref. [9], we also used δm ≡ X12.
Finally, to perform this calculation, we also need the Taylor expansion of the
modulus of the tail factor, that is given by [159]

|ĥtail
`m (x)|2 =

4πEtotmx3/2
∏`

s=1

(
s2 + 2Etotmx3/2

)2

(`!)2 (1− e−4πmEtot)
. (8.37)

When factorizing out that tail and effective source factors from the waveform
amplitudes of Eqs. (8.15)-(8.23), as well as from the spin-cube flux terms,
Eqs. (8.25) and (8.26), one finally finds the following spin-dependent terms:

ρS
22 = −

(
â0

2
+

1

6
ã12X12

)
x3/2

+
â2

0

2
x2 −

[
â0

(
52

63
+

19

504
ν

)
+

(
50

63
+

209

504
ν

)
ã12X12

]
x5/2 (8.38)

+

[(
−11

21
+

103

504
ν

)
â2

0 +

(
−19

63
+

10

9
ν

)
ã1ã2 +

221

252
â0ã12X12

]
x3

+

[
â0

(
32873

21168
+

477563

42336
ν +

147421

84672
ν2

)
− ã12X12

(
23687

63504
− 171791

127008
ν +

50803

254016
ν2

)
+

(
7

12
â3

0 −
1

4
â2

0ã12X12

)]
x7/2,

(8.39)

ρS
32 =

1

3(1− 3ν)
(â0 − ã12X12)x1/2

+
1

162(1− 3ν)2

[(
−1433

10
+ 553ν − 797

2
ν2

)
â0 −

(
−1793

10
+ 427ν +

607

2
ν2

)
ã12X12

]
x3/2,

(8.40)

ρS
42 =

1

30

(
1

−1 + 3ν

)
[â0(1− 3ν) + ã12X12(19− 39ν)]x3/2, (8.41)

ρS
44 =

1

30

(
1

−1 + 3ν

)
[â0(19− 57ν)− ã12X12(−1 + 21ν)]x3/2, (8.42)
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and similarly

f̃S
21 = −3

2
ã12x

1/2 +

[
ã12

(
110

21
+

79

84
ν

)
− 13

84
â0X12

]
x3/2

+

[
−27

8
(ã2

1 − ã2
2) +

3

8
X12

(
ã2

1 +
10

3
ã1ã2 + ã2

2

)]
x2

+

[
ã12

(
−3331

1008
− 13

504
ν +

613

1008
ν2

)
+ â0X12

(
−443

252
+

1735

1008
ν

)
+

3

4
â2

0ã12

]
x5/2,

(8.43)

f̃S
31 =

[
ã12

(
−9

4
+

13

2
ν

)
+

1

4
â0X12

]
x3/2 +

[
−4(ã2

1 − ã2
2) +

3

2
â2

0X12

]
x2

+

[
ã12

(
41

8
− 137

9
ν − 5

2
ν2

)
+ â0X12

(
−65

72
+

443

36
ν

)]
x5/2, (8.44)

f̃S
33 =

[
ã12

(
−1

4
+

5

2
ν

)
− 7

4
â0X12

]
x3/2 +

3

2
â2

0X12x
2

+

[
ã12

(
−233

120
+

29

15
ν +

241

30
ν2

)
+ â0X12

(
313

120
− 83

60
ν

)]
x5/2, (8.45)

f̃S
41 = f̃S43 =

5

4

(
1

−1 + 2ν

)
[ã12(1− 2ν)− â0X12]x1/2. (8.46)

After applying the proper change of variables, one easily checks that the
NLO contributions we computed here do coincide with Eqs. (85)-(95) of
Ref. [159]. Similarly, the NNLO spin-orbit contribution to ρ22, that was also
computed in Ref. [9] is checked with the same term computed in Ref. [36].

8.4.2 Factorization of the orbital part

Likewise the test-particle case above, we now apply the prescription of Ref. [9]
of factorizing the orbital parts of ρS

`m and f̃S
`m. After this operation, the

factorized residual amplitudes are written as

ρ`m = ρorb
`m ρ̂

S
`m m = even (8.47)

δmf`m =
(
ρorb
`m

)`
f̂S
`m m = odd (8.48)
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where, as in Ref. [9], the m = odd spin factors are written as the sum of two
separate terms

f̂S
21 = X12f̂

S(0)

21 −
3

2
ã12x

1/2f̂
S(1)

21 , (8.49)

f̂S
33 = X12f̂

S(0)

33 +

(
−1

4
+

5

2
ν

)
ã12x

3/2f̂
S(1)

33 , (8.50)

f̂S
31 = X12f̂

S(0)

31 +

(
−9

4
+

13

2
ν

)
ã12x

3/2f̂
S(1)

31 , (8.51)

f̂S
43 = X12f̂

S(0)

43 −
5

4
ã12x

1/2f̂
S(1)

43 , (8.52)

f̂S
43 = X12f̂

S(0)

41 −
5

4
ã12x

1/2f̂
S(1)

41 . (8.53)

As shown in Ref. [9], we recall that the need of separating the f̂`m’s function
into two separate terms, one proportional to X12 and another to ã12 times x is

necessary to identify the two functions f̂
S(0)

`m and f̂
S(1)

`m that can be separately

resummed using their inverse Taylor representation. The f̂
S(0),(1)

`m functions
read

f̂
S(0)

21 = 1− 13

84
â0x

3/2

+
3

8

(
â2

0 +
4

3
ã1ã2

)
x2

+ â0

(
−14705

7056
+

12743

7056
ν

)
x5/2, (8.54)

f̂
S(1)

21 = 1−
(

349

252
+

74

63
ν

)
x+

9

4
â0x

3/2

−
(

3379

21168
− 4609

10584
ν +

39

392
ν2 +

â2
0

2

)
x2, (8.55)

f̂
S(0)

31 = 1 +
1

4
â0x

3/2 +
3

2
â2

0x
2 + â0

(
−13

36
+

449

36
ν

)
x5/2, (8.56)

f̂
S(1)

31 = 1− 16

26ν − 9
â0x

1/2

+
1

26ν − 9

(
1− 95

9
ν +

22

3
ν2

)
x, (8.57)
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f̂
S(0)

33 = 1− 7

4
â0x

3/2 +
3

2
â2

0x
2

+ â0

(
−211

60
+

127

60
ν

)
x5/2, (8.58)

f̂
S(1)

33 = 1 +
1

15

(−169 + 671ν + 182ν2

10ν − 1

)
x, (8.59)

f̂
S(0)

41 = f
S(0)

43 = 1− 5

4

(
1

−1 + 2ν

)
â0x

1/2, (8.60)

f̂
S(1)

41 = f
S(1)

43 = 1. (8.61)

Equations (8.49), (8.54) correspond to Eqs. (9)-(10) of [9], while Eq. (8.55)
presents an additional term, â2

0/2, that is the leading-order spin-cube that
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was omitted in [9]. Finally the m = even spin factors read

ρ̂S
22 = 1−

(
â0

2
+

1

6
ã12X12

)
x3/2 +

â2
0

2
x2

+

[(
−337

252
+

73

252
ν

)
â0 −

(
27

28
+

11

36
ν

)
ã12X12

]
x5/2

+

[
221

252
â0ã12X12 −

(
1

84
+

31

252
ν

)
â2

0

+

(
−19

63
+

10

9
ν

)
ã1ã2

]
x3

+

[(
−2083

2646
+

123541

10584
ν +

4717

2646
ν2

)
â0

+

(
−13367

7938
+

22403

15876
ν +

25

324
ν2

)
ã12X12

+
7

12
â3

0 −
1

4
â2

0ã12X12

]
x7/2, (8.62)

ρ̂S
32 = 1 +

(
1

3(1− 3ν)

)
(â0 − ã12X12)x1/2

+
1

27(1− 3ν)2

[
â0

(
−259

20
+ 55ν − 223

4
ν2

)
− ã12X12

(
−379

20
+ 34ν +

245

4
ν2

)]
x3/2, (8.63)

ρ̂S
42 = 1 + ρS

42, (8.64)

ρ̂S
44 = 1 + ρS

44. (8.65)

Note that our Eq. (8.62) above corrects an error in the published ã1ã2 NLO
term of Eq. (8) of Ref. [9].

8.5 Resummation

We now proceed by resumming the orbital and spin factors according to the
prescriptions of Ref. [9], basically extending to higher modes the treatment
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of the ` = 2 modes discussed there. However, we want to have at least the or-
bital multipolar factors, ρorb

`m , consistent with the test-particle ones discussed
above, in order to take advantage of the high-order PN-information avail-
able and of the robustness of its analytical representation in Padé resummed
form. To do so, we follow the, now standard, practice, originally suggested in
Ref. [8], of hybridizing the low-PN-order ν-dependent information available
with the high-PN-order test-mass (ν = 0) one. At the time of Ref. [8], the
test-particle orbital fluxes were analytically known up to 5.5PN order, which
implied that the, nonresummed, ρ`m’s functions where available as polynomi-
als of different order, that is ρorb

22 = 1+x+ ....+x5, ρorb
21 = 1+x+ ....+x4 etc.,

consistent with the global 5.5PN accuracy of the total flux. This prompted,
at the time, the construction of what was called the 3+2 PN approximation,
where the 3PN results were hybridized with two more test-particle PN or-
ders. As we saw above, the availability of PN results of high order [315]
allows us to keep more PN terms in each ρorb

`m ’s, notably up to 6PN relative
accuracy for each (`,m) as a good compromise between simplicity and accu-
racy. Since we are working with relative PN truncations, we give here the 3+3

PN approximation for the ρ`m(x; ν) a different meaning with respect to [8].
More precisely, working at 3+3PN order here means that each ρorb

`m (x; ν) car-
ries the complete test-mass information up to x6, but whenever possible, the
lower PN terms are augmented by the corresponding ν-dependent informa-
tion compatible with the ν-dependent 3PN accuracy. For example, ρorb

22 (x; ν)
formally reads

ρorb
22 (x; ν) = 1 + c1(ν)x+ c2(ν)x2 + c3(ν; log(x))x3

+ c0
4(log(x))x4 + c0

5(log(x))x5

+ c0
6(log(x), log2(x))x6, (8.66)

where (c0
4, c

0
5, c

0
6) are test-particle, ν-independent, coefficients with the cor-

responding dependence on log(x). The function ρorb
21 (x; ν) shares the same

analytical structure, though the ν-dependence of c3 is currently unknown,
since it is a (global) 4PN effect. For higher modes, the ν dependence is
progressively reduced, up to only c1(ν) for the ` = 8 modes [8]. Choosing
the above defined 3+3 PN approximation also means that we adopt the same
Padé resummation, multipole by multipole, detailed in Table 8.1. In this way
we implement, by construction, the consistency with the ν = 0 limit. This
choice opens the question of what would be the magnitude of the systematic
error done by neglecting such, yet-uncalculated, ν-dependent terms. Refer-
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ence [8] analyzed the ν-dependence of a few multipoles and concluded that,
working with Taylor-expanded ρorb

`m , the ν-dependence is mild and that the
effect of the missing terms is small enough to be considered of no importance.
We shall repeat and update that reasoning to our current choices in the next
section, though we anticipate the same conclusion of [8] remains essentially
true here for all examined modes.

We turn now to discussing the resummation of the spinning factors, ρ̂S
`m

and f̂S
`m. We do so by applying the resummation recipe of Ref. [9], that is:

(i) for even-m, we simply resum ρ̂S
`m taking its inverse Taylor representation,

ρ̄S
`m(x; ν), as in Eq. (8.5); (ii) for odd-m, we need to resum separately the

two factors f̂
S(0)

`m and f̂
S(1)

`m . The analytical representation of the two factors

we choose depend on the multipole. More precisely: the factor f̂
S(0)

21 is al-
ways resummed taking its inverse Taylor representation. The same choice

is also adopted to resum f̂
S(1)

`m for ` = 2, but for ` ≥ 3, m = odd case, the

f̂
S(1)

`m are kept in Taylor-expanded form because of the presence of spurious
poles when taking the inverse. The quality of the resummation is assessed
in Figs. 8.3 and 8.4 for a few illustrative binary configurations. Since one
does not have at hand the analogous of the test-mass numerical data for cir-
cularized, comparable-mass, binaries to compare with, our aim here is only
limited to prove the internal consistency of the resummed analytical expres-
sions once taken at different PN orders. To do so, by keeping the orbital
part unchanged, we contrast the functions obtained using the full NNLO
information with the ones truncated at NLO accuracy. The same figures
also display the standard representation of the ρ`m’s, where no additional
factorization or resummation is adopted [175]. The plot illustrates how the
spread between the NLO and NNLO truncations in PN-expanded form is
systematically much larger than the corresponding one obtained with the
factorized and resummed functions. Interestingly, this conclusion remains
true for any configuration analyzed. This makes us conclude that factoriz-
ing and resumming as discussed here is helpful also in the comparable-mass
case, although a precise quantification of the improvement brought by this
procedure should be assessed through a comprehensive comparison between
an EOB model built from iResum waveforms and NR data, in a way anal-
ogous, though more detailed, to what briefly analyzed in [9]. However, to
better grasp the meaning of this result, it is useful to remind the reader that
the merger of a binary black-hole coalescence (defined as the peak of the
` = m = 2 waveform amplitude) will occur at x ≈ 0.3, with x = (ω22/2)2/3
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and ω22 the quadrupolar GW frequency6. As Figs. 8.3 and 8.4 illustrate,
the improvement in the consistency between PN truncations brought by the
resummation is evident precisely in a neighborhood of 0.3. Just to pick some
random examples, this is the case for (1,+0.99,+0.99) and (8,+0.50, 0), con-
figurations where the frequency parameter at merger is x ≈ 0.38 and x ≈ 0.32
respectively [192].

8.5.1 Mild dependence of ρorb
`m to uncalculated ν-dependent

orbital terms

As mentioned above, the idea of hybridizing test-mass orbital information
with the ν 6= 0 one in the waveform amplitudes dates back to Ref. [8].
The rationale behind that choice was to show that the dependence on ν of
the coefficients in the ρorb

`m is mild when 0 ≤ ν ≤ 1/4, so that one does not
introduce a large systematical error in neglecting it. To get to this conclusion,
one was comparing the fractional variation of the coefficients when ν is varied
between 0 and 1/4 (see Sec. IVA in [8]). Here we follow the same approach
and compute the fractional variation in ν for all multipoles up to ` = 6.
The 3PN-accurate ν-dependent terms in ρorb

31 and ρorb
33 that were obtained

only in Ref. [278] are also included. The log(x) terms are evaluated, for
simplicity, at xSchw

LSO = 1/6. The numbers listed in Table 8.2 suggest that,
up to ` = 3, the next missing ν-dependent term might be, on average, of
the order of 20% larger (or smaller) then the test-mass (ν = 0) one (note
however the larger variations of the 2PN coefficient in ρorb

31 and ρorb
32 . One

can then investigate the impact on ρorb
`m of missing ν-dependent corrections

by varying the ν = 0 term by ±30%. Clearly, the operation has to be done
on the P n

d (ρorb
`m ) function. To be concrete on one case, let us analyze the

effect on ρorb
21 , whose known ν-dependence stops at 2PN. Schematically, the

Taylor-expanded function reads

ρorb
21 = 1 + (c1PN

0 + c1PN
ν )x+ (c2PN

0 + c2PN
ν )x2

+
[
c3PN

0 (1 + α)
]
x3 + c4PN

0 x4 + c5PN
0 x5 + c6PN

0 x6, (8.67)

and then one takes its P 5
1 Padé approximant. Here, cnPN

0 indicate the ν = 0
coefficients, while cnPN

ν the corresponding ν-dependent terms. The effect of

6Let us recall that in the test-particle limit this frequency approximately corresponds
to the crossing of the Schwarzschild light ring [316, 167]
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the missing ν-dependent information is parametrized through α. One finds
that, even putting α = ±0.20 with ν = 1/4, the fractional variation in
P 5

1

(
ρorb

21

)
is of the order of 0.04% at the Schwarzschild LSO xSchw

LSO = 1/6, of
the order of 0.9% at x = 1/3 and of the order of 6% at x = 1/2. This value
is close to the LSO location of a Kerr black hole with â = +0.99 and we use
here just for illustrative purposes, since a comparable mass binary, with a
nonnegligible value of ν, is not expected to reach such a high frequency at
merger. Since the waveform amplitude is just (ρ21)2, the fractional differences
above get a factor two in front, which suggests that, within the current
framework, one is expecting the 3PN correction to ρorb

21 to yield an amplitude
correction around merger of just a few percents. Once the calculation of
the waveform will be completed at 4PN accuracy [270, 74, 317, 318, 319],
it will be interesting to concretely probe the reasonable assumptions we are
adopting here. In addition, inspection of the behavior of higher modes, like
ρorb

44 , shows that a variation of the order 20% with respect to the ν = 0
values has an unnaturally large effect on the global behavior of the function
in the strong-field regime (0.3 . x . 0.5), with variations of order 8% at
x = 1/3 and ∼ 30% at x = 1/2. Though we cannot make strong statements,
we are prone to think that the uncalculated ν-dependent terms will provide,
on average, a correction of the order of 10% to the current orbital terms,
consistently with the ν-variation of the 3PN coefficients in ρorb

22 and ρorb
33 , as

in Table 8.2.

