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Trevize said, "Listen to me again. Just outside the Galaxy are the
Magellanic Clouds, where no human ship has ever penetrated.

Beyond that are other small galaxies, and not very far away is the
giant Andromeda Galaxy, larger than our own. Beyond that are

galaxies by the billions".

- Foundation and Earth, Isaac Asimov -
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Abstract

Black holes (BHs) are variegated and fascinating objects in Nature. Their realm
extends from the stellar BHs with mass ∼ 10−102 M� to the supermassive BHs of
109−10 M� that reside in the center of galaxies. While the former are the expected
outcome of stellar evolution, the latter are the results of multiple dark matter halo
mergers in the standard ΛCDM scenario. When two BHs are close enough, they
form a binary BHs (BHBs) and emit gravitational waves (GWs) that we can detect
with our inteferometers.

Similarly to BHs, also BHBs can be divided into different sub-populations, each
with its unique features and characteristics: stellar BHBs (SBHBs) form from the
co-evolution of binary stars or in dense region, while massive BHBs (MBHBs) are
the result of galaxy mergers.

The challenges of GW astronomy are still numerous and require different knowl-
edge and expertise to be solved. For this reason, I start this Thesis presenting result
for SBHBs in the initial chapters and moving to MBHBs in the end. Each chapter
has its own brief introduction and discussion of the main results and conclusions.

In Chapter 1 I introduce some basic General Relativity (GR) concepts related
to the emission of GWs. I summarise the current status of GW astronomy. I
explain how GWs from BHBs can be easily modeled under some reasonable as-
sumptions and report some formulas useful to understand the concepts of the
following chapters.

In Chapter 2 I study the minimum Post-Newtonian (PN) order necessary to
accurately track SBHBs in LISA and perform an unbiased parameter estimation.
SBHBs are expected to spend a large number of cycles in band, therefore an
accurate waveform is necessary to avoid biases in the binary parameters. I show
that the main factor affecting the PN accuracy is the time to coalescence with
systems closer to merger requiring higher PN contributions. I apply the previous
result to a realistic population of SBHBs in LISA in order to draw more realistic
estimates: I find that most of the sources can be modeled with just 2PN corrections
while systems merging during LISA time mission require up to 2.5PN and 3PN
contributions.

The topic of Chapter 3 is a model to describe SBHBs above the pair-instability

xvi



mass gap, i.e. BHs with mass > 120 M�. Under the assumption that the binary
formation does not change beyond the mass gap, I estimate the detected rate for
current detectors, ET and LISA. Finally I also suggest the possibility that the
undetected sources form a new source of stochastic background in LISA.

In Chapter 4 I move to MBHBs, detectable only from space by LISA. I pro-
vide an introduction on MBHBs formation and evolution and the multimessenger
possibilities. I also explain how we estimate source information with the so-called
Fisher matrix formalism.

In Chapter 5 I present a work I contributed where we explore the possibility
to detect a Doppler modulated X-ray emission during the inspiral of MBHBs. In
the last stage of merger, X-ray emission is expected as the result of gas accretion
on each BHs and the orbital motion of the binary might imprint a Doppler mod-
ulation on the electromagnetic (EM) emission in phase with the GW signal. The
detection of this modulation would allow to pinpoint the exact source location in
the relatively large error area provided by LISA. From our analysis, we estimate
few modulation detections over the LISA time mission.

Finally in Chapter 6 I report the results for the parameter estimation of MBHBs
on the fly, i.e. as function of time before coalescence. In particular I focus on sky
position, luminosity distance, chirp mass and mass ratio and how their errors
decrease as the system approaches merger. For the benefit of the community,
I release also the complete set of data and analytical fits to describe the time
evolution in the aforementioned parameters. Finally I discuss the multimessenger
prospects.

xvii



Chapter 1

GWs from compact object binaries

In the history of Science, the first detection of gravitational waves, GW150914, [1–
3] will have the same impact of the discover of Jupyter’s Moons by Galileo Galilei
in 1610.

When Galileo pointed his telescope at the sky, he did not probably realized the
importance of his action and, especially, how far we would have come from that
single blurry observation. After 400 years, we have explored the sky across its full
electromagnetic spectrum, from γ-ray to radio, reaching a deep understanding of
the laws that rule our Universe.

From 2015, GWs allow us to explore the Universe in an unmatched way, pro-
viding invaluable information on astrophysical and cosmological fields [4–7]. The
first and second observing runs concluded with the detection of ten BHBs and one
neutron star - neutron star (NS-NS) binary [4]. The NS-NS merger constitutes the
first multimessenger event of a direct GW and EM detection and was covered by
an extensive observational campaign [8–10].

Even if photons are easier to detect than GWs, the EM radiation interacts
strongly with the matter between the source and our detectors, hampering the
possibility to obtain information as the source distance increases. On the other
side, Gravity is known to interact weakly therefore the detected signal is an ac-
curate representation of what happened at the source and arrives unperturbed to
our detectors.

As a consequence, with future detectors we will be able to detect BHB signals
from when the Universe was less than 1 Gyr old. Moreover while the Cosmic
Microwave Background (CMB) provide us information up to ' 106 yr from Big
Bang, GWs allow us to push this time limit close to ' 10−30 s after the Big Bang,
exploring really the first wails of our Universe.

Since Einstein formulated GR theory, numerous experiments were performed
to test its validity. All these experiments were performed in the so-called weak-
field limit, where GR is employed to explain deviations for the Newtonian gravity
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2 CHAPTER 1. GWS FROM COMPACT OBJECT BINARIES

theory. The deflection of light observable during an eclipse, the precession of
Mercury’s orbit and the orbital period decay of the Hulse-Taylor pulsar [11] are
just the most noticeable examples where GR successfully managed to explain the
observation. However GWs allow us to test GR in its entirety, from the slow
inspiral to the chaotic merger where the two BHs move at near half the speed of
light and non-linear effects come to play.

Similarly to EM radiation, also for GWs we can talk of a ‘gravitational spec-
trum’ spanning frequencies from 10−9 Hz to 104 Hz. Across this range, different
detectors have been constructed or are planned to become operative in the coming
years. Each detectors is targeted for particular type of sources in order to cover
as better as possible this spectrum.

From 10 Hz up to the 104 Hz, ground-based detectors as the twin LIGOs [12]
and Virgo [13] are operative and reporting mergers from compact objects binaries
regularly. More detectors are expected to join the LIGO/Virgo collaboration in
the following years: the Japanese cryogenic interferometer KAGRA [14] is under
commissioning, while the Indian inteferometer IndIGO [15] is under construction.
These interferometers constitute an invaluable addition to the existing networks:
observing the same signal with more detectors translate in a better parameter
estimation (especially for the sky position of the source due to triangulation) and
account also for possible hardware/software failures or maintenance in one or more
detectors at the same time.

In the next years, Einstein Telescope (ET) [16] and Cosmic Explorer (CE) [17]
are the third-generation interferometers planned to overcome the current detectors.
These interferometers are expected to push the current sensitivity down of an order
of magnitude and to be able to observe signals already at 3− 5 Hz.

However ground-based detectors are inevitably limited by seismic noise at low
frequency. The solution currently adopted involves multiple inverted pendulums
but, inevitably, we are limited at ' 1 Hz and the only solution is to move our
interferometers into space.

Between 10−5 Hz and 1 Hz, LISA [18], selected by ESA as the third L3 mission in
the Cosmic Vision Programme, is the planned space-based interferometer that will
be able to detect a plethora of sources: SBHBs in their early inspiral, the merger of
MBHBs and extreme mass ratio inspirals (EMRIs) are the most promising targets.
Hopefully LISA will not be the only interferometer in space in the next years: Taiji
[19] and TianQin [20] has been proposed by China in a similar frequency range
while the Japanese DECIGO [21] should cover the gap between LISA and ground-
based detector around 0.1 Hz.

To lower frequencies, [10−9 − 10−7] Hz pulsar timing array (PTA) experiments
[22], as NANOGrav and EPTA, should detect in the next future the background
from the coalescence of very MBHBs ( ' 109 − 1010 M�) looking at the time-of-
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arrival of pulses from different pulsars [23].
In this chapter we present a brief overview of the theoretial aspects governing

the emission of GWs from compact binaries and some notion of signal analysis.
We defer to more detailed reviews and books [24–28] for further details.

The chapter is organized as follow: In Sec. 1.1 we review the basic concepts of
the GW production and emission theory. In Sec. 1.2 we introduce the basic scaling
relations of GW from compact binaries and some quantities useful to understand
the results of following chapters. The discussion about the current and future
status of GW detectors is deferred to Sec. 1.3.1 while in Sec. 1.3.2 we summarise
the basic tools for detecting a GW signal.

1.1 Theoretical framework
GWs are space-time ripples propagating at the speed of light. A proper derivation
from Einstein equations is beyond the scope of this Thesis: here we will focus
for the major part on the physical aspects and observational properties of GWs,
sketching the necessary theoretical steps.

Formally, the simplest approach to describe GWs requires expanding Einstein
equations over a flat background metric and choosing a particular frame (the har-
monic gauge) where the perturbation can be written as Green function [24].

Consider a flat metric ηµν = diag{−1, 1, 1, 1}, the perturbation equations read1

�h̄µν = −16πG

c4
Tµν (1.1)

where h̄µν = hµν − 1
2
ηµνh, � = ηµν∂µ∂ν is the d’Alambertian operator in flat-

space time, Tµν is the stress-energy tensor and hµν is the perturbation tensor. The
harmonic gauge has the advantage of reducing the number of degrees of freedom
of hµν from ten to six. A further reduction in the number of d.o.f. can be done,
defining the ‘traceless-transverse’ gauge. In this way the perturbation tensor is
fuction of only two polarizations, known as ‘plus’, h+, and ‘cross’, h×.

GWs affects the proper distance between objects, i.e. objects get compressed
and stretched when they interact with GWs. This effect can be seen on a ring of
test particle. In Fig. 1.1 we show the effect of the propagation of a GW along the
z-axis (out of the paper) on a test of ring particles in the (x, y) plane.

In electromagnetism no monopole radiation is admitted due to charge conser-
vation. In GR mass and momentum conservation lead to the absence of monopole
and dipole radiation. Therefore the first non-zero term in a multipoles expansion is
the quadrupole one. This makes compact object binaries efficient emitters of GWs.

1In our convention, Greek indices take values 0, . . . , 3 while Latin letters denote spatial
components, i.e. 1, 2, 3.
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timeh+

h×

Figure 1.1: The effect of h+ (upper panel) and h× (lower panel) on a ring of
test masses. The rings are shown at quarter of the period of the wave. Credits:
N. Muttoni

2 Since we are looking at a perturbation, we also need a time-varying quadrupole
moment in order to generate GWs (a constant term would be reabsorbed with a
redefinition of the potential energy). From Einstein equation, we can write

hij(t,x) =
1

d

2G

c4
Q̈ij(t− r/c) (1.2)

where d is the distance of the source, tret ≡ t − r/c is the retarded time and Q̈ij

is the second time derivative of the quadrupole moment of the source. We note
that the term G/c4 ' 10−44s2/(kg m) leads to incredibly weak GWs: for a binary
systems in circular orbit with component masses m1 and m2 and separation a,
Q̈ij ∝ m1m2G/a so we need masses of ' 104 M� at a separation of 1 m to cancel
out the G/c4 term.

The strain h induces a deformation on an object of length L of the order

∆L ' hL (1.3)
2In principle supernovae explosions are not expected to be spherically symmetric so they

should emit GWs already at quadrupole moment however the overall strain would be small due
to small departures from spherical symmetry.
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where ∆L is the objects deformation. For typical astrophysical sources h ' 10−21

so, if you consider the Earth radius (L ' 6× 106 m), the variation induced by the
passage of GW is ∆L ' 10−14 m, slightly bigger than an atomic nucleus. Such
a small length require accurate instruments for detection, representing the major
challenge in GW astronomy for over 50 years.

1.2 Compact object binaries

Compact object binaries are perfect emitters of GW: their quadrupole term is
non-zero and objects in binaries are accelerating (the second time derivative is
also non-zero). We will discuss the different types of double compact objects in
Chapter 3, while we limit here to generic considerations.

Their compactness, defined for a self-gravitating object as C ≡ GMb/Rbc
2

with Mb and Rb the mass and the radius of the body respectively, prevents the
disruption of the two objects when they are too close to each other3. Indeed
at merger compact object binaries are among the most luminous sources in the
Universe, reaching a luminosity of 1056 erg s−1.

The signal from a precessing compact object binary in quasi-circular orbit is
described by 15 parameters: the two intrinsic components masses, m1 and m2,
the colatitude cos θN and longitude φN of the binary sky position4 , the distance
d, the two time-varying angles describing the orientation of the binary orbital
angular momentum, θL and φL, the time to coalescence tc, the initial phase φ0,
the magnitude of the two spins χ1 and χ2 and 4 angles describing their orientation
relative to the binary plane.

Moreover we can define the total mass of the system Mtot = m1 +m2 and the
binary mass ratio q = m1/m2. Combining these two expressions, we introduce a
more useful mass definition in GW astrophysics, the chirp mass M as

M =
(m1m2)3/5

(m1 +m2)1/5
= ν3/5 Mtot = µ3/5 Mtot

2/5 (1.4)

where ν = m1m2/Mtot
2 is the symmetric mass ratio and µ = m1m2/Mtot is the

reduced mass.
From Keplerian theory, the binary is orbiting with a frequency

ωs =

√
GMtot

R3
(1.5)

3Note that NS can be tidally disrupted by BH if the BH is relatively light and rapidly rotating.
4If not stated otherwise, we refer to ecliptic coordinate.
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where R is the orbital radius. At quadrupole approximation, we can write the two
polarizations state as

h+(t) =
4

d

(
GM
c2

)5/3(
πfgw

c

)2/3(
1 + cos2 ι

2

)
cos[2ωstret + φ]

h×(t) =
4

d

(
GM
c2

)5/3(
πfgw

c

)2/3

cos ι sin[2ωstret + φ]

(1.6)

where fgw = ωs/π is the GW frequency and ι in the inclination angle between
the line-of-sight and the normal to the orbital plane. Several considerations follow
straightforwardly:

• The binary emits GW at twice the orbital frequency, i.e ωgw = 2ωs due to
the fact that the same mass configuration appears twice in the same orbital
period.

• The two polarizations present different inclination contributions because bi-
naries emit GWs preferentially in the direction of the angular momentum
rather than on the orbital plane.

• At lowest quadrupole moment, h ' M5/3: we will see in Chapter 6 the
consequences in term of parameter estimation.

• The strain decreases as the inverse of the distance of the source 5.

It is also useful to look at some hands-on formulas. From the balance equation
between the energy carried by GWs and the loss of total energy of the binary, we
can derive the relation between the time to coalescence τ and fgw as 6

τ =
5

256

1

(πfgw)8/3

(
GM
c3

)−5/3

. (1.7)

At the same fgw, more massive systems are closer to coalescence. This can be
explained thinking that, at first order approximation, the merger occurs when the
BH horizons touch and the larger the mass of the BH is, the larger is its horizon.

From Eq. (1.7), we can also have an order of magnitude estimate of the amount
of time that systems stay in band. For an equal mass binary with m1 = 30 M�, we
observe the GW signal coming from the last few seconds before the merger when

5Our detectors are sensitive to the strain h rather than to the energy carried by GWs which
decrease as ' d−2.

6A similar expression can be derived also for eccentric binaries. In this case the coalescence
time is shorten by a factor (1− e20)

7/2 being e0 the initial eccentricity because at the pericenter
the objects will experience a strong acceleration and emit a burst of GWs.
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it enters the band of current ground-based detectors at fgw = 10 Hz. If we move
to LISA band, at fgw = 5 × 10−2 Hz, the same system is observed at τ = 0.26 yr
from merger.
More massive systems with m1 = m2 = 106 M� can be observed one month before
merger at fgw = 10−4 Hz. We will see how this allow to perform parameter esti-
mation for this type of sources during the inspiral, with important consequences
for the search of possible EM counterparts.

Similarly we can also compute the number of cycles during the inspiral as

Ncyc =
1

32π8/3

(
GM
c3

)−5/3 (
f
−5/3
min − f−5/3

max

)
(1.8)

From Eq. (1.8), we see that a system with m1 = m2 = 30 M� at fgw = 5×10−2 Hz
performs Ncyc ' 6× 105 cycles in LISA band before exiting. In Chapter 2 we will
see how the number of cycles poses serious requirement on the necessary waveform
accuracy to track SBHB signals in LISA.

The expression and results presented so far are valid in the low-velocity limit,
i.e. for non relativistic sources. In this regime, the GW wavelength is much larger
than the typical size of the system, λgw � R. This is indeed the case for systems
far from coalescence (in the so-called inspiral phase): from Eq. (1.5), a binary
with m1 = m2 = 30 M� emitting at fgw = 10−2 Hz (λgw = 1010 m), has a typical
size of the order R ' 108 m.

From GR theory, there is minimum value of the radial separation between a
test particle and a BH beyond which no stable orbits are allowed. This is referred
as Innermost Stable Circular Orbit (ISCO). For a non-spinning BH we can write

rISCO =
6GMBH

c2
. (1.9)

Clearly a long phase of stationary and semi-circular orbit can take place only at
r > rISCO. Therefore it is customarily assumed that the inspiral phase end at the
corresponding frequency, fISCO, defined as

fISCO =
1

63/22π

c3

GMtot

. (1.10)

Plugging into Eq. (1.10) some values we obtain that for an equal mass binary with
m1 = 30 M� the fISCO ' 30 Hz that corresponds roughly to the frequency where
current interferometers are most sensitive. Similarly for a binary with Mtot =
106 M�, we obtain fISCO ' 2× 10−3 Hz.

As the binary approaches coalescence these expressions are no longer valid
and different methods must be adopted. In the merger phase, the two compact
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objects are closely bound and GR non-linearity effects have to be take into ac-
count. This portion of the signal is usually modeled with Numerical Relativity
(NR) simulations, covering the last few orbits. After the merger, the ringdown
phase represents the stage where the remnant object dissipates its perturbation
and returns into a stationary state. This phase is generally studied with pertur-
bation theory techniques. In the past years a lot of effort has been spend in order
to provide consistent expression for the GW signal across inspiral, merger and
ringdown, resulting in different families of waveform that are adopted nowadays.
Each waveform family typically focus on different aspects of binary modeling, as
spin effects, eccentricity or the inclusion of higher harmonics, exploiting a time- or
frequency-domain approach.

We are not going to provide an extensive overview of all the waveforms that are
available at the time of writing (some reviews can be found at [29–31]). Among
the possible approximant, the Phenom family has demonstrated to be a reliable
and efficient tool for detection and parameter estimation. These phenomenological
frequency-domain waveforms can track the GW signal from the deep inspiral to the
ringdown. They have usually spin-aligned components (but see [32] for precession)
and only the dominant mode ([33] for higher-mode contributions). Moreover these
waveforms can be easily evaluated, making them a suitable choice for exploration
of large parameter space. As an example, in Fig. 1.2 we report the GW signal
computed for a system with m1 = m2 = 30 M� with the PhenomD as function of
the time left before merger.

0.20 0.15 0.10 0.05 0.00
Time [s]

0.5

0.0

0.5

h +
(t)

1e 18

Figure 1.2: Late inspiral-merger-ringdown signal for an equal mass system with
m1 = 30 M� as function of the time left before merger.

Similarly to EM radiation, GWs are affected by the expansion of the universe,
i.e. the GWs frequency is redshifted as fgw, obs = fgw, s/(1 + z) where z is the
redsfhift of the emitting source and the pedix ‘obs’ (‘s’) refers to the observer
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(‘source’) frame. From Eq. (1.6) we can write

h+,× ∼
M5/3

d
f 2/3

gw, s

∼ M
5/3

d
f

2/3
gw, obs(1 + z)2/3

∼ (M(1 + z))5/3

d(1 + z)
f

2/3
gw, obs

(1.11)

whereMz = (M(1 + z))5/3 is the redshifted chirp mass and dL = d(1 + z) is the
luminosity distance of the source7.

1.3 Signal theory

1.3.1 GW interferometers
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Figure 1.3: Characteristic strain of different interferometers as function of fre-
quency.

The detection of GW signal is a hunt that lasted for 50 years. The first experi-
ments that claim to detect GW adopted resonant bars: the idea is that GWs excite
bar resonant frequencies and the change in length triggers piezoelectric sensors to

7Unless stated differently, for the rest of this Thesis we will refer to the observed frequency
and we drop the subscript ‘obs’.
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produce a current signal. However resonant bar detectors were sensitive only to
a small frequency range and had a small horizon distance, limited to the the size
of our Galaxy. Even if some detections were claimed with resonant bar detec-
tors, more refined analysis demonstrated that the observed signals were spurious
artifacts of the detectors.

Interferometers are the instrument that are currently detecting GW signals.
Their operation is based on the interference pattern produced by two different laser
beams travelling inside the detector arms. The laser is splitted by a beam splitter
into two beams that travel inside the detectors arms where partially reflecting
mirrors create Fabry-Pérot cavities. Due to the fact that the interferometers work
in destructive configuration, in the absence of a GW, no light is seen by the
photodetector. Instead the passage of a GWs change the time of flight for the
two laser beams and produce time-varying interference pattern.

The two LIGO were designed with 4 km armlength while Virgo armlength is
just 3 km: since the length traveled by light affect the interference pattern, longer
armlength increase the sensitivity of the detectors. Moreover the two LIGO were
purposely built with one arm in the same direction to avoid the unfortunate case
of a single detector signal. However, this configuration complicate the possibility
to constrain the polarization states of the incoming signal. For this purpose,
Virgo arms are tilted respect to the two LIGO, allowing for the detection of both
polarizations [34].

In 2034, LISA will be launched and will follow an heliocentric Earth-trailing
orbit with an opening angle of 20◦. The constellation is made of three identical
spacecrafts, set in an equilateral triangular configuration inclined of 60◦ respect
to the ecliptic orbit, that rotate around their guiding center. The length of each
arm is of 2.5 × 106 km in order to be sensitive in the 10−5 − 10−1 Hz frequency
range. Such a large distance prevents the possibility to send the laser straight
back from one spacecraft to another one and time delay interferometry has been
developed to properly combined multiples signals [35]. In Fig. 1.3 we show the
typical sensitivity range of the aforementioned instruments.

Interferometers present two major advantages respect to resonant bar detec-
tors: they cover a wide range of frequencies, enabling the possibility to follow the
signal during all the inspiral, and they can detect sources at cosmological distance,
increasing the number of sources that we might be able to observe.