8.5.2 Hybridizing test-mass results: the spin informa-
tion

Now that we have justified our approach of hybridizing ν = 0 and ν 6= 0
information in the ρorb

`m functions, one wonders whether an analogous proce-
dure exists for the ρS

`m (and in turn for the factorized ρ̂S
`m). This would allow

to have EOB waveforms fully consistent and complete all over the parameter
space of nonprecessing BBHs7. Such hybridization is rather straightforward
to do by taking advantage of the structure of the ρS

`m and fS
`m functions and

understanding how the spinning test-particle limit builds up. This is espe-
cially evident using the ãi variables, that make the limit look apparent. To
explain the approach, let us first focus on the spin-orbit terms entering the

7Note this is not the case for current EOB waveform models, where the high-order
test-mass analytical information is not incorporated [36, 35, 37]
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ρ`m functions. One sees that, at a given n-PN order of the orbital part, the
corresponding spin-orbit term reads like(

â0(c0 + c1ν + · · ·+ cn−1ν
n−1)

+ ã12X12(d0 + d1ν + · · ·+ dn−1ν
n−1)

)
x(2n+1)/2, (8.68)

as it is clear from Eq. (8.38) that corresponds to 3PN orbital dynamics. Note
that within our writing, the LO spin-orbit coefficients are ν-independent, the
NLO are linear in ν, while the NNLO are quadratic in ν. A similar, though
slightly more complicated, structure is found for the quadratic-in-spin terms,
that, e.g. for ρS

22, are given as the sum of terms proportional to â2
0, ã1ã2 and

â0ã12X12. As for the SO case above, at LO there is no ν dependence, while
it is similarly linear-in-ν at NLO. The ν independent terms in Eq. (8.38)
are those that, combined together when ν → 0, generate the (spinning)
test particle results, see e.g. Refs. [311, 298]. Having understood this, one
can implement the inverse process, namely incorporate the ρS

`m’s (and fS
`m)

obtained from the perturbative calculations of the fluxes of a spinning particle
around a Kerr black hole by imposing the structure given by Eq. (8.68). This
means, in particular, replacing the dimensionless Kerr spin as â → ã1 and
the particle spin as σ → ã2. In other words, on the ν-dependent side, the
next-to-next-to-next-to-leading-order (NNNLO) spin-orbit term will have the
form

c
SONNNLO

ν
22 =

(
cNNNLO

0 â0 +X12ã12d
NNNLO
0

)
x9/2, (8.69)

where
(
cNNNLO

0 , dNNNLO
0

)
are the unknown ν-independent, coefficients. On

the ν = 0 side, the corresponding spin-orbit terms reads

c
SO4.5PN

0
22 =

(
c4.5PN
â â+ c4.5PN

σ σ
)
x9/2. (8.70)

By equating the ν = 0 limit of Eq. (8.70) to this equation, one finds

c
SONNNLO

ν
22 =

(
c4.5PN
â + c4.5PN

σ

2
â0

+X12ã12
c4.5PN
â − c4.5PN

σ

2

)
x9/2, (8.71)
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where c4.5PN
â is analytically known [298] and reads

c4.5PN
â = −8494939

467775
+

2536

315
eulerlog2(x), (8.72)

while the spinning-particle term, c4.5PN
σ , is currently unknown. The same

procedure can be applied to incorporate spinning-particle spin-orbit terms
at higher-PN order and can be extended to the other multipoles, with the
obvious difference that for m-odd multipoles the hybridization procedure
applies to the fS

`m functions. The hybridization of the spinning-particle,
spin-square terms into ρS

22 is done in a similar way. A similar calculation for
the NNLO ( relative 4PN-accuracy) spin-square term yields

c
SSNNLO
ν

22 =

[
1

2
(câ2 + cσ2) â2

0 + (câσ − câ2 − cσ2) ã1ã2

+
1

2
(câ2 − cσ2) â0ã12X12

]
x4, (8.73)

where (cσ2 , câσ, cσ2) are the coefficients entering the spin-square spinning-
particle term at 4PN, that will have the structure

cSS0
22 =

(
câ2 â

2 + câσâσ + cσ2σ2
)
x4, (8.74)

where only câ2 is currently analytically known and reads [298]

câ2 =
18353

21168
. (8.75)

This approach gives us a consistent way of hybridizing the test-mass re-
sult above with the low-PN ν-dependent information. Even if the spinning-
particle terms are not currently published starting from 4PN order, it could
be instructive to investigate the robustness of the results of Fig. 8.3 under the
incorporation of the nonspinning test-particle terms. To do so, we replicate
the procedure done above to incorporate the 4PN and 4.5PN test-particle
terms for the spin-square 5PN and 6PN terms as well as for the 5.5PN spin-
orbit term, that will have the same relation given in Eqs. (8.69)-(8.73) with
the test-particle coefficients. After this is done, we factorize and resum the
hybrid ρ22 as before. Such, test-particle-improved, ρ̄S

22 is consistent with the
ν = 0 function discussed in Sec. 8.2 except for the obvious absence of the
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spin-cube terms coming beyond the NLO as well as of the terms involving
higher powers of the spins up to the sixth-power, that enters at LO in the
6PN term. The effect of the additional ν = 0 terms is illustrated in Fig. 8.5
for (1,+0.99,+0.99) and (8,+0.50, 0), where the hybridized function is con-
trasted with the NNLO one of Fig. 8.3. The figure shows that the effect
is quantitatively important for the case (8,+0.50, 0), notably towards the
merger frequency x ≈ 0.32.

8.6 Multipolar fluxes

In this Section we explicitly report, for completeness, the PN-expanded,
complete, Newton-normalized multipoles of the energy flux up to NNLO
in the spin-orbit coupling, NLO in the spin-spin coupling and LO in the
spin-cube couplings. Though these expressions are obtained as the square of
the Newton-normalized waveform multipoles of Eqs. (8.15)-(8.23), it is con-
venient to have them written down explicitly. Each multipolar contribution
to the flux is written as the product of the Newtonian prefactor FN

`m and the
PN correction F̂`m as

F`m ≡ F
(N,ε)
`m F̂

(ε)
`m , (8.76)

where the PN correction factors explicitly read
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0 −
87691

5292
ν +

5851

1323
ν2

)
x2

+

[(
−428

21
+

178

21
ν

)
π + â0
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ã1ã2 + ã2
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− ã12X12

(
10121

1764
− 30595

882
ν − 16927

3528
ν2

)
+ 3â0ã
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The Newtonian prefactor can be written in closed form as

F
(N,ε)
`m =

1

8π
x3m2(−)`+ε

∣∣∣Rh(N,ε)
`m

∣∣∣2 , (8.86)

where the Newtonian waveform multipole h
(N,ε)
`m is given by Eq. (4.35).

The explicit evaluation of Eq. (8.86) for the multipoles of interest here
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Figure 8.1: Comparison between the factorized and resummed analyti-
cal ρ`m’s (colored online) and the corresponding numerical (exact) func-
tions (black online) up to ` = 6 for values of the BH dimensionless spin
â = (−0.99,−0.5, 0,+0.5,+0.99) (red, orange, green, cyan, blue and purple
respectively). The filled circles mark the LSO location. This plot is obtained
using relative 6PN information for all modes except for: ρ32 that use to 5PN
relative accuracy in ρorb

32 ; ρ66 and ρ61 that use 5PN relative accuracy for ρ̂S
66

and ρ̂S
61. The Padé approximants used on ρorb

`m are listed in second column of
Table 8.1. The same table also lists the numerical/analytical relative differ-
ence at the LSO. The agreement remains good (except for few exceptions,
see text for details) also for â = +0.99.
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Figure 8.2: Test-particle limit: comparison between analytical and numer-
ical “exact” (see text) fluxes for dimensionless black-hole spin â = +0.99.
The functions ρorb

33 , ρorb
44 and ρorb

55 are either resummed using (4,2) Padé ap-
proximants (orange, dot-dashed line) or kept in PN-expanded form up to
(relative) 6PN order. This second choice improves the agreement with the
numerical curve. The dotted line represents the analytical flux where the
total 6PN-accurate ρ`m’s are kept in the standard, nonfactorized, Taylor-
expanded form.
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Table 8.1: Fractional differences between the resummed and the numerical
ρ`m’s at the LSO. From left to right the columns report: the multipolar order;
the Padé approximant chosen for the orbital factor, where the notation P n

d

indicates the approximant of order (n, d); the PN order chosen for the spin-
dependent factors; the fractional difference (ρnum − ρanlyt)/ρnum at xLSO.

(`,m) P ij (ρ
orb
`m ) iR(PN) ∆(x)ρ(x)/ρ|x=xLSO

for −0.99 ≤ â ≤ +0.99
−0.99 −0.5 0 +0.5 +0.7 +0.99

(2, 2) P 4
2 6 −1× 10−4 −3× 10−4 −6× 10−4 −0.002 −0.004 0.026

(2, 1) P 5
1 6 −0.006 −0.004 2× 10−5 0.010 0.019 0.159

(3, 3) P 4
2 6 −4× 10−5 −1× 10−4 −4× 10−4 −0.002 −0.005 −0.058

(3,3) P 6
0 6 −2× 10−5 −6× 10−5 −2× 10−4 −0.001 −0.002 −0.023

(3, 2) P 4
2 6 −0.004 −0.003 −5× 10−5 0.006 0.012 −0.026

(3, 1) P 3
2 6 −3× 10−5 −6× 10−5 −1× 10−4 −3× 10−4 −8× 10−5 0.248

(3,1) P 3
1 8 −2× 10−5 −4× 10−5 −1× 10−4 −8× 10−4 −0.002 −0.0017

(4, 4) P 4
2 6 −2× 10−5 −8× 10−5 −3× 10−4 −0.002 −0.005 −0.088

(4,4) P 6
0 6 −4× 10−6 −3× 10−5 −2× 10−4 −0.001 −0.002 −0.046

(4, 3) P 4
2 6 −0.003 −0.002 −1× 10−4 0.004 0.008 0.004

(4, 2) P 6
0 6 −1× 10−5 −2× 10−5 −5× 10−5 6× 10−4 0.003 0.015

(4, 1) P 4
2 6 −0.003 −0.002 8× 10−6 0.005 0.008 −0.013

(5,5) P 4
2 6 −2× 10−5 −7× 10−5 −3× 10−4 −0.002 −0.037 −0.101

(5,5) P 6
0 6 2× 10−6 −2× 10−5 −1× 10−4 −0.001 −0.034 −0.054

(5, 4) P 4
2 6 −0.003 −0.002 −2× 10−4 0.003 0.005 −0.013

(5, 3) P 4
2 6 −2× 10−5 −6× 10−5 −2× 10−4 −6× 10−4 −7× 10−4 −0.043

(5, 2) P 4
2 6 −0.002 −0.002 8× 10−6 0.004 0.009 0.077

(5, 1) P 6
0 6 1× 10−5 1× 10−5 3× 10−5 1× 10−4 5× 10−4 0.101

(6, 6) P 4
2 5 −4× 10−5 −1× 10−4 −3× 10−4 −5× 10−5 0.002 0.064

(6, 5) P 4
2 6 −0.002 −0.001 −2× 10−4 0.002 0.003 −0.029

(6, 4) P 4
2 6 −2× 10−5 −6× 10−5 −2× 10−4 −8× 10−4 −0.001 −0.035

(6, 3) P 4
2 6 −0.002 −0.001 −1× 10−5 0.003 0.007 0.053

(6, 2) P 4
2 6 −4× 10−6 −2× 10−5 −5× 10−5 2× 10−5 0.001 0.213

(6,2) P 6
2 8 −6× 10−7 −8× 10−7 −7× 10−7 8× 10−5 9× 10−4 0.015

(6, 1) P 6
0 5 −0.002 −0.001 7× 10−6 0.003 0.003 0.028
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Figure 8.3: Nonresummed (black) and resummed (colored) waveform am-
plitudes ρ22 (top panels) and f21 (bottom panels) for a few configurations.
The 3PN-accurate orbital factors are hybridized with test-particle informa-
tion up to relative 6PN order for each mode and then resummed with the
Padé approximants of Table 8.1. The consistency between NNLO and NLO
truncations of the spin dependence is dramatically improved when the fac-
torization and resummation procedure is applied.
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Figure 8.4: Nonresummed (black) and resummed (colored) residual wave-
form amplitudes for ` = 3 multipoles. The 3PN-accurate orbital factors are
hybridized with test-particle information up to relative 6PN order for each
mode, except for the (3, 1) mode that is taken at relative 5PN order, and
then resummed with the Padé approximants of Table 8.1. Likewise the ` = 2
case of Fig. 8.3, the consistency between NLO and NNLO truncations of the
spin dependence is improved by the resummation.
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Table 8.2: Analysis of the fractional variation4cρ
orb
`m
n (ν) = c

ρorb`m
n (ν)/c

ρorb`m
n (0)−1

of the coefficients c
ρorb`m
n (ν).

(`,m) 4cρ
orb
`m

1 (1/4) 4cρ
orb
`m

2 (1/4) 4cρ
orb
`m

1 (1/4, log(1/6))

(2, 2) -0.159884 0.185947 -0.100421
(2, 1) -0.649718 0.224005 ...
(3, 1) 0.0769231 -18.7351 -0.28487
(3, 2) -0.155488 -0.633264 ...
(3, 3) -0.142857 0.260344 -0.0970255
(4, 1) -0.0905316 ... ...
(4, 2) -0.0181065 1.05237 ...
(4, 3) -0.141892 ... ...
(4, 4) -0.230328 0.46265 ...
(5, 1) 0.219436 ... ...
(5, 2) -0.117576 ... ...
(5, 3) -0.0746667 ... ...
(5, 4) -0.176295 ... ...
(5, 5) -0.201232 ... ...
(6, 1) -0.0910973 ... ...
(6, 2) -0.0168919 ... ...
(6, 3) -0.118343 ... ...
(6, 4) -0.119186 ... ...
(6, 5) -0.165766 ... ...
(6, 6) -0.238208 ... ...
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Figure 8.5: Modification of the results of Fig. 8.3 when (nonspinning) test-
particle terms up to 6PN are hybridized with the NNLO ν-dependent wave-
form (see Eqs. (8.71)-(8.73) and text). When ν = 0, one is using here the
same spin-orbit and spin-square analytical information used in Fig. (8.1).
The frequency parameter approximately corresponding to the BBH merger
is x ≈ 0.38 for (1,+0.99,+0.99) and x ≈ 0.32 for (8,+0.50, 0). In this lat-
ter case, the effect of the additional test-particle terms is important towards
merger.
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Chapter 9

Factorization and resummation:
A new paradigm to improve
gravitational wave amplitudes.
III: the spinning test-body
terms [5]

9.1 Introduction

Test-mass results have been crucial to devise robust resummation techniques
for the truncated post-Newtonian expansion that give access to analyti-
cal gravitational waveform and fluxes for circularized, nonprecessing, bina-
ries [139, 8, 175, 9, 4]. Such resummed waveform, and related fluxes, are one
of the crucial building blocks of effective-one-body (EOB) waveform models
for coalescing relativistic binaries [2, 6, 1, 296, 320, 36]. Up to now, resum-
mation of PN-expanded analytical result is the only approach that can be
adopted to improve the behavior of the PN-expansions in the strong-field,
fast velocity regime up to merger [143]. From the very beginning of this
endeavor [139] the development (and testing) of resummation techniques has
been driven by comparisons between some analytically resummed waveform
and numerical waveforms (or fluxes) generated by a nonspinning particle in-
spiralling and plunging into a Schwarzschild or a Kerr black hole [167, 61]. By
contrast, none of the resummation approaches routinely used in state-of-the-
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art EOB models [1, 36] has been tested in the special case where the particle
(which models a test black-hole) is spinning. This was not done up to now
for at least two reasons: (i) on the one hand, robust and accurate numerical
computations of the energy fluxes from a spinning particle on circular orbits
around a Kerr black became available only recently [314, 313, 312]; (ii) on the
other hand, the analytical PN knowledge of the fluxes of a spinning particle
around a Kerr black hole was only known at global 2.5PN order [311] and
only recently pushed to 3.5PN accuracy [296]. This paper builds on previous
works and improves them along two directions: (i) the numerical fluxes of
Refs. [312, 313] are recomputed, in the time-domain, at an improved accuracy
and increasing the number of multipoles. In addition, they are compared with
an analogous calculation performed with a completely independent numeri-
cal code in the frequency domain, finding excellent consistency between the
two methods once the results are linearized in the particle spin; (ii) though
we here only consider the case of a spinning particle around a Schwarzschild
black hole, the 2.5PN accurate results of Ref. [311] are pushed to much higher
PN order, namely relative 5.5PN accuracy for all multipoles of the flux up
to ` = 7. The availability of such new PN information, at high order, al-
lows us to extensively test the standard waveform resummation techniques
of Refs. [139, 8, 175] in a corner of the binary parameter space that had not
been covered before. Similarly, we use these new numerical data to check
new resummation approaches proposed recently in Refs. [9, 4] and that are
going to be partly incorporated in the next generation of EOB waveform
models [321].

9.2 Energy fluxes emitted by a spinning par-

ticle around a Schwarzschild black hole

In this section we consider the energy flux radiated in gravitational waves by
a spinning particle on a circular orbit of radius r0 around a Schwarzschild
black hole. We will restrict our attention to the case where the particle’s
spin axis is aligned with the orbital angular momentum. We compute the
radiated flux both analytically, via high-order post-Newtonian calculations,
and numerically, using two independent approaches.
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9.2.1 Post-Newtonian results

Dynamics of a spinning particle

The equations of motion of a spinning test body moving on a curved space-
time background (Schwarzschild) are given by the Mathisson-Papapetrou-
Dixon equations (MPD) [322, 323, 324]

Dpµ

dτ
=− 1

2
Rµ

ναβ u
ν Sαβ , (9.1)

DSµν

dτ
=2 p[µuν] , (9.2)

where pµ is the four-momentum, uµ is the four-velocity (τ is the proper time),
Rµ

ναβ is the Riemann tensor of the spacetime and Sαβ is the spin-tensor.
From the spin tensor we can define the spin magnitude, s = (1

2
SµνS

µν)1/2,
from which we define the spin variable

σ ≡ s

µM
. (9.3)

As in previous work [314, 313, 312], we consider −1 ≤ σ ≤ 1. We will
comment in Appendix 9.4 on the meaning of these limits and on the inter-
pretation of the test-mass results presented here as part of the general case
where the masses of the two bodies are comparable. The MPD equations do
not form a closed systems of evolution equations and a closure, called spin
supplementary condition (SSC), is required. The choice of a SSC amounts
to choosing a centre of mass for the spinning body [325]. For astrophysically
relevant values of the spin, there are strong indications that any physically
meaningful quantity will not depend upon the SSC choice [313, 314]. In this
paper we choose the Tulczyjew-Dixon condition Sµνpν = 0 [326].

Throughout this section, we will work to linear order in σ for which we
have pα = µuα +O(σ2). The orbital frequency is then given by [311]

Ω = u3/2

(
1− 3

2
σu3/2

)
(9.4)

where u = M/r0 and r0 is the radius of a circular orbit expressed in Schwarzschild
coordinates.
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Calculation of the energy fluxes

In the Teukolsky approach, the problem of computing the energy and an-
gular momentum fluxes at infinity from perturbations to either a Kerr or
Schwarzschild black hole has been well laid out in the literature, and it is
briefly overviewed in Sec. 2.5.2 of Chapter 2. We now briefly describe the
calculation of the F`m functions appearing in Eq. (2.160) as a PN expansion,
i.e an expansion for large orbital radius and small frequency. This calcula-
tion was first presented for a spinning particle on a circular orbit by Tanaka
et al. [311], though truncated at 2.5PN order. We will extend their calcu-
lation to a higher order in the expansion. To evaluate Eq. (2.159) we first
need PN expansions for the homogeneous radial functions R±`m. The well
established method for systematically computing these uses the solutions of
Mano, Suzuki and Takasugi (MST) [308, 327]. The MST solutions to the
homogeneous radial Teukolsky equation are given as infinite series of either
hypergeometric 2F1 functions or irregular confluent hypergeometric U func-
tions. In the PN limit, restricting the frequencies to the allowed harmonics of
the orbital frequency, these infinite series truncate at finite orders and, with
modern algebraic software, are methodically Taylor expanded to a desired
PN order. For in depth discussion of our calculations see [328]. With these
in hand the evaluation of Eq. (2.159) is straightforwardly accomplished by
also Taylor expanding the Bi’s, thus giving PN expansions for the energy
flux modes. At each order in the PN expansion we also work to linear order
in the spin σ. In practice, we found it easy to consider modes up to ` = 7
and obtain each multipolar flux at 5.5PN accuracy beyond the leading-order
contribution. More precisely, each PN-expanded multipolar contribution is
factorized as

F`m = F
(N,ε)
`m F̂`m , (9.5)

where F
(N,ε)
`m is the Newtonian (or leading-order) prefactor, while F̂`m is the

PN correction. Here, ε = 0, 1 depending on the parity of ` + m. For each
(`,m), F̂`m is given by a 5.5PN-accurate polynomial, i.e. it has the structure
1 +x+x3/2 +x2 +x5/2 + · · ·+x11/2, where x = (GMΩ/c3)2/3 = O(c−2) is the

PN-ordering frequency parameter. The defining formula for the F
(N,ε)
`m ’s is

given by Eq. (8.86); the Newton-normalized PN-expanded multipolar fluxes,
F̂`m, in Sec. 9.5.1.
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9.2.2 Numerical results

For computing numerically the radiated fluxes we employ two codes that solve
the Teukolsky equation. One is a 2+1 time-domain code of Ref. [312, 313]
and the other a frequency domain code [329]. The details of each of these
codes are presented elsewhere and so here we will only give a brief overview
of each code and show that their results are consistent with one another.

Frequency domain approach

The method employed by the frequency domain (FD) numerical code follows
closely the description of the PN calculation given in Sec. 9.2.1 with the ex-
ception that the homogeneous solutions are computed numerically. This is
done using the semi-analytic MST method (see [62] for a review and [330, 331]
for extensions we use). A similar version of the code to compute the homo-
geneous solutions is publicly available as part of the Black Hole Perturbation
Toolkit (bhptoolkit.org). With the homogeneous solutions in hand the
inhomogeneous solutions are computed by convolving them with the Teukol-
sky source. From the inhomogeneous solutions we can compute the radiated
fluxes per mode from the complex asymptotic amplitudes, C±`m, of the radial
Teukolsky solutions via Eq. (2.160).

Both in the source and in the orbital dynamics we linearize with respect to
σ. Our resulting fluxes though are not linear in σ. This is because the radial
Teukolsky equation contains a term proportional to the square of the mode
frequency, ω = mΩ. In principle it would be possible to solve this equation to
linear order in σ but we have not attempted to do so in this work. Instead,
at a range of fixed orbital frequencies, we numerically compute the fluxes
for various values of σ and fit this data using a polynomial and extract the
linear in σ piece. It is important to make this step as the quadratic and
higher contributions to the raw frequency-domain flux data are not complete
as we are not including, e.g., higher order corrections to the orbital dynamics.

The code is written in C++ and internally (particularly for the MST part
of the calculation) it uses extended precision. We have high confidence in the
results for three reasons: i) when σ = 0 we recover known flux results non-
spinning bodies to ∼14 significant digits ii) for σ 6= 0 and after extracting
the linear in σ contribution we see good agreement with the PN results –
see Fig. 9.1 – and iii) we have reconstructed the metric perturbation at the
particle using the standard CCK procedure [332, 333, 334] and from this we
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Figure 9.1: Consistency test between FD calculation and PN-expanded
fluxes. Comparison of the linear-in-sigma contribution of the ` = m = 2
(Newtonian normalized) flux to infinity between the numerical frequency
domain results and the PN series. Here the markers show the difference
∆F̂ σ

22(n) = |F̂FDσ
22 − F̂PNσ

22 (n)| where F̂PNσ
22 (n) is the O(σ) piece of the PN

series truncated at xn. The full PN series is given by Eq. (9.40) and suc-
cessively higher order truncations of this are shown by the colored curves.
The O(σ) piece of the numerical results is extracted from the numerical data
using the method described in the main text. At large radii we observe that
subtracting successively higher order PN series improves the agreement with
the numerical data, as expected.

have shown that the local self-force experienced by the particle is balanced
(to a relative error of 10−9) by the radiated fluxes through the spacetime
boundaries. Details on each of these checks will be presented in [329].

Numerical results: time-domain approach with Hamiltonian dy-
namics

An overview about the TD code used in this work is contained in Sec. 2.5.2 of
Chapter 2. It is important to stress that the delta functions in the source can
be discretized either using a narrow Gaussian or discrete delta functions; the
former option is used in case of circular orbits as discussed in [312]. The code
was extensively tested and delivers multipolar waveforms and GW fluxes at
null infinity with an accuracy well below the 1% level up to m = 4 modes
[306, 312, 313, 314]. The data used for this work are produced exactly as
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described in [312, 313]. Circular equatorial trajectories for the test body are
computed using the Hamiltonian formalism detailed in Sec. III of [313]. The
Hamiltonian of a spinning particle at linear order in the spin was originally
obtained in Ref. [335]. The same Hamiltonian can be recasted in certain spe-
cific effective-one-body (EOB) coordinates as illustrated in Ref. [336]. The
EOB coordinates are transformed to the hyperboloidal ones via a transforma-
tion linear in σ. The EOB dynamics is compatible with the MPD dynamics
with Tulczyjew and the Pirani [337] SSCs across almost the whole spin and
frequency range for the Schwarzschild background [313]. One must, how-
ever, be aware that that the Hamiltonian circular dynamics and the MPD
dynamics described above are fully equivalent and compatible only when the
spin of the particle is small. We address the reader to Ref. [313] for addi-
tional details. Following previous work of some of us [313, 314], we want to
accurately compute numerical fluxes for values of the spins that are large,
i.e., σ ∼ 1 and for orbits that are near the spin-dependent last-stable orbit.
Past work [313] suggests that this can be done using the Hamiltonian for-
malism. Like the FD results mentioned above, our results will not be linear
in σ, essentially for the same reasons mentioned above. Thus, to provide a
consistent comparison with FD results, we also extracted the linear-in-sigma
piece out of the numerical results.

9.2.3 Comparing numerical waveform amplitudes

Since the main aim of the paper is to check resummation procedure for gravi-
tational waveform amplitudes, it is convenient to directly use these quantities
for comparing the results obtained with the two numerical approaches. In
this respect, the extraction of the linear piece mentioned in the previous
section is now performed at the level of the waveform amplitudes (defined
below) and not on the fluxes. Likewise for the fluxes, each waveform multi-
pole is factorized in the product of a Newtonian (leading-order) contribution
and a relativistic correction

h`m(x) ≡ h
(N,ε)
`m (x)ĥ

(ε)
`m(x), (9.6)

where h
(N,ε)
`m is the Newtonian prefactor given by Eq. (4.35). In practice, it is

convenient to focus only on the relativistic correction, since it is a function of
order unity whose PN expansion has the structure ĥ

(ε)
`m ' 1 + x+ x3/2 + . . . .

Figure 9.2 offers a comprehensive comparison of the various numerical data
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at our disposal for an illustrative sample of multipoles and spins. The top
part of each panel of the figure shows 4 curves: (i) the outcome of the time-
domain code with Hamiltonian dynamics; (ii) the same quantity where one
has subtracted the nonlinar-in-spin part; (iii) the outcome of the frequency-
domain code with MPD dynamics: (iv) the same quantity where one has
subtracted the nonlinear-in-spin part. The vertical line in the plot marks
the location of the σ-dependent frequency of the last-stable-orbit (LSO), as
obtained, for example, in Ref. [313]

xLSO =
1

6
+

σ

12
√

6
. (9.7)

As can be seen from Fig. 9.2, the linear-in-spin results from the two codes
are in the excellent agreement reaching a fractional accuracy of ∼ 10−5 (this
is limited by the precision of the TD code and the need to extract the linear-
in-spin contribution). Note that we do not expect agreement between the
nonlinear in spin results as each code effectively includes different pieces of
the nonlinear contribution (either through their dynamics or other aspects of
the calculation). We emphasize that, to the best of our knowledge, this is the
first successful comparison between two completely independent Teukolsky
codes with a spinning secondary object. The excellent agreement between
the two codes (after linearizing in spin) and the agreement between the FD
and PN results presented in Fig. 9.1 gives us a high degree of confidence in
our results.

Since the PN results are linear in the spin, we will use the linearized
FD data as the target points to verify the accuracy of the various analytical
approximations to the waveform amplitudes.

9.3 Comparing analytical and numerical re-

sults

We turn now to comparing the “exact” numerical data computed in the pre-
vious section to different analytical approximations of |ĥ(ε)

`m|. More precisely:

(i) In Sec. 9.3.1, we consider the straightforward PN-expanded expressions

of |ĥ(ε)
`m| up to 5.5PN order.
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(ii) In Sec. 9.3.2 we consider the, now standard, factorization and resum-
mation of Refs. [8, 175]. Note that this analytical approach is adopted
in state-of-the-art EOB waveform models for coalescing binaries [36, 1].

(iii) In Sec. 9.3.3 we explore the performance of a hybrid approach that
consists of: implementing the orbital factorization, and subsequent re-
summation, of Refs. [9, 4] for the ε = 0 modes, while the ε = 1 only
benefit the factorization of the tail contribution.

(iv) In Sec. 9.3.4 we test the special orbital-factorization and resummation
of odd-m modes that is adopted in the ν 6= 0 case and that was recently
shown to yield excellent consistency between EOB and state-of-the-art
NR waveform amplitudes.

9.3.1 PN-expanded waveform amplitudes

The comparison with the plain PN-expanded waveform amplitudes is exhib-
ited in Fig. 9.3. One observes good consistency between the numerical and
analytical results at low frequencies, as expected. This progressively worsens
towards the LSO, that now is indicated by colored markers on the figure.
This worsening is prominent for higher modes. It is, however, interesting
to note that the PN-expanded m = 1 modes already offer an excellent rep-
resentation of the numerical data up to the LSO and for any value of `.

9.3.2 Standard resummation: factorized and resummed
amplitudes

We start by investigating whether the standard factorization and resum-
mation procedure of waveform amplitudes of Refs. [8, 176] can reduce the
gap between the PN-expanded and numerical amplitudes towards the LSO
seen in Fig. 9.3. The PN-expanded circularized waveform amplitudes are re-
summed as (4.36) (See Sec. 4.4 for details). From the PN-expanded Newton-
normalized fluxes F̂`m, as what was done in Chapt. 8, we calculate the PN-
expanded residual amplitudes ρ`m. To do so for a spinning particle problem,
we need the energy and angular momentum of a spinning body along circu-
lar orbits of Schwarzschild spacetime at linear order in the spin. These were
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obtained in Eqs. (81) and (82) of Ref. [313],

Ê(x) ≡ E/µ = Êorb(x) + Êσ(x)

=
1− 2x√
1− 3x

− x5/2σ√
1− 3x

, (9.8)

ĵ(x) = ĵorb(x) + ĵσ(x)

=
1√

1− 3x
−√x

(
1− 1− 4x√

1− 3x

)
σ, (9.9)

where the expression for ĵ is obtained multiplying by
√
x (i.e., the inverse of

the Newtonian angular momentum along circular orbits) Eq. (81) of Ref. [313].
The PN-expanded ρ`m’s are then given by

ρ`m = Tn

[ √
F̂`m

|ĥtail
`m (x)|Ŝ(ε)

]1/`

, (9.10)

where Tn denotes a Taylor-expansion of order n and F̂`m are the Newton-
normalized PN-expanded energy fluxes. The ρ`m functions are here written
as the sum of an orbital (spin-independent) and a spin-dependent term

ρ`m = ρorb
`m + ρσ`m. (9.11)

The PN knowledge of ρσ`m before this work was limited to global 3.5PN
(NNLO) and the functions are written explicitly in Ref. [4, 296]. Here the
computation of each ρσ`m is pushed up to relative 5.5PN order, i.e., next-to-
next-to-next-to-next-to-leading-order, N4LO in the spin-orbit coupling. We
list the functions explicitly in Sec. 9.6. One verifies that the 3.5PN-accurate
truncation of our results agrees in full with the corresponding formulas of
Refs. [4, 296].

The analytical |ĥ`m|’s from Eq. (4.36) are compared with the correspond-
ing numerical ones in Fig. 9.4. The effect of the standard resummation can
be summarized as follows. First, the analytically resummed ` = m modes
deliver a rather good approximation to the numerical functions. One can see
that this remains true up to ` = m = 6. However, we see that the procedure
gives a rather unreliable result (even for small values of x) for the `+m = odd
modes. This illustrates that the standard resummation approach introduced
in Ref. [176] can become highly inaccurate in some corners of the black-hole
binary parameter space. As such, it should be replaced by something else
that is more robust. One possibility is proposed in the next section.



269

9.3.3 Improved resummation

References [9, 4] presented an alternative factorization and resummation pro-
cedure based on the idea of first factoring out the orbital, spin-independent,
contribution to the ρ`m’s and then independently resumming, in various ways,
the orbital and spin factors. The same procedure was implemented in similar
ways for the odd-parity and even-parity modes. In the case of a nonspinning
particle on circular orbits around a Kerr black hole, Refs. [4] illustrated that
this procedure yields a remarkable analytical/numerical agreement between
the ρ`m’s (and fluxes) up to the LSO also for extremal values of the spin of
the black hole (see e.g. Figs. 1 and 2) of [4]). In this Section we test this
procedure on the even-parity modes. By contrast, we apply a different fac-
torization, that only concerns the tail factor, to the odd-parity modes. Some
of the resummation procedures of Refs. [4] applied to some of the odd-parity
modes are instead discussed in Sec. 9.3.4 below.

`+m=even: orbital factorization

We implement the orbital factorization of the ρ`m’s of [4] to all even-parity
multipoles up to ` = 6 included. Consistently with [4], the orbital factors are
taken at 6PN order1 and Padé resummed according to Table I of [4]. More
precisely, we use the standard P 4

2 Padé for all the multipoles except the (3, 1)
one, that is kept at 5PN with a P 3

2 Padé (the bold values in the table are
not considerated). The only exception is the (4, 2) multipole, that in this
paper is resummed with a P 4

2 Padé instead of a P 6
0 Taylor Series, since the

difference between the two choices in this case is minimal. By resumming
the spin-dependent factors by taking their inverse-Taylor representation, the
resummed residual amplitudes finally read

ρ`m(x, σ) = P n
d [ρorb

`m ]ρ̂σ`m, (9.12)

where ρ̂σ`m = Tn
[
1 + ρσ`m/ρ

orb
`m

]
and we defined ρ̂σ`m ≡ (Tn[(ρ̂σ`m)−1])−1. Fi-

nally, the even-parity waveform amplitudes read

|ĥ(0)
`m(x, σ)| = Ê |ĥtail

`m | [ρ`m(x, σ)]` . (9.13)

The analytical/numerical agreement, displayed in Fig. 9.5, is essentially com-
parable to the standard approach shown in Fig. 9.4 above.