In Sec. 1.2, we described the two polarizations of a GW signal. However the
detector input and output are scalar quantities. Therefore the two polarizations
have to be convolved with the detector pattern functions that describe the interfer-
ometer sensitivity as function of the direction of the incoming signal N̂ = (θN , φN).
Therefore the detector input can be defined as

h(t) = F+(θN , φN , ψ)h+(t) + F×(θN , φN , ψ)h×(t) (1.12)
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where F+, F× are the pattern function of the detector, (θN , φN) are the incoming
direction of the signal (i.e. the declination and right ascension of the source) and
ψ is the polarization angle describing the binary rotation in a plane perpendicular
to the incoming direction. For a generic interferometer, we can write F+, F× as

F+ =
1

2

(
1 + cos2 θN

)
cos 2φN cos 2ψ − cos θN sin 2φN sin 2ψ

F× =
1

2

(
1 + cos2 θN

)
cos 2φN sin 2ψ + cos θN sin 2φN cos 2ψ.

(1.13)

The pattern functions takes the maximum value when the source is located right
above the detector (at zenit) while the minimum is located in the plane of the
detector and at 45◦ respect to the arm opening angle because a GW signal from
this direction produces the same ∆L in the inteferometers arms, resulting in no
relative variation.

These functions are quite smooth over the entire sky (with the exception of few
blind spots). As a consequence, interferometers are not ‘pointed’ at the source as
EM telescopes but they are more similar to microphones, listening in all directions.
Still blind spots exist. For example, the first NS-NS merger [36] arrived in a blind
spot of Virgo (incidentally this helped in reducing the sky position uncertainties).
Increasing the number of detectors will decrease the number and the size of these
blind spots, allowing for a great coverage of the sky.

Note also that Eq. (1.13) does not include time effect due to the detector moving
during the observation. At first approximation, this can be applied for current
detectors where GW signals are observed for less than one minute. However next-
generation detectors, as ET or CE, will observe the inspiral of NS-NS binaries for
minutes and, therefore, the rotation of the Earth might be taken into account. The
same problem will appear in a more dramatic way with LISA. The combination
of the orbital motion of the overall configuration and the rotation of the single
spacecraft imprint unique features in the observed signals, as amplitude and phase
modulation especially for long-lasting sources as SBHBs far from coalescence.

1.3.2 Signal-to-noise ratio

For most of the astrophysical sources, the signal is buried in the noise. In the
presence of a GW signal the output of the detector can be written as s(t) = h(t)+
n(t) where n(t) is the noise realisation in the detector8. If we consider standard
astrophysical sources and the current sensitivity of interferometers, typically |h| �
|n|.

8For simplicity we assume that n(t) is stationary. We also assume a linear transfer function
for the detector.



12 CHAPTER 1. GWS FROM COMPACT OBJECT BINARIES

In order to extract the signal from the data strain, we adopt matched filtering
techniques. The basic idea of these techniques is that it is possible to extract signal
information if the form of the signal is known a prior. Indeed it can be shown that
the best fit for a given signal is the signal itself9. We can define the signal-to-noise
ratio as

S/N2 = 4

∫ fmax

fmin

df
|h̃(f)|2
Sn(f)

(1.14)

where h̃(f) is the Fourier transform of h(t), Sn(f) is the single-sided power spectral
density (PSD), fmin the minimum frequency of the detector and fmax the maximum
frequency of the GW signal. Note that since the S/N is adimensional, then Sn(f)
has dimension of Hz−1.

The Fourier transform of Eq. (1.12) can be computed under the stationary
phase approximation leading to the expression

h̃+(f) = AM
5/6
z

dL
(1 + cos2 ι)f−7/6eiΨ(f)

h̃×(f) = AM
5/6
z

dL
2 cos ιf−7/6eiΨ(f)

(1.15)

where A = 1
π2/3

√
5/96 and Ψ(f) is the GW phase expressed as

Ψ(f) = 2πf(tc + d/c)− φ0 −
π

4
− 3

4

(
GMz

c3
8πf

)−5/3

(1.16)

being tc the retarded time at coalescence and φ0 an arbitrary reference phase.
Eq. (1.14) can be re-written as

S/N = (h̃|h̃) (1.17)

where the internal product (·|·) is defined as

(a|b) = 4Re
∫ fmax

fmin

df
ã∗(f)b̃(f)

Sn(f)
, (1.18)

where a(t), b(t) two real functions.
In this way we can easily write the S/N for a binary with random position,

inclination and polarization as

S/N = wS/Nopt (1.19)

9This is the so-called ‘Wiener filter’
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where the S/Nopt is the optimal signal-to-noise ratio for a binary (i.e. zenit, face-on
and ψ = 0) and w include all the angle dependencies as

w =
√
F 2

+(1 + cos2 ι)2/4 + F 2
× cos2 ι. (1.20)

We note that for an optimally located and oriented binary w = 1, while w = 0 if
the detector has no response to the incoming signal [37].

The S/N is a useful quantity to establish the detectability of a given signal.
Spurious noises in the detector might mimic the GW signal (especially for short-
lasting sources) and produce a trigger: for a single detector a threshold value of
S/Nthres = 8 is considered reasonable 10. Increasing the threshold will result in a
reduction of the observed event as faint GW signals would be classified as noise
artifacts. Therefore the choose of a S/Nthres is always a trade-off between the
probability of false alarms and the horizon distance. For a network of detectors,
the S/N values from each interferometer have to be summed in quadrature and
customarily for LIGO/Virgo network the threshold value is S/Nthres = 12 11.

An useful expression to evaluate detector capabilities is the S/N averaged over
the source location, inclination and polarization angles. Taking Eq. (1.13) and the
inclination terms, we have to average

(1 + cos2 ι)2F 2
+ + 4 cos2 ιF 2

×. (1.21)

For the inclination, we compute

1

2

∫ 1

−1

(1 + cos2 ι)2d cos ι =
28

15
, (1.22)

and similarly for the cos2 ι term. The average over the pattern function produce
the same result for both polarizations, i.e.

1

2π

∫ 2π

0

dψ
1

2

∫ 1

−1

d cos θN
1

2π

∫ 2π

0

dφNF
2
+ =

1

5
. (1.23)

Therefore the average results in

〈(1 + cos2 ι)2F 2
+ + 4 cos2 ιF 2

×〉 =
16

25
. (1.24)

From Eq. (1.15), the average amplitude can be written as

〈h̃〉 =
4

5
AM

5/6
z

dL
f−7/6eiΨ(f)

=
1

π2/3
√

30

M5/6
z

dL
f−7/6eiΨ(f)

(1.25)

10We note however that this condition depend from the type of signal and it is considered valid
for signals from compact object binaries.

11This comes from a threshold value of S/Nthres = 8 (S/Nthres = 4) for the two LIGO (Virgo).
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For LISA we also have to take into account the 60◦ arm opening angle due to
its triangular configuration, reducing the strain of a factor sin(π/3). Moreover in
LISA we also have to take into account the full response of the detector because
the wavelength of the gravitational wave signal is comparable to the arm length:
this is typically done taking into account the sensitivity, i.e. the sky position and
polarization (not inclination) average sensitivity. The non sky-averaged sensitivity
is connected to the sky-averaged noise spectral density as

SNSA
n (f) =

3

20
SSA
n (f). (1.26)

Therefore in the quadrupole approximation, the averaged S/N in LISA can be
computed as

S/Nave = 2

(√
3

2

1

π2/3
√

30

)
M5/6

z

dL

[ ∫ fmax

fmin

f−7/3

SNSA
n (f)

]1/2

=

√
2

3

M5/6
z

π2/3dL

[ ∫ fmax

fmin

f−7/3

SSA
n (f)

]1/2
(1.27)

where we use SNSA
n (f) to avoid the double average.

We can also obtain a general property for compact object binaries: from
Eq.(1.27) we have

S/N ∼ 1

dL
M5/6

z S
−1/2
0 f

−2/3
0 (1.28)

assuming that Sn has a constant value S0 and that we start integrating from a
minimum frequency f0. From Eq.(1.6) we know that

h0 ∼
1

dL
M5/3

z f
2/3
0 (1.29)

and from Eq. (1.8) we can write

Ncyc ∼M−5/3
z f

−2/3
0 . (1.30)

Substituting dL andMz in Eq. (1.28) with Eq. (1.29) and Eq. (1.30) respectively,
we obtain

S/N ∼ h0

(f0S0)1/2

√
Ncyc. (1.31)

The term (h0/f0S0)1/2 can be interpreted as the instantaneous S/N , i.e. integrated
over a single GW cycle. However the integrated S/N receives a further contribution
proportional to

√
Ncyc and for compact binaries Ncyc & 102. In other word,

matched filtering techniques allow us to claim a detection even if the instantaneous
S/N is still below the threshold detection if we have followed the signal for a
sufficient number of cycles.



Chapter 2

Faithfulness requirement for SBHBs
in LISA

In this Chapter we present a study on the waveform accuracy requirement to
track SBHBs during their inspiral in LISA. Since SBHBs are expected to complete
Ncyc ' 106 before moving outside LISA band, an accurate description of the GW
signal is necessary to model the phase, to extract the signal from the noisy data
and to perform an unbiased parameter estimation.

To model the signal, we adopt an inspiral-only waveform up to the 8PN order
at leading order in the mass ratio. Therefore the question about the waveform
accuracy translates in the minimum PN order necessary to keep track of the signal.
We assume that the true signal is generated with all the PN contributions available
and then compare the true signal against a set of template with increasing PN
corrections.

We perform preliminary analysis exploring the effect of mass ratio, total mass
and coalescence time. We then move to a more realistic situation and applied our
code to a mock population of SBHBs in order to draw conclusions on the average
waveform accuracy requirement for LISA.

The chapter is organized as follow: In Sec. 2.1 we introduce the concepts of
data analysis necessary to claim the detection of a GW signal and to perform
the parameter estimation. In Sec. 2.2 we describe the inspiral waveform adopted
for this study. The same waveform will be adopted also to compute some of the
results of the following chapters. In Sec. 2.3.1 we present the initial results from our
exploration of the parameter space for different values of mass ratio, total mass and
time to coalescence. In Sec. 2.3.2 we report the minimum accuracy requirement
distribution when a realistic population of SBHBs is taken into account. Finally
in Sec. 2.4 we discuss some caveats of our work together with future possible
improvements. We also summarize our main findings.

The results presented here have been published in [38].

15
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2.1 Signal theory introduction

In Sec. 1.3.2 we introduced the matched filtering techniques necessary to extract
the GW signal buried in the noise. Matched filtering is often referred to as optimal
filtering because the correlation between the detector output and the true signal
provides the highest S/N value. However, in the analysis process, there are several
effects that reduce the real S/N value. The template waveforms are approximated
solutions to the GR equations, and therefore they cannot match the true waveform
exactly. Moreover the parameters used to construct the template waveform are not
the true source parameters. Both approximated waveforms and different parame-
ters introduce systematic errors in detection and parameter estimation. Because
of these effects the true signal is different from the actual template adopted.

From a geometrical viewpoint, it is useful to think to the set of all possible
parameters as a parameter space. A waveform can be viewed as a function that
takes a value from the parameter space to a signal space where the correlation is
a well-defined internal product. Given a set of parameters, each waveform gener-
ates a signal that is cross-correlated with the detector output. Due to mismodeled
waveforms, the true signal lies somewhere outside the template manifold used to
search for it. Even if the template is a continuous analytical function of the param-
eters, the detector output cannot be correlated with an infinite number of template
waveforms. It is therefore necessary to discretize the parameter space of the tem-
plate waveform. Discretization is a trade-off between computational feasibility and
detection efficiency, therefore, the step between two following template signals can
not be, respectively, too large or too small. For example, there are more than 106

template for aligned-spin binaries with the current LIGO/Virgo sensitivity but the
number is expected to increase with future upgrades [39, 40].

Due to the high computational requirements, the search for a GW signal in the
detector output is usually performed hierarchically. The stretch of data is initially
filtered with a sparse populated template manifold with a lower S/N threshold.
The data that produced a lower S/N values are discarded as noise effect. The
remaining data are filtered with a denser template manifold and an higher S/N
threshold. The first step avoids the computation of too many correlations that
would slow the overall analysis, while the last step ensures that no random noise
realizations are claimed as true GW signal.

The theory behind data analysis have been developed by many authors starting
from the early ’90. Apostolatos [41] introduced the concept of fitting factor (FF)
defined as the reduction in the S/N due to a mismatch between the true signal
and the family of templates. The FF is equal to 1 if the signal and the template
match perfectly, i.e. if the signal lies in the template manifold. If FF < 1, then
the fitting factor represents the cross-correlation of a template waveform with
a signal lying outside the manifold. Since the S/N scales with the inverse of the
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luminosity distance, a reduction in the optimal value of the S/N implies a reduction
in the observed event rate approximately of 1− FF3. A reasonable requirement is
FF = 0.97 that translates in a loss of 10% of the events due only to mismodeling.

Later Owen [40, 42] defined the match between two close templates in the
template manifold, introducing a metric on the template manifold. In analogy
to [41], in his work he defined the minimal match (MM) as the fractional S/N
retained when the signal is exactly ’halfway’ between two adjacent templates,
assuming that the signal lies in the template manifold, i.e. the template waveform
is identical to the true waveform. A template can be considered effectual if the
correlation of the template with the GW signal, maximized over all the model
parameters, is bigger than a threshold value. Differently, a template is faithful
if the overlap between the true signal and the waveform, maximized only over
the time and phase, is larger than a threshold value if computed with template
parameters that are slightly different from the signal parameters [43]. Even if
a template waveform can provide a good tool for detection, it is not granted
that it can also be applied for parameter estimation. Detection and parameter
estimation requirements are usually different [44]. For detection we require the
model waveform to be similar enough to the true waveform to prevent loss in the
detection rate (assuming that the template parameters are equal to the true ones).
Instead, in order to perform parameter estimation we require that a detector can
not distinguish the measurements made with two different waveforms, i.e. we
require the intrinsic error due to mismodeling to be smaller than the statistical
error.

In Sec. 1.3 we introduced the concept of optimal signal-to-noise ratio, S/Nopt.
In practice, the filter function will be constructed from a template bank, no element
of which will in general reproduce the true signal ht(t) exactly because of the
systematic mismodeling mentioned above. Therefore, if one takes a filter function
K(f) ∝ h̃(f)/Sn(f), where h is a given template, then the S/N will be

S/N =
(ht |h)

(h |h)1/2
= O(ht, h)S/Nopt , (2.1)

where we have introduced the overlap function

O(ht, h) ≡ (ht|h)√
(ht|ht)(h|h)

. (2.2)

This function therefore quantifies the reduction in S/N due to the use of a sub-
optimal template.

Clearly, if the S/N reduction due to the template mismodeling is too large, it
could hinder detection of the signal. A measure of the S/N reduction relevant for
detection is given by the effectualness, which is defined as the maximum overlap
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function that can be obtained between a signal and the whole template bank (i.e. it
is the overlap maximized over all possible template parameters). In practice, this
means that we require that at least one template matches sufficiently well the
signal, irrespective of the template parameters.

However, this condition is still too loose for parameter estimation, because
for the latter we would rather need the template best matching the signal to
correspond to source parameters “not too far” from the true ones. More precisely,
a useful measure of the performance of a template family for parameter estimation
is given by the faithfulness, i.e. the overlap maximized only over the coalescence
time tc and phase φc of the template, while adopting the true values for the other
template parameters:

F ≡ max
tc,φc

(h|ht)√
(h|h)(ht|ht)

. (2.3)

Figure 2.1: Schematic plot of a template manifold (blue line). The blue points
h(x1) ad h(x2) represent two template signal. The red point ht(x0) represent the
true signal with x0 being the real parameters of the source. The green point
h(x′0) provide the maximum correlation with the true signal. h(x0) is the template
signal constructed with the same parameters of the true signal but with a different
waveform. The quantities dMM, dFF, dF and dEFF are defined in the text.

Defined as in Eq. (2.3), the faithfulness is a good way to test if a given tem-
plate can be used for parameter estimation. Similarly to [44] and [31], Fig. 2.1
illustrates the concepts discussed up to this point. The blue line represents the
template manifold on which the two template signals h(x1) and h(x2) are defined
with parameter sets x1 6= x2. Since the template manifold is constructed with
approximated waveforms, the true signal ht(x0) lies outside the template bank.
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The point x′0 is chosen in such a way that the overlap between h(x1) and h(x′0)
corresponds to the minimal match as defined in [42]. The signal h(x0) is a tem-
plate signal computed with the approximated waveform but with the same true
parameters. Due to the difference between the template and the true waveform,
ht(x0) produces a higher overlap when correlated with h(x′0), rather than h(x0).
The quantities dMM = 1−MM, dFF = 1−FF, dF = 1−F are function, respectively,
of the minimal match, the fitting factor and the faithfulness.

In a real search, ht(x0) is correlated with a point h(xi). Therefore the quantity
actually computed is more an effective fitting factor (EFF), with dEFF = 1−EFF.
If all these quantity are small, dEFF is approximated as dEFF ' dMM + dFF. In
order to avoid a large loss in detected events, we require 1 − (1 − dEFF)3 < 10%.
Expanding, we obtain dEFF < 3.5%. If the template bank has been constructed
with dMM = 3%, then dFF < 0.5%. In a real search, we do not have access to the
point of the template manifold closest to the true signal, but it is still true that
dFF < dF so the condition on dFF is satisfied if dFF < dF < 0.5%.

The threshold value of the faithfulness depends on the S/N . Since a mis-
modeled waveform introduces systematic errors in the parameter estimation, a
reasonable requirement is to lower these errors below the statistical ones resulting
from instrumental noise. The latter can be estimated from the covariance matrix,
which is simply the inverse of the Fisher matrix1 Γij = (∂ih|∂jh) (where i, j denote
the waveform’s parameters) in the high signal-to-noise ratio regime. In particular,
in this regime the statistical errors decrease as S/N−1 [45], while the systematic
errors are independent from the S/N .

In the high S/N regime, the expectation value of the faithfulness under the
effect of statistical errors alone (i.e. resulting from the detector’s noise and not
from waveform mismodeling) in [46] is given by

〈F 〉 ≈ 1− D − 1

2 (S/N)2 , (2.4)

where D is the number of parameters describing the template. In order to allow
for an unbiased parameter estimation, the faithfulness of the templates needs to
be less than the threshold given by Eq. (2.4). Similar requirements on F were
obtained also in [44] as conditions on the amplitude and phase of the waveforms.

2.2 Inspiral-only waveform
The coalescence process of a BHB consists of three different phases: inspiral,
merger, ringdown. In this study, we consider the inspiral phase only, as LISA can

1the Fisher matrix formalism and its application to the parameter estimation are discussed
in more details in Sec. 4.2.
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only detect the very early inspiral of SBHBs. During this phase, when the binary
shrinks adiabatically and orbital velocities v are much smaller than the speed of
light c, the equations of motion (EOM) are solved within the PN formalism, which
consists of a series expansion in powers of v/c or, equivalently, a series expansion
in powers of the dimensionless gravitational potential.

The idea behind PN theory is to compute the gravitational energy and GW
luminosity of the binary up to high order and then combine the solution to obtain
the phase of the system. One of the problem in the PN formalism arise in the actual
computation of energy and luminosity: in principle one can solve the equation
numerically or expand both term up to a given order. However these approaches
lead to different solutions formerly know as TaylorTn approximants [31]. The PN
approach is also known for its slow convergence to the real value. While rISCO can
be easily computed in GR, in PN formalism we have to include up to the 8PN
term in order to have an ISCO accurate at 1% [47]. As we approach the ISCO, the
two BHs speed up and higher and higher PN corrections are required; eventually
the PN formalism breaks down at ISCO where full GR effects have to taken into
account. In LIGO/Virgo band, PN can not really be applied for systems with
Mtot > 12 M� because the ISCO moves in band (higher masses lead to smaller
coalescence frequencies), the effect of different approximants become observable
and the adiabatic approximation is no longer valid. However in LISA, SBHBs are
still far from coalescence and the PN formalism can be applied safely.

At present, the EOM are known and can be solved up to 3.5PN order if the
binary components are not spinning or if their spins are aligned/anti-aligned with
the binary angular momentum, i.e. neglecting precession effects. If precession
effects are taken into account, the EOM are known up to 2.5PN order, even if a
closed form solution is still missing [29, 48, 49].

For this study, we use a Fourier-domain precessing waveform derived in [50],
augmented to 8PN non-spinning order at leading order in the mass ratio q ≡
m2/m1 ≤ 1 [51, 52]. We use a shifted uniform asymptotic (SUA 2) description
of the GW signal produced by a generically spinning binary system in LISA to
avoid the divergent behavior predict in some cases by the stationary phase approx-
imation. The spin-orbit equations are evolved numerically without compromising
the computational cost of waveform generation. This method, being based on a
PN description of the orbital evolution, is particularly suited to describe SBHB
systems as observed by LISA as demonstrated in Tab. IV of [50] and in [46]. This
waveform is therefore suitable to describe the inspiral of compact object binary
but fails to reproduce the merger and ringdown portion of the signal. In geometric
units (G = c = 1), the dimensionless parameter v = ω1/3 is our PN expansion
parameter, where ω is the orbital frequency. We numerically evolve the following

2We will use this expression, ‘SUA’, to refer to this waveform in the next chapters
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equations of motion:

Mφ̇ = v3, (2.5)

Mv̇ = v9

16∑
n=0

anv
n, (2.6)

M
˙̂
L = −v6 (Ω1 + Ω2) , (2.7)

M ṡ1 =
m2

M
v5Ω1, (2.8)

M ṡ2 =
m1

M
v5Ω2, (2.9)

where φ is the orbital phase of the system, L̂ is the unit vector parallel to the or-
bital angular momentum L, si = Si/mi are the individual reduced spins. Eq. (2.5)
contains as key timescale the orbital time O(v−3), Eq. (2.6) the radiation reaction
timescale O(v−8), while Eq. (2.7)-(2.9) describe the relativistic precession occur-
ring on a timescale O(v−5). The vectors Ωi are defined in [50] and are orthogonal
to si, while Ω1 + Ω2 is orthogonal to L. The coefficients an (with 0 ≤ n ≤ 7) can
also be found in [50] and are expressed in terms of powers of ν. They also contain
terms related to both spin-orbit and spin-spin precession.

In the following, we will refer to a waveform constructed from these equations
(Eq. (2.6)) truncated at order v9+2N as an “N -PN waveform”. In this, we follow the
traditional PN order counting where the first non-vanishing term in an expression
is called “Newtonian” or “leading PN order”, and each further factor of v2 adds one
PN order to the term it multiplies. Our expressions for the vectors Ωi are valid
at leading PN order for the terms quadratic in the spins, and at 2PN order (i.e.
O(v4) beyond the leading PN order) for the terms linear in the spins.