1Though the (3, 1) mode is taken at 5PN only.
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Table 9.1: Fractional differences between the resummed and the numerical
ĥ`m’s at the LSO shown in Fig. 9.5. The fractional difference is defined as
|ĥnum − ĥanalyt|/ĥnum computed at xLSO.

(`,m) ∆(x)ĥ(x)/ĥ|x=xLSO
for −0.9 ≤ σ ≤ +0.9

−0.9 −0.5 +0.5 +0.9

(2, 2) 8× 10−4 5× 10−5 0.0023 0.0024
(2, 1) 4× 10−5 7× 10−5 5× 10−5 4× 10−4

(3, 3) 0.0035 0.0012 2× 10−4 0.0056
(3, 2) 9× 10−4 5× 10−4 0.0041 0.0086
(3, 1) 0.0057 0.0018 0.0023 0.0091
(4, 4) 0.0098 0.0046 0.0017 0.0085
(4, 3) 0.0049 0.0029 0.013 0.029
(4, 2) 0.0047 0.0013 0.0013 0.007
(4, 1) 7× 10−5 3× 10−5 4× 10−4 0.001
(5, 5) 0.014 0.0055 0.0072 0.042
(5, 4) 0.012 0.0068 0.023 0.05
(5, 3) 0.0029 6× 10−4 10−4 0.0036
(5, 2) 8× 10−4 5× 10−4 0.018 0.046
(5, 1) 0.019 0.0067 0.0097 0.032
(6, 6) 0.02 0.0087 0.013 0.078

`+m =odd: factorizing the tail factor only

For the odd-parity modes we suggest here to follow a new route: factor
out only the tail factor spin part of the modulus, |hσ`m|, while keeping the
orbital part |horb

`m | factorized as usual (9.10), i.e., with the orbital angular
momentum ĵorb factored out. Note that for this particular calculation, we
keep ρorb

`m at 5PN accuracy and in Taylor-expanded form. The rationale
behind the choice of not factorizing the orbital angular momentum is that,
in the presence of a spinning body, the source of the field is given by the
sum of two separate pieces, one proportional to ĵorb and another one to σ.
This is in particular the structure of the source of the Regge-Wheeler-Zerilli
equation for a spinning test-body. It seems then less sound to factor out ĵorb
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also from the σ-dependent term. Starting from

|ĥ(1)
`m(x, σ)| ≡ |ĥorb,(1)

`m |+ σ|ĥσ,(1)
`m |, (9.14)

we factorize each term separately as

ρorb
`m = Tn

( |ĥorb,(1)
`m |

|ĥtail
`m |ĵorb

)1/`
 , (9.15)

|h̃|σ`m = Tn

[
|ĥσ,(1)
`m |
|ĥtail
`m |

]
. (9.16)

The resummed odd-parity waveform amplitudes finally read

|ĥ(1)
`m(x, σ)| = |ĥtail

`m |
{(
ρorb
`m

)`
ĵorb + σ|h̃σ,(1)

`m |
}
. (9.17)

It is important to stress that, for simplicity, we are here not using Padé
approximants of the orbital ρorb

`m in Eq. (9.17). The analytical and numer-
ical amplitudes are compared in Fig. 9.5. The agreement between the two
is remarkable, and way better than the one obtained with the standard ap-
proach shown in Fig. 9.4 above. To better quantify the agreement, we list in
Table 9.1 the fractional differences computed at xLSO. Although not shown
in the table, we have also verified that an analogous quantitative agreement
holds for σ = ±0.99,

9.3.4 Resumming the dominant m=odd modes consis-
tently with the comparable-mass case.

Up to this point we have seen that there are different procedures for resum-
ming the waveform amplitudes depending on the parity of ` + m. Actu-
ally, detailed studies of the waveform amplitudes for two objects of masses
(M1,M2) [9, 4] have illustrated that one should also carefully separate the an-
alytic treatment depending on the parity of m only. In particular, Refs. [9,
4] introduced a special analytical treatment of the orbital-factorized spin-
dependent functions f̂S`m when ν ≡ M1M2/(M1 + M2)2 6= 0. More precisely,
one shows that, when ν 6= 0, these functions are naturally written as the sum
of two separate Taylor expansions, one proportional to X12 = X1 − X2 =√

1− 4ν and the other to ã12 ≡ X1χ1 − X2χ2, where Xi ≡ Mi/(M1 + M2)
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and χi ≡ Si/M
2
i are the dimensionless spins of the two objects. Each Tay-

lor expansion can eventually be resummed taking its inverse-Taylor repre-
sentation. This resummation of the m-odd waveform amplitudes has been
recently incorporated in a new, multipolar, EOB waveform model. One of
the remarkable features of this analytical choice is that the zero in the (2, 1)
time-domain amplitude, that exists in certain regions of the parameter space,
is quantitatively consistent with a similar feature found in state-of-the-art
NR simulations. On top of this, Ref. [9], pointed out that the resummation
procedure is reliable and accurate also in the special case of a nonspinning
particle orbiting a spinning black hole.

In this section we investigate to which extent the m-odd multipoles re-
summation approach remains robust and stable also in the case of a spinning
test-body on a Schwarzschild black hole. To do so, we focus on the same m-
odd modes considered in the ν 6= 0 case, (2, 1), (3, 3), (3, 1), (4, 3), (4, 1). In
addition, each mode is truncated at the largest PN order that carries known
ν-dependent corrections 2. Consistently with Ref. [321], the m-odd waveform
amplitudes are written as

|ĥ`m| = ĵorb|ĥtail
`m |(Pm

n [ρorb
`m ])`(1 + f̂σ`m). (9.18)

The Padé approximants of the orbital part Pm
n [ρorb

`m ] are the same, adopted
in Ref. [4], that is P 5

1 for (2, 1), P 3
2 for (3, 1), P 6

0 for (5, 5) and P 4
2 for (3, 2),

(4, 3) and (4, 1). On the other hand, the spin-dependent terms f̂σ`m are given
by

f̂σ21 = f
σ(0)
21 +

3

2
σx1/2f

σ(1)
21 , (9.19)

f̂σ33 = f
σ(0)
33 +

1

4
σx3/2f

σ(1)
33 , (9.20)

f̂σ31 = f
σ(0)
31 +

9

4
σx3/2f

σ(1)
31 , (9.21)

f̂σ43 = f
σ(0)
43 +

5

4
σx1/2f

σ(1)
43 , (9.22)

f̂σ41 = f
σ(0)
41 +

5

4
σx1/2f

σ(1)
41 . (9.23)

Following Ref. [4], the overbar indicates that each term is resummed using

2Even if we have more spinning-particle terms, we cannot use them since we cannot
consistently split each PN order in the two separate series.
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its inverse-Taylor representation. The function written above explicitly read

f
σ(0)
21 =

(
1 +

13

84
x3/2σ +

14705

7056
x5/2σ

)−1

, (9.24)

f
σ(1)
21 =

(
1 +

349

252
x+

65969

31752
x2

)−1

, (9.25)

f
σ(0)
33 =

(
1 +

7

4
x3/2σ +

211

60
x5/2σ

)−1

, (9.26)

f
σ(1)
33 = 1 +

169

15
x, (9.27)

f
σ(0)
31 =

(
1− 1

4
x3/2σ +

13

36
x5/2σ

)−1

, (9.28)

f
σ(1)
31 = 1− 1

9
x, (9.29)

f
σ(0)
43 =

(
1− 5

4

)
x1/2σ, (9.30)

f
σ(1)
43 = 1, (9.31)

f
σ(0)
41 =

(
1− 5

4

)
x1/2σ, (9.32)

f
σ(1)
41 = 1 . (9.33)

The analytical |ĥ`m| are compared to the numerical ones in Fig. 9.6. The
most interesting result displayed in the figure is that both the (2, 1) and
(3, 3) analytical amplitudes deliver a reasonably accurate representation of
the numerical data up to the LSO, although this is not as good as the tail-
factorized case discussed in Fig. 9.5. Note however that in that case we were
using spin information truncated at 5.5PN accuracy. Thus, to produce a
meaningful comparison we need to redo the calculation of Fig. 9.5 truncating
the ` = 2, m = 1 mode at 2.5PN. By contrast, the orbital ρorb

21 function is
kept at 5PN accuracy and in Taylor-expanded form. This new comparison
is displayed in Fig. 9.7. Interestingly, despite the reduced PN information,
the analytical/numerical agreement is visibly better than the one displayed
in the top-left panel of Fig. 9.6. We also performed the same analysis for the
` = 4 modes. Although we found an improvement, the truncation at 1.5PN
of the spin information is not sufficient to provide a good agreement up to
the LSO location. In conclusion, the result of Fig. 9.7 gives further support
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to the need of exploring the performance of the tail-only factorization also
for comparable mass binaries.

9.4 Interpreting the spinning-body limit us-

ing the EOB dynamics

In the main text we have considered −1 ≤ σ ≤ 1. Due to the definition of σ
in Eq. (9.3) we can also write

σ =
µ

M

s

µ2
. (9.34)

This parameter, per se, can be thus meaningful also for the equal-mass case,
with the understanding that the MPD approach (or the Hamiltonian ap-
proach) plus the solution of the Teukolsky equations for the fluxes can only
deliver some of the contributions at leading-order in the mass ratio. More
precisely, the value σ = ±1 can be interpreted as the case of an extremally
spinning black hole, s/µ2 = ±1 in an equal-mass binary, µ/M = 1. Although
in this case the perturbative approach we are using is expected to be mean-
ingless, in practice it is useful to compute, and test numerically, some of the
terms that enter the complete PN expansion.

The euristic comparable-mass limit suggested by Eq. (9.34) can be put on
a more solid ground starting from the complete EOB Hamiltonian for a two-
body system with masses (m1,m2), with the convention that m1 ≥ m2. We
also refer the reader to Sec. III of Ref. [313] for complementary information.
The complete EOB Hamiltonian is given by Eq. (4.19) and (4.24). The spin-
orbit sector is given by Eq. (4.25). For the case where only the secondary,
m2 is spinning (S1 = 0), the spin-orbit Hamiltonian becomes

Ĥeff
SO = pϕ

{
GS∗

1

(m1 +m2)2

m1

m2

S2 +GS
S2

(m1 +m2)2

}
. (9.35)

After introducing powers of m2 so to explicitly have a dimensionless spin
variable χ2 ≡ S2/m

2
2 one obtains

ĤSO = pϕ

{
GS∗ν

S2

m2
2

+GS
1

4
(1−

√
1− 4ν)2 S2

m2
2

}
. (9.36)

The extreme-mass-ratio limit is now defined by the condition ν → 0. In this
limit, one sees that the term proportionalt to GS is suppressed with respect
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to the one proportional to GS∗ because of the different ν dependence. In the
ν → 0 limit one finally has that the spin-orbit sector of the real spin-orbit
Hamiltonian describing a spinning test-body orbiting a Schwarzschild black
hole is given by

ĤSO = pφGS∗ν
S2

m2
2

, (9.37)

where GS∗ is known analytically in closed, non-PN expanded, form [335, 276,
336]. One then defines the dimensionless spin σ as

σ ≡ ν
S2

m2
2

= νχ2. (9.38)

Thus, since −1 ≤ χ2 ≤ +1, and 0 ≤ ν ≤ 1/4, one concludes, from the
EOB (and thus PN) perspective, that −1/4 ≤ σ ≤ 1/4. The usual limit
−1 ≤ σ ≤ 1 is obtained writing σ as

σ ≡ m1m2

(m1 +m2)2

S2

m2
2

(9.39)

and then addtionally expanding the symmetric mass ratio in powers of the
mass ratio m2/m1 ≈ µ/M � 1.

9.5 Spinning particle on Schwarzschild back-

ground: PN-expanded multipolar energy

fluxes

9.5.1 Newton-normalized PN fluxes

The PN-expanded fluxes up to ` = 7 are presented below. For completeness
and future reference we also keep all the nonspinning terms. All of the series
given below can be found digitally in the PostNewtonianSelfForce package
in the Black Hole Perturbation Toolkit (bhptoolkit.org).
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F̂22 = 1− 107
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F̂21 = 1 + 3σx1/2 − 17
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F̂31 = 1− 16
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F̂32 = 1 + 4σx1/2 − 193
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385
− 37704 log(2)

385

)]
x9/2

+

[
πσ

(
−18852 log(x)

77
− 37704γ

77
+

5881588639

2312310
− 37704 log(3)

77
− 37704 log(2)

77

)
− 2672544354 log(x)

21196175
+

10207044π2

55055
− 5345088708γ

21196175
+

164198437359891442

102798163342875

− 5345088708 log(3)

21196175
− 5345088708 log(2)

21196175

]
x5

+

[
σ

(
−30613970172 log(x)

21196175
+

116921592π2

55055
− 61227940344γ

21196175

+
16347298755161569813

822385306743000
− 61227940344 log(3)

21196175
− 61227940344 log(2)

21196175

)
+ π

(
1470456 log(x)

4235
+

2940912γ

4235
− 23942096774363

4684354675

+
2940912 log(3)

4235
+

2940912 log(2)

4235

)]
x11/2 (9.47)



284

F̂44 = 1− 593

55
x+

(
8π − 24σ

5

)
x3/2 +

2187772

55055
x2 +

(
13236σ

275
− 4744π

55

)
x5/2

+

(
−192πσ

5
− 50272 log(x)

3465
+

64π2

3
− 100544γ

3465
+

143850002468

780404625
− 100544 log(2)

1155

)
x3

+

(
17502176π

55055
− 205853488σ

1376375

)
x7/2

+

(
105888πσ

275
+

29811296 log(x)

190575
− 37952π2

165
+

59622592γ

190575

− 461493531002948

193588126875
+

59622592 log(2)

63525

)
x4

+

[
σ

(
402176 log(x)

5775
− 512π2

5
+

804352γ

5775
− 269452289384

260134875
+

804352 log(2)

1925

)
+ π

(
−402176 log(x)

3465
− 804352γ

3465
+

1150800019744

780404625
− 804352 log(2)

1155

)]
x9/2

+

(
−1646827904πσ

1376375
− 109983673984 log(x)

190765575
+

140017408π2

165165
− 219967347968γ

190765575

+
110876948362954366588

13877752051288125
− 219967347968 log(2)

63588525

)
x5

+

[
σ

(
−221800064 log(x)

317625
+

282368π2

275
− 443600128γ

317625

+
33963566444720392

3161939405625
− 443600128 log(2)

105875

)
+ π

(
238490368 log(x)

190575
+

476980736γ

190575
− 3691948248023584

193588126875
+

476980736 log(2)

63525

)]
x11/2

(9.48)



285

F̂51 = 1− 358

39
x+

(
2π +

28σ

3

)
x3/2 +

290803

7605
x2 +

(
−54892σ

585
− 716π

39

)
x5/2

+

(
56πσ

3
− 1546 log(x)

2145
+

4π2

3
− 3092γ

2145
− 70678556867

884458575
− 3092 log(2)

2145

)
x3

+

(
1818512σ

4563
+

581606π

7605

)
x7/2

+

(
−109784πσ

585
+

553468 log(x)

83655
− 1432π2

117
+

1106936γ

83655

+
30751133534746

946665494775
+

1106936 log(2)

83655

)
x4

+

[
σ

(
−43288 log(x)

6435
+

112π2

9
− 86576γ

6435
− 4023624605818

4927697775
− 86576 log(2)

6435

)
+ π

(
−3092 log(x)

2145
− 6184γ

2145
− 141357113734

884458575
− 6184 log(2)

2145

)]
x9/2

+

(
3637024πσ

4563
− 449581438 log(x)

16312725
+

1163212π2

22815
− 899162876γ

16312725

+
71365115368720132

237342563332875
− 899162876 log(2)

16312725

)
x5

+

[
σ

(
84863032 log(x)

1254825
− 219568π2

1755
+

169726064γ

1254825
+

21412695417260944

127799841794625

+
169726064 log(2)

1254825

)
+ π

(
1106936 log(x)

83655
+

2213872γ

83655
+

61502267069492

946665494775
+

2213872 log(2)

83655

)]
x11/2

(9.49)



286

F̂52 = 1 + 6σx1/2 − 3911

455
x+

(
4π − 30458σ

455

)
x3/2

+

(
24πσ +

18688127

621075

)
x2 +

(
5403626σ

17745
− 15644π

455

)
x5/2

+

(
−121832πσ

455
− 6184 log(x)

2145
+

16π2

3
− 12368γ

2145
− 3565375256

2299592295
− 24736 log(2)

2145

)
x3

+

[
σ

(
−12368 log(x)

715
+ 32π2 − 24736γ

715

− 225656637512

547521975
− 49472 log(2)

715

)
+

74752508π

621075

]
x7/2

+

(
21614504πσ

17745
+

24185624 log(x)

975975
− 62576π2

1365
+

48371248γ

975975

− 37120039834250764

99399876951375
+

96742496 log(2)

975975

)
x4

+

[
σ

(
188352272 log(x)

975975
− 487328π2

1365
+

376704544γ

975975

− 237272216817464212

99399876951375
+

753409088 log(2)

975975

)
+ π

(
−24736 log(x)

2145
− 49472γ

2145
− 14261501024

2299592295
− 98944 log(2)

2145

)]
x9/2

+

[
πσ

(
−49472 log(x)

715
− 98944γ

715
− 902626550048

547521975
− 197888 log(2)

715

)
− 115567377368 log(x)

1332205875

+
299010032π2

1863225
− 231134754736γ

1332205875
+

2962795414725501668

2153664000613125
− 462269509472 log(2)

1332205875

]
x5

+

[
σ

(
−33416023184 log(x)

38063025
+

86458016π2

53235
− 66832046368γ

38063025
+

209759979290346544

15202334121975

− 133664092736 log(2)

38063025

)
+ π

(
96742496 log(x)

975975
+

193484992γ

975975

− 148480159337003056

99399876951375
+

386969984 log(2)

975975

)]
x11/2 (9.50)



287

F̂53 = 1− 138

13
x+ (6π + 4σ)x3/2 +

823943

17745
x2 +

(
−20844σ

455
− 828π

13

)
x5/2

+

(
24πσ − 4638 log(x)

715
+ 12π2 − 9276γ

715
+

4687046283

425850425
− 9276 log(3)

715
− 9276 log(2)

715

)
x3

+

(
3663136σ

17745
+

1647886π

5915

)
x7/2

+

(
−125064πσ

455
+

640044 log(x)

9295
− 1656π2

13
+

1280088γ

9295

− 28614963763754

27047585565
+

1280088 log(3)

9295
+

1280088 log(2)

9295

)
x4

+

[
σ

(
−18552 log(x)

715
+ 48π2 − 37104γ

715
+

4975310434

425850425
− 37104 log(3)

715
− 37104 log(2)

715

)
+ π

(
−27828 log(x)

715
− 55656γ

715
+

28122277698

425850425
− 55656 log(3)

715
− 55656 log(2)

715

)]
x9/2

+

(
7326272πσ

5915
− 1273815878 log(x)

4229225
+

3295772π2

5915
− 2547631756γ

4229225

+
2096233487612758084

430732800122625
− 2547631756 log(3)

4229225
− 2547631756 log(2)

4229225

)
x5

+

[
σ

(
96674472 log(x)

325325
− 250128π2

455
+

193348944γ

325325

− 51479627364210592

11044430772375
+

193348944 log(3)

325325
+

193348944 log(2)

325325

)
+ π

(
3840264 log(x)

9295
+

7680528γ

9295
− 57229927527508

9015861855

+
7680528 log(3)

9295
+

7680528 log(2)

9295

)]
x11/2 (9.51)



288

F̂54 = 1 + 6σx1/2 − 4451

455
x+

(
8π − 35018σ

455

)
x3/2

+

(
48πσ +

20952707

621075

)
x2 +

(
6596234σ

17745
− 35608π

455

)
x5/2

+

(
−280144πσ

455
− 24736 log(x)

2145
+

64π2

3
− 49472γ

2145

+
1919077079981

11497961475
− 49472 log(2)

715

)
x3

+

[
σ

(
−49472 log(x)

715
+ 128π2 − 98944γ

715

+
1797855496834

3832653825
− 296832 log(2)

715

)
+

167621656π

621075

]
x7/2

+

(
52769872πσ

17745
+

110099936 log(x)

975975
− 284864π2

1365
+

220199872γ

975975

− 193747438701841261

99399876951375
+

220199872 log(2)

325325

)
x4

+

[
σ

(
866205248 log(x)

975975
− 2241152π2

1365
+

1732410496γ

975975

− 1489526042743253458

99399876951375
+

1732410496 log(2)

325325

)
+ π

(
−197888 log(x)

2145
− 395776γ

2145
+

15352616639848

11497961475
− 395776 log(2)

715

)]
x9/2

+

[
πσ

(
−395776 log(x)

715
− 791552γ

715
+

14382843974672

3832653825
− 2374656 log(2)

715

)
− 518286160352 log(x)

1332205875
+

1340973248π2

1863225
− 1036572320704γ

1332205875

+
13465702596429393907

2153664000613125
− 1036572320704 log(2)

444068625

]
x5

+

[
σ

(
−163164444224 log(x)

38063025
+

422158976π2

53235
− 326328888448γ

38063025

+
92163273485725245586

1292198400367875
− 326328888448 log(2)

12687675

)
+ π

(
880799488 log(x)

975975
+

1761598976γ

975975

− 1549979509614730088

99399876951375
+

1761598976 log(2)

325325

)]
x11/2 (9.52)



289

F̂55 = 1− 526

39
x+

(
10π − 20σ

3

)
x3/2 +

722993

10647
x2 +

(
70324σ

819
− 5260π

39

)
x5/2

+

(
−200πσ

3
− 7730 log(x)

429
+

100π2

3
− 15460γ

429
+

6552129589

35378343

− 15460 log(5)

429
− 15460 log(2)

429

)
x3 +

(
7229930π

10647
− 12610048σ

31941

)
x7/2

+

(
703240πσ

819
+

4065980 log(x)

16731
− 52600π2

117
+

8131960γ

16731

− 477890910720122

113599859373
+

8131960 log(5)

16731
+

8131960 log(2)

16731

)
x4

+

[
σ

(
154600 log(x)

1287
− 2000π2

9
+

309200γ

1287

− 302007543634

197107911
+

309200 log(5)

1287
+

309200 log(2)

1287

)
+ π

(
−77300 log(x)

429
− 154600γ

429
+

65521295890

35378343
− 154600 log(5)

429
− 154600 log(2)

429

)]
x9/2

+

(
−126100480πσ

31941
− 5588735890 log(x)

4567563
+

72299300π2

31941
− 11177471780γ

4567563

+
1907636757769320236

93038284826487
− 11177471780 log(5)

4567563
− 11177471780 log(2)

4567563

)
x5

+

[
σ

(
−543604520 log(x)

351351
+

7032400π2

2457
− 1087209040γ

351351

+
195345738616319360

7156791140499
− 1087209040 log(5)

351351
− 1087209040 log(2)

351351

)
+ π

(
40659800 log(x)

16731
+

81319600γ

16731
− 4778909107201220

113599859373
+

81319600 log(5)

16731

+
81319600 log(2)

16731

)]
x11/2 (9.53)



290

F̂61 = 1 + 7σx1/2 − 125

12
x+

(
2π − 2147σ

24

)
x3/2 +

(
14πσ +

180021689

3769920

)
x2

+

(
78074681σ

157080
− 125π

6

)
x5/2

+

(
−2147πσ

12
− 1802 log(x)

3003
+

4π2

3
− 3604γ

3003
− 24598440919576

218461268025
− 3604 log(2)

3003

)
x3

+

[
σ

(
−1802 log(x)

429
+

28π2

3
− 3604γ

429

− 186251710369819

124835010300
− 3604 log(2)

429

)
+

180021689π

1884960

]
x7/2

+

(
78074681πσ

78540
+

112625 log(x)

18018
− 125π2

9
+

112625γ

9009

+
707729869694513

8643122167680
+

112625 log(2)

9009

)
x4

+

[
σ

(
1934447 log(x)

36036
− 2147π2

18
+

1934447γ

18018
+

39883212208000103

19014868768896
+

1934447 log(2)

18018

)
+ π

(
−3604 log(x)

3003
− 7208γ

3003
− 49196881839152

218461268025
− 7208 log(2)

3003

)]
x9/2

+

[
πσ

(
−3604 log(x)

429
− 7208γ

429
− 186251710369819

62417505150
− 7208 log(2)

429

)
− 9541149517 log(x)

332972640
+

180021689π2

2827440
− 9541149517γ

166486320
+

1443709506661055325611

4457029313344608000

− 9541149517 log(2)

166486320

]
x5

+

[
σ

(
−4137958093 log(x)

13873860
+

78074681π2

117810
− 4137958093γ

6936930

+
4849567930889021794613

3157062430285764000
− 4137958093 log(2)

6936930

)
+ π

(
112625 log(x)

9009
+

225250γ

9009
+

707729869694513

4321561083840
+

225250 log(2)

9009

)]
x11/2

(9.54)



291

F̂62 = 1− 81

7
x+

(
4π +

68σ

7

)
x3/2 +

8221522

137445
x2 +

(
−88714σ

735
− 324π

7

)
x5/2

+

(
272πσ

7
− 7208 log(x)

3003
+

16π2

3
− 14416γ

3003
− 161484749374217

1223383100940
− 28832 log(2)

3003

)
x3

+

(
7295384σ

11319
+

32886088π

137445

)
x7/2

+

(
−354856πσ

735
+

194616 log(x)

7007
− 432π2

7

+
389232γ

7007
− 138951395311225087

727912945059300
+

778464 log(2)

7007

)
x4

+

[
σ

(
−490144 log(x)

21021
+

1088π2

21
− 980288γ

21021
− 2244361964428541

1529228876175
− 1960576 log(2)

21021

)
+ π

(
−28832 log(x)

3003
− 57664γ

3003
− 161484749374217

305845775235
− 115328 log(2)

3003

)]
x9/2

+

[
29181536πσ

11319
− 3485925328 log(x)

24279255
+

131544352π2

412335
− 6971850656γ

24279255

+
69009387572205137581

30693662516667150
− 13943701312 log(2)

24279255

]
x5

+

[
σ

(
639450512 log(x)

2207205
− 1419424π2

2205
+

1278901024γ

2207205

− 51564217241617

25040004990
+

2557802048 log(2)

2207205

)
+ π

(
778464 log(x)

7007
+

1556928γ

7007
− 138951395311225087

181978236264825
+

3113856 log(2)

7007

)]
x11/2

(9.55)



292

F̂63 = 1 + 7σx1/2 − 133

21
x+

(
6π − 2299σ

24

)
x3/2 +

(
42πσ +

191999369

3769920

)
x2

+

(
86132401σ

157080
− 133π

2

)
x5/2 +

(
−2299πσ

4
− 5406 log(x)

1001
+ 12π2 − 10812γ

1001

− 8318725110259

582563381400
− 10812 log(3)

1001
− 10812 log(2)

1001

)
x3

+

[
σ

(
−5406 log(x)

143
+ 84π2 − 10812γ

143
− 6435219971227

6935278350

− 10812 log(3)

143
− 10812 log(2)

143

)
+

191999369π

628320

]
x7/2(

86132401πσ

26180
+

17119 log(x)

286
− 133π2 +

17119γ

143
− 158600290311609547

158457239740800

+
17119 log(3)

143
+

17119 log(2)

143

)
x4

+

[
σ

(
188309 log(x)

364
− 2299π2

2
+

188309γ

182
− 59571165214052209

8339854723200

+
188309 log(3)

182
+

188309 log(2)

182

)
+ π

(
−32436 log(x)

1001
− 64872γ

1001
− 8318725110259

97093896900
− 64872 log(3)

1001
− 64872 log(2)

1001

)]
x9/2

+

[
πσ

(
−32436 log(x)

143
− 64872γ

143
− 6435219971227

1155879725
− 64872 log(3)

143
− 64872 log(2)

143

)
− 10175966557 log(x)

36996960
+

191999369π2

314160
− 10175966557γ

18498480
+

42300157953961348695307

8418833147428704000

− 10175966557 log(3)

18498480
− 10175966557 log(2)

18498480

]
x5

+

[
σ

(
−4565017253 log(x)

1541540
+

86132401π2

13090
− 4565017253γ

770770
+

6208405960475571319531

116928238158732000

− 4565017253 log(3)

770770
− 4565017253 log(2)

770770

)
+ π

(
51357 log(x)

143
+

102714γ

143
− 158600290311609547

26409539956800

+
102714 log(3)

143
+

102714 log(2)

143

)]
x11/2 (9.56)



293

F̂64 = 1− 93

7
x+

(
8π +

20σ

7

)
x3/2 +

2028464

27489
x2 +

(
−5996σ

147
− 744π

7

)
x5/2

+

(
160πσ

7
− 28832 log(x)

3003
+

64π2

3
− 57664γ

3003
− 7473136770797

305845775235
− 57664 log(2)

1001

)
x3

+

(
45679300σ

192423
+

16227712π

27489

)
x7/2

+

(
−47968πσ

147
+

893792 log(x)

7007
− 1984π2

7
+

1787584γ

7007

− 389504245584812167

181978236264825
+

5362752 log(2)

7007

)
x4

+

[
σ

(
−576640 log(x)

21021
+

1280π2

21
− 1153280γ

21021
− 9680228679908

61169155047
− 1153280 log(2)

7007

)
+ π

(
−230656 log(x)

3003
− 461312γ

3003
− 59785094166376

305845775235
− 461312 log(2)

1001

)]
x9/2

+

(
365434400πσ

192423
− 3440274944 log(x)

4855851
+

129821696π2

82467
− 6880549888γ

4855851

+
200984978531762355824

15346831258333575
− 6880549888 log(2)

1618617

)
x5

+

[
σ

(
172876672 log(x)

441441
− 383744π2

441
+

345753344γ

441441
− 79666062343153756

12131882417655

+
345753344 log(2)

147147

)
+ π

(
7150336 log(x)

7007
+

14300672γ

7007
− 3116033964678497336

181978236264825
+

42902016 log(2)

7007

)]
x11/2

(9.57)
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F̂65 = 1 + 7σx1/2 − 149

12
x+

(
10π − 2603σ

24

)
x3/2 +

(
70πσ +

44119381

753984

)
x2

+

(
20910829σ

31416
− 745π

6

)
x5/2 +

(
−13015πσ

12
− 45050 log(x)

3003

+
100π2

3
− 90100γ

3003
+

12846599702749

69907605768
− 90100 log(5)

3003
− 90100 log(2)

3003

)
x3

+

[
σ

(
−45050 log(x)

429
+

700π2

3
− 90100γ

429
+

198692130113

1248350103

− 90100 log(5)

429
− 90100 log(2)

429

)
+

220596905π

376992

]
x7/2 +

(
104554145πσ

15708
+

3356225 log(x)

18018

− 3725π2

9
+

3356225γ

9009
− 9734336137180063

2716409824128
+

3356225 log(5)

9009
+

3356225 log(2)

9009

)
x4

+

[
σ

(
58632575 log(x)

36036
− 65075π2

18
+

58632575γ

18018
− 562883137821630721

19014868768896

+
58632575 log(5)

18018
+

58632575 log(2)

18018

)
+ π

(
−450500 log(x)

3003
− 901000γ

3003
+

64232998513745

34953802884

− 901000 log(5)

3003
− 901000 log(2)

3003

)]
x9/2

+

[
πσ

(
−450500 log(x)

429
− 901000γ

429
+

1986921301130

1248350103

− 901000 log(5)

429
− 901000 log(2)

429

)
− 58458179825 log(x)

66594528

+
1102984525π2

565488
− 58458179825γ

33297264
+

10003750718547616854575

606155986614866688

− 58458179825 log(5)

33297264
− 58458179825 log(2)

33297264

]
x5

+

[
σ

(
−27706848425 log(x)

2774772
+

522770725π2

23562

− 27706848425γ

1387386
+

4801663674782405880901

25256499442286112
− 27706848425 log(5)

1387386

− 27706848425 log(2)

1387386

)
+ π

(
16781125 log(x)

9009
+

33562250γ

9009
− 48671680685900315

1358204912064

+
33562250 log(5)

9009
+

33562250 log(2)

9009

)]
x11/2 (9.58)



295

F̂66 = 1− 113

7
x+

(
12π − 60σ

7

)
x3/2 +

134290

1309
x2 +

(
6554σ

49
− 1356π

7

)
x5/2

+

(
−720πσ

7
− 21624 log(x)

1001
+ 48π2 − 43248γ

1001
+

18044070358903

135931455660

− 43248 log(3)

1001
− 86496 log(2)

1001

)
x3 +

(
1611480π

1309
− 51347864σ

64141

)
x7/2

+

(
78648πσ

49
+

2443512 log(x)

7007
− 5424π2

7
+

4887024γ

7007

− 530645101377839167

80879216117700
+

4887024 log(3)

7007
+

9774048 log(2)

7007

)
x4

+

[
σ

(
1297440 log(x)

7007
− 2880π2

7
+

2594880γ

7007
− 3745245301351

2265524261

+
2594880 log(3)

7007
+

5189760 log(2)

7007

)
+ π

(
−259488 log(x)

1001
− 518976γ

1001
+

18044070358903

11327621305

− 518976 log(3)

1001
− 1037952 log(2)

1001

)]
x9/2

+

[
−616174368πσ

64141
− 13139760 log(x)

5929
+

6445920π2

1309
− 26279520γ

5929

+
656585911003784857

15431705639350
− 26279520 log(3)

5929
− 52559040 log(2)

5929

]
x5

+

[
σ

(
−141723696 log(x)

49049
+

314592π2

49
− 283447392γ

49049

+
450585773170908589

8087921611770
− 283447392 log(3)

49049
− 566894784 log(2)

49049

)
+ π

(
29322144 log(x)

7007
+

58644288γ

7007
− 530645101377839167

6739934676475

+
58644288 log(3)

7007
+

117288576 log(2)