The constants an are valid for generic mass ratios and spin configurations at
2PN order, and are valid at linear order in the spins at 3.5PN order. While the
constants an are currently not know for generic mass ratios up to 8PN order,
in order to simulate a high PN order frequency evolution equation and compare
waveforms at high PN orders, we use a hybrid approach to construct an for n ≥ 8.

We first construct an 8PN relation between the orbital energy and the orbital
frequency, E(v), by including all generic terms up to 3.5PN [53], and adding sub-
sequent PN terms in the extreme mass ratio limit by expanding the relation for
test particle circular orbits in a Schwarzschild spacetime [51]:

E =
1− 2v2

√
1− 3v2

. (2.10)

While the binding energy is known at the linear order in the mass ratio at 6PN
order [54, 55], using this more accurate result would not add much complexity to
the EOM, and therefore we choose the simpler approximate result from Eq. (2.10).
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We then perform the same construction to get the gravitational wave luminosity
L(v), by including all generic terms at 3.5PN by leading order [53], and subsequent
PN terms in the extreme mass ratio limit from [51]. We then use these two hybrid
quantities to construct a simulated frequency evolution equation at 8PN beyond
leading order by expanding the balance equation:

dv

dt
=
L(v)

dE/dv
. (2.11)

To build the different waveforms that we compare in this work, we solve the
equations of motion (2.5-2.9), truncating Eq. (2.6) at different PN orders, using a
fifth order Cash-Karp Runge-Kutta method [56]. Using those solutions, we then
construct the LISA response to a passing GW in the time-domain as

h(t) =
7∑

n=1

Hn(t)e−in(φ+φT ), (2.12)

where Hn(t) are wave amplitudes for different GW harmonics that can be found at
2.5PN order for non-spinning systems in [57, 58] and contain the detector response
to the GW polarizations in the low-frequency approximation [59], and φT is the
Thomas precession phase accounting for the precession of the orbital plane in the
detector frame and satisfies

φ̇T =
cos ι

1− cos2 ι

(
L̂× N̂

)
· ˙̂
L, (2.13)

where we remember that ι = arccos(L̂ · N̂ ) is the inclination angle and N̂ is the
line-of-sight vector from the detector to the source.

We then use those results in a SUA transform to compute the gravitational
wave signal, as in [50]:

h̃(f) =
7∑

n=1

√
2πTne

i(2πftn−nφ(tn)−π/4)

×
3∑

k=−3

bkHn(tn + kTn), (2.14)

2πf = φ̇(tn), (2.15)

Tn = φ̈−1/2(tn), (2.16)

where

Hn(t) = Hn(t)e−inφT (t), (2.17)
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and the constants bk satisfy

3∑
k=−3

bk = 1, (2.18)

3∑
k=1

bk
k2p

(2p)!
=

(−i)p
2p+1p!

, 1 ≤ p ≤ 3, (2.19)

bk = b−k. (2.20)

2.3 Results

2.3.1 Exploration of parameter space

We run different simulations to verify the lowest PN order necessary to compute
a faithful waveform. In all simulations we approximate the true signal ht with
a waveform constructed with 8PN phasing (which we assume as our reference
waveform), and we simulate signals h at lower PN orders. Once both signals are
obtained, we compute the faithfulness, F , according to Eq. (2.3), maximizing over
the time and orbital phase. The resulting value is compared to a fiducial threshold
of F = 0.994 corresponding to the situation where the intrinsic errors due to
mismodeling are smaller than the statistical errors from the detector noise, for a
waveform with a number of intrinsic parameters D = 8 and a signal with S/N
= 25 [46]. When F is close to unity, roundoff errors can cause our code to yield
F ≥ 1, which is nonsensical. In order to circumvent this problem, whenever the
faithfulness F ≥ 1, we replace it with the largest double precision number strictly
smaller than one, F = 1− ε with ε ≈ 1.1× 10−16.

We perform different simulations in order to fully characterize the faithfulness
requirements for SBHB signals in LISA as a function of the relevant source param-
eters. We choose a fiducial SBHB with total mass M = m1 + m2 = 60 M�, mass
ratio q = m2/m1 = 1 and coalescence time tc = 4 yr. For each set of simulations,
we change only one of these parameters and keep the others fixed. We proceed as
follows:

(I) We vary q, i.e. q ∈ (0.1, 0.25, 0.5, 1);

(II) We vary the total mass of the system, i.e. Mtot = 60, 120, 200, 300 M�;

(III) We vary the coalescence time, i.e. we generate SBHB waveforms starting 4
years to 150 years before merger (we simulate systems that at the start of
the LISA mission are 4 years to 150 years before merger).
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Figure 2.2: Results of the simulations for case (I), with four different values of
the binary mass ratio, i.e. q = 1, 0.5, 0.25, 0.1. For each value of q, we show the
unfaithfulness (1−F ) as a function of the waveform PN order. Each line represents
the median over 103 simulated waveforms. For the case q = 0.1, we represent the
region between the 16% and 84% quantiles (i.e. roughly the 1σ confidence region)
by the shaded area. Dispersion around the median is similar in all cases. The
horizontal red line is the threshold value F = 0.994, corresponding to a SBHB
signal with S/N = 25 (on the right axes) and D = 8 waveform parameters.

In all cases, we consider spinning BHs, with spin magnitudes χ1,2 extracted
from a flat distribution 0 < χ1,2 < 1 and spin directions, sky position, inclination
and polarization uniformly distributed over a sphere. We further assume quasi-
circular orbits. We notice that, due to the faithfulness definition, the luminosity
distance is factored out. We run N = 103 random realizations for each sub-case
to properly explore the parameter space.

Mass Ratio

In Fig. 2.2 we present the results of our runs as a function of q. The waveform
is faithful at the adopted F = 0.994 threshold at PN orders larger than 3, almost
irrespective of the value of q. In all cases, the inclusion of the 2.5PN dissipative
term only is insufficient to produce the faithful waveform for SBHBs merging in
4 years, and the inclusion of the 3PN term is crucial for an unbiased parameter
estimation. We notice that the convergence of the PN approximation is slower for
lower mass ratios. This is a known characteristic of the PN approximation (see
Fig. 1 in [60], or [61]), however it does not affect our conclusions.
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Figure 2.3: Same as Fig. 2.2 for case (II), i.e. for different values of the total
binary mass. For the case Mtot = 60 M�, we represent the region between the 16%
and 84% quantiles by the shaded area. Dispersion around the median is similar in
all cases.

Total Mass

We now investigate the dependence of the faithfulness on the total mass of the
SBHB. More massive SBHBs reach coalescence at lower frequencies. Therefore, in
the LISA band, these sources are detectable when they are closer to coalescence
and we would expect to have to include higher PN orders to properly describe
the signal, as relativistic effects become more important. However, for a fixed
coalescence time more massive systems also emit at lower frequencies, therefore
the number of cycles we need to match decreases. So even if the systems are
slightly more relativistic, we have to match fewer cycles for the same observation
time. Which one of these effects dominate the dependence of the PN requirements
on the total mass will thus have to be determined from our simulations.

Our results are illustrated in Fig. 2.3 for binaries with total mass from Mtot =
60 M� to Mtot = 300 M�. We observe that the requirement on the faithfulness
is already satisfied by a 3PN waveform, even for the more massive binaries. Note
that for a fixed PN order the faithfulness between the template and the reference
waveform slightly decreases with the total binary mass. However, even if we were
to observe systems close to coalescence for a long time, the faithfulness requirement
would still be satisfied by a 3PN waveform, with a weak dependence from the total
binary mass.
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Coalescence Time

Finally, we consider SBHBs with different coalescence times, tc. In the previous
cases, we fixed tc = 4 yr, however we expect these sources to only represent a small
sub-sample of the population that LISA will observe. Most of the SBHBs will
be observed in their inspiral phase, several years before coalescence at a typical
frequency of 10−2 Hz [62]. These sources will be slowly chirping in the LISA band
and will not coalesce in the LIGO/Virgo band during the mission lifetime. Since
these systems are far from coalescence, we expect lower PN order waveforms to be
sufficient to properly describe and follow the signal.

For each run, we fix different coalescence times, from tc = 10 yr to tc = 150 yr.
Results are shown in Fig. 2.4. SBHBs binaries with tc = 10, 25, 50, 75 yr can
be properly described with just 1.5PN waveforms. Systems with tc = 100 yr can
be described accurately with just a 1PN waveform and, finally, systems with tc =
150 yr are well described by Newtonian (i.e. 0PN) waveforms. Since the PN
accuracy requirement is 0PN for systems with tc = 150 yr, we conclude that also
systems with longer merger time can be properly described by the same waveform
accuracy.

In summary, we find that in order to guarantee that systematic waveform
errors do not bias the recovery of SBHB parameters, 3PN templates are sufficient
throughout the relevant parameter space. From our analysis, the most important
factor to determine the lowest PN corrections necessary to properly describe SBHB
signals is the coalescence time. Even if the binary mass components and mass ratios
are expected to vary, their effect on waveform accuracy requirements is negligible.
We also run each sub-case under the assumption of non spinning SBHBs and find
no significant differences.

2.3.2 Implication for population of SBHBs

The goal of this study is to assess the waveform requirements for faithful signal
reconstruction of the SBHBs detected by LISA. It is therefore useful to apply
our analysis to expected SBHB populations, informed by the current LIGO/Virgo
constraints.

We consider three population models, differing in the assumed SBHB mass
function. In the first model, binary component masses are independently extracted
from a log-flat distribution, with the only constrain that the total mass of the
system has to lie in the range [10 M�, 100 M�], with m1, m2 > 5 M� [63, 64].
In the second and third model, the mass of the primary BH is obtained from a
Salpeter distribution [65] in the range [5 M�, 100 M�], and the secondary mass is
drawn from a flat distribution in the range [5 M�,m1] and [max(5 M�,m1/3),m1]
respectively. For each model we simulate 10 realizations of the expected SBHB
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Figure 2.4: Same as Fig. 2.2 for case (III), i.e. for different coalescence times.
For each case, we represent the region between the 16% and 84% quantiles by the
shaded area.

population by drawing the local SBHB merger rate from the posterior distribution
estimated by the LIGO O1 observations for either a log-flat or a Salpeter mass
function, as reported in Fig. 11 of [66]. The merger rate is assumed to be constant
in redshift (this does not have a major impact on LISA SBHB sources which are
mainly at z < 0.5 anyway). The population of SBHB observed by LISA as a
function of mass, redshift and frequency is then computed as described in [62],
assuming circular binaries.

This procedure yields Ncat = 30 synthetic catalogs of SBHBs emitting in the
LISA band. The GW signals from those systems are then integrated over the
assumed 4 year LISA mission lifetime and the S/N is computed. We consider
detectable, and thus retain, only events with S/N > 8 3. The 30 catalogs yield an
average number of ≈ 100 SBHBs detectable by LISA above threshold.

In this population analysis, we do not consider a single threshold value for the
faithfulness as in Section 2.3. Instead, we compute the faithfulness requirement
for each event, based on its S/N , and we estimate the required PN order in the
waveform model accordingly. In practice we proceed as follows:

• for each event we compute the S/N in the LISA detector with the SUA
waveform (assuming a random sky location, inclination and polarization);

• from the S/N we compute the faithfulness threshold from Eq. (2.4);

3Clearly increasing the S/N threshold for detection [67] will decrease the number of sources;
however our conclusion will not be drastically affected
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• we take the 8PN waveform as the true model signal and compute the faith-
fulness of waveforms at increasing PN orders until its value gets larger than
the threshold.

We repeat this procedure for all individual events with S/N > 8 in all 30 cata-
logues. We found similar results for the three population models. This had to be
expected, since we have demonstrated in Section 2.3 that waveform requirements
are largely independent of the mass and mass ratio of the SBHBs. Therefore, in
the following we present results only from the first population, i.e. averaged over
10 catalogues.
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Figure 2.5: Top panel: stacked S/N distribution for PN sub-populations, labeled
with different colors. Each bin is divided by the number of catalogs in our simula-
tions, Ncat = 10, to provide mean estimates. Bottom panel: same distribution but
selecting only systems with tc < 4 yr. The PN sub-populations are constructed
computing the faithfulness for each event and considering the lowest PN order
satisfying the threshold value, from Eq. (2.4).

Fig. 2.5 shows the average number of sources as a function of S/N , color-
coded according to the PN accuracy requirement. The upper panel shows that for
the majority of SBHBs, 1.5PN waveforms are sufficient. Indeed, it is clear that
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Figure 2.6: Stacked coalescence time distribution for each sub-population, color-
coded as indicated in figure.

the vast majority (≈ 90%) of the SBHBs are described accurately by using low
PN waveform (PN < 2) with only a small fraction of sources requiring 2.5PN or
higher-PN waveforms. The lower panel shows that the sub-population of SBHBs
with tc < 4 yr, i.e. those crossing to the LIGO/Virgo band within the LISA
lifetime, generally require 2.5PN and 3PN waveforms. In fact 90% (80%) of the
SBHBs requiring 3PN (2.5PN) waveforms fall in this sub-population. We also
observe that the PN requirements are largely independent of the S/N for the
global population, while for systems merging within the mission lifetime, more
stringent PN requirements correspond to larger S/N values.

In Fig. 2.6 we plot the average number of sources as a function of time to
coalescence, again color-coded according to the PN order required for a faithful
recovery of the signal. As expected from the previous results, longer coalescence
times imply less stringent requirement on the PN waveform accuracy necessary to
track the signal phase. Indeed PN sub-populations are quite sharply separated in
terms of coalescence time. For tc < 4 yr the main contribution comes from the
2.5PN and 3PN sub-populations. In the interval 4 yr < tc < 10 yr, SBHBs require
2PN and 1.5PN corrections to be appropriately described. As can be seen in the
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Figure 2.7: Stacked cumulative coalescence time distribution for the complete
catalogs (top panel) and for each PN sub-population (lower panel), color-coded as
indicated in figure. The vertical dashed black line represents tc = 4 yr.

top panel of Fig. 2.5, the larger sub-population is the 1.5PN one, which dominates
the distribution for tc ∈ [10, 100] yr, with an important contribution from the 1PN
population for tc ' 100 yr. For longer tc, most systems can be modeled by 0PN
waveforms.

We also computed the cumulative distribution of sources as a function of coales-
cence time, divided according to the required PN order in waveform modeling. The
result is presented in Fig. 2.7. The upper panel shows the cumulative stacked dis-
tribution, color-coded for the different PN sub-populations. The lower panel shows
the cumulative distribution separately for each PN sub-population. As expected
from the previous results, all systems can be described using 3PN waveforms. Both
the 3PN and 2.5PN sub-populations only contribute to the overall distribution for
tc < 4 yr. The rest of the population (i.e. binaries with tc > 4 yr, accounting for
∼ 90% of the overall sample) can be described by 2PN waveforms. About 75% of
the population lies at tc > 10 yr and requires 1.5PN waveform accuracy or lower;
only 25% of the detected SBHBs have tc > 100 yr and can be mostly described
by Newtonian waveforms. In the lower panel, we can see the fraction of each sub-
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population at a given time. Again, the 3PN and 2.5PN sub-populations behave
similarly and their support is almost completely inside tc < 4 yrs. Similarly the
2PN sub-population shows support up to tc < 10 yr, while the 1.5PN one extends
up to tc ' 70 yr. The 1PN and 0PN sub-populations show open support up to
tc ' 102 yr and tc ' 103 yr respectively.

These findings provide useful hints on the trade-off between the waveform ac-
curacy necessary to follow the binary phase during the inspiral and the information
recovered from the parameter estimation. Based on our simulations, we find that
low PN templates can efficiently recover about 90% of the signals allowing faithful
and fast parameter estimation. However, for the multiband SBHBs merging within
the mission lifetime, 3PN waveforms will be necessary to provide unbiased param-
eters and to precisely inform ground based detectors. In the scenario of a ten years
LISA time mission, we will be able to detect a larger number of systems at lower
frequencies thus increasing the number of SBHBs for which low-PN waveform are
sufficient.

2.4 Discussion and summary
In this paper, we assumed circular orbits, since GW emission tends to circular-
ize binary systems [68]. We can write the eccentricity in function of the orbital
separation as

e '
(
a
g(e0)

a0

)19/12

(2.21)

where a0 and e0 are the original semi-major axis and eccentricity, respectively, and
g(e) = (1 + 121e2/304)870/2299e12/19/(1 − e2). If we consider a system with total
mass Mtot = 60 M� at an initial frequency f0 = 0.1 Hz (a0 = 4 × 107 m) with an
initial eccentricity of e0 = 0.9, by the time the two objects reach a separation of ten
times larger than their radius ' 103 Km, the eccentricity has become e ' 0.038.

However, their residual eccentricity may not be negligible [69, 70], and therefore
a study similar to ours has to be performed also for eccentric SBHBs. We recall
that the effect of eccentricity is to speed up the inspiral time and increase the effect
of relativistic corrections. Therefore, we expect that eccentric binaries will require
higher PN orders to be properly modeled. For our results, this would imply a
larger contribution from the high PN sub-population in Fig. 2.6. Moreover, from
stellar evolution simulations we expect the presence of a mass gap in the black
hole mass distribution [71, 72] between [60, 120] M�, which we do not consider in
this work. Nevertheless, this gap may be filled by “second generation” black holes
in cluster formation scenarios [73, 74].

We determined the PN accuracy requirements necessary to properly track a
SBHB signal during the inspiral phase in the LISA band. Our key findings can be
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summarised as follow:

• For systems merging within the mission lifetime, a 3PN waveform is sufficient
to perform unbiased parameter estimation.

• Total mass and mass ratio play a minor role in the requirement for PN
accuracy; similarly spin effects and spin precession are found negligible as
precession timescales are exceedingly long in these systems.

• Systems with longer coalescence time require less accurate templates to be
properly modeled. In particular, assuming a 4 year LISA mission, systems
with tc = 5, 10, 50, 75 yr require only a 1.5PN accurate waveform. Systems
with tc = 100 yr and tc = 150 yr can be properly modeled by 1PN and
Newtonian (i.e. 0PN) waveforms respectively or adopting the same approach
for galactic binaries [75].

• For SBHB population models, most of the detectable sources will be properly
described by low PN waveforms (PN ≤ 2), while systems merging within the
mission lifetime will require 2.5PN and 3PN waveform phasing.

• The coalescence time distribution shows PN sub-populations reasonably sep-
arated in coalescence time, with systems requiring higher PN accuracy ap-
pearing only at small tc.

• The cumulative distribution of the coalescence time for each PN sub-population
shows in particular that for systems merging after the end of the LISA mis-
sion (tc > 4 yr) 2PN waveforms can be used to provide unbiased parameter
estimation, with even lower PN orders needed as tc further increases.

Overall, our results provide an estimate of the waveform accuracy necessary
to track the GW phase without compromising the recovered information. Even
though all detectable SBHB signals can be properly described by 3PN waveforms,
for a large fraction of sources 2PN waveforms alone will already satisfy the con-
ditions for unbiased parameter estimation. Thus, our results may help the data
analysis community in the construction of efficient and computationally viable
algorithms.



Chapter 3

SBHBs above the pair-instability
mass gap

In this chapter we present a study on the possibility to detect stellar black hole
binaries above the so-called pair-instability mass gap. Starting from the star forma-
tion rate (SFR) and metallicity evolution across cosmic time, we build a coherent
and simple approach to describe BHs above the mass-gap. We consider 4 different
scenarios: one pessimistic and one optimistic in order to constrain our model and
two intermediate ones.

In order to evolve the stars we adopted the code SEVN ([72] and references
therein) that can evolve stars up to 350 M� and metallicity Z = 2 × 10−4. Our
approach is based on evolving single stars instead of binary stars.

Assuming mass ratio and time delay distributions, we compute the intrinsic
merger rate of three distinct sub-populations: ‘below-gap’ binaries with both
m1,m2 < 60 M�, ‘across-gap binaries’ with m1 > 120 M� and m2 < 60 M�
and ‘above-gap’ binaries with m1,m2 > 120 M�. Our results for ‘across-gap’ and
‘above-gap’ binaries are based on the ansatz that the underlying physics of binary
formation and evolution does not change beyond the gap.

We convolve each sub-population with the detector sensitivity of current and
future interferometers to compute the expected detected rates. Finally we also
computed the expected stochastic background signal from unresolved ‘across-gap’
and ‘above-gap’ binaries in LISA.

The chapter is organized as follow: in Sec. 3.1.1 we review the concept of stellar
evolution theory while in Sec. 3.1.2 we summarise the main formation channels that
are expected to form SBHBs. In Sec. 3.1.3 we highlight the motivation of our work.
The description of the SFR, metallicity and IMF prescriptions adopted is reported
to Sec. 3.2.1 while in Sec. 3.2.2 we present the approach to compute the actual
rates. In Sec. 3.3.1 we present our results for current and future interferometers
for the three sub-populations and different models. In Sec. 3.3.2 we forecast our

33
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predictions for LISA. In Sec. 3.4 we discuss the main assumptions and caveats of
our work. Finally in Sec. 3.5 we summarise our main conclusions.

Most of the results presented here have been published in [76].

3.1 Binary formation and evolution

3.1.1 Stellar evolution theory

Neutron stars and black holes are the relics of massive stars with mass > 10 M�.
Thanks to fusion reactions, massive stars are able to synthesize heavier elements,
ending up with an iron core. When the iron core is driven above the Chan-
drasekhar mass limit, fusion reactions can no longer support the star, balancing
the gravitational force. The core itself contracts, experiencing photodissociation
and neutronization processes. In this last stage, a supernova (SN) explosion is
triggered by the fallback of the star envelop on the dense neutron-core. The rem-
nant is a hot and dense NS. If the mass star is in between 15 . M/M� . 30,
the supernova explosion is in part suppressed and some of the ejected material
fall back to the remnant NS. If the mass is too large, the NS collapse into a BH.
Finally, if the mass of the star is & 30 M� the gravitational potential suppresses
the supernova explosion and the star directly collapses in a BH. The results of
these processes is a gap between NS and BH around 2− 5 M� [77].

There are two main properties driving the evolution of a star: its mass M ,
and its metallicity Z 1. We have already sketched the role of mass. Metallicity
affects in particular the mass of the remnant BH, especially in the late stage of
its life. Metal rich stars lose a significant portion of their envelope due to strong
stellar winds, because the typical cross-section of heavier element is larger than the
hydrogen one. When heavy elements interact with the hydrogen in the envelope,
they can scatter with it and, eventually unbind it from the star, reducing the total
mass.