7007

)]
x11/2 (9.59)
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F̂71 = 1− 223

17
x+

(
2π +

27σ

2

)
x3/2 +

39565047

499681
x2 +

(
−90301σ

476
− 446π

17

)
x5/2

+

(
27πσ − 11948 log(x)

23205
+

4π2

3
− 23896γ

23205
− 900375181510781

3241170812880
− 23896 log(2)

23205

)
x3

+

(
9523157277σ

7994896
+

79130094π

499681

)
x7/2

+

(
−90301πσ

238
+

2664404 log(x)

394485
− 892π2

51
+

5328808γ

394485
+

272158571374959377057

481573159377710400

+
5328808 log(2)

394485

)
x4

+

[
σ

(
−53766 log(x)

7735
+ 18π2 − 107532γ

7735
− 204661562601577

48017345376
− 107532 log(2)

7735

)
+ π

(
−23896 log(x)

23205
− 47792γ

23205
− 900375181510781

1620585406440
− 47792 log(2)

23205

)]
x9/2

+

(
9523157277πσ

3997448
− 157574393852 log(x)

3865032535
+

52753396π2

499681
− 315148787704γ

3865032535

− 235741151452316569687157

620828064631098324000
− 315148787704 log(2)

3865032535

)
x5

+

[
σ

(
269729087 log(x)

2761395
− 90301π2

357
+

539458174γ

2761395
+

29113672696708980165059

3371012115643972800

+
539458174 log(2)

2761395

)
+ π

(
5328808 log(x)

394485
+

10657616γ

394485
+

272158571374959377057

240786579688855200
+

10657616 log(2)

394485

)]
x11/2

(9.60)
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F̂72 = 1 + 8σx1/2 − 13619

1071
x+

(
4π − 129320

1071

)
x3/2 +

(
32πσ +

20288614207

283319127

)
x2

+

(
3613352872σ

4497129
− 54476π

1071

)
x5/2

+

(
−517280πσ

1071
− 47792 log(x)

23205
+

16π2

3
− 95584γ

23205

− 469120756856

2500903405
− 191168 log(2)

23205

)
x3

+

[
σ

(
−382336 log(x)

23205
+

128π2

3
− 764672γ

23205
− 110775486737506

40514635161

− 1529344 log(2)

23205

)
+

81154456828π

283319127

]
x7/2

+

(
14453411488πσ

4497129
+

650879248 log(x)

24852555
− 217904π2

3213
+

1301758496γ

24852555

− 5565093875687384492

67721225537490525
+

2603516992 log(2)

24852555

)
x4

+

[
σ

(
1236092288 log(x)

4970511
− 2069120π2

3213
+

2472184576γ

4970511

+
153689215630344417094

67721225537490525
+

4944369152 log(2)

4970511

)
+ π

(
−191168 log(x)

23205
− 382336γ

23205
− 1876483027424

2500903405
− 764672 log(2)

23205

)]
x9/2

+

[
πσ

(
−1529344 log(x)

23205
− 3058688γ

23205
− 443101946950024

40514635161
− 6117376 log(2)

23205

)
− 969633450180944 log(x)

6574420342035
+

324617827312π2

849957381
− 1939266900361888γ

6574420342035

+
26804007745506705831944402

11000297270182273428375
− 3878533800723776 log(2)

6574420342035

]
x5

+

[
σ

(
−172689360458624 log(x)

104355878445
+

57813645952π2

13491387
− 345378720917248γ

104355878445

+
11711346651047295703868141

523823679532489210875
− 690757441834496 log(2)

104355878445

)
+ π

(
2603516992 log(x)

24852555
+

5207033984γ

24852555
− 22260375502749537968

67721225537490525

+
10414067968 log(2)

24852555

)]
x11/2 (9.61)
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F̂73 = 1− 239

17
x+

(
6π +

19

2

)
x3/2 +

131958599

1499043
x2 +

(
−201767σ

1428
− 1434π

17

)
x5/2

+

(
57πσ − 35844 log(x)

7735
+ 12π2 − 71688γ

7735
− 78766297655021

360130090320

− 71688 log(3)

7735
− 71688 log(2)

7735

)
x3 +

(
1154491277σ

1262352
+

263917198π

499681

)
x7/2

+

(
−201767πσ

238
+

8566716 log(x)

131495
− 2868π2

17
+

17133432γ

131495
− 79572683467659663

121333625441600

+
17133432 log(3)

131495
+

17133432 log(2)

131495

)
x4 +

[
σ

(
−340518 log(x)

7735
+ 114π2 − 681036γ

7735

− 344989969285499

144052036128
− 681036 log(3)

7735
− 681036 log(2)

7735

)
+ π

(
−215064 log(x)

7735
− 430128γ

7735
− 78766297655021

60021681720

− 430128 log(3)

7735
− 430128 log(2)

7735

)]
x9/2

+

(
1154491277πσ

210392
− 1576641340852 log(x)

3865032535
+

527834396π2

499681
− 3153282681704γ

3865032535

+
4609993098496362230956667

620828064631098324000
− 3153282681704 log(3)

3865032535
− 3153282681704 log(2)

3865032535

)
x5

+

[
σ

(
602678029 log(x)

920465
− 201767π2

119
+

1205356058γ

920465
− 20019219044238975311

3112661233281600

+
1205356058 log(3)

920465
+

1205356058 log(2)

920465

)
+ π

(
51400296 log(x)

131495
+

102800592γ

131495
− 238718050402978989

60666812720800
+

102800592 log(3)

131495

+
102800592 log(2)

131495

)]
x11/2 (9.62)
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F̂74 = 1 + 8σx1/2 − 14543

1071
x+

(
8π − 139064σ

1071

)
x3/2

+

(
64πσ +

22046072455

283319127

)
x2 +

(
4041717718σ

4497129
− 116344π

1071

)
x5/2

+

(
−1112512πσ

1071
− 191168 log(x)

23205
+

64π2

3
− 382336γ

23205

− 3897310139143

67524391935
− 382336 log(2)

7735

)
x3

+

[
σ

(
−1529344 log(x)

23205
+

512π2

3
− 3058688γ

23205
− 79565406120562

40514635161

− 3058688 log(2)

7735

)
+

176368579640π

283319127

]
x7/2

+

(
32333741744πσ

4497129
+

2780156224 log(x)

24852555
− 930752π2

3213
+

5560312448γ

24852555

− 19342673411957889689

9674460791070075
+

5560312448 log(2)

8284185

)
x4

+

[
σ

(
26584586752 log(x)

24852555
− 8900096π2

3213
+

53169173504γ

24852555

− 1052245252615435125134

67721225537490525
+

53169173504 log(2)

8284185

)
+ π

(
−1529344 log(x)

23205
− 3058688γ

23205
− 31178481113144

67524391935
− 3058688 log(2)

7735

)]
x9/2

+

[
πσ

(
−12234752 log(x)

23205
− 24469504γ

23205
− 636523248964496

40514635161
− 24469504 log(2)

7735

)
− 842900715815488 log(x)

1314884068407
+

1410948637120π2

849957381
− 1685801431630976γ

1314884068407

+
143862077225308606071034793

11000297270182273428375
− 1685801431630976 log(2)

438294689469

]
x5

+

[
σ

(
−772647092714624 log(x)

104355878445
+

258669933952π2

13491387
− 1545294185429248γ

104355878445

+
76962980238610492704134354

523823679532489210875
− 1545294185429248 log(2)

34785292815

)
+ π

(
22241249792 log(x)

24852555
+

44482499584γ

24852555

− 154741387295663117512

9674460791070075
+

44482499584 log(2)

8284185

)]
x11/2 (9.63)
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F̂75 = 1− 271

17
x+

(
10π +

3σ

2

)
x3/2 +

161912939

1499043
x2 +

(
−37511σ

1428
− 2710π

17

)
x5/2

+

(
15πσ − 59740 log(x)

4641
+

100π2

3
− 119480γ

4641
− 72708277771009

648234162576

− 119480 log(5)

4641
− 119480 log(2)

4641

)
x3 +

(
4609070647σ

23984688
+

1619129390π

1499043

)
x7/2

+

(
−187555πσ

714
+

16189540 log(x)

78897
− 27100π2

51
+

32379080γ

78897

− 69798849954372148039

19262926375108416
+

32379080 log(5)

78897
+

32379080 log(2)

78897

)
x4

+

[
σ

(
−29870 log(x)

1547
+ 50π2 − 59740γ

1547
− 139128548929393

432156108384

− 59740 log(5)

1547
− 59740 log(2)

1547

)
+ π

(
−597400 log(x)

4641
− 1194800γ

4641
− 363541388855045

324117081288

− 1194800 log(5)

4641
− 1194800 log(2)

4641

)]
x9/2

+

[
23045353235πσ

11992344
− 9672678975860 log(x)

6957058563
+

16191293900π2

4497129
− 19345357951720γ

6957058563

+
1275474878427485531926255

44699620653439079328
− 19345357951720 log(5)

6957058563
− 19345357951720 log(2)

6957058563

]
x5

+

[
σ

(
560226785 log(x)

1656837
− 937775π2

1071
+

1120453570γ

1656837
− 210794710578688517173

36774677625206976

+
1120453570 log(5)

1656837
+

1120453570 log(2)

1656837

)
+ π

(
161895400 log(x)

78897
+

323790800γ

78897
− 348994249771860740195

9631463187554208

+
323790800 log(5)

78897
+

323790800 log(2)

78897

)]
x11/2 (9.64)
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F̂76 = 1 + 8σx1/2 − 1787

119
x+

(
12π − 17256σ

119

)
x3/2 +

(
96πσ +

313730895

3497767

)
x2

+

(
538436792σ

499681
− 21444π

119

)
x5/2 +

(
−207072πσ

119
− 143376 log(x)

7735
+ 48π2 − 286752γ

7735

+
69080576624

441335895
− 286752 log(3)

7735
− 573504 log(2)

7735

)
x3

+

[
σ

(
−1147008 log(x)

7735
+ 384π2 − 2294016γ

7735
− 1179430181126

1500542043

− 2294016 log(3)

7735
− 4588032 log(2)

7735

)
+

3764770740π

3497767

]
x7/2

+

(
6461241504πσ

499681
+

256212912 log(x)

920465
− 85776π2

119
+

512425824γ

920465

− 535457980021354132

92896056978725
+

512425824 log(3)

920465
+

1024851648 log(2)

920465

)
x4

+
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σ

(
2474096256 log(x)

920465
− 828288π2

119
+

4948192512γ

920465

− 14231093283367007518

278688170936175
+

4948192512 log(3)

920465
+

9896385024 log(2)

920465

)
+ π

(
−1720512 log(x)

7735
− 3441024γ

7735
+

276322306496

147111965

− 3441024 log(3)

7735
− 6882048 log(2)

7735

)]
x9/2

+
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πσ

(
−13764096 log(x)

7735
− 27528192γ
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− 4717720724504
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− 27528192 log(3)
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− 55056384 log(2)

7735
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− 8996296160304 log(x)

5411045549
+

15059082960π2

3497767
− 17992592320608γ

5411045549

+
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5411045549

]
x5

+
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σ

(
−77198913489792 log(x)

3865032535
+

25844966016π2
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− 154397826979584γ
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+
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718551000730437875
− 154397826979584 log(3)

3865032535
− 308795653959168 log(2)

3865032535

)
+ π

(
3074554944 log(x)

920465
+

6149109888γ

920465
− 6425495760256249584

92896056978725

+
6149109888 log(3)
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+

12298219776 log(2)

920465

)]
x11/2 (9.65)
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F̂77 = 1− 319
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x+
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14π − 21σ

2
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x3/2 +

30773287

214149
x2 +
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39119σ

204
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17

)
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+
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−147πσ − 83636 log(x)
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+

196π2

3
− 167272γ
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+
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− 167272 log(2)

3315

)
x3 +

(
430826018π

214149
− 4813117711σ

3426384

)
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+

(
273833πσ
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+

26679884 log(x)

56355
− 62524π2
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+

53359768γ

56355
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9828023660769600
+

53359768 log(7)

56355
+

53359768 log(2)

56355
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x4

+
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σ

(
292726 log(x)
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+

585452 log(7)
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+

585452 log(2)
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)
+ π

(
−1170904 log(x)
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− 2341808γ

3315
+
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33073171560
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3315
− 2341808 log(2)
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x9/2

+

(
−33691823977πσ

1713192
− 2573754631532 log(x)

709903935
+

6031564252π2

642447
− 5147509263064γ

709903935

+
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857365748301348000
− 5147509263064 log(7)

709903935
− 5147509263064 log(2)

709903935

)
x5

+

[
σ

(
−817939171 log(x)

169065
+

1916831π2
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− 1635878342γ

169065

+
2911813721908485052367

29484070982308800
− 1635878342 log(7)

169065
− 1635878342 log(2)

169065

)
+ π

(
373518376 log(x)

56355
+

747036752γ

56355
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4914011830384800

+
747036752 log(7)
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+
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)]
x11/2 (9.66)
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9.6 Multipolar 5.5PN EOB relativistic resid-

ual amplitudes derived from the new spin-

ning particle on Schwartzschild fluxes re-

sults

The spin-dependent part of the PN-expanded residual relativistic amplitudes
obtained from the fluxes of Sec. 9.5.1 read
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9.7 Orbital factorization

Let us finally compute the orbital-factorized residual amplitudes via the usual
formula

ρ̂σ`m = Tn
[
1 + ρσ`m/ρ

orb
`m

]
, (9.94)

that give
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x7/2

− 1751136793973583997σ

877128611158800000
x9/2 − 1196116262406597291937σ

378088596073188000000
x11/2

(9.105)

ρ̂σ53 = 1 +
2σ

5
x3/2 − 307σ

2275
x5/2 − 96296σ

88725
x7/2 − 6666572173σ

2516388875
x9/2 − 148115323552418σ

27969662345625
x11/2

(9.106)

ρ̂σ54 = 1 +
3σ

5
x1/2 − 6037σ

4550
x3/2 − 28942427σ

24843000
x5/2 − 4810921567549σ

4227533310000
x7/2

− 755412581326802557σ

877128611158800000
x9/2 +

2665573621501545405197σ

7183683325390572000000
x11/2

(9.107)

ρ̂σ55 = 1− 2σ

3
x3/2 − 839σ

4095
x5/2 +

23336σ

31941
x7/2 +

8156376169σ

2717699985
x9/2 +

4839706866014σ

549222460605
x11/2

(9.108)

ρ̂σ61 = 1 +
7σ

12
x1/2 − 277σ

288
x3/2 − 44433049σ

45239040
x5/2 − 371051135027σ

268177029120
x7/2 − 10542121763613631σ

4680583081574400
x9/2

− 1427183707973376203797σ

358098305938628935680
x11/2 (9.109)
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ρ̂σ62 = 1 +
17σ

21
x3/2 − 1156σ

2205
x5/2 − 268757σ

113190
x7/2

− 21065590229σ

4403373975
x9/2 − 417535804117937σ

51876148799475
x11/2 (9.110)

ρ̂σ63 = 1 +
7σ

12
x1/2 − 317σ

288
x3/2 − 46104169σ

45239040
x5/2 − 29627725649σ

24379729920
x7/2

− 66489059319263639σ

42125247734169600
x9/2 − 3720872775185061088913σ

1790491529693144678400
x11/2

ρ̂σ64 = 1 +
5σ

21
x3/2 − 61σ

882
x5/2 − 112912σ

192423
x7/2

− 4568593831σ

2994294303
x9/2 − 575938803081179σ

176378905918215
x11/2 (9.111)

ρ̂σ65 = 1 +
7σ

12
x1/2 − 397σ

288
x3/2 − 10344629σ

9047808
x5/2 − 55766903119σ

53635405824
x7/2

− 333153630992549σ

561669969788928
x9/2 +

5921133406562379283σ

5509204706748137472
x11/2 (9.112)

ρ̂σ66 = 1− 5σ

7
x3/2 − 32σ

147
x5/2 +

89149σ

128282
x7/2

+
994661431σ

332699367
x9/2 +

58380434134501σ

6532552071045
x11/2 (9.113)

ρ̂σ71 = 1 +
27σ

28
x3/2 − 5055σ

6664
x5/2 − 314399559σ

111928544
x7/2

− 347816889471σ

66597483680
x9/2 − 32891164408304279241σ

3961979671719829760
x11/2 (9.114)

ρ̂σ72 = 1 +
4σ

7
x1/2 − 15013σ

14994
x3/2 − 15283693519σ

15865871112
x5/2 − 217904503299487σ

169923479609520
x7/2

− 35842020329840195061457σ

18196184038307662138752
x9/2 − 41562145193596080980127845387σ

12667273518267878997892204800
x11/2

(9.115)

ρ̂σ73 = 1 +
19σ

28
x3/2 − 8189σ

19992
x5/2 − 11131789σ

5890976
x7/2

− 127060305413σ

31546176480
x9/2 − 13578207003592742947σ

1876727212919919360
x11/2 (9.116)



315

ρ̂σ74 = 1 +
4σ

7
x1/2 − 17365σ

14994
x3/2 − 15963282247σ

15865871112
x5/2 − 188165557728943σ

169923479609520
x7/2

− 113565351972565506319637σ

90980920191538310693760
x9/2 − 15192320821418843659522004363σ

12667273518267878997892204800
x11/2

(9.117)

ρ̂σ75 = 1 +
3σ

28
x3/2 − 509σ

19992
x5/2 − 81873157σ

335785632
x7/2

− 80098504867σ

119875470624
x9/2 − 32173789985496290687σ

21394690227287080704
x11/2 (9.118)

ρ̂σ76 = 1 +
4σ

7
x1/2 − 2365σ

1666
x3/2 − 220684127σ

195874952
x5/2 − 226470388407σ

233091192880
x7/2

− 16832774774575023071σ

41600786553058212480
x9/2 +

338509237739925055727213σ

214521389325270182355200
x11/2

(9.119)

ρ̂σ77 = 1− 3σ

4
x3/2 − 667σ

2856
x5/2 +

4527163σ

6852768
x7/2

+
36227099497σ

12232190880
x9/2 +

400325034129853661σ

44553707262155520
x11/2 (9.120)

for the m = even case read

For the m = odd case, the best choice is to factorize the fσ`m = (ρσ`m)`’s:
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f̂σ21 = 1 +
3σ

2
x1/2 − 125σ

56
x3/2 − 32789σ

14112
x5/2 − 77944927σ

21732480
x7/2

− 428533338559σ

71195604480
x9/2 − 62955838520401σ

5980430776320
x11/2 (9.121)

f̂σ31 = 1 +
5σ

2
x3/2 − 11σ

18
x5/2 − 11323σ

1188
x7/2

− 717713σ

36036
x9/2 − 1064675011σ

35675640
x11/2 (9.122)

f̂σ33 = 1− 3σ

2
x3/2 − 7σ

10
x5/2 +

531σ

220
x7/2

+
871951σ

100100
x9/2 +

53556969σ

2202200
x11/2 (9.123)

f̂σ41 = 1 +
5σ

2
x1/2 − 257σ

66
x3/2 − 16757891σ

3963960
x5/2 − 229249343σ

37374480
x7/2

− 1788768324731111σ

178080427324800
x9/2 − 24627071076926702749σ

1379285286226848000
x11/2 (9.124)

f̂σ43 = 1 +
5σ

2
x1/2 − 111σ

22
x3/2 − 2098731σ

440440
x5/2 − 49844891σ

9689680
x7/2

− 33317029019173σ

6595571382400
x9/2 − 19612189638842587σ

7422554563424000
x11/2 (9.125)

f̂σ51 = 1 +
14σ

3
x3/2 − 1801σ

585
x5/2 − 66704σ

4563
x7/2

− 286905117σ

10270975
x9/2 − 133827846344194σ

3082370952375
x11/2 (9.126)

f̂σ53 = 1 + 2σx3/2 − 307σ

455
x5/2 − 96296σ

17745
x7/2

− 6666572173σ

503277775
x9/2 − 148115323552418σ

5593932469125
x11/2 (9.127)

f̂σ55 = 1− 10σ

3
x3/2 − 839σ

819
x5/2 +

116680σ

31941
x7/2

+
8156376169σ

543539997
x9/2 +

4839706866014σ

109844492121
x11/2 (9.128)
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f̂σ61 = 1 +
7σ

2
x1/2 − 277σ

48
x3/2 − 44433049σ

7539840
x5/2 − 371051135027σ

44696171520
x7/2

− 10542121763613631σ

780097180262400
x9/2 − 1427183707973376203797σ

59683050989771489280
x11/2 (9.129)

f̂σ63 = 1 +
7σ

2
x1/2 − 317σ

48
x3/2 − 46104169σ

7539840
x5/2 − 29627725649σ

4063288320
x7/2

− 66489059319263639σ

7020874622361600
x9/2 − 3720872775185061088913σ

298415254948857446400
x11/2 (9.130)

f̂σ65 = 1 +
7σ

2
x1/2 − 397σ

48
x3/2 − 10344629σ

1507968
x5/2 − 55766903119σ

8939234304
x7/2

− 333153630992549σ

93611661631488
x9/2 +

5921133406562379283σ

918200784458022912
x11/2 (9.131)

f̂σ71 = 1 +
27σ

4
x3/2 − 5055σ

952
x5/2 − 314399559σ

15989792
x7/2

− 347816889471σ

9513926240
x9/2 − 32891164408304279241σ

565997095959975680
x11/2 (9.132)

f̂σ73 = 1 +
19σ

4
x3/2 − 5055σ

952
x5/2 − 11131789σ

841568
x7/2

− 127060305413σ

4506596640
x9/2 − 13578207003592742947σ

268103887559988480
x11/2 (9.133)

f̂σ75 = 1 +
3σ

4
x3/2 − 509σ

2856
x5/2 − 81873157σ

47969376
x7/2

− 80098504867σ

17125067232
x9/2 − 32173789985496290687σ

3056384318183868672
x11/2 (9.134)

f̂σ77 = 1− 21σ

4
x3/2 − 667σ

408
x5/2 +

31690141σ

6852768
x7/2

+
36227099497σ

1747455840
x9/2 +

2802275238908975627σ

44553707262155520
x11/2 (9.135)
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Figure 9.2: Comparing FD (with MPD dynamics) and TD calculation (with
Hamiltonian dynamics) for a few multipoles and values of the particle spin.
Each plot shows four curves: the TD and FD result with all the contri-
butions nonlinear in the particle spin and the same data linearized in σ.
In the latter case, the agreement between TD and FD results is excellent.
The bottom part of each panel illustrate the fractional difference between:
X =TD-nonlinearized and FD-linearized and the fractional difference be-
tween X =TD-linearized and FD-linearized. The vertical line marks the
location of the LSO, Eq. (9.7).
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Figure 9.3: Comparison between the PN-expanded, Newton-normalized,
waveform amplitudes (dotted lines) and the corresponding numerical ones
(black lines). The values of the particle spin σ = (−0.90,−0.5,+0.5,+0.90)
are respectively indicated by the colors red, orange, blue and purple. The
colored markers indicate the location of the LSO, Eq. (9.7).



320

0 0.05 0.1 0.15 0.2
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 0.05 0.1 0.15 0.2
0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2
0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2
0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.05 0.1 0.15 0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 9.4: Comparison between the factorized and resummed, Newton-
normalized, waveform amplitudes (dotted lines) following the standard pro-
cedure of Ref. [176] and the corresponding numerical ones (black lines). The
values of the particle spin σ = (−0.90,−0.5,+0.5,+0.90) are respectively
indicated by the colors red, orange, blue and purple. The colored markers
indicate the location of the LSO, Eq. (9.7). The analytical approximation is,
in general, rather inaccurate for `+m = odd modes.
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Figure 9.5: Alternative resummation: the `+m = even modes are resummed
using Eq. (9.13), while the ` + m = odd rely on Eq. (9.17), where only the
tail factor is overall factorized. The values of the particle spin are σ =
(−0.90,−0.5,+0.5,+0.90), and are respectively indicated by the colors red,
orange, blue and purple. The colored markers indicate the location of the
LSO, Eq. (9.7). The improvement in the `+m = odd modes with respect to
Fig. 9.4 is evident. By contrast, the behavior of the ` + m = even modes is
similar to those of Fig. 9.4, though slightly worse.
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Figure 9.6: Testing the resummation of the m = odd modes suggested in the
comparable-mass case. The analytical/numerical agreement is rather good
for the (2, 1) and (3, 3) mode, while it is largely inaccurate for the other
multipoles.
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Figure 9.7: Analytical/numerical agreement with the tail-factorized ` =
2, m = 1 amplitude truncated at 2.5PN in the spin sector, consistently
with Eq. (9.19). Despite the reduced amount of spin-dependent information
reduced amount of PN information the tail-factorized analytical amplitude
does not look especially better than the orbital-factorized and resummed one
displayed in Fig. 9.6.
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Chapter 10

Conclusions

10.1 Ref. [1] (Chapter 5)

This paper has introduced and detailed TEOBResumS, a state-of-the-art effective-
one-body model that generates time-domain gravitational waveforms for non-
precessing, coalescing relativistic binaries. Our main results are as follows.

(i) After correcting a minor coding error in the numerical implementation
of the BBH sector of the model, we obtained a new determination of
the NNNLO spin-orbit effective parameter c3 with respect to Ref. [37].
In addition, the merger and postmerger part was updated with respect
of Ref. [37] thanks to new effective fits that combine together NR infor-
mation with test-particle results [338]. The parameter c3 is determined
by comparing EOB waveforms with 27, spin-dependent, NR waveforms
from the SXS catalog. The model is then validated by computing the
unfaithfulness (or mismatch) F̄ over 135 NR waveforms from the SXS
catalog obtained with the SpEC code and 19 NR waveforms from the
BAM code. Over the SXS catalog, max(F̄ ) . 2.5 × 10−3 except for a
single outlier, (3,+0.85,+0.85) where max(F̄ ) . 7.1× 10−3. By incor-
porating more flexibility in the global fit for c3, notably allowing c3 to
depend quadratically on the individual spin variables also away from
the equal-mass, equal-spin regime, one finds that max(F̄ ) . 2.5× 10−3

all over the SXS waveform catalog. By contrast, F̄ over the BAM NR
waveform is always well below the 1% level except for the single outlier
(8,+0.85,+0.85), that shoots up to 5.2%. We have identified the cause
of this discrepancy to be the strength of the EOB-predicted spin-orbit
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interaction to be too small (i.e., resulting in a dynamics plunging too
fast with respect to the NR prediction) in that corner of the param-
eter space. We have shown that the problem can be fixed by a new,
NR-driven, choice for c3. For simplicity, we have however decided not
to provide a new fit of c3 that also incorporates this strong-field infor-
mation. This will be done in a forthcoming study that implements the
factorized and resummed waveform amplitudes of Refs. [9, 4] that are
expected to be more robust for large mass ratios and large, positive
spins.

(ii) We comprehensively explored the behavior of TEOBResumS waveform
amplitude and frequencies outside the NR-covered portion of the pa-
rameter space. Thanks to the robustness of the merger and postmerger
fits of Ref. [338], the waveforms look sane and consistent among them-
selves even for large mass ratios (q ≤ 20) and high-spins (χ1 = χ2 =
±0.95).

(iii) Building on previous work [206], the matter-dependent sector of TEOBResumS
blends together, in resummed form, spin-orbit, spin-spin and tidal ef-
fects. Notably, the EOS-dependent self-spin effects are also incorpo-
rated in the model (at leading order) in a similar fashion to the BBH
case [159]. We showed that TEOBResumS waveforms are compatible with
state-of-the-art, long-end, error-controlled, NR simulations of coalesc-
ing, spinning BNSs for an illustrative choice of EOS.

(iv) We have produced selected comparisons with the EOB-based models
SEOBNRv4 and its tidal counterpart, SEOBNRv4T. In particular, for the
case of spinning BNS, we computed the faithfulness (or match) be-
tween SEOBNRv4T and TEOBResumS, starting from 40Hz, with MA/MB ∈
[1, 2], the heaviest mass MA ∈ [1, 3]M�, dimensionless spins χA,B ∈
[−0.15,+0.15] and tidal parameters ΛA,B ∈ [2, 1600]. We found excel-
lent compatibility between the two models, with minimum match equal
to 0.9898 for more than 17,000 events.

(v) Finally, we tested the performance of TEOBResumS in a realistic setting
by performing a parameter estimation study on the publicly available
data for GW150914. Our posteriors, listed in Table 5.4, are fully com-
patible with those inferred by the LVC analysis of Refs. [44, 275], that
are based on other NR-calibrated EOB waveform models.
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While this paper was being finalized, a computationally efficient version
of TEOBResumS based on the post-adiabatic approximation appeared [191].
In addition, TEOBResumS is being used to test the RIFT algorithm to perform
Rapid parameter (RapidPE) inference of gravitational wave sources via Itera-
tive Fitting [339]. In particular, RapidPE results obtained using TEOBResumS

on GW170817 data are reported in Ref. [210].

10.2 Ref. [2] (Chapter 6)

We have incorporated the EOS-dependent self-spin terms (or monopole-
quadrupole effects) in TEOBResumS at NLO (i.e., at 3PN order, in both the
Hamiltonian and the flux) and at NNLO (4PN order, though only in the
Hamiltonian, since the corresponding information in the flux is not available
yet). Following previous work [1], this was done through a modification of the
centrifugal radius function rc(r, ãi), which now depends on the spin-induced
quadrupole moments.

Our main findings can be summarized as follows:

(i) Using the Qω gauge-invariant description of the phasing, we have found
that, once incorporated in the EOB formalism, NLO self-spin effects
during the late inspiral are more phase accelerating than the LO ones
(consistent with the corresponding PN behavior) but at the same time
different and less phase accelerating than the corresponding PN de-
scription at NLO expressed through the TaylorF2 approximant. We
have verified this to be the case for a few (though illustrative) EOS
choices and binary parameters

(ii) The resummed EOB self-spin phasing during the inspiral can be well
approximated by augmenting the TaylorF2 approximant by the LO self-
spin tail term. The resulting approximant delivers a simple phasing
expression that is consistent with the EOB one up to dimensionless
frequency up to Mω ' 0.06

(iii) In general, the fact that the PN prediction is always more phase acceler-
ating than the EOB one may have consequences on the estimate of these
effects on real data, especially in the case of fast spinning BNS [135]
made by recycled NS. This also indicates that current waveform mod-
els, notably PhenomPv2 NRTidal [209], that incorporate self-spin effects
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and that have been used for the analysis of GW170817, should be up-
dated accordingly. This may eventually affect the evaluation of the
systematics due to waveform models in the analysis of GW170817.

(iv) Similarly, it will also be interesting to repeat the parameter estima-
tion of GW170817 performed in Ref. [210] using TEOBResumS using
the current version of the model that incorporates up to NNLO, EOS-
dependent, self-spin effects. Note that this will also imply incorporating
more, point-mass, spin-dependent terms than those currently present
in the model.

(v) We have illustrated how to consistently compare the EOB and TaylorF2
phasing, notably in the low-frequency regime, using theQω(ω) function.
In the present paper this comparison was restricted to the quadrupole-
monopole part of the phasing. It would be interesting to generalize it
to the other parts, so to have in hands precise comparisons between the
orbital, spin-orbit or spin-spin parts. We postpone such a comparison
to future work.

10.3 Ref. [3] (Chapter 7)

Our results can be summarized as follows:

1. Starting from the EOB resummed expressions for the energy flux and
energy along circular orbits, we have computed a TaylorF2 point-mass,
nonspinning, approximant at formal 5.5PN order. Such quasi-5.5PN
approximant depends on some, yet uncalculated, ν-dependent, PN pa-
rameters that are set to zero.

2. Among various truncations of the 5.5PN approximant (3.5PN, 4PN,
4.5PN, 5PN, see Sec. 7.4), we have found that the 5.5PN phasing per-
forms best when compared with the complete point-mass phasing ob-
tained with TEOBResumS. Such phasing comparison was done exploiting
its gauge-invariant description through the Qω = ω̂2/ ˙̂ω function. The
main outcome of this analysis is that the EOB-derived quasi-5.5PN
approximant is remarkably close to the complete EOB phasing up to
the late inspiral (e.g. ω̂ ' 0.06) and performs better than the standard
(analytically complete) 3.5PN one. We tested that the performances
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remain robust for unequal masses up to q = 2 and aligned spin cases
with dimensionless spin magnitudes up to χ ∼ ±0.1.

3. To assess the use of the 5.5PN approximant in GW parameter es-
timations, we considered injection studies with hybrid waveforms of
GW170817-like sources. The improved TaylorF2 point-mass baseline
reduces (or even eliminates) the biases on the measurability of the tidal
polarizability parameter Λ̃ instead produced by the use the standard
3.5PN point-mass baseline. Therefore, the new 5.5PN approximant
can be faithfully and effectively used in matched filtered searches and
Bayesian parameter estimation.

We recommend the use of the new quasi-5.5PN approximant to improve
the performance of the TaylorF2 and substitute it to the 3.5PN in searches/parameter
estimation. To ease this task, we have implemented all the new PN terms
up to 5.5PN in the LSC Algorithm Library Suite (LALSuite).

The performances of the 5.5PN approximant could be further improved
towards higher frequencies by carefully tuning some of the free parameters.
A preliminary investigation based on a equal masses nonspinning BNS is
presented at the end of Sec. 7.4. We find that by tuning the 5PN parameter ac6
and the 4PN coefficient c4PN

22 entering the ` = m = 2 waveform amplitude, the
phase difference between such flexed PN approximant and the EOB phasing
is negligible essentially up to merger. This indicates that, while the PN
series keeps oscillating even when high order terms come into play, future
work might be devoted to effectively minimize such oscillations by suitably
tuning such parameters.