Moreover the type of SN is expected to affect the final BH mass. In the standard
scenario, if the Helium core of the star is above a critical mass (' 30 M�), the star
experiences strong pulses leading to a significant loss of mass before explosion.
This scenario is known as pulsational pair-instability SNe (PPISNe). However if
enough energy is realesed during fusion reactions, the star might be disrupted and
no remnant at all is expected: this scenario is usually referred to as pair-instability
SNe (PISNe, [78]). Finally, if the the Helium core is enough massive & 135 M�,
star avoids both scenarios and undergoes directly collapse.

1We define the metallicity as logarithm in power of ten of the iron to hydrogen abundance
ratio.
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Figure 3.1: Mass of the remnant BH (Mrem) as function of Zero-Age Main Sequence
(ZAMS) star mass (MZAMS) when we include the PPISNe and PISNe effects. Each
color represents different value of metallicity. Here Z� = 2× 10−2. Credits to [72].

In Fig. 3.1, we highlight the combination of all the aforementioned effects in
shaping the BH mass distribution for different values of metallicities as function
of the Zero-Age Main Sequence (ZAMS) star mass 2. Low metallicity stars tend
to form more massive BHs: a star with MZAMS = 260 M� ends up in a BH with
Mrem ' 15 M� (Mrem ' 200 M�) if its metallicity is Z = 2× 10−2 (Z = 5× 10−4).

Another effect of PPISNe is to increase the number of BH in the LIGO/Virgo
range between 20 . Mrem/M� . 50 for all progenitor masses. Indeed, before
GW detections, BHs were reported only as companion of stars in low mass X-ray
binaries. This BH population shows a mass distribution centered around 8 M�.
Even if slightly more massive BHs have been reported with this technique, their
masses are all below 20 M� due to the metallicity of their progenitor stars.

It is also evident the effect of PISNe for stars with 120 . MZAMS/M� . 230
and Z . 8 × 10−3: these stars are not expected to produce any remnant, leaving
a gap in the BH mass distribution (shown as a break in the y-axis). If the star is
enough massive (MZAMS > 230 M�) and with low-metallicity (Z . 5 × 10−4), it
directly collapses in a massive BH (Mrem > 120 M�).

2The ZAMS star mass corresponds to the mass when the star enters the main sequence on
the Hertzsprung-Russell diagram.
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Figure 3.2: The formation of a BHB from the isolated binary channel. RLO:
Roche-lobe overflow; WR-star: Wolf-Rayet star; HMXB: high-mass X-ray binary.
Credits to [79].

3.1.2 Formation channels

Two main formation channels have been proposed for SBHBs, i.e. the isolated
binary channel [80–84] and the dynamical channel [85–90]. Each scenario presents
its unique traits and features that shape the final mass and redshift distribution
of merging SBHBs. BHBs formed from isolated binaries are expected to have
spins aligned to the orbital angular momentum and small orbital eccentricities
[68, 91] . Otherwise, if two BHs bound after a dynamical encounter, their spins
will be isotropically oriented [92] . Moreover many-body interactions can trigger
Kozai-Lidov oscillations and produce large eccentricities that can be detected at
low-frequency with LISA [69, 93–97] or even at merger time in LIGO/Virgo band
[74, 98–101]. The two scenarios predict also different contributions to the total
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merger rate. Field scenario merger rates are comparable to the LIGO/Virgo rates
while BHBs from clusters are expected to contribute up to ' 10% to the total [37,
102–106]. During the years, other possible formation channels have been proposed:

• In the chemically homogeneous evolution (CHE) [107–109], two stars are
tidally locked in a close binary. This configuration leads to fast rotating stars
with efficient internal mixing that keep the stars chemically homogeneous
during most of its life.

• BHBs might also form in Active Galactic Nuclei (AGNs) where the interac-
tion between the binary and the gaseous disk might enhance the number of
mergers and leave distinct imprints in the mass and spin distributions [110,
111].

• Primordial BHs (PHB) born from the collapse of density inhomogeneities
might constitute a non-negligible fraction of the current dark matter content
of the Universe: these PBHs might eventually merge and be indistinguishable
from the BHBs formed via the astrophysical scenarios [112].

Here we focus mostly on the isolated binary channel. The evolution of stars
in binary is still a poorly understood process. Apart from the physical processes
driving the evolution of each stars individually, stars in binary exchange energy
and angular momentum in non-trivial way.

In Fig. 3.2 we report a scheme to illustrate the stages from the ZAMS binary to
the compact object binary (in this case a SBHB). The most massive star in a binary
is the first to evolve outside the main sequence branch: in the last stage of its life,
the star expands, filling its Roche lobe, and mass is transferred to the secondary
stars that starts accreting. Eventually the donor star ends up in a SN explosion
that could potentially unbind the binary preventing the formation of a compact
objects binary. However if the donor star is massive, it directly collapses in a BH
or produces a weak supernova explosion: in this case the binary is likely to survive
and a compact object (either a BH or a NS) is present. After some time, even the
second star evolves in a red giant, engulfing the compact object with a common
envelope. During this phase, the two bodies migrate to the center, transferring
orbital energy and angular momentum to the external envelope. If enough energy
is released the star merges with the compact object, otherwise it ends up in a close
orbit, without its envelope3. Finally even the second star undergoes SN explosion,
however, thanks to the fact that the objects are closer than the previous explosion,
the binary is more likely to survive this step. If the stars binary survived up to
this point, then it has become a compact object binary.

3Clearly if not enough energy is released, the two compact objects end up being too far for
GW to be efficient and drive them to coalescence in a Hubble time
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If the two objects are relatively close, GW emission will lead them to merger
in a Hubble time. The coalescence time for this system range from few Myr to
Gyr following a log-flat distribution. However there are large uncertainties on the
common envelop phase, on the internal mixing and on the angular momentum
transport resulting in wide range for the predicted rate. Clearly if not enough
energy is released during the common envelope phase, the two compact objects
end this stage being too far for GW to efficient drive them to coalescence in a
Hubble time.

This formation scenario is explored by population synthesis codes like Star-
Track [113], MOBSE [114] and Compass [115], taking as input parameters the
mass of the two stars, the orbital and the eccentricity of the orbit. Their mass
distributions and rates are consistent with the constraints from LIGO/Virgo ob-
servations [4].

The large astrophysical uncertainties translate in large error bars for the rates of
different types of compact objects. For BHBs the intrinsic current rates ranges be-
tween 9.7−101 Gpc−3 yr−1, while for NS-NS binary the interval is 110−3840 Gpc−3 yr−1.
The rate for BH-NS binary merger is even more uncertain because up so far no un-
ambiguously detection has been made (even if some detection might be consistent
[116, 117]) and the current upper limit is 610 Gpc−3 yr−1.

The detected rates take into account the detector sensitivity and therefore
produce different results: even if the number of NS-NS merger is higher, the horizon
distance for this type of source is small due to their relatively low mass. On the
other side, BHBs can be detected up to higher redshift. For BHBs, we expect
several hundreds of events per year and just a few events for NS-NS and BH-NS
binaries [37].

3.1.3 Motivations of this work

Stellar evolutionary models predict that a gap in the BH mass distribution should
naturally form as the result of stellar evolution. LIGO/Virgo are sensitive in this
mass range, so we expect to be able to detect a BHB with component mass in the
gap [118].

Clearly, the dynamical scenario provide a natural way to fill the gap. If “second
generation” BH [73], i.e. the BH formed after the merger of two previous BHs, is
retained inside the cluster, multiple encounters might lead it to coalesce again with
another BH. However, the dynamical scenario predict lower rates than the isolated
channel. Moreover, [119] and [120] proposed that massive stars with small core
and large envelope masses might collapse, thus avoiding the pair-instability phase
and producing BHs in the mass gap. Even CHE and AGN formation scenarios
might be able to fill partially this gap.

Due to the theoretical and observational evidences, several authors have already
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explored the possibility of a gap in the BH mass distribution. Using only the first
3.9 detections, [121] find preliminary evidence of a gap at 40 M� and conclude that
a gap is necessary, if no heavy BHBs are detected, to avoid BHs mass distribution
too steep. Moreover, if the BH mass distribution follow a Salpeter distribution,
it will require & 60 BHBs detections to invalidate the power-law index, unless no
BH exist above the gap. [122] conclude that we should be able to put constrain
on the presence of a gap in the BH mass distribution after . 20 detections. They
also predict the occurrence of PPSN might lead to a peak close to the lower edge
of the BH mass distribution.

For the rest of the current chapter we will refer to three different sub-populations:

(I) below-gap binaries → m1 < 60 M�, m2 < 60 M�;

(II) across-gap binaries → m1 > 120 M�, m2 < 60 M�;

(III) above-gap binaries → m1 > 120 M�, m2 > 120 M�.

‘Below-gap’ binaries are the binaries that LIGO/Virgo have already observed dur-
ing the first, second and third run. ‘Across-gap’ binaries present a massive BHs
with a light companion, with a typical q < 0.4. In ‘above-gap’ binaries both BHs
are above the pair-instability mass gap. The latter population is particularly in-
teresting because such massive BHS have been invoked in the literature as possible
seeds for the formation and growth of the supermassive BHs that we currently see
accreting at high redshift [123, 124]. Moreover, up to now, most of population
synthesis codes are unable to evolve massive star (MZAMS > 150 M� ) in binaries
due to the aforementioned uncertainties , stopping around ' 100− 150 M� [125–
127] 4. However, from Fig. 3.1, it is clear that this limit prevents the possibility
to synthesize BHs above the mass gap with the current codes.

Moreover ‘across-gap’ and ‘above-gap’ binaries are optimal sources for LISA
or ET due to the larger total mass compared to the standard SBHBs detected
by LIGO/Virgo. Under some assumption, ‘above-gap’ binaries might even be the
dominant multiband SBHBs detected by LISA due to the long inspiral and the
large number of cycles performed in band.

Finally, in the past, many studies [129, 130] explored the possibility of a
stochastic background from the first generation of stars, usually known as POPIII
stars. An additional source of BHBs above the pair-instability mass gap might
improve the background strain and, eventually, be comparable to the expectation
for ‘below-gap’ SBHBs.

4See also [109, 128] for more recent results from populations synthesis code for SBHB in the
pair-instability mass gap.
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3.2 Formalism and setup

3.2.1 SFR, metallicity and IMF

In this study, we employ two models referred as optimistic and pessimistic. The
reason behind these names come from the assumptions on three quantities:

(I) star formation rate, SFR;

(II) mean metallicity evolution, 〈Z〉, across cosmic time;

(III) initial mass function (IMF).

We obtained two additional models mixing these quantities as later described.
The SFR represents the amount of mass converted in stars and it is typically

given in unit of comoving volume and year. In the literature different prescriptions
can be found.5 For example Madau and Fragos [132] propose an expression for the
SFR as

SFR(z) = a
(1 + z)b

1 + [(1 + z)/c]d
M�Mpc−3 yr−1 (3.1)

with a = 0.01, b = 2.6, c = 3.2 and d = 6.2. This expression is based on UV and
infrared surveys [133], adopted to better reproduce novel observations 4 . z . 10
[134] and a Kroupa IMF [135].

Strolger et al. [136] proposed a different formulation (later adopted in [102]) as

SFR(t) = a (tbe−t/c + d ed(t−t0)/c) M�Mpc−3 yr−1 (3.2)

where t is the cosmic time in Gyr measured in the rest-frame, t0 is the age of the
universe and the parameter values are a = 0.182, b = 1.26, c = 1.865, d = 0.071.
This expression is a modified version of the one presented in [137] and corrected
for the data from several surveys [138].

The mean metallicity represents the metal to hydrogen ratio. Since metals are
the results of stellar reactions, the metallicity is lower at high redshift when the
Universe was young and few stars have polluted the galactic environment.

Also for this quantity several expressions can be found in the literature. Madau
and Fragos [132] propose to fit the average metallicity of newly formed stars as

log10〈Z/Z�〉 = as − cszds (3.3)

where as = 0.153, cs = 0.074 and ds = 1.34. Madau and Dickinson [133] proposed
also a mean metallicity evolution for the intergalactic medium as

log10〈Z(z)〉 = 0.5 + log10

(
y(1−R)

ρb

∫ 20

z

97.8× 1010SFR(z′)

H(z′)
dz′
)

(3.4)

5In [131] different SFR prescriptions are presented based on the observation of luminous
galaxies and on the rate of gamma-ray bursts with a possible early POPIII population.
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with a net metal yield y = 0.019, a return fraction R = 0.27, a barion density ρb =
2.77× 1011Ωbh

2
0 M�Mpc−3 with h0 = 0.7. For the cosmological quantities H(z) =

H0E(z)(1+z) withH0 = 70 Km s−1 Mpc−1 and E(z) =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

with (Ωb, Ωm, Ωk, ΩΛ) = (0.045, 0.3, 0, 0.7). However we would like to stress the
difference between these two expressions: while Eq. (3.3) represents the mean
metallicity of newly formed stars, Eq. (3.4) describes the metal content of all the
barions in the Universe. For our study the former expression is the correct one
because galaxies are biased region for the star formation therefore their metal con-
tent is higher than the pristine intergalactic medium. Assuming Eq. (3.4) might
lead to a lower metallicity and, possibly, to an incorrect estimate on the number of
BH and their mass distribution. In order to take into account this characteristic,
we shifted Eq. (3.4) in order to match Eq. (3.3) at z = 0, to model a possible rapid
decline of the metallicity between the present and redshift z ' 4 and to provide a
lower limit to our models. At each time step in redsfhit, we assume a log-normal
distribution of metallicity around 〈Z(z)〉 with σ = 0.5 dex as standard deviation.

An example of the SFR and metallicity prescriptions adopted for our study are
reported in Fig. 3.3. Both SFRs match quite well at low-redshift, thanks to the
abundance of data and observation, while, at high redshift the models vary of ' 2
order of magnitudes. Similar arguments apply also for the metallicity evolution.

Since for the first model both the SFR and the metallicity are taken from
Madau and Fragos [132], it is labeled as “mSFR-mZ”. The second model takes the
SFR from Strolger et al. [136] and the metallicity is shifted, so it is labeled as
“sSFR-sZ”. We consider two intermediate models, labelled “mSFR-sZ” and “sSFR-
mZ” and obtained combining the SFR and the metallicity prescriptions.

The initial mass function (IMF) describes the number of stars formed for bin
of unit mass. We consider a power-law expression as [135, 139]:

dN/dM = ξ(M,α) ∝


M−1.3 for M/M� ∈ [0.08, 0.5]

M−2.2 for M/M� ∈ [0.5, 1.0]

M−α for M/M� ∈ [1.0, 350].

(3.5)

with α = 2.7 for the “mSFR” model and α = 2.35 for the “sSFR” one. From
these arguments it is clear that the “mSFR-mZ” can be considered as the pes-
simistic model and “sSFR-sZ” as the optimistic one: the former has a higher mean
metallicity evolution (BHs are lighter), lower SFR and steeper IMF (we form less
star).



42 CHAPTER 3. SBHBS ABOVE THE PAIR-INSTABILITY MASS GAP

10 3

10 2

10 1

SF
R 

 [M
 y

r
1  M

pc
3 ]

0 2 4 6 8 10 12 14 16
z

10 4

10 3

10 2

10 1

100

Z/
Z

sSFR-sZ
mSFR-mZ

Figure 3.3: SFR (upper-panel) and mean metallicity (lower-panel) of the galaxy
population 〈Z〉 (we choose solar metallicity Z� = 0.0142) for the models mSFR-
mZ (blue lines) and sSFR-sZ (red lines) as function of redshift. The dashed-dotted
lines in the lower panel show the range of metallicity that can be evolved with
SEVN. Stars with metallicity exceeding this range are considered to follow the
same evolution of stars in the lowest/highest metallicity bin.

3.2.2 Merger rate computations

The differential comoving volume number density formation rate of progenitor
stars as a function of cosmic time, mass and redshift is

d3n?
dtd logM? d logZ

=
f?(α)

〈m?(α)〉SFR(t)× p(logM?)× p(logZ). (3.6)

Here f? and m? are the fraction of simulated binaries and the average IMF mass as
defined by Eq. (6-7) of [130] and p(logM?), p(logZ) are the probability densities
of stellar mass and metallicity.
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Both f?(α) and < m?(α) > depend from the IMF and they can be expressed
as

f?(α) =

∫ 350

8
ξ(m,α) dm∫ 350

0.1
ξ(m,α) dm

(3.7)

and

< m?(α) >=

∫ 350

0.1
ξ(m,α)mdm∫ 350

0.1
ξ(m,α) dm

. (3.8)

We separately compute the IMF probability distribution p(logM?) as:

p(logM?) =

∫ M+∆ logM

M

ξ(M ′, α) dM ′ (3.9)

where log in the log based 10 logarithm. We also compute the metallicity proba-
bility distribution p(logZ) for each time step as:

p(logZ) =

∫ Z+∆ logZ

Z

1√
2πσ2 Z ′

exp

(
[log(Z ′)− log(Zmean)]2

2σ2

)
dZ ′. (3.10)

Note that, while the IMF probability distribution is always the same, the metallic-
ity probability distribution changes at each time bin due to the increase of mean
metallicity across cosmic time.

We perform N = 103 steps in mass and metallicity to properly explore the
parameter space. For a given interval (∆ log10M,∆ log10 Z), we evolve a single
star with SEVN to determine its final state and final mass. Stars with metallicity
exceeding our range are treated as stars at the lowest or highest metallicity avail-
able. For simplicity, we consider only stars with BH as final state. This allows us
to map Eq. (3.6) into the BH formation rate density, d2n/(dt dm1). The mass of
the primary BH, m1, is drawn from this distribution. We note that the progenitor
density in a given time interval is typically translated in a remnant density to
a later time. This takes into account the specific lifetime of a star in the given
interval (∆ log10M,∆ log10 Z).

To convert the birth rate of BHs into the merger rate of BHBs we need two
additional assumptions: i) all BHs are in binaries and the mass of the secondary
BH is drawn from a flat mass ratio q = m2/m1 < 1 distribution in the range
[0.1, 1] 6 and ii) mergers take place at a time tm = t + τd where the delay time
τd is distributed according to p(τd) ∝ τ−1

d [127, 141] between τd,min = 50 Myr and
τd,max = tHubble [131], where tHubble is the Hubble time.

We note that from assumption i), there might be binaries with m2 falling in
the mass gap. However these binaries are discharged and the whole population is

6We also investigate the possibility if a flat mass ratio distribution in the range [0.5,1] [140].
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re-normalized to guarantee that the total mass density of allowed BHBs is equal
to
∫

d logm1m1[d2n/(dt d logm1)]. Since m1 covers all the BH mass spectrum,
this re-normalization does not affect in particular one sub-population respect to
others.

Therefore, similarly to mass and metallicity, we compute the probability dis-
tribution for time delay and mass ratio to obtain the number density of BHBs
merging per unit of mass, time and mass ratio.

The rate density per comoving volume of merging BHBs is therefore given by:

d3n

dtm d logm1 dq
= C

∫
t<tm

∫
d4n

dt dτd d logm1 dq
δ(tm − (t+ τd))dτddt (3.11)

where C is a normalization constant to re-scale the intrinsic BHB merger rate in
the local Universe to∫ 50 M�

5 M�

d logm1

∫
dq

d3n

dtm d logm1 dq

∣∣∣∣
z=0

= 50 Gpc−3 yr−1, (3.12)

close to the best estimate provided by the LIGO-Virgo O2 run [142]. This a
posteriori normalization is needed because we started from the SFR and assumed,
up so far, that all massive stars form BHBs. However this is not true due to the
uncertainties discusses in 3.1.1.

We checked, however, that both the resulting BHB merger rate density as
a function of redshift and the mass function of merging BHBs below the pair-
instability gap are in good agreement with sophisticated population synthesis mod-
els found in the literature [e.g. 119].

Since we are more interested in massive SBHBs above the pair-instability mass
gap, we define their merger rate as

R(zm) =

∫ ∞
120 M�

d logm1

∫
dq

d3n

dtm d logm1 dq
. (3.13)

Depending on q value, we define the sub-classes of ‘across-gap’ (m2 < 60 M�)
and ‘above-gap’ (m2 > 120 M�) SBHBs. From our choice of the mass gap range,
‘across-gap’ binaries are characterized by q < 0.5 and ‘above-gap’ binaries by
q & 0.4.

The number of detections per year is computed as

Rdet =

∫
R(zm)

1

1 + zm

dVc
dzm

pdet dzm (3.14)

where (1 + zm)−1 = dtm/dt
obs
m accounts for the time dilation due to cosmic expan-

sion between the source and the observer frames and dVc/dzm is the differential
comoving volume shell.
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The quantity pdet represents the probability to detect a binary with (m1, q,
zm) with randomic sky-positions and binary inclination [143]. Assuming a fixed
threshold S/Nthr, pdet can be expressed as the cumulative distribution function of
the ratio between the S/Nthr and S/Nopt [37], i.e.

pdet = P

(
S/Nthr

S/Nopt

)
= P (w) (3.15)

where P denote the cumulative distribution function and we use Eq. (1.19) for the
last equality.

Eq. (3.14) is ideal to compute the detection rate for ground-based detectors.
However, LISA will observe multiband and persistent sources, that will remain
in band for long time. Therefore it is necessary to take into account the initial
frequency at which the source is emitting. The distribution of inspiralling sources
in the LISA band is given by

dN

d logm1 dq dz d ln fgw

=
d3n

dtm d logm1 dq

dVc

dz

dtm
d ln fgw

, (3.16)

where dtm/d ln fgw is given by differentiating eq. (1.7) [68] as

dtm
d ln fgw

=
5

96π8/3

(
c3

GM

)5/3

(fgw(1 + z))−8/3. (3.17)

Here fgw is the observed GW frequency. In this study we consider only circular
binary because GWs are known to circularize the orbit.

From Eq. (3.16) we draw 10 Monte Carlo realisations of the SBHB distribution
in the range [10−4, 10−1] Hz. We assume that the sampled SBHBs represent the
distribution of sources at the beginning of LISA mission. Finally we repeat the
draw for each SBHB population model described in subsec. 3.2.1.

We evolve each source forward in time assuming GW-driven dynamics and
evaluate their S/N at the exit of LISA band or at the end of time mission. For
each value of m1, q and zm, we compute the S/N assuming random sky posi-
tions, polarization and inclinations angles. We also assume non-spinning BHs.
For ground-based detectors, we estimate the S/N with the LALsuite [144], mod-
eling the inspiral-merger-ringodown signal with the IMRPhenomD waveform [145,
146]. For LIGO during O1/O2, we choose S/Nthr = 8 while for LIGO/Virgo at
design sensitivity and ET we assume S/Nthr = 12. Similarly for LISA, we adopted
the IMRPhenomC waveform [147] to compute the S/N and considered a source
detected if its S/N was above S/Nthr = 8. Amongst the detected events in LISA,
we select the multiband events (τ < 4 yr) and check if they can also be detected
with LIGO/Virgo or ET. We also explore a possible extended LISA time mission
of 10 years.
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For O2 LIGO sensitivity, we adopt the curve labelled as ’mid’ in [148]. We
also consider Advanced LIGO [aLIGO, 149], Advanced Virgo [AdVirgo, 13] and
Einstein Telescope [ET-D, 150]. For LISA we adopt the curve described in [151].

Finally we also compute the level of the stochastic GWB generated by the inspi-
ralling SBHBs, combining the ‘across-gap’ and ‘above-gap’ sub-populations. The
stochastic GWBs computed by summing in quadrature the characteristic strains
of the unresolved sources and its S/Ngwb is estimated as in Thrane and Romano
[152] and Sesana [153]:

(S/Ngwb)2 = T

∫
γ(fgw)

h4
c,gwb

f 2
gwSn(fgw)2

dfgw (3.18)

where T = 4 yr is the LISA mission required lifetime, h2
c,gwb(fgw) = 2fgwSh(fgw)

(being Sh(fgw) the power spectral density of the signal), and γ(fgw) = 1 [see Fig. 4
in 152]. We also estimate the strength of the GWB via its GW energy density
parameter as

Ωgw(fgw) =
2

3

(
πfgwhc,gwb

H0

)2

. (3.19)

3.3 Results

3.3.1 Implications for ground-based detectors

In Fig. 3.4 we report the number density of SBHBs formed with SEVN versus
chirp mass for different metallicity values.

The three sub-populations cover different chirp mass ranges: the maximum
chirp mass for ‘below-gap’ binaries is ' 50 M�, while ‘across-gap’ (‘above-gap’)
binaries have chirp mass ranging in M/M� ∈ [40, 100] (M/M� ∈ [100, 240]).
We note that a maximum chirp mass of ' 50 M� is compatible with results from
independent synthesis code [154].

‘Across-gap’ and ‘above-gap’ sub-populations come from very low-metallicity
stars 〈Z〉 < 1.2 × 10−3, while ‘below-gap’ binaries are consistent with that of
[119] (see their Fig. D2). In particular we match better the maximum chirp mass
from metal-rich stars (〈Z〉 > 8 × 10−3) rather than the ones from metal-poor
progenitors 〈Z〉 < 8×10−3. In the latter case, we obtain slightly heavier BHs with
M∈ [40, 50] M�, but this is expected due to the difference between our approach
and binary evolution.

We also notice that, due to our choice on the mass ratio, the source-frame
chirp mass distributions show no evident gap across the three sub-populations.
The number density of BHBs varies of 1-2 order of magnitude between the most
extreme models because of the different SFR, metallicity evolution and IMF.
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Figure 3.4: Number density of BHBs formed (per unit comoving volume of Mpc−3)
versus theirM. Each color represents different metallicity as labeled in the upper
section of the plot. From left to right: ‘below-gap’, ‘across-gap’ and ‘above-gap’
binaries. From top to bottom: mSFR-mZ and sSFR-sZ (intermediate models not
shown).

In Fig. 3.5 we show the intrinsic merger rate (i.e. the number density of
mergers per unit of comoving volume and year) for our optimistic and pessimistic
models. For a deeper insight we split the total merger rate into the contribution
from each sub-populations. The total merger rate is dominated by ‘below-gap’
binaries during all the cosmic history. Due to the normalization imposed with
Eq. (3.12), both sSFR-sZ and mSFR-mZ models predict the same intrinsic merger
rate at z = 0. The merger rates remain similar up to z ' 2 but end up with more
than an order of magnitude of difference at z ' 10.

Moving to ‘across-gap’ and ‘above-gap’ sub-populations, their merger rates are
three (four) orders of magnitude lower than the one from ‘below-gap’ binaries for
the sSFR-sZ (mSFR-mZ) model. At z = 0 there is roughly a difference of one
order of magnitude between the predictions of the two models. However in both
models the ‘above-gap’ sub-population leads to slightly more mergers than the
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Figure 3.5: Intrinsic merger rate (in unit of comoving Gpc−3 and year) versus red-
shift for the sSFR-sZ model (red lines) and mSFR-mZ (blue lines). The merger rate
is decomposed into the BHB sub-populations: ‘below-gap’ (solid lines), ‘across-gap’
(dashed lined) and ‘above-gap’ (dotted lined).

‘across-gap’. The two mixed models (mSFR-sZ and sSFR-mZ, not shown) give
intermediate results, as expected.

From the intrinsic merger rate, it is possible to compute the detected number
rate, i.e. the number of events detected per year, following Eq. (3.14). The result
are reported in Tab. 3.1 for O1/O2, LIGO/Virgo at design sensitivity and ET. The
non detection of BHBs from the ‘across-gap’ and ‘above-gap’ sub-populations is
consistent with our estimates. In the pessimistic scenario, LIGO/Virgo at design
sensitivity should detect less than 1 event per year and just a handful of events
in the sSFR-sZ model. Intermediate models predict . 1 yr−1 (' 2 yr−1) events
from the ‘across-gap’ (‘above-gap’) sub-populations. The detected rates increase
of more than an order of magnitude with ET for all models and sub-populations.
For the ‘above-gap’ sub-population the expected number of events ranges from
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Table 3.1: Upper panel: Number of mergers detected per year by O1/O2,
LIGO/Virgo at design sensitivity and ET for our four different models as labelled
in the text. Middle panel: Number of event over four years for LISA, number of
events merging within four years to allow multiband observation with LIGO/Virgo
at design sensitivity and with ET. Lower panel: Number of event over ten years for
LISA, number of multiband events merging within ten years. Last row gives the
S/N from the stochastic GW background (summing ‘across-gap’ and ‘above-gap’
sub-populations) for the four models. For each model, left (right) column refers
to ‘across-gap’ (‘above-gap’) binaries.
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' [10, 460] yr−1. Moreover, due to the improved sensitivity, ET will be able to
detect ‘across-gap’ binaries even in the pessimistic scenario.
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Figure 3.6: Detected rate versus M for LIGO/Virgo at design sensitivity and
ET according to the label. Yellow(green)[ blue ] lines correspond to ‘below-gap’
(‘across-gap’) [ ‘above-gap’ ] binaries. Left: mSFR-mZ model. Right: sSFR-sZ
model

In fig. 3.6 we report the detected rates as function of M for the optimistic
and pessimistic model and the three sub-populations. Independently from the
model, the distributions of ‘below-gap’ binaries detected with LIGO/Virgo are
skewed toward higher chirp mass (M ' 30 M�) due to the detector sensitivity.
With ET, the distributions of ‘below-gap’ binaries are log-flat. The distributions
of detected ‘across-gap’ binaries peak at the highest chirp mass value available
for this sub-population, while ‘above-gap’ binaries are detected with an average
M' 150 M�.

3.3.2 Prospects for LISA

Since SBHBs are long-living sources in LISA band, their initial frequency plays an
important role in their detectability. In order to cast predictions for all our mod-
els for LISA, we take into account the starting frequency and sample our average
distributions to produce catalogs of SBHB mergers. Each binary is therefore char-
acterized by its redshift, mass of the primary BH, mass ratio and initial frequency
in LISA band. We checked that our samples were consistent with our distributions.
For each combination of model and sub-population, we perform 10 realizations. In
Fig. 3.7 we compare our samples to our distributions for the ‘above-gap’ sub-
population in the pessimistic scenario. The sampled binaries match the expected
distributions for primary mass, redshift, mass ratio and observed frequency. As
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expected, systems merging in less than four years come from the high frequency
portion of the distribution.
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Figure 3.7: Comparison between the distribution of the sample binaries (red lines)
and the average distribution (blue lines). Green histograms correspond to multi-
band events, i.e. τ < 4 yr.

From here we focus on the ‘across-gap’ and ‘above-gap’ sub-populations because
they represent the novelty of our work. In Fig. 3.8 we show the overall properties
of the events observed by LISA with S/N > 8, assuming four year time mission.
In this figure we are combining the numbers from the ‘across-gap’ and ‘above-gap’
sub-populations. For both models, the majority of events concentrates at z . 0.5,
with a fraction extending up to z ≈ 1.5. There is roughly an order of magnitude
of difference between the optimistic and pessimistic models. Moreover multiband
binaries (i.e τ < 4 yr ) can be detected to slightly higher redshift.

The chirp mass distribution for the sSFR-sZ model exhibits two peaks corre-
sponding to the ‘across-gap’ (left peak) and ‘above-gap’ (right peak) sub-populations.
The different heights of the peaks is due to selection effects because it is easier to
detect more massive binaries with mass ratio close to unity. It is also clear that we
do not expect any multiband event in 4 years from the ‘across-gap’ sub-population
in the pessimistic model. This is due to the aforementioned selection effects and
because unequal mass systems evolve slower than equal mass ones.

The detected sources have an initial fgw ∈ [10−3, 10−2] Hz. Only a handful
of events are detected at fgw < 10−3 Hz in the optimistic scenario, because low
frequency sources do not emit enough GWs to produce a signal-to-noise ratio
above threshold. Moreover multi-band sources peak at greater frequency respect
to persistent ones.

For both model, the merging time distribution of the detected events peak
at LISA time mission because systems closer to coalescence produce larger S/N
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.

if observed for long time. The trade-off between these two effects produce the
aforementioned peak (look also at Fig.1 in [155]).

In Tab. 3.1 we report the number of events from the ‘across-gap’ and ‘above-
gap’ sub-population in LISA for each model considered. For a 4 year time mission,
LISA will be able to detect between ' 1.5 and 43 events from the pessimistic
and optimistic model, respectively. Intermediate models predict ' 10 events. The
number of events merging in less than 4 years is smaller but still of order unity even
for the pessimistic scenario, while the optimistic model predicts' 20 events. These
systems will merge at higher frequencies in the LIGO/Virgo band, however, due
to their relative high masses, only half of them will be detected by ground-based
detectors. The number of events range from ' 0.5 for the pessimistic scenario to
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' 10 for the optimistic one. However, if ET will be operative, all multiband events
detected in LISA will also be detected by ET. For a 10 years LISA time mission,
the number of events increases by a factor of & 3. The increases time mission
leads to a gain in S/N as ∼

√
10/4. Since S/N ∝ d−1

L , the accessible volume is
almost four times larger and, therefore, the number of detected events increases of
a similar quantity.

For the case with a flat mass ratio distribution for q ∈ [0.5, 1], we find that the
rate from the ‘above-gap’ sub-populations increase of ≈ 2 while we lose completely
the possibility to form ‘across-gap’ binaries.
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Figure 3.9: GW energy density parameter as function of frequency for the four
models as labelled. The dotted-dashed black line represents the LISA power-law
sensitivity (PLS) curve from [156] and computed fixing a threshold of S/Ngwb = 1.

In Fig. 3.9 we show the energy density of the stochastic GWB – Ωgw, from
Eq. (3.19)– produced combining ‘across-gap’ and ‘above-gap’ binaries for all the
considered models. In the same figure, we report also the expected background
signal-to-noise ratio for each scenario. Apart from the pessimistic model, the
signal is loud enough to be detected. In particular for the optimistic scenario,
the background signal is comparable to that expected from ‘below-gap’ BHB and
galactic binary populations [e.g. 153, 157]. Our estimate is also consistent with the
upper limits reported after the end of the first and second run from the LIGO/Virgo
collaboration [158, 159].
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3.4 Discussion

The possibility to form and detect SBHBs above the pair-instability mass gap is
an intriguing scenario. However our models rely on a set of assumptions that need
to be carefully taken into account when evaluating results.

We assumed that our IMF extends up to 350 M� because we want to form mas-
sive metal-poor stars that may eventually end in BHs above the mass gap. However
the IMFs extend usually up to ' 150 M� [135]. The formation and evolution of
such massive stars is still uncertain however there are observational evidence that
the IMF might extend to M & 300 M� [160]. Even if we know that such mas-
sive stars form, their IMF might follow a steeper distribution above 150 M�. This
would leave unchanged our conclusion for the ‘below-gap’ sub-populations but
would reduce the number of ‘across-gap’ and ‘above-gap’ binaries, depending on
the actual slope. However we note that, if massive stars do not form, the merger
rate for ‘above-gap’ and ‘across-gap’ binaries from this channel has to be zero. In
this way future detections of massive BHBs can empirically prove that massive
stars form and, eventually, provide constrains on the IMF slope.

The SFR and the mean metallicity evolution described in Sec. 3.2.1 are aver-
aged over all the Universe. This is a necessary approximation for our study but
it does not take into account the cosmic evolution of stellar metallicity and its
dependence on the galactic environment [161, 162]. Since dwarf galaxies evolve
slower, their metallicity can be lower than their massive counterpart at present
day. This could in principle change the distribution of BHB mergers across the
cosmic time, increasing the number of massive BHBs merging close to us. More-
over even if dwarf galaxies contribution to the number of star formed is smaller,
they are more numerous in number than massive galaxies.

Our results are also affected by large uncertainties on the evolution of massive
stars in binaries, especially on internal mixing, angular momentum transport. It
is also unclear what could happen during the common envelope phase when both
stars are more massive than 150 M�. In our study we assumed that the same
processes rule both the ‘below-gap’ and the ‘above-gap’ evolution in the same way.
However this might not be truly in principle: massive stars might lose more mass
during the common envelope, resulting in lighter BHs. Moreover fast rotating
stars might produce a torus around the remnant BH [163], resulting is slightly less
massive BHs but still above the mass-gap.

‘Above-gap’ are perfect targets for multiband observation because they spend
many cycles in LISA band before chirping to the high frequency portion of the
spectrum where ET will detect them. Sky position and chirp mass are expected
to be determined with great accuracy in LISA. To quantify this statement we run
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a Fisher Matrix code7 on the population of ‘above-gap’ in LISA. To model the
signal, we adopted the inspiral-only precessing waveform described in Sec. 2.2.
Thanks to the large number of cycles and the orbital motion of the detector, these
sources are localized with a median precision of . 10 deg2. The single component
redshifted masses are constrained to better than 1% percent. Due to the low S/N ,
the luminosity distance is poorly determined with a median uncertainty of . 30%.
Spins would be essentially unresolved.

In addition ‘above-gap’ SBHBs might also be targets for possible EM coun-
terpart search. If a torus from the progenitor stars is formed around the binary,
the gas might accrete on the binary or on the remnant BH. LISA will be able to
greatly localize these sources in the sky and the detected systems will be pref-
erentially face-on/off so if a jet is launched along the angular momentum of the
binary, it might point directly toward us. In Fig. 3.10 we report the fraction of
detected ‘above-gap’ binaries for the sSFR-sZ model in LISA. As expected, due to
the relatively low S/N , most of the source detected will be preferentially aligned
with the line of sight of the observer.
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Figure 3.10: Fraction of detected ‘above-gap’ binaries as function of the binary
inclination for the optimistic model.

Finally, during the third observing run the LIGO/Virgo collaboration reported
the detection of a signal coming from two very massive BHs with m1 = 85+21

−14 M�
and m2 = 66+17

−18 M� [118]. These BHs are definitely inside the mass gap and

7For an exhaustive discussion about the Fisher Matrix see Sec. 4.2



56 CHAPTER 3. SBHBS ABOVE THE PAIR-INSTABILITY MASS GAP

therefore can not be treated by our model. Indeed systems like that are expected
to come from dynamical environment or AGN disk [164, 165]. However this is
consistent with the observation of multiple formation channels during the third
observation run and highlight the necessity to combine different approaches in
order to explain the detected distribution [166].

3.5 Summary

In this chapter we develop a simple approach to describe SBHBs above the pair-
instability mass gap. The main caveat of our work is the evolution of stars in binary
as single stars. Our results are consistent for the population of ‘below-gap’ binaries
but there is no further evidence that the same is true also for SBHBs above the mass
gap. In order to bracket uncertainties we implemented a pessimistic and optimistic
model with different SFR, mean metallicity evolution and IMF prescriptions. We
considered two additional models obtained by mixing the previous one. Stellar
physics, BH mass ratio and time delay distribution are the same for all models.
For each models, we computed the expected number of mergers from the three
sub-populations with the current interferometer, LIGO/Virgo at design sensitivity,
ET and LISA. We also computed the expected signal-to-noise ratio produced by
unresolved sources in LISA.

Our results can be summarised as follow:

• We reproduce results from more accurate population synthesis code for ‘below-
gap’ binaries. This is an important check to asses the validity of our work.
Moreover our rates for ‘across-gap’ and ‘above-gap’ sub-population are con-
sistent with a non-detection with the current ground-based detector.

• Our code is extendable to different prescription (i.e. alternative SFR, metal-
licity evolution, mass ratio and time delay distributions) and can be easily
upgradable with new results from population synthesis codes or detections
from O3.

• In the pessimistic scenario LIGO/Virgo at design sensitivity should detect
less than 1 event per year from ‘across-gap’ and ‘below-gap’ sub-populations.
The number of events increases to ' 7(' 1) for ‘above-gap’(‘across-gap’)
binaries in the optimistic model. Due to the increased sensitivity, ET should
detect ' 10 events per year even in the pessimistic model, while for the
optimistic we expect more than ' 200 sources per year.

• Moving to low frequency band, LISA will be able to detect ‘above-gap’ bi-
naries even in the pessimistic scenario. A significant portion (' 50%) of the
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detected events in LISA coalesce in less than four year, making them the
perfect multi-band sources. In the high frequency section of the spectrum,
only ' 50% of the multiband events are detected by LIGO/Virgo at design
sensitivity, while ET will detect all of them.

• The unresolved ‘across-gap’ and ‘above-gap’ binaries might form a stochastic
background in LISA band for f < 10−3 Hz. In the pessimistic scenario the
S/N is to small to be detected but for the optimistic and intermediate models
is comparable to the stochastic background expected from ‘below-gap’ SBHB
and galactic binaries.

Overall our results suggest that SBHBs above the pair-instability mass gap might
indeed be detectable in the following years with third generation detectors. On
the contrary, a non-detection will pose strong constrain on the stellar evolution
mechanisms for massive stars in binaries. Moreover SBHBs above the mass-gap
at high redshift might have acted as seed for the growth and evolution of the
supermassive BHBs that we observe nowadays at the center of galaxies.



Chapter 4

MBHBs and multimessenger
astrophysics

This chapter has the scope to provide an overview on two topics that will be the
subject of the last two chapters of the Thesis. No results are presented here. In
Sec. 4.1 we review the current knowledge on MBHB formation and evolution across
cosmic time with a particular focus on the multimessenger potentials combining
GW and EM radiation. In Sec. 4.2 we introduce the basic concepts of parameter
estimation of a GW signal, in particular for MBHBs in LISA.

4.1 MBHBs in cosmological framework

Massive BHBs (MBHBs) with masses in the range 105−107 M� are key sources for
LISA. In the current scenario, MBHs are hosted at the center of galaxies. Even if
their formation and evolution is still uncertain and poorly understood, we observe
MBHs emitting powerful EM radiation when the Universe was still really young
[167–169]. How such massive BHs have formed in such a short amount of time
is still an open question and even larger uncertainties affect our understanding of
how MBHs evolve and interact with their host galaxy. In the next decade, LISA
proposes to shed light on the origin and growth of MBHBs during the Universe
evolution [170–178].

In the standard ΛCDM scenario, the structure formation occurs in a bottom-up
scenario where DM halos experience multiple mergers along the cosmic history. As
a consequence, also the galaxies hosted in each halos undergo the same physical
process. If most galaxies host a MBH, the natural outcomes of the current standard
cosmological model is that a large number of MBHBs have formed across all epochs
[179–184].

Even if the MBHB formed, the path to coalescence is long and complex. One
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of the current major issue is the possibility that the coalescence due to emission
of GW might take longer than the Hubble time. In Sec. 3.1.2 we saw that, for
SBHBs, this problem is typically solved within the common envelope scenario.
Clearly a similar solution can not be applied to MBHBs and other mechanisms
have to play a role in bringing the two MBHs close enough in order to make GW
emission an efficient process.

When two galaxies merge, each MBH migrates toward the center of the merger
thanks to the dynamical friction [185] between the MBH and single stars. In each
encounter a MBH and a star exchange momentum and kinetic energy and, if the
MBH moves on average faster than the stars, the stars gain velocity while the
MBH sink in the galactic potential due to the net drag force.

As the two MBH sink toward the center, the number of stars available to scatter
decreases and the dynamical friction becomes inefficient. At this stage, MBHs are
usually bound in a close orbit but still far from coalescence. The velocity of the
MBHs increase and only the three-body interaction between the MBHB and nearby
stars might further shrink the orbit. This process is referred to as stellar hardening.
During close fly-by, stars acquire energy and angular momentum, reducing the
MBHB separation but preventing the possibility of further interactions. In this
way, the number of stars that might potentially interact with the binary decreases
(the so called ‘loss-cone’) and also this process becomes inefficient.

At this point the binary has a separation of ' 1 pc. If we assume a binary with
m1 = m2 = 106 M� and use Eq. (1.7) to compute the time left before merger in
the case of pure GW emission we obtain τ ' 1018 yr, which is much larger than
the Hubble time. Alternatively, GWs are known to subtract energy and angular
momentum of the binary shrinking the orbit as [68]

da

dt
= − 64

5c2

(
GMtot

c a

)3
q

(1 + q)2
(4.1)

where a is the semi-major axis of the binary. Integrating this equation we can
compute the minimum separation a binary should have in order to merge in less
than the Hubble time,. tH, i.e.

agw = 1.2× 109

(
τ

tH

)1/4(
Mtot

M�

)3/4

m (4.2)

For a binary with Mtot = 3× 106 M�, Eq. (4.2) produce a minimum separation of
agw ' 2× 10−3 pc� 1 pc.

Many mechanisms have been proposed to overcome the final parsec problem:
non spherically symmetric galactic potentials might induce more stars to enter
the loss-cone and interact with the MBHBs; in gas-rich environment, the torque
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produced by a gaseous circumbinary disk on the binary can subtract angular mo-
mentum, leading to a tighter configuration1; in the hierarchical scenario a third
MBH can interact with the stalled MBHB and subtract enough energy and angular
momentum via three-body interaction [186].

The poor knowledge of the physics behind MBHBs assembly and evolution
leads to large uncertainties in the predicted rate of MBHB mergers. To perform
these estimates, “semi-analytical models” (SAMs) have been developed and applied
with great success. SAMs evolve DM halos along the cosmic history, following the
“Press and Schechter” formalism in order to keep a reasonable computational cost.
MBHs are growth from high redshift seeds to reproduce observational constrains
as high-redshift quasar. Along the cosmic history BHs are evolved taking into
account accretion and mergers of the hosting DM halos. Eventually MBHBs can
form and coalesce thanks to the aforementioned effects. Finally SAMs provide
the rate and distribution of the merging MBHBs, with typical values in the range
' 10− 300 events for a 4 year LISA time mission [186, 187].

MBHBs are among the loudest source of GWs that will be accessible by LISA
up to very high redshift. In Fig. 4.1 we report contours of constant S/N across
the Mtot − z plane2. LISA will be able to detect intermediate MBHBs between
' 103 − 104 M� up to very high redshift with S/N ' 10 − 20. MBHBs with
105 − 107 M� will merge in the bucket of LISA sensitivity with S/N & 500 up to
z < 4, thanks also to the long inspiral phase. At higher masses, MBHBs with
' 108 − 109 M� will be detected only with the ringdown portion of the signal.

Moreover MBHBs in the range 105 − 107 M� are detected days or week before
coalescence. In Fig. 4.2 we report contours of advanced detection time in the
Mtot−z plane. For each combination of Mtot and z we computes the sky-averaged
S/N and saved the frequency at which we reached S/N = 8. The frequency is
later converted in time before merger with Eq. (1.7). As expected as we increase
the total mass of the system, the coalescence frequency decrease and the detection
is pushed close to the merger. Similarly, MBHBs merging when the Universe was
still young are redshifted to lower frequencies, leaving less time to claim detection.
Systems with Mtot ∈ [103, 105] M� are detected one month before merger if the
sources are at z < 2. However the existence of these intermediate MBHs is still
uncertain and, due to the scale relation between the mass of the central BH and the
host galaxy, we expect a small amount of gas around them available for accretion.
Therefore the possible EM counterparts might be faint and undetectable. Close
(z < 2) MBHBs with Mtot ∈ [105, 107] M� can be detected weeks before merger.
Once detected, alerts can be sent to telescopes (similarly to the current pipeline

1We note that this mechanism can not be applied in the case of dry merger.
2These plots are typically called “waterfall plot” and provide an estimate of the capabilities

of a detector or network of detectors.
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Figure 4.1: Contours of constant S/N for LISA assuming the baseline described
in Sec. 6.2 in the Mtot − z plane, assuming q = 1 and non-spinning BHs.

for LIGO/Virgo triggers) to point the sky position provide by LISA and search for
a possible EM counterparts.

Combining the previous considerations, it is clear why MBHBs are key sources
for multimessenger astrophysics: the merger is expected to happen in gas-rich en-
vironment therefore an EM counterpart can be triggered thanks to the interaction
between the binary and the surrounding material; LISA will detect MBHBs in
the range 105 − 107 M� with incredibly large values S/N , allowing for accurate
parameter estimation of the sky position and luminosity distance of the source;
SAMs predict a reasonable number of events during the LISA time mission even in
the pessimistic scenario so a fairly sample of detected MBHB should be available
for search of possible EM signature.

The possible EM signature associated to the GW signal from MBHB merger is
still puzzling and unknown but, in principle, EM radiation can be triggered at any
stage of the merger, i.e. during the inspiral, merger and post-merger phase [188–
191]. Although it is well established that the MBHB torque opens a cavity in the
circumbinary disk, it has been recently pointed out that gas leaks through the disk
edge feeding minidisks around the binary all the way to the final coalescence [192].
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Figure 4.2: Contours of advanced detection time for LISA assuming the baseline
described in Sec. 6.2 in the Mtot− z plane, assuming q = 1 and non-spinning BHs.

Full GRMHD simulations suggest that the circumbinary disk, the streams feeding
the minidisks and the minidisks themselves contribute to variable EM emission at
all wavelengths [193]. During the inspiral thermal soft X-rays might be produced
by the inner rim of the circumbinary disk while corona emission from each BHs
minidisk might generate hard X-ray emission. The high energy emission coming
from minidisks can be modulated by the binary orbital phase [194] to an extent
that might be possibly observed by future X-ray probes [195, 196]. After the
merger, the gas might fall on the remnant BH, shedding light on the time-scale
between the merger of the MBHB and the rebirth of the AGN. However, the gas
itself might hinder the detection of an EM counterpart if the AGN is obscured by
the surrounding environment. If the remnant BH receive a kick in the plane at
formation [197], months or years after the merger we might observe the recoiling
BH accreting the circumbinary disk gas.

The multimessenger potential relies in the additional science that can be achieved
combining GW and EM signals. For example, Athena [198] is a large X-ray tele-
scope selected as the 2nd Large class mission of the ESA program. Combining
Athena and LISA observations we might in principle observe the very prompt
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emission after the merger of a MBHB, the origin of relativistic jets from MBHs
and their initial evolution with the galactic environment, constrain the cosmolog-
ical parameters [199] and perform test on the propagation speed of GWs [200].

4.2 Parameter estimation of GW signal

The science outcomes depend strictly on LISA ability to estimate source parame-
ters. Parameter estimation is a complex and computationally expensive task.

Bayes theorem allows us to infer information on the source parameters, θ̄,
taking into account the observation and our prior knowledge on the system pa-
rameters, i.e.

p(θ̄|d) =
L(d|θ̄)π(θ̄)

Z (4.3)

where p(θ̄|d) is the posterior distribution for the binary parameters, L(d|θ̄) is the
likelihood of performed the observation d given the parameters θ̄, π(θ̄) is the prior
distribution and quantify our knowledge a priori and Z is a normalization constant
called ‘evidence’ defined as

Z =

∫
dθ̄L(d|θ̄)π(θ̄). (4.4)

For the purpose of the parameter estimation, the evidence is mostly useless. How-
ever Z plays an important role in model selection analysis, where different models
are compared to establish which is more consistent with the set of observed data3.
The prior distribution π(θ̄) encapsulate our prior knowledge on the binary param-
eters that we expect to detect: for example, simulations and observations might
inform us on the typical masses and spin distribution before LISA mission. The
same GW detected events might form a prior, once enough signals are detected.

If we want to provide the maximum value of the posterior distribution, we
have to maximize the product between the likelihood and the prior (or just the
likelihood, in case of uniform prior).

We focus on the particular case of a GW signal. Assuming the noise as Gaussian
and stationary leads to Gaussian-like likelihood, i.e.

L(d|θ̄) ∝ exp

(
−1

2
(d− h(θ̄)|d− h(θ̄))

)
(4.5)

3One detail often omitted is that both prior and likelihood depend on a specific model. For
example, the estimated parameters for the detected events by LIGO/Virgo assume GR as the
correct gravity theory (even if it is possible to search for deviations).
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where we adopted the scalar product defined in Eq. (1.18). The full posterior
distribution can be expressed as

p(θ̄|d) ∝ π(θ̄) exp

(
(h(θ̄)|d)− 1

2
(h(θ̄)|h(θ̄))

)
. (4.6)

This quantity contain all the necessary information to perform the parameter
estimation. In case of a GW signal sampling this posterior distribution might
be a burdensome task. We saw in Sec. 1.2 that the typical BHBs is described by
15 parameters, therefore we have to explore a 15 dimensional parameter space in
order to find the maximum likelihood value: it is clear that if we choose to evaluate
the likelihood only at 10 different points for each parameter, the total amount of
evaluation is already practically impossible.

Brute force approach is not the best solution with multidimensional search.
To overcome this problem, Markov-Chain Monte Carlo (MCMC) have been devel-
oped to provide efficient and reliable estimate of the source parameter. MCMC
algorithms explore the parameter space with test particles (known as ‘walkers’):
at each iteration, the probability for a walker to jump to another point is weighted
against the previous jump in order to move toward values that maximize the
likelihood. For the parameter estimation of GW signal in LISA, the LISA Data
Challenge (LDC) project is being developed and it constitutes now the largest and
most updated library available to obtain the information needed to tackle these
problems.

In the high signal-to-noise ratio limit, we can derive an easy expression for
the likelihood and for the parameter errors. If the S/N is large, the error on
the parameters is expected to be small and the likelihood can be considered as
a gaussian distribution centered around the true values. For simplicity, we also
assume uniform prior, even if at high S/N the shape of the prior becomes irrelevant.
Under these assumptions, we can write the true parameter θ̄a as

θ̄a = θaML + ∆θa, (4.7)

where θaML is the value that maximize the likelihood. Then we can substitute
Eq. (4.7) in Eq. (4.6) and expand in power of ∆θa to obtain

p(θ̄|d) ∝ exp

(
−1

2
Γab∆θ

a∆θb
)

(4.8)

where Γab is the so-called ‘Fisher information matrix’, defined as

Γab ≡
(
∂h

∂θa

∣∣∣∣ ∂h∂θb
)
. (4.9)
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Here ∂h/∂θa is the partial derivative of the GW waveform respect to the parameter
θa evaluated at the injected value. Since LISA can be seen as two independent
detectors, we construct the total Fisher matrix as the sum of the Fisher matrix
for each detector as

Γab = ΓI
ab + ΓII

ab . (4.10)

The correlation matrix is the inverse of the Fisher matrix, Σ = Γ−1. The expected
statistical error on a single parameter ∆θa is computed from the corresponding
diagonal element of the correlation matrix as

∆θa ≡
√
〈(δθa)2〉 =

√
Σaa. (4.11)

Several authors have studied LISA’s capability to localize the source and to
measure its parameters [178, 197, 201–211]. Most of these works focused on es-
timating the binary parameters from the full signal, i.e. from the inspiral to the
ringdown, while only few of them explored LISA capability to constrain the source
parameters as a function of the time to coalescence [197, 207–209].

Lang and Hughes [207] estimated the uncertainties in the sky position and
luminosity distance for a set of MBHBs as function of the time to coalescence
exploring the relative impact of spin-precession in the last days before merger.
They found that spin-precession reduces the error in the major and minor axis
of the error ellipse by a factor 1.5 − 9 at the end of the inspiral. A similar im-
provement was found for the luminosity distance. Notably, from their simulations,
LISA should be able to localize MBHB with total intrinsic mass . 4 × 106 M�
at z = 1 with a precision of ' 10 deg2 already one month before merger. They
also found that LISA would localize with better precision sources lying outside
the Galactic plane. Kocsis et al. [197] performed a similar analysis, adopting the
‘harmonic mode decomposition’ method to compute the 3D localization volume
as a function of time to coalescence. They also included a detailed discussion of
the possible EM counterparts one could expect from MBHBs and their implica-
tions for wide- and narrow-field instruments. Trias and Sintes [208] adopted a full
post-Newtonian waveform, and found an overall improvement in the parameter
estimation for massive MBHB (Mtot > 5× 106 M�). In particular the inclusion of
amplitude corrections leads to earlier warning and improved sky-position accuracy
as a function of time to coalescence for massive unequal MBHBs. McWilliams et
al. [209] explored LISA ability to constrain the sky-position and luminosity dis-
tance of non-spinning equal mass systems using the full inspiral-merger-ringdown
waveform and including the orbital motion of the detector plus the three-channel
LISA response. They found a final median sky-position error of ' 3 arcmin for a
system with total intrinsic mass of 2× 106 M� at z = 1.
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4.3 Summary
In this chapter we presented the set of knowledges necessary to understand the
results of the two final chapters. We summarised how MBHBs are expected to
form and grow from dark matter perturbations in the high-redshift Universe and
the current problems related to the last stage of their inspiral. We also highlighted
LISA ability to detect MBHBs to high redshift with large S/N values days or
week before the merger. We also introduced the basic ideas behind the parameter
estimation of a GW signal. Even if the formal approach require the application of
Bayes theorem, under reasonable assumptions the Fisher matrix formalism can be
safely applied, greatly reducing the computational cost of this task. We concluded
with a brief overview of the studies that explored LISA ability to constrain MBHB
parameters during the inspiral.



Chapter 5

Premerger localization of MBHBs in
LISA

Among the possible EM signatures associated to the coalescence of MBHBs, the
X-ray might be the most promising one. In particular in this chapter we focus on
the possibility to detect a premerger modulated X-ray emission in phase with the
GW signal.

In the standard formalism, in the last stage of the merger, MBHBs are expected
to excavate a void region in the circumbinary disk and minidisk should form around
each BHs, especially for unequal mass systems where the lighter BH orbit close
to the inner edge of the circumbinary disk. If the system is edge-on, the X-ray
emission might experience Doppler-shift modulation that is in phase with the GW
signal. Detecting both the modulated premerger emission and the GW signal
would allow to pinpoint the exact galaxy and provide early warning to observe the
very prompt emission.

In the next decade, one of the proposed mission designed to observe EM tran-
sient is the NASA Transient Astrophysics Probe (TAP) [212]. TAP is planned to
have fast slew rate and to be positioned around the L2 Lagrangian point, thus
reducing the possibility to be blocked during the observation. Moreover, TAP is
equipped with an X-Ray Telescope (XRT) sensitive in the band [0.5, 2] KeV with
a field of view (FOV) of ' 1 deg2, 2 second timing precision and 5 arcsec angular
resolution.

Even if the possibility to detect an EM counterpart to the GW signal is in-
triguing, there are several difficulties:

• Even if LISA is able to detect MBHB days or week before merger, the sky
position recovered at such early times is too large to be feasible explored
with the FOV of X-ray telescope. LISA is able to localize the source with
a precision of . 1 deg2 only close to the merger, leaving a short interval of
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time to provide alert to EM facilities, unless the system is close (z < 0.5);

• The EM emission is still uncertain: the orbital motion and accretion might
produce ‘chirping’ X-ray signal as the GW one [200]. However the observed
flux strongly depend by the feeding rate of the minidisk, the accretion details,
the surrounding environment and the amount of X-ray radiation produced;

• Due to the large error area provided by LISA, there will be additional con-
fusion sources in the region scanned by TAP.

In this chapter we explore the possibility to detect the X-ray modulated emis-
sion in phase with the GW signal. Assuming a 4 year time mission and reasonable
rate for the number of MBHB mergers, we compute the number of detected mod-
ulations. We also vary our assumption and test different observing scenarios to
establish the optimal trade-off between observing time and modulation detections.

The chapter is organized as follow: In Sec. 5.1 we describe our simulation setup.
In Sec. 5.2.1 we explore the results for the baseline configuration in terms of de-
tected modulations for different MBHBs. In Sec. 5.2.2 we vary each assumption of
the baseline assumption and compare possible observational strategies. In Sec. 5.3
we conclude and summarise our findings.

The results presented in this chapter have been published in [195].

5.1 Simulation setup

The shape of the MBHBs mass distribution detectable with LISA is still uncer-
tain. The most promising sources for detecting an EM counterpart are nearby and
relatively massive systems in the range 105−107 M�. For the sake of simplicity we
choose to focus on three particular systems with ( Mtot, q) = [(5× 105 M�, 1), (5×
106 M�, 1), (5× 106 M�, 0.1)] extending up to z = 3.5 (above this value the possi-
bility to detect an EM modulation is basically negligible). To compute the actual
number of mergers per year we approximated the merger rate density presented in
[178]. We further assume non-spinning BHs in circular orbit.

In this study we adopt two GWwaveforms. We adopt the PhenomC to compute
the S/N as the signal accumulates in band. We set as minimum frequency f =
10−5 Hz and claim the signal detection when then S/N is above a threshold value
of 10. When the signal is detected, we perform parameter estimation with the
Fisher matrix approach. For this step, we adopt the same inspiral-only precessing
waveform (SUA) described in Sec. 2.2. This waveform is optimal for the parameter
estimation because it includes higher harmonics and spin-precession effects: both
these effects are know to reduce degeneracies between parameters especially close
to merger.
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While the system approaches coalescence, regular updates will be sent from
LISA back to Earth. In this way the parameter estimation would further improve
and, in particular, the sky position of the source will reduce. We assume to receive
regular update from LISA every 2 days: this might be a bit conservative but it
takes into account the time required to download the data, re-point LISA antennas
and perform the PE estimation. The inspiral-only waveform loses validity close
to merger but it’s sufficiently accurate during all the inspiral. We convert the
frequency in the time left before merger using Eq. (2.7) of Lang and Hughes [207].

We take the sky position uncertainties provided by LISA and compute sky
localization probabilities in the HEALPix format [213], drawing points from a
3-variate Gaussian distribution with a covariance provided by the Fisher matrix.

We assume the LISA sensitivity curve labeled as “ESACall v1.1” configura-
tion in the “LISA strain curves” document, assuming six-laser link, 2.5 × 106 km
armlenght and the reprocessed data from the LISA Pathfinder mission.

EM counterpart modeling

The next step is the modeling of the X-ray lightcurve expected. A complete
description of the EM emission can be performed only with GRMHD code, that
takes to much time to be efficiently adopted for our scope. Moreover the current
available simulations cover only the last few orbit before the merger, while we are
interested in the emission during the whole inspiral phase. For the EM, we consider
a single minidisk around one of the two BHs in binary because overdensities in
circumbinary disk are expected to feed one BH at time [194]. We also neglect the
emission from the circumbinary disk.

To perform a fast and efficient search, we modeled the observed flux as

F = µ
XL

4πd2
L

(5.1)

where L is the Eddington luminosity. The two factors µ and X take into account
the modulation due to the orbital motion and the conversion between bolometric
Eddington luminosity and X-ray luminosity, respectively. We model the effect of
orbital motion as

µ = 1 + 3 sin(ι) cos(ψ)v (5.2)

where we remember that ι is the binary inclination, ψ the polarization angle and v
is the orbital velocity. As expected, since we are looking for Doppler modulation,
for face-on systems µ = 1 and no modulation can be observed. The conversion
factor X is expressed as

X = 0.1 +
1

a
(5.3)
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where a is the binary orbital separation (in gravitational radii). The factor 0.1 is
based on observation of AGN and spectroscopic survey [214–216]. The factor a−1

represents the coronal heating due to the increase of available magnetic energy
close to merger [217] or to streams of gas from the circumbinary disk to the single
minidisk [218].

Tiling and search for modulation

The sky localization area provided by LISA is divided is tiles that are observed
with the XRT telescope, assuming a FOV of 1 deg2. The total area is observed
up to a given coverage, excluding the possibility of being blocked by the Sun or
Earth. Each tile is observed for 104 s before moving to the next one with lower
probability. Once the total coverage is reached, the search starts again from the
highest probability tile. However, when LISA provide a new sky localization, a
new set of tiles is generated and the process resumes from the beginning. For TAP
we assume a slew rate of 1 deg/s and 10 s to start a new observation after a slew.
Even if TAP has different instruments on board, we assumed at the beginning that
100% of time is spent observing LISA sources.

We considered a more realistic scenario adding background photon with a con-
stant rate of 7.2 × 10−5 s−1 and a non-constant term with 2 × 10−6 s−1. Photons
are sampled from the total time series obtained combining these three fluxes. To
test the presence of modulation, we adopt the Kuiper’s test [219]: we focus mainly
on the periodicity and compare the phase of the accumulated lightcurve with the
expected modulation coming from the orbital motion of the binary. We claim
the detection when the p-value drops below 0.003 (' 3σ significance). When the
detection is claimed other telescopes will point the source and confirm or dismiss
the modulation so 3σ is a consistent threshold.

5.2 Results

5.2.1 Results from baseline configuration

We assume a standard baseline for LISA and TAP observations:

• 104 s exposure time for each XRT tile;

• 50% coverage of LISA sky localization area;

• XRT starts observation when LISA claim detection;

• 100% of available time is spent on a single source.
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After presenting the baseline results, we will relax each of the aforementioned
assumptions in order to model more realistic observing scenarios.
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Figure 5.1: Distribution in the inclination-dL plane of sources whose X-ray modu-
lation is detected (viridis large points) or missed (red small points). Darker colors
means earlier detection time. Upper-left panel: (5×105 M�, 1). Upper-right panel:
(5× 106 M�, 1). Bottom panel: (5× 106 M�, 0.1).
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Figure 5.2: Fraction of viewed or detected systems as function of luminosity dis-
tance. Upper-left panel: (5 × 105 M�, 1). Upper-right panel: (5 × 106 M�, 1).
Bottom panel: (5 × 106 M�, 0.1). Here ‘total’ refers to all events detectable with
LISA (i.e S/N > 8), while ‘detected’ refers to systems for which an EM modulation
is claimed.

In Fig. 5.1 we report the systems for which a modulation is detected in function
of inclination and luminosity distance for the three aforementioned systems 1. As
expected, for close systems (z < 0.5), the modulation is detected even ' 100 days

1Here ‘detected’ refers to the EM modulation; all these systems are detected as GW sources
in LISA.
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Figure 5.3: Cumulative distribution of systems whose X-ray modulation is detected
at the reported time. Shaded areas correspond to 95% confidence interval. Upper-
left panel: (5 × 105 M�, 1). Upper-right panel: (5 × 106 M�, 1). Bottom panel:
(5× 106 M�, 0.1).

before merger due to the small LISA sky localization and the number of photons
received. As we increase the luminosity distance, the modulation is detected closer
to merger and no modulation at all is claimed for systems at z > 2.5. For the
unequal mass case the modulation is detected up to higher redshift respect to the
equal mass systems thanks to the higher harmonics in the GW waveform that
allow to recover a small area from LISA data. For all systems, the modulation
is typically detected at ι ' π/4 due to the fact that for face-on systems the
modulation is absent while for edge-on systems we lose a polarization state and,
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Figure 5.4: Cumulative distribution of systems whose X-ray modulation is detected
at the reported time. Grey distributions: XRT exposure is reduced to 103 s. Red
distributions: baseline configuration. Upper-left panel: (5 × 105 M�, 1). Upper-
right panel: (5× 106 M�, 1). Bottom panel: (5× 106 M�, 0.1).

therefore, the error on the binary location increases.
A system can be just ‘viewed’ if XRT observes the tile where the system is

located but does not detect any modulation. It might happen however that the
sky position estimate provided by LISA is so large that the system is not even
‘viewed’ once. In Fig. 5.2 we report the fraction of viewed and detected events as
function of luminosity distance. As the distance increases, the number of systems
for which a modulation is detected decreases due to the large error area and to the
small flux received. Lighter systems are viewed up to higher redshift because they
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Figure 5.5: Cumulative distribution of systems whose X-ray modulation is detected
at the reported time. Grey distributions: LISA area is covered to 95%. Red
distributions: baseline configuration. Upper-left panel: (5 × 105 M�, 1). Upper-
right panel: (5× 106 M�, 1). Bottom panel: (5× 106 M�, 0.1).

are better localize. However the fraction of of detected systems extends to higher
redshift for heavier MBHBs thanks to the larger X-ray flux produced.

In Fig. 5.3 we plot the cumulative distribution of detected events as function
of time left before merger when the detection of modulation is claimed. More
than 50% of light systems are seen at least once by TAP. For heavier systems, the
fraction of viewed systems reduces to 23% and 34% for the q = 1 and q = 0.1
scenario respectively. The higher fraction of viewed systems for the unequal mass
case is due to the better sky localization provided by LISA. Moving to the fraction
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Figure 5.6: Cumulative distribution of systems whose X-ray modulation is detected
at the reported time. Grey distributions: LISA area is smaller than 20 deg2 when
TAP starts the observation. Red distributions: baseline configuration. Upper-
left panel: (5 × 105 M�, 1). Upper-right panel: (5 × 106 M�, 1). Bottom panel:
(5× 106 M�, 0.1).

of systems for which the modulation is detected, heavy unequal MBHB provide the
highest detection rate with ' 9% of detection over the whole sample thanks to the
particular binary configuration. For equal light (heavy) systems the modulation is
detected only in the 3.5% (' 5%) of cases. However light binaries provide higher
detection rates at ' 100 days from merger than heavy systems.
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Figure 5.7: Cumulative distribution of systems whose X-ray modulation is detected
at the reported time. Grey distributions: TAP observes LISA sources only for
10% of the available time. Red distributions: baseline configuration. Upper-
left panel: (5 × 105 M�, 1). Upper-right panel: (5 × 106 M�, 1). Bottom panel:
(5× 106 M�, 0.1).

5.2.2 Exploring alternative configurations

In the following we are going to change the baseline assumptions separately and
analyse how our detection rates are affected. We start shortening the exposure time
for each tile from 104 s to 103 s. The results are in Fig. 5.4. This configuration
lead to an increase of the fraction of viewed systems however the detection rates
remain unaffected: even if we observe the tiles with increased frequency, we are
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collecting less photons to claim detection. We obtain similar results if we increase
the coverage of LISA area to 95% because for most binaries, there is not enough
time to reach this coverage between receiving LISA updates. The results for this
configuration are reported in Fig. 5.5.

When LISA claim a detection, the area recovered is usually larger than 100 deg2.
With the baseline configuration, we are able to observe an area of ' 17 deg2 be-
fore a new set of tiles is produced. The amount of time spent to observe the system
from detection might be allocated to observe other LISA sources. In Fig. 5.6 we
show the cumulative fraction of detected events if we start TAP observation when
LISA area drops below 20 deg2. The fraction of viewed systems reduces by a factor
of 2 however the detected fraction is less affected: lighter systems are the least af-
fected with a detection of 2.7%, while for heavy system the modulation is detected
in the 3.5% (6.5%) for equal (unqueal) MBHBs.

In our baseline configuration, we assume that TAP spends all the available
time observing a single LISA source. However this will not be the case due to
the other science objectives of the mission. In addition, more than one MBHBs
could be detected at the same time. For these reasons, we test a last configuration
setting a dead time of 9× 104 s to simulate a more realistic scenario. In this way
only ' 10% of TAP time is spent observing a single LISA source. The result are
showed in Fig. 5.7. Overall the fraction of detected systems is reduced by a factor
' 3 or all masses. However there is still a small fraction of systems (' 0.1%)
detected at early time.

We take the merger rate of MBHBs from Fig. 3 of Klein et al. [178] up to
z = 3.5 considering the “popII” and “q3-nod” models. In this way we obtain
' 10 yr−1 events in LISA that translated in GW detection because all these events
are detected in LISA as shown in Fig. 4.1. Combining this information with the
total amount of systems simulated for each simulation, we can compute the rate
of modulation detection and the amount of time required by each simulation. We
can take the total time spent by XRT observing tiles and rescale it for the total
amount of time of the simulation in order to provide the fraction of TAP time spent
observing MBHB. This information is reported in Fig. 5.8 where we combine the
detection rate and the required observing time for each of the observing strategies.
The baseline configuration leads to the highest detection rate but it also require
the most amount of observing time (for the light binary with Mtot = 5 × 105 M�
we even need two identical TAP). As expected even from the previous results,
the configurations with reduced exposure time and extended coverage produce no
significant difference respect to the baseline strategy. Starting the observation
when the area provided by LISA is smaller than 20 deg2 reduces the detection rate
of ' 30% for all systems, but decreases the amount of time spent observing LISA
source by an order of magnitude. Similarly, reducing the allocation time frees time



5.2. RESULTS 79

10 2 10 1 100

Fraction of time observing LISA sources

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
ra

te
 [1

/y
r]

Mtot = 5 × 105M , q = 1
Baseline
103 s exposure
95% coverage
Loc. within 20 deg2

10% allocation

10 2 10 1 100

Fraction of time observing LISA sources

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
ra

te
 [1

/y
r]

Mtot = 5 × 106M , q = 1
Baseline
103 s exposure
95% coverage
Loc. within 20 deg2

10% allocation

10 2 10 1 100

Fraction of time observing LISA sources

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
ra

te
 [1

/y
r]

Mtot = 5 × 106M , q = 0.1

Baseline
103 s exposure
95% coverage
Loc. within 20 deg2

10% allocation

Figure 5.8: Modulation detection rate as function of the time spent observing
LISA sources for baseline and different configurations as labeled in legend. For
each configuration, the lines represent the effect of varying the merger rate by a
factor of 2 in both directions. The dashed horizontal black lines represent the 50%
and 99% probabilities of one or more detections assuming a 5 yr LISA time mission.
The hatched portion of the plots represents the regime where more than one TAP
is required. Upper-left panel: (5× 105 M�, 1). Upper-right panel: (5× 106 M�, 1).
Bottom panel: (5× 106 M�, 0.1).

to observe other sources but lowers the number of detection of a factor ' 2(3) for
equal (unequal) mass system. We also notice that the choice of which source
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observing will depend on the outcome of the full parameter estimation in LISA
and on our model for the X-ray emission: we can impose further constrains once
we estimate the luminosity distance of the source, inclination angle, component
masses and spins magnitude and orientation. From the EM side, more accurate
X-ray emission models might suggest the optimal conditions for the generation of
a counterpart.

5.3 Discussion and summary
In this chapter we explored the possibility to detect an EM Doppler modulation
in phase with the GW signal exploiting LISA and TAP combined observations.
We assume three different sub-populations up to redshift z ' 3.5 with ( Mtot, q) =
[(5×105 M�, 1), (5×106 M�, 1), (5×106 M�, 0.1)] and we investigated LISA ability
to constrain source position in the inspiral. The recovered area is then divided
in tiles and scanned by TAP to search for an X-ray emission modulated by the
orbital motion of the binary. As MBHBs approach coalescence, the recovered area
decreases but the time left to claim detection reduces. We derived the number of
detection that we expect over a 5 yr time mission under a baseline configuration.
We later changed each of the baseline assumptions to explore different and more
realistic scenarios.

Red noise is expected to contaminate the X-ray emission and unrelated bright
sources will be present in LISA sky localization area. From an initial study, we
conclude that bright and highly variable red-noise sources might produce a sig-
nificant amount of false positives. Real lightcurves will be more complicated and
include additional effect as intrinsic variability that might further complicate our
analysis and reduce the expected number of detection. We also remove the ex-
pected contribution from circumbinary disk but further studies are necessary to
validate this assumption. Moreover, not all MBHB mergers might produce AGN-
like emission and some might even be obscured by the surrounding gas. Clearly
both scenarios would lower our detection estimates.

The precession of MBHB orbital plane due to spin misalignment or unequal
mass ratio might add further modulations to the EM emission. However at the
end of inspiral most of the BHs are expected to have spin aligned with the orbital
angular momentum, reducing the effect of precession [177, 220].

We summarize our results here:

• For light and close (z < 0.5) systems the modulation can be detected even
' 100 days before merger due to the accurate sky position provided by LISA.

• Overall massive and unequal systems are promising to detect an EM modu-
lation thanks to the larger X-ray flux and stronger modulation. Also higher
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harmonics might help breaking degeneracies and further reduce LISA area.

• Almost independently from the mass, the modulation is preferentially de-
tected for systems with ι ' 45◦ due to the combination of the GW strain
and the modulation itself (null for face-on MBHBs).

• Light systems are viewed in larger percentage respect to massive systems.
However the modulation is detected for ' 9% of cases for massive and un-
equal systems, compared to just ' 3.5% for light MBHBs.

• Reducing the exposure time or increasing the coverage of LISA area leads to
no significant changes in the the detected rates.

• The fraction of detections if we start TAP observations when LISA area
drops below 20 deg2 reduces by ' 30% with light systems being the less
affected. Similarly, reducing the observation time of LISA sources to the
10% of the total available time leads to a reduction of a factor 3 in the
number of detections for all masses.

• Taking into account the actual rates of MBHB, we find that the optimal
configuration to detect an EM modulation without unrealistic assumptions
on TAP might be to start XRT observations when LISA area drops below
20 deg2.

Assuming to detect ∼ 10 MBHBs per year over a 5 yr time mission, we expect to
be able to detect few EM modulations. The detection will most likely come from
massive systems with unequal component masses and inclined to ' 45◦ respect to
the line of sight.



Chapter 6

Parameter estimation of MBHBs in
LISA

In this chapter we present a detailed analysis on LISA abilities to constrain MBHB
source parameters as they approach coalescence, i.e. during the inspiral. In
particular we focus on the sky position, luminosity distance, chirp mass and
mass ratio. To properly explore the parameter space, we consider systems with
Mtot ∈ [105, 3 × 107] M� and z ∈ [0.1, 4]. For each combination of total mass
and redshift we perform N = 104 realizations. The signal is computed with the
inspiral precessing waveform described in Sec. 2.2 to exploit spin precession and
higher harmonics effects in breaking parameter degeneracies. For a small sample
of selected events, we also compare our results against two independent MCMC
codes. We also explore the case of a possible degradation in the low-frequency
portion of LISA sensitivity. We manage to fit our results with analytical formulas
with few input parameters (the time left before merger, total mass and redshift) to
provide the median, 68 and 95 percentiles of our distributions. With the formulas,
we further explore multimessenger possibilities across the full EM spectrum.

The chapter is organized as follow: in Sec. 6.1 we introduce the main motiva-
tions of our work. In Sec. 6.2.1 we present a detailed overview of the current LISA
sensitivity with a possible low-frequency degradation. In Sec. 6.2.2 we describe the
framework of our simulations. In Sec. 6.3 we perform preliminary tests to asses
the validity of our code. In Sec. 6.4.1 we present the results for the estimate on sky
position, luminosity distance, chirp mass and mass ratio. In Sec. 6.4.2 we validate
our approach against MCMC simulations. In Sec. 6.4.3 we introduce the formulas
to fit our results. In Sec. 6.4.4 we implement the previous formulas to look at LISA
abilities to constrain source parameters in whole simulation space. In Sec. 6.4.5 we
discuss the multimessenger possibility offered by LISA. In Sec. 6.5 we analyzed the
contribution of mass ratio, time to coalescence, spin magnitude, inclination and
binary position in shaping the uncertainty distributions. In Sec. 6.6 we perform

82
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a comparison with the old LISA sensitivity curve. In Sec. 6.7 we look at LISA
abilities to constrain binary inclination. Finally in Sec. 6.8 we summarize our main
findings.

The results presented in this chapter have been published in [221].

6.1 Motivations

All the studies in Sec. 4.2 were performed with the classic LISA design, with
a five-million kilometer constellation and a low frequency sensitivity extending
down to 10−5 Hz. Following the re-design of the LISA mission, the armlength
of the interferometer is reduced to 2.5 million kilometers, featuring a steeper low
frequency sensitivity extending possibly down to 2 × 10−5Hz, based on the in-
flight LISA Pathfinder performance [222]. Loss in the low frequency sensitivity, as
compared to the classic LISA, leads to a shorter (detectable) duration of the GW
signal and, therefore, to some degradation of our abilities to localize the sources.
It also implies that more weight is given to the merger and post-merger part of
the signal. In light of these changes, it is therefore necessary to reassess earlier
findings to establish the performance of the current design in producing on the fly
estimates of source parameter errors.

Moreover the parameter space of merging MBHBs is vast, and its full explo-
ration with MCMC techniques is time consuming. Several studies as [223, 224]
demonstrated that parameter estimation via Fisher information matrix evaluation
reproduces reasonably well MCMC results for high S/N sources, which are the
targets of this study. Although Fisher matrix-based estimates allow to drastically
cut down computational cost, there is still the need to perform large set of simu-
lations and, up to now, there is no public available code for this. Berti et al. [204]
provided analytical formulas for the mass and distance errors for non-spinning
MBHB with total mass Mtot = 2 × 106 M� but for the old LISA design and as
function of redshift, not as function of time to coalescence.

Therefore the additional scope of our work is to provide a vast library of LISA
parameter estimates as a function of time to merger for MBHBs. All results
are obtained by consistently evaluating the Fisher matrix of the signal as the
source evolves, and are tested, for a subset of selected sources, against full MCMC
calculations. To the benefit of the community, we provide analytical formulas to
describe how parameter estimates improve on the fly, i.e. while the MBHB is
approaching the merger. We perform an extensive set of simulations exploring
the parameter space of MBHBs in the mass range 105 M� < Mtot < 3 × 107 M�
at z < 4 and fit the results with polynomial expressions. The resulting formulas
are cast in terms of three variables: the total (intrinsic) mass of the system, the
redshift of the source and the (observed) time to coalescence.
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We also release the full set of data on which these formulas are based. The
data can be found on the GitHub repository https://github.com/amangiagli/Fits-
for-parameter-estimation-of-MBHBs-in-LISA.

6.2 Analysis framework

6.2.1 LISA observatory

For the LISA sensitivity curve, we adopt a six-link laser configuration labeled
as “Payload Description Document Allocation” in the “LISA strain curves” docu-
ment 1 and described also in [225]. The total noise power spectral density in a
single LISA data channel is modeled as

Sn(f) =
1

L2

(
POMS(f) +

4Pacc(f)

(2πf)4

)
×

×
(

1 +
6

10

(
f

f∗

)2)
+ Sc(f)Hz−1

(6.1)

with L = 2.5Gm, f∗ = 19.09mHz and

POMS(f) = (1.5× 10−11)2

(
1 +

(
2mHz
f

)4
)
m2Hz−1, (6.2)

Pacc = (3× 10−15)2

(
1 +

(
0.4mHz

f

)2
)
×

×
(

1 +

(
f

8mHz

)4
)
m2s−4Hz−1

(6.3)

In addition to the instrument noise, unresolved galactic binaries are expected to
form a confusion background noise below . 1 mHz. While the LISA mission
progresses, more galactic binaries will be detected and this noise source will reduce.
We model the background noise contribution as

Sc(f) = Af−7/3e−Kf
α

[1 + tanh(−γ(f − fk))]Hz−1 (6.4)

where A = (3/10) 3.26651613 · 10−44 and α = 1.18300266. Parameters K, γ, fk
change as the mission progresses and their values are reported in Tab. 6.1 [226].

1see also https://atrium.in2p3.fr/nuxeo/nxpath/default/Atrium/sections/Public/
LISA@view_documents?tabIds=%3A

https://github.com/amangiagli/Fits-for-parameter-estimation-of-MBHBs-in-LISA
https://github.com/amangiagli/Fits-for-parameter-estimation-of-MBHBs-in-LISA
 https://atrium.in2p3.fr/nuxeo/nxpath/default/Atrium/sections/Public/LISA@view_documents?tabIds=%3A
 https://atrium.in2p3.fr/nuxeo/nxpath/default/Atrium/sections/Public/LISA@view_documents?tabIds=%3A


6.2. ANALYSIS FRAMEWORK 85

Tobs K γ fk[mHz]

1 day 941.315118 103.239773 11.5120924
3 months 1368.87568 1033.51646 4.01884128
6 months 1687.29474 1622.04855 3.47302482
1 year 1763.27234 1686.31844 2.77606177
2 years 2326.78814 2068.21665 2.41178384
4 years 3014.30978 2957.74596 2.09278117
10 years 3749.70124 3151.99454 1.57362626

Table 6.1: Coefficients describing the expected stochastic galactic background as
a function of mission duration.

For simplicity, our fiducial sensitivity assumes the long-wavelength approxima-
tion and, therefore, it does not include the high frequency oscillations. Neverthe-
less, most of the sources in the parameter space explored in this study emit GWs
with f < 0.05 Hz so we expect it to be a valid approximation.

LISA sensitivity is set by the mission requirement in the range 10−4 − 1 Hz
[227]: besides the extrapolation from Eq. 6.1, we also consider a less favorable
version of the curve in the low-frequency region (f < 2× 10−4 Hz). The new curve
is obtained adding an additional source of noise in the acceleration term, i.e

Pacc, degr = Pacc ×
(

1 +

(
0.1mHz

f

)2
)

(6.5)

and substituting this new acceleration noise to the one in eq. 6.1 [228].
The degraded sensitivity affects mostly high-redshift heavy MBHBs (Mtot >

106 M�) for which the detection is claimed close to merger. An example is provided
in Fig. 6.1 where we show a zoom-in of Fig.4.2 for heavy systems together with
the results assuming the degraded sensitivity. For a MBHB with Mtot = 108 M�,
the detection can be claimed 5 hrs before merger if the source is located at z < 3
with the standard sensitivity. However claiming the detection with the same time
interval before merger is achievable only for sources at z . 1.3 for the degraded
curve. Similar considerations apply also for systems with Mtot = 107 M�: the
detection can be claimed 3 days before merger if the system is at z . 2 (z . 1)
for the standard (degraded) sensitivity. As expected, the detection time of lighter
systems with Mtot = 106 M� is mostly unaltered by the degraded sensitivity.
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Figure 6.1: Contours of advanced detection time for LISA assuming the baseline
configuration (solid lines) and the degraded sensitivity (dashed line) in the Mtot−z
plane, q = 1 and non-spinning BHs.

6.2.2 Simulation setup

For the results presented in this chapter we adopt the following waveforms to
describe the GW signal:

(I) A general precessing inspiral-only waveform based on the shifted uniform
asymptotics (SUA) method, described in Sec. 2.2. To summarize, the wave-
form is computed in the frequency domain for the inspiral part only. This
model contains higher order harmonics and allows arbitrary orientation of
spins (including orbital precession due to spin-orbit coupling). This wave-
form is used in the computation of the parameter uncertainties based on the
Fisher information matrix, and to obtain the main results of this paper;

(II) PhenomC [147], a spin-aligned inspiral-merger-ringdown waveform. This
model includes only the dominant harmonic and ignores the orbital preces-
sion. It is used only to evaluate the signal-to-noise ratio for the full signal
and to rescale the uncertainties on sky position and luminosity distance at
merger;
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Figure 6.2: Example of GW signals in the LISA band for three MBHBs with source-
frame total mass as labeled at redshift z = 1. The solid red curve corresponds to
the instrument sensitivity, while dashed golden line corresponds to the sensitivity
with an additional noise contribution at low frequencies. Blue and green curves
represent the typical tracks for non-spinning MBHBs: dashed lines correspond to
PhenomC waveform, while solid lines to the only-inspiral waveform. For the plot,
we assume q = 0.5, ι = ψ = π/4, θN = cos(π/4), φN = π/4, tc = 4 yr. For this
figure, the stochastic background from the galactic binaries has been set to the
level after 4 years of mission. The steps in solid signals correspond to the switch
off of different harmonics at the end of inspiral

(III) PhenomHM waveform [229] which also describes inspiral, merger and ring-
down parts of the GW signal. Similarly to PhenomC, this model ignores
orbital precession but takes into account higher order harmonics. It is used
in assessing parameters uncertainties within Bayesian (Markov chain Monte-
Carlo) approach.

The first model is the most complete and gives the best estimates for the
inspiral part of the GW signal. All three models are reliable in estimating un-
certainties in the intrinsic parameters of binary systems (masses, magnitude of
spins). Extrinsic parameters (such as distance, orbital inclination, sky position)
are quite degenerate in PhenomC model, higher order harmonics and orbital pre-
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cession break this degeneracy (at least partially), this is the reason behind using
SUA-based inspiral-only and inspiral-merger-ringdown PhenomHM models in the
parameter estimation.

In Fig. 6.2 we plot the non sky-averaged sensitivity curves adopted in this work
with typical GW signals.

We adopt SUA as waveform to carry on the inspiral parameter estimation at
different (observed) times to merger. In particular we stop the waveform at 1
month, 1 week, 3 days, 1 day, 10 hours, 5 hours and 1 hour before coalescence.
We compute the 2D sky position error ellipse ∆Ω following [230] (see Eq. 4.13)
so that the probability for the source to lie outside this region is e−1 where e is
the source position ellipse eccentricity. The uncertainties on chirp mass and mass
ratio are simply propagated as:(

∆M
M

)2

=

(
m1

M

)2(
∂M
∂m1

)2

Σlnm1,lnm1

+

(
m2

M

)2(
∂M
∂m2

)2

Σlnm2,lnm2

+ 2

(
m1m2

M2

)(
∂M
∂m1

)(
∂M
∂m2

)
Σlnm1,lnm2

(6.6)

where Σ is the inverse of the Fisher matrix as defined in Sec. 4.2 and similarly for
the mass ratio, replacingM with q (here ln refers to the natural logarithm).

To model the effect of merger and ringdown in the parameter estimation (la-
beled as ‘merger’ in our figures), we rescale the sky position and luminosity distance
uncertainties at 1 hour before merger as [178]

∆Ωmerger = ∆Ω1h ×
[

(S/N)SUA

(S/N)PhC

]2

(6.7)

∆dL,merger = ∆dL, 1h ×
[

(S/N)SUA

(S/N)PhC

]
(6.8)

where S/NSUA is the S/N accumulated with the waveform SUA at the end of the
inspiral, and S/NPhC is the one computed with the PhenomC waveform.

To asses the validity of our approach, we compare the sky position uncertainties
computed with our approach against MCMC simulations for a small subset of
20 samples. To sample the posterior distributions p(θ|d) we adopt two MCMC
algorithms: PTMCMCSampler [231] without parallel tempering and ptemcee [232]
with parallel tempering. Using PTMCMCSampler without parallel tempering allows
sampling the posterior around the true values in a very efficient way, while in the
second method we explore the global posterior (including secondary modes) using
GPUs [233]. For the first algorithm we adopt uniform distribution in chirp mass,
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while for the second one uniform distribution in total mass. The other parameters
are sampled the same way for both treatments: uniform distribution in mass-
ratio, source volume, binary orientation, polarization, phase and spin magnitude
from -1 to 1. For all 20 systems, we use the zero noise realization and adopted
the PhenomHM waveform [229], that takes into account higher modes, merger-
ringdown phases but ignores precession. Those systems were randomly drawn
from our parameter space with the only requirement to have a sky localization
uncertainties ∆Ω < 10 deg2 at 5 hours before merger. For simplicity, we remove
the contribution of the galactic background from Eq. (6.1).

A primary goal of the presented work is to provide analytical fits to describe
how parameter uncertainties decrease as the signal is accumulated. Therefore we
choose to report the median errors, without focusing on the fraction of systems
for which a given parameter can be measured up to a certain precision [178]. For
the same reason, we do not consider in this work semianalytical models ([234] and
later expansions).

A final caveat on the reported uncertainties : the error on the luminosity
distance for sources at z > 0.25 is expected to be dominated by weak lensing, due
to the matter distribution between us and the source [235, 236]. We do not include
the effect of weak lensing in our analysis, therefore the reported uncertainties on
the luminosity distance and redshift refer to the pure GW measurements.

We run different sets of simulations to properly explore the parameter space.
We keep fixed the total (source frame) mass of the system for a set of redshifts.
We consider:

(I) Mtot = 105, 3×105, 5×105, 7.5×105, 106, 3×106, 5×106, 7.5×106, 107, 3×
107 M�;

(II) z = 0.1, 0.3, 0.5, 1, 2, 3, 4;

The mass ratio is randomized in [0.1, 1], while the time to coalescence is drawn
in [0, 4] yr. Spin magnitudes are flat distributed in [0, 1]. Sky position, angular
momentum angles and spin orientations are uniformly distributed over a sphere.
Since we want to explore how parameter estimation improves as function of time to
coalescence we did not take into account the possibility that LISA stops taking data
while a signal is chirping in band. Unless otherwise noted, for each combination
of total mass and redshift, we perform N = 104 random realizations.

6.3 Preliminary benchmarks

Since we aim to rescale the S/N computed with the SUA waveform at the end
of the inspiral with the one computed with the PhC, we start checking that the
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two waveforms produce comparable S/N values. In Fig. 6.3 we report the median
and 68 percentile S/N values as function of GW frequency for a system with
Mtot = 2 × 106 M� at z = 1. At fgw . 10−3 Hz, the S/N distributions are
consistent. Far from coalescence, spin effects and higher harmonics are negligible
so we should not expect a large difference in the S/N from the two waveforms.
The PhenomC waveform takes contribution also from the merger and ringdown
portion of the GW signal and gives rise to larger S/N values for fgw & 10−3 Hz.

10 4 10 3 10 2
fgw [Hz]

100

101

102

103

104

SN
R

SUA
PhC

Figure 6.3: S/N as function of frequency for a system with Mtot = 2× 106 M� at
z = 1. Color according to legend.

We compute the derivatives numerically so we check that our choice of the
infinitesimal increment, ∆θ, for each parameters does not introduce bias in the
Fisher matrix. Derivatives can be computed as [237]

∂h

∂θ
=
h(θ + ∆θ)− h(θ −∆θ)

2∆θ
. (6.9)

In principle we would like to set ∆θ as small as possible, however we have to
take into account the digit precision we can reach within our machine. Indeed
an infinitesimal value will be seen as exactly zero and the derivative will diverge.
To check the optimal ∆θ interval for each parameter, we look at the norm of the
difference between derivatives computed with close ∆θ, i.e |hi − hi−0.5|/|hi| where
i denotes ∆θ = 10−i. The idea is to choose ∆θ values in such a way that the
difference between two close delta values is small and ‘constant’ as function of
frequency. This test is not to be considered rigorous but provide and efficient and
clear way to set the infinitesimal value for each parameter.
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In Fig. 6.4 we report the aforementioned quantity as function of frequency for
several values of i for the m1 parameter (in units of solar mass) of a MBHB with
Mtot = 3× 106 M� and q = 0.5.
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Figure 6.4: Derivative differences for the m1 parameter as function of frequencies
for different values of the infinitesimal increment ∆θ.

As expected the differences computed with small ∆θ values are inconsistent
and even larger than 1 for fgw & 10−4 Hz. The cases for ∆θ = 10−6 and ∆θ =
10−8 produce small differences but the behavior at low-frequency show numerical
artifacts. The ideal value to compute the derivative is ∆θ ' 10−10 due to the small
absolute difference between close deltas. As expected, if we further reduce the value
of ∆θ, the difference increases again moving to the same range of ∆θ = 10−6.

To avoid possible problems when computing the inverse of the Fisher matrix
numerically, we implement an additional check. Following [187], we accept the
inverse of the Fisher matrix only if

max
i,j
|I ijnum − δij| < εmin (6.10)

where I ijnum is the “numerical identity matrix” obtained multiplying the Fisher
matrix by its inverse and δij is the standard Kronecker delta function. We set



92 CHAPTER 6. PARAMETER ESTIMATION OF MBHBS IN LISA

10 3 10 2 10 1 100
q/q

100

101

102

Nu
m

be
r o

f e
ve

nt
s

0.1 < q < 0.25
0.25 < q < 0.5
0.5 < q < 0.75
0.75 < q < 1

Figure 6.5: Distribution of ∆q/q uncertainties for different values of mass ratio for
a system with Mtot = 3× 106 M� at z = 1. Dashed vertical lines correspond to 95
percentile of the whole distribution.

εmin = 10−3. Fisher matrix that do not satisfy this condition are rejected and new
binary parameters are extracted. We also check that this additional condition on
the Fisher matrix does not introduce any bias in the distribution of the initial
parameters.

Finally we expect higher harmonics to break degeneracies close to merger and
for small mass ratio values. In Fig. 6.5 we report the ∆q/q uncertainties for a
system with Mtot = 3 × 106 M� at z = 1 for different mass ratio values. As
expected, small mass ratio values (0.1 < q < 0.25) lead to better constraints on
the binary mass ratio while the bulk of events in the 95 percentile region is formed
mostly by systems with q > 0.25.

6.4 Results

6.4.1 Inspiral parameter estimation of MBHBs

In Fig. 6.6 we show the time evolution of the S/N , the sky-position and luminosity
distance estimate for the three systems. Light binaries live longer in the LISA band
and accumulate a median S/N ' 20 already 1 month before coalescence, compared
to S/N of ' 5 and ' 3 of intermediate and heavy systems respectively. As
systems approach merger, the S/N increases. Including the full signal (‘merger’),
light systems have similar S/N to heavy ones. However, due to the form of LISA
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Figure 6.6: Accumulated S/N , sky-position and luminosity distance uncertainties
as function of time to coalescence for light (left column), intermediate (central
column) and heavy (right column) systems. All sources are located at z = 1.
Blue line corresponds to the median of the distribution, while light blue and green
areas correspond to the 68 and 95 percentiles. For each case, we also plot the
S/N , the sky position and luminosity distance uncertainties when the full signal is
considered (‘merger’), inferred according to the scaling in Eq. (6.7)-(6.8). In the
mid panels, the dashed and dotted-dashed horizontal red lines correspond to the
field of view of Athena and LSST of 0.4 deg2 and 10 deg2 respectively. For all cases,
while the S/N monotonically increases, the median of the distributions decreases,
leading to a progressively more accurate parameter estimation. However with
time the uncertainties around the median value broaden, implying different levels
of parameter estimation accuracy for sources with the same mass and redshift.
This is especially true for the sky localisation.

sensitivity curve, the S/N contribution from merger and ringdown for intermediate



94 CHAPTER 6. PARAMETER ESTIMATION OF MBHBS IN LISA

10 2

10 1
Mtot = 3 × 105M 1 month

1 week
3 days
1 day
10 hrs
5 hrs
1 hr

10 2

10 1

Fr
ac

tio
n 

of
 e

ve
nt

s

Mtot = 3 × 106M

100 101 102 103

S/N

10 2

10 1
Mtot = 107M

100 102 104

[deg2]
10 2 10 1 100 101

dL/dL

Figure 6.7: S/N , ∆Ω and ∆dL/dL distributions of the 95 percentile corresponding
to different times to coalescence as indicated in the legend. The total source-frame
mass and redshift are as in Fig. 6.6. Upper panels: light systems. Central panels:
intermediate systems. Lower panels: heavy systems.

systems leads to a final value of S/N ' 2× 103.
Turning to sky localization, lighter systems are typically better localized than

heavier ones, especially at earlier time. Light binaries are localized with a median
accuracy of ' 100 deg2 already 1 month before coalescence, due to the modula-
tions imprinted by the detector orbital motion and the higher S/N . As the binary
approaches coalescence, the signal accumulates and the uncertainties in the sky
localization reduce to ' 10 deg2 at 10 hours before merger. A similar improve-
ment is also present at shorter timescales, i.e from 10 hours to 1 hour, where the
uncertainty drops to ' 1 deg2, since in this phase the accumulated S/N increases
rapidly and spin precession effects come into play. By rescaling the area at the end
of the inspiral according to Eq. (6.7), we find final sky localization uncertainties of
. 0.1 deg2. Intermediate systems are localized less precisely with a recovered area
of ' 103 deg2 1 month prior to merger. This is due to the lower S/N values. The
angular resolution at 1 hour from merger is comparable to that of light systems
with a median value of ' 2 deg2. Eventually, the S/N is dominated by the merger
and ringdown part of the signal, allowing a further improvement to the binary’s lo-
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Figure 6.8: Chirp mass and mass ratio relative uncertainties as a function of time
to coalescence for the same systems considered in Fig. 6.6.

cation and bringing the median value down to ' 0.04 deg2. Similar considerations
apply to heavy MBHBs. The sky position is essentially unconstrained 1 month
before coalescence, mostly due to the very low S/N . By the end of the inspiral, the
source can be localized with a median uncertainty of ' 10 deg2, further reduced
to . 0.2 deg2 when the full signal is accounted for.

The luminosity distance for light systems can be determined at 10% and 0.8%
level at 1 month and 1 hour from merger, respectively. Similarly to sky localization,
the distance determination early in the inspiral is severely degraded when moving
to more massive binaries. Nonetheless at the end of the inspiral, the distance for
the intermediate and heavy systems can be measured with ' 1% and ' 3% median
precision, respectively. Rescaled uncertainties including merger and ringdown are
around 0.2−0.4% for all systems. We remind that the reported error in luminosity
distance do not include the weak lensing error and, therefore, are to be considered
as optimistic.

We note that for intermediate (heavy) mass systems the S/N is still below 10 at
1 month (1 week) from coalescence, therefore the Fisher matrix formalism should
be applied with caution. However, at these early times and for these systems, the
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Figure 6.9: Chirp mass and mass ratio uncertainty distributions of the 95 percentile
corresponding to different times to coalescence as indicated in the legend. Total
source-frame mass and redshift as for the systems in Fig. 6.8.

sky localization is so poor that it is hardly of any use when in search for a potential
EM counterpart.

So far, we have discussed median values for the uncertainties on the parameters,
but the full distribution is also of importance to interpret our results. Since we
fix only the total mass and redshift, we expect that part of the uncertainties is
inherited by the spread of the additional parameters affecting the binary signal.
We defer to Sec. 6.5 for an in-depth exploration of how each binary parameter
shapes the 68 and 95 percentile distribution, while we here only summarize the
overall trends and the main findings. As in previous studies, we find that the sky
position estimate depends strongly on the true source position in the sky. Even
if orbital modulations help to reduce the source position errors at earlier time,
it becomes unimportant at the end of the inspiral. However, most of the S/N
is accumulated close to merger and, therefore, the final S/N will be small if the
binary is located in a low sensitivity region.

While the S/N distributions are similar at all times and for all masses, higher
mass systems display broader sky location distributions. Light (heavy) systems
distributions extend over 2.5 (' 4) order of magnitude at 1 hour before merger.
Moreover far from coalescence the source position distributions show similar widths
of ' 1 order of magnitude, almost independent from the total mass of the system.
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This is due to the fact that, typically, at that time the system has low S/N so
the actual true location of the source has a mild impact. Heavy systems show
also larger uncertainties in the luminosity distance close to merger than light and
intermediate ones.

In Fig. 6.7 we show the 95 percentile distributions at each time for the three
cases: light, intermediate and heavy binaries. The S/N distributions look sym-
metrically distributed in log around the median at all times and for all systems.
Also the sky position uncertainty distributions look similar at 1 month for all the
three cases. When the binary approaches coalescence the median sky-position un-
certainty decreases but the distribution widens. Light system distributions remain
similar over all the inspiral with no major shape changes, while heavy mass system
distributions flatten and skew towards lower uncertainties. For the intermediate
and heavy systems the position uncertainty distributions are uniform at 1 day
and 10 hours from coalescence. However these distributions are skewed to lower
values at 5 hours and a 1 hour before merger with stronger effects for heavy mass
systems. We find that systems with lower values of the sky location uncertainties
are those with low mass ratio and high spin magnitude of the primary BH due to
the inclusion of higher harmonics and spin precession effects. The wide spread for
heavy systems is due to fast accumulation of most of their S/N very close to the
merger where LISA can be seen as static. The error in extrinsic parameters is par-
ticularly sensitive to the source position and orientation leading to a large spread.
Luminosity distance distributions are similar for all the three cases. While they
are symmetric far from coalescence, higher mass systems distributions are skewed
towards lower luminosity distance uncertainties at late times.

In Fig. 6.8 we show the chirp mass and mass ratio relative uncertainties for the
three cases as function of time to coalescence. For light systems, the chirp mass
is determined to few percent accuracy already 1 month from coalesce and it can
be constrained to ' 0.2% at the end of the inspiral. This is due to the fact that
chirp mass is inferred by phasing the signal during the inspiral, and lighter systems
spend more time and wave cycles in band. Moving to higher mass systems, the
median uncertainties shift to higher values without, however, a significant loss in
LISA ability to constrain the chirp mass, especially at late times. The chirp mass
is determined at ' 30% (' 60%) precision at 1 month for intermediate and heavy
systems and to less than 1% at 1 hour from coalescence for both cases.

The mass ratio is constrained to 10% precision already 1 month from coales-
cence and ' 0.5% 1 hour from merger for light systems. The mass ratio is basically
undetermined 1 month from coalescence for intermediate and heavy systems, and
only at the end of the inspiral the uncertainties reduce to ' 1% level for both
cases.

Fig. 6.9 shows the 95% percentile distributions for the chirp mass and mass
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ratio uncertainties. Overall, these distributions are narrower around the median
compared to those describing the sky position. The chirp mass distributions for
light binaries is symmetric around the median values at all times. However in-
termediate and heavy systems chirp mass uncertainties distributions are uniform
inside the 95% interval at early times and skewed close to merger. We check again
that the systems contributing to smaller uncertainties are the ones with small mass
ratio (q < 0.4). Similar considerations apply also to the mass ratio distributions,
which are symmetric for the light systems, and skewed for intermediate and heavy
ones.

6.4.2 MCMC comparison

In Fig. 6.10 we report the distributions for the log of the ratios between the sky
position uncertainties computed following our primary approach (fisher) and the
results for the two MCMC simulations (ptemcee and PTMCMCSampler). The distri-
bution of the ratio between fisher and ptemcee display two sub-populations with
a mean value of ' 0.11. We find that the systems for which the fisher approach
produces better sky-position uncertainties than ptemcee show small mass ratio,
i.e. q < 0.3. Similar considerations hold also for the comparison between fisher
and PTMCMCSampler areas, with a mean value of 0.05. We also compare the two
MCMC estimates to check if the differences between the two implementations of
the same technique are compatible with the one coming from fisher. In this case
the ptemcee produces typically smaller areas than the PTMCMCSampler approach
with a mean value of ' −0.06, close to the value coming from the comparison
between fisher and PTMCMCSampler. Use of global parameter exploration with
ptemcee results in finding the secondary mode for some systems.

The secondary modes correspond to the antipodal or reflected points, depend-
ing on the actual system considered, of the real binary position in the sky. Includ-
ing the whole signal with the high frequency response of the detector and higher
harmonics break degeneracies during the parameter estimation process [211] and
disfavor these secondary modes. In most of these cases, the secondary mode has
lower statistical significance. Removing from the analysis the points with sec-
ondary mode in the sky position has no strong impact in the ratio distributions2.

For each of the aforementioned 20 cases we perform an additional check compar-
ing median sky position uncertainties from two independent Fisher matrix codes,
the one adopted for this study and another one from Marsat et al. [211] without
spin-precession. We keep fixed the total mass of the system, mass ratio, redshift

2For one system, the sky position posterior distribution from ptemcee has not enough samples
to make proper estimation, therefore blue histograms in the upper and lower panels have 19
entries.
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Figure 6.10: Sky localization log uncertainty ratio distribution obtained comparing
different methods. Blue histograms refers to the whole set of 20 points, while
orange histograms refer only to cases without secondary mode in the sky-position.
Upper panel: fisher and ptemcee. Middle panel: fisher and PTMCMCSampler.
Lower panel: ptemcee and PTMCMCSampler.

and spin magnitude while we randomize over sky position, polarization, inclina-
tion, time to coalescence and initial phase. For each case we perform N = 103

realizations. In Tab. 6.2 we report the mean value of the ratio between the me-
dian sky position uncertainties obtained from the code adopted in this study and
the alternative one, R∆Ω, at different times from merger and when the full signal
is included (‘merger’). From 1 month and up to 3 days to merger, the code used
for this study recover median sky position uncertainties ' 3 times larger, while the
opposite happen for times close to merger. Overall the agreement between the two
results is quite good, especially at 1 day from merger. The results from the code
adopted in this study are better at the last stages of inspiral due to the inclusion



100 CHAPTER 6. PARAMETER ESTIMATION OF MBHBS IN LISA

Time R∆Ω

1 month 3.15
1 week 2.05
3 days 1.54
1 day 0.84
10 hours 0.47
5 hours 0.30
1 hour 0.87
merger 0.35

Table 6.2: Mean value of the ratio between the sky position uncertainties com-
puted with the same Fisher adopted in this study and the one from Marsat et al.
[211] at different times from merger and when the full signal is included (‘merger’).

of spin-precession that break degeneracies close to merger.

6.4.3 Analytical fits to parameter estimation uncertainties

Having discussed the trends of the parameter estimation and precision for our
selected sources, we now turn to the main aim of this study: provide ready-to-
use fitting formulas that allow to infer on the fly the properties of an emerging
LISA source (sky localization, distance determination, chirp mass and mass ratio
in particular). For sky position and luminosity distance we provide additional
formulas when the full signal is considered to inform astronomers of a potential
counterpart for targeted and instructed searches.

Since we propose to provide multidimensional formulas to model error uncer-
tainties as the signal accumulates in band, we need to find a reasonable balance
between the number of input parameters required and the accuracy of the pro-
posed formulas. In other words we desire a formula that takes as input only few
key parameters and matches reasonably well simulation results. The (observed)
time left before binary coalescence has to be one of the input parameters. We also
need the total (intrinsic) mass of the binary and the redshift of the source, since
they will both affect the relative strain of the signal in the detector. Although
the amplitude of the GW signal scales with the system chirp mass [24], we choose
to adopt the total mass of the system as input parameter since it is the quantity
normally used within the astrophysical community.

In principle, the parameter estimation depends on all the other binary pa-
rameters , i.e mass ratio, sky position, time to coalescence, spins, inclination,
polarization and initial phase. Including all of them would dramatically increase
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Figure 6.11: Time evolution of sky position uncertainties obtained with the Fisher
Matrix approach compared to that recovered employing fits from Eq. (6.11) -
(6.12). Blue lines correspond to the median of distribution while blue and green
areas to the 68 and 95 percentiles. Solid, dashed-dotted, and dashed lines corre-
spond to the fit outcome for the median, 68% and 95% regions, respectively. Each
column refers to a different source-frame MBHB total mass as labeled. Upper
panels: MBHB at z = 0.3; middle panels: z = 1; lower panels: z = 3.

the complexity of the fitting functions.
Averaging over some of the aforementioned parameters is also justified by what

is expected in a real situation. MBHBs will be isotropically distributed in the sky,
with uniform randomly distributed inclination and polarization. The situation is
less clear for spin magnitude and directions. MBHs gain their mass mostly from
accretion, which affects their spin in different ways depending on the coherency
of the accretion flow [238–242]. Mutual spin orientations in MBHBs are further
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Figure 6.12: Same as Fig. 6.11, but for the luminosity distance relative uncertain-
ties.

determined by their close environment; ’dry’ mergers (where the binary evolution
is primarily driven by stars) generally result in random spin orientations [243],
whereas ’wet’ mergers (where the evolution is driven by gas) promote spin magni-
tude growth and spin-orbit alignment [244–246].

In Sec. 6.5 we explore in more detail how these parameters affect the sky
position, luminosity distance, chirp mass and mass ratio uncertainties. However,
we briefly note here that none of them produces clear trends, with the exception
of the true sky position of the source and therefore we chose to average over all
of them and keep only three input parameters for our formulas, i.e. the total
(intrinsic) mass of the system, its redshift and the (observed) time to coalescence.

Given total mass Mtot at redshift z, the evolution of parameter uncertainty ∆X
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Figure 6.13: Same as Fig. 6.11, but for the chirp mass relative uncertainties.

from 1 month to 1 hour before merger is described as log10 ∆X = F(log10 tc, log10 Mtot, z),
where F is a third degree polynomial expression of log10 tc and log10 Mtot with
a supplementary dependence on redshift. We tested different expressions varying
the number of parameters and we find that the following expressions are the best
compromise. We initially fit values at constant redshift and then add a redshift
dependence to take into account the uncertainties evolution. In practice we use
the form
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Figure 6.14: Same as Fig. 6.11, but for the mass ratio relative uncertainties.

log10 ∆X = c1 + c2 y + c3 y
2 + c4 y

3

+ c5 x+ c6 x y + c7(z, y)x y2

+ c8 x y
3 + c9 x

2 + c10 x
2 y

+ c11 x
2 y2 + c12 x

2 y3 + c13 x
3

+ c14 x
3 y + c15 x

3 y2

+ c16 x
3 y3 + zc

(
z − 0.5

0.25 z + 0.25

)
,

(6.11)

where x = log10( tc/sec), y = log10( Mtot/M�) and z is the source redshift. c1, . . . , c16

and zc are numerical coefficients whereas c7(z, y) is a function of mass and redshift
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Figure 6.15: Sky localization (left column) and luminosity distance (right column)
uncertainties at merger obtained with the Fisher Matrix approach compared to
fits from Eq. (6.14) - (6.15) as function of the total mass of the binary. Color code
and line style as in Fig. 6.11. Upper panels: z = 0.3. Middle panels: z = 1. Lower
panels: z = 3.

only, dependent