10.4 Ref. [4] (Chapter 8) and the Multipolar

TEOBResum code [7]

In this paper we have improved and generalized the factorization and resum-
mation procedure of waveform amplitudes introduced in Ref. [9]. The key
conceptual step of the approach relies on factorizing the orbital and the spin-
dependence into two separate factors that can then be resummed separately
in various ways. Our results can be summarized as follows:

(i) Concerning a circularized, (nonspinning) particle orbiting around a
Kerr black hole, we have shown that the (relative) 6PN-accurate ρ`m
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functions can be factorized and resummed in a form that yields a more
than satisfactory agreement (of the order of a few %) with the corre-
sponding numerical (exact) function up to the last-stable-orbit. This
is notably true for the case of a quasi-extremal black hole with dimen-
sionless spin parameter â = +0.99. One of the novelties with respect
to previous work [9] is that the 6PN-accurate orbital function ρorg

22 is
resummed with a Padé approximant (typically P 4

2 ). The same recipe
proved to work essentially the same way for all subdominant modes up
to ` = 6, modulo a few exceptions where working at either higher or
lower PN-information proved a better choice (see Table 8.1). More con-
cretely, the factorization-resummation procedure allows us to obtain an
analytic flux, summed over all multipoles up to ` = 6, that is consistent
at the 5% fractional level up to the LSO, for the most demanding case
of â = +0.99. This result is accomplished relying only on purely ana-
lytical information, without any additional fit to the numerical fluxes.
We recall that this route was followed instead in Ref. [305] , where
several higher-PN terms, unknown at the time, were calibrated to the
same Teukolsky data we are using here. The fits were able to improve
the standard ρ`m-nonresummed flux so to have a fractional difference
at the LSO of the order (or below) 1%. We have briefly illustrated (for
the ` = m = 2 mode only, see end of Sec. 8.2) that an analogous route
can be followed also in our framework and that it is easy to reach ana-
lytical/numerical fractional differences in ρ22 of the order of 0.1% at the
LSO for â = +0.99 by just choosing one effective parameter entering at
6.5PN order in the resummed spin factor ρ̄S

22. Alternatively, we want to
remind that we have explored only a few of the many possibile choices.
Focusing on the (2, 2) mode only for definitess, the logic driving our
approach is: first (i), to simplify things we choose to keep the same
PN-order for both the orbital and PN factors; then (ii), as a similarly
simple choice to reduce the growth of the spin factor in the strong-field
regime (see discussion in Ref. [9]), we resummed it with its inverse-
Taylor approximant; (iii) finally, we found that a good match with the
exact numerical data was found by taking the P 4

2 Padé approximant
of the orbital factor. Once the factorization paradigm is accepted, any
of the points (i)-(iii) above could be, in principle, changed. For exam-
ple, for (3, 1) we found that the numerical/analytical agreement gets
improved by keeping the spin factor at 8PN accuracy and the orbital
factor just at 4PN accuracy resummed with a (3, 1) Padé approximant.
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Similarly, for some multipoles like (3, 3) and (4, 4) things are such that
the straightforward, Taylor-expanded, form of the orbital factor yields
a better agreement with the numerical results. These facts suggest
that it might be possible that there are some special combinations of
Padé approximant for the orbital part and PN-truncation of the spin
factor that could further reduce the analytical/numerical disagreement
in the near-LSO regime. Seen the large amount of PN-knowledge that
is available (up to 20PN [307]), this would require a specific, dedicated
study depending on the spin regime where one would like to use the
resummed flux.

(ii) We have extended the factorization and resummation procedure to all
the existing ν-dependent spin terms. This means that we go up to
NNLO in the spin-orbit coupling, up to NLO in the spin-spin coupling
and up to LO in the spin-cube coupling. This is done consistently for
all multipoles currently known above the LO contributions (` = 4).
In doing so, we propose to use the orbital part of the waveform in
hybridized form, where currently known, ν-dependent orbital terms
are hybridized with the test-mass term, as proposed long ago in [8].
The novelty here is that, to maintain the consistency with the choices
done in the test-particle limit, each ρ`m is kept up to relative 6PN order
(modulo a few exceptions), with the Padé-approximant that was chosen
in the test-particle limit, however maintaining the full ν-dependence
that is currently available in the low-order terms. By contrast, as
a first choice, the spin-dependent factor is not hybridized with high-
order test-particle results, but it is inverse resummed at the currently
available ν-dependent PN order. We have explored the robustness of
this choice on an indicative sample of binary configurations, contrasting
the resummed amplitude with the plain, Taylor-expanded, ρ`m. Since
we do not have circularized comparable-mass BH data to compare with,
the only effect that we could investigate for is the consistency between
NNLO and NLO truncations of the waveform, as an indication of the
analytical robustness of the resummed expressions. Our Figs. 8.3 (for
` = 2) and 8.4 (for ` = 3) show that, for the same binary, differences
that are large for the Taylor-expanded ρ`m or δmf`m are either very
much reduced, or practically negligible, in the resummed representation
of the same functions. This effect is very striking on δmf21, where not
only one can see this effect, but the function is also qualitatively close
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to the numerical one (see for example Fig. 5 of Ref. [9]).

These findings suggest that the resummed waveform amplitudes should
be incorporated within the EOB approach as a new, state-of-the-art,
analytical waveform paradigm. This was pointed out already in Ref. [9].
In particular, we expect that next-to-quasi-circular corrections [167] to
the waveforms will generically have a smaller impact than in current
EOB models [37], because they will hopefully have to bring just small
corrections to the already good strong-field behavior of the analytical
waveform. This was briefly pointed out already in Ref. [37], and has
been recently confirmed in Ref. [7] (see Table I and Fig. 8 there, that we
report here, for completeness, in Table 10.1 and Fig. 10.1 respectively).

(iii) Following Ref. [9], we wrote all spin-dependent expressions using as spin
variables the Kerr parameters of the individual black holes divided by
the total mass of the system, ãi ≡ ai/M = Si/(miM). The use of
these quantities to parametrize a spin-dependent function was already
suggested in Ref. [34] in the context of informing a next-to-next-to-next-
to-leading order spin-orbit effective parameter using NR simulations;
similarly, the same spin variables allow for a simple recasting of the
NLO correction to the centrifugal radius, that has rather complicated
coefficients when written using the dimensionless spin variables χi =
Si/m

2
i , see Eq. (58)-(65) of [34]. When using ãi, Eq. (58) of [34] reduces

to the following very compact form

δa2 =
M3

r

{
5

4
ã12â0X12 −

(
5

4
+
ν

2

)
â2

0

+

(
1

2
+ 2ν

)
ã1ã2

}
. (10.1)

The use of the ãi’s in our context, on top of providing similar simplifica-
tions in writing the formulas, is extremely convenient since these vari-
ables are natuarally connected to the (spinning) test-particle limit, that
can be obtained straightforwardly by just putting ν = 0 in the equa-
tions. On top of this, since our analytical writing of the fluxes makes
absolutely transparent which terms combine to generate the (spinning)
test-particle limit, it is technically clear how to hybridize the ν = 0 in-
formation with ν 6= 0 one also in the presence of spin, in order to have a
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waveform model that is fully consistent with the test-mass results dis-
cussed at point (i) above. Though stating whether such test-particle
information will have any important impact on LIGO/Virgo targeted
waveform models requires deeper investigations, it will certainly allow
us to improve their self-consistency all over the binary parameter space.

10.5 Ref. [5] (Chapter 9)

In this paper we have collected several new results concerning the gravita-
tional waveform fluxes and amplitudes emitted by a spinning particle (i.e.,
a spinning test-black hole) on circular orbits around a Schwarzschild black
hole at linear order in the particle spin. Our main findings are summarized
as follows:

(i) We have analytically computed the PN-expanded multipolar energy
fluxes up to ` = 7. Each multipole is obtained at 5.5 PN order beyond
the leading, Newtonian, contribution. This improves our current ana-
lytical knowledge of the fluxes in this corner of the parameter space,
that was previously known only up to global 3.5PN order.

(ii) We have computed numerically the multipolar energy fluxes (and wave-
form amplitudes) up to ` = 6 using two different, and independent,
numerical codes. One is a frequency-domain code; the other uses a
time-domain approach. We demonstrated the excellent mutual consis-
tency between the two numerical approaches once the numerical data
are suitably linearized in the spin of the particle. This allows us to
provide accurate, circularized, waveform amplitudes up to the LSO for
different values of the particle spin.

(iii) We compared to these numerical data, considered as exact, the PN-
expanded analytical amplitudes as well as different flavors of their
resummation. In particular, we could show that the standard re-
summation approach of Ref. [176], that is implemented in state-of-
the-art waveform models for coalescing black-hole binaries, such as
SEOBNRv4 [36] or TEOBResumS [1], is inaccurate for ` + m odd modes
and provides nonnegligible differences with the numerical data already
in the early inspiral. This indicates that the procedure of Ref. [176]
should be improved to construct a waveform model robust and accu-
rate all over the BBH parameter space.
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(iv) The most important result of this work is that the factorization of
only the tail factor in the ` + m = odd modes allows one to obtain
an excellent analytical/numerical agreement up to the LSO (and even
below), for −0.9 ≤ σ ≤ +0.9, and for all odd-parity modes analyzed
up to ` = 5, see Fig. 9.5. This result opens at least two questions.
First of all, one wonders whether the only-tail factorization would be
helpful also to resumming the fluxes emitted by a nonspinning particle
orbiting a Kerr black hole. Resumming that PN series has always been
a challenge [176] that was solved, to a certain extent, only through
the orbital factorization (and additional resummation) procedure of
Refs. [9, 4]. Hopefully the only-tail factorization approach might be
useful in that case at least for what concerns the terms linear in the
black-hole spin. On the other hand, our findings also suggest that it
might be worth investigating the performance of the only-tail factoriza-
tion procedure also in the ν 6= 0 case. The accuracy of such odd-parity
waveform amplitudes should then be carefully evaluated by performing
extensive comparisons between a so-constructed EOB waveform model
and state-of-the-art NR simulations.

(v) We also explored the accuracy of the orbital-factorization/resummation
approach of Ref. [9, 4], notably in the form developed for the odd-m
modes in the ν 6= 0 case. We do so by truncating the PN information
at the same PN order where ν-dependent corrections are known. This
approach has been recently used to improve the behavior of the ` = 2,
m = 1 waveform amplitude in a new, EOB-based, multipolar waveform
model [321]. For this mode, we found (see top-left panel of Fig. 9.6)
that the numerical/analytical agreement is rather good, though not at
the level of the only-tail factorized case mentioned above. The situation
is even worse for the subdominant modes (except the ` = m = 3 one).
Our results seem to suggest that the resummation of Ref. [9, 4] should
be replaced by the only-tail factorization one, since it is simpler and
more accurate. More investigations, notably when both objects are
spinning, will be needed to confirm this preliminary conclusion.
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Table 10.1: Resummation choices used to build the multipolar EOB wave-
form of Ref. [7]. The bar denotes resummation using the inverse Taylor
expansion, as described by Eq. (5) of Ref. [9]. The PN-order should be in-
tended relative to the leading-order term and also indicates the order of the
additional (spinning) test-particle terms. For example, 3.5PN means that we
take a polynomial of the form 1 +x3/2 +x2 +x5/2 + ...+x7/2, with the known
ν dependence in the coefficients. Instead, 1.5+1PN means that we add to
the ν-dependent 1.5PN-accurate polynomial an additional term proportional
to x5/2 obtained by suitably incorporating spinning p article terms as illus-
trated in Sec. 8.5.2 of Chapt. 8. We denote Padé resummation by P n

d , where
N = n + d is the PN order. These choices, motived by the work done in
Ref. [4], have reduced the impact of NQC corrections as indicatively showed
in Fig. 10.1 for some multipoles.

(`,m) Resummation choices Relative PN order
orbital spin orbital spin

(2, 2) P 5
0 [ρorb22 ] T [ρS22] 3+2PN 3.5PN without NNLO SO term

(2, 1) P 5
1 [ρ21] f̂S21 = X12f̂

S(0)

21 − 3

2
ã12x

1/2f̂
S(1)

21 3+3PN 2.5PN

(3, 3) P 4
2 [ρ33] f̂S33 = X12f̂

S(0)

33 +

(
−1

4
+

5

2
ν

)
ã12x

3/2f̂
S(1)

33 3+3PN 2.5PN

(3, 2) P 4
2 [ρ32] T [ρS32] 2+2PN 1.5+1PN (SO only)

(3, 1) P 3
2 [ρorb31 ] f̂S31 = X12f̂

S(0)

31 +

(
−9

4
+

13

2
ν

)
ã12x

3/2f̂
S(1)

31 3+2PN 2.5PN

(4, 4) P 6
0 [ρorb44 ] T [ρS44] 2+4PN 1.5+2PN (SO only)

(4, 3) P 4
2 [ρorb43 ] f̂S43 = X12f̂

S(0)

43 − 5

4
ã12x

1/2 1+5PN 0.5PN (SO only)

(4, 2) P 6
0 [ρorb42 ] T [ρS42] 2+4PN 1.5+3PN (SO only)

(4, 1) P 4
2 [ρorb41 ] f̂S41 = X12f̂

S(0)

41 − 5

4
ã12x

1/2 1+5PN 0.5PN (SO only)

(5, 5) P 6
0 [ρorb55 ] f̂S55 = X12f̂

S(0)

55 + 10ν
(1− 3ν)

3− 6ν
ã12x

3/2 1+5PN 2PN
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Figure 10.1: Fig. 8 of Ref. [7]. Frequency and amplitude for the (2, 1), (3, 2)
and (5, 5) modes for some illustrative BBH configurations. On top of the NR
(black) and complete EOB curves (red, dashed), the plots also show: (i) the
analytical EOB waveform, without NQC corrections and ringdown (orange
online) and (ii) the NQC-augmented EOB waveform (light-blue online). The
dashed, vertical, line marks the merger location, i.e. the peak of the ` = m =
2 waveform amplitude. The (2, 1) frequency plots also incorporate the orbital
frequency Ω (grey online). The construction of the (2, 1) mode through
merger and ringdown cannot be accomplished correctly for large values of
the spins anti-aligned with the orbital angular momentum [see panel (c) and
(d) of Ref. [7]].
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gar, Néstor Ortiz, and Piero Rettegno. Effective-one-body multipolar

337



338

waveform for tidally interacting binary neutron stars up to merger.
Phys. Rev., D99(4):044051, 2019. doi: 10.1103/PhysRevD.99.044051.

[7] Alessandro Nagar, Gunnar Riemenschneider, Geraint Pratten, Piero
Rettegno, and Francesco Messina. A multipolar effective one body
waveform model for spin-aligned black hole binaries. 2020.

[8] Thibault Damour, Bala R. Iyer, and Alessandro Nagar. Improved
resummation of post-Newtonian multipolar waveforms from circular-
ized compact binaries. Phys. Rev., D79:064004, 2009. doi: 10.1103/
PhysRevD.79.064004.

[9] Alessandro Nagar and Abhay Shah. Factorization and resummation: A
new paradigm to improve gravitational wave amplitudes. Phys. Rev.,
D94(10):104017, 2016. doi: 10.1103/PhysRevD.94.104017.

[10] B. P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo during the
First and Second Observing Runs. 2018.

[11] Francesco Messina and Alessandro Nagar. Parametrized-4.5PN Tay-
lorF2 approximants and tail effects to quartic nonlinear order from
the effective one body formalism. Phys. Rev., D95(12):124001, 2017.
doi: 10.1103/PhysRevD.95.124001,10.1103/PhysRevD.96.049907. [Er-
ratum: Phys. Rev.D96,no.4,049907(2017)].

[12] Albert Einstein. The Foundation of the General Theory of Relativity.
Annalen Phys., 49(7):769–822, 1916. doi: 10.1002/andp.200590044,10.
1002/andp.19163540702. [Annalen Phys.14,517(2005); ,65(1916); An-
nalen Phys.354,no.7,769(1916)].
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and Bernd Brügmann. Accurate Effective-One-Body waveforms of in-
spiralling and coalescing black-hole binaries. Phys. Rev., D78:044039,
2008. doi: 10.1103/PhysRevD.78.044039.

[188] Alessandra Buonanno, Yi Pan, Harald P. Pfeiffer, Mark A. Scheel,
Luisa T. Buchman, and Lawrence E. Kidder. Effective-one-body wave-
forms calibrated to numerical relativity simulations: Coalescence of
non-spinning, equal-mass black holes. Phys. Rev., D79:124028, 2009.
doi: 10.1103/PhysRevD.79.124028.



BIBLIOGRAPHY 357

[189] Sebastiano Bernuzzi, Alessandro Nagar, and Anil Zenginoglu. Binary
black hole coalescence in the extreme-mass-ratio limit: testing and im-
proving the effective-one-body multipolar waveform. Phys.Rev., D83:
064010, 2011. doi: 10.1103/PhysRevD.83.064010.

[190] Michael Pürrer. Frequency domain reduced order models for gravita-
tional waves from aligned-spin compact binaries. Class. Quant. Grav.,
31(19):195010, 2014. doi: 10.1088/0264-9381/31/19/195010.

[191] Alessandro Nagar and Piero Rettegno. Efficient effective one body
time-domain gravitational waveforms. Phys. Rev., D99(2):021501,
2019. doi: 10.1103/PhysRevD.99.021501.

[192] https://data.black-holes.org/waveforms/index.html. SXS
Gravitational Waveform Database.

[193] Luisa T. Buchman, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szi-
lagyi. Simulations of non-equal mass black hole binaries with spectral
methods. Phys. Rev., D86:084033, 2012. doi: 10.1103/PhysRevD.86.
084033.

[194] Tony Chu, Harald P. Pfeiffer, and Mark A. Scheel. High accuracy
simulations of black hole binaries:spins anti-aligned with the orbital
angular momentum. Phys. Rev., D80:124051, 2009. doi: 10.1103/
PhysRevD.80.124051.

[195] Daniel A. Hemberger, Geoffrey Lovelace, Thomas J. Loredo,
Lawrence E. Kidder, Mark A. Scheel, Béla Szilágyi, Nicholas W. Tay-
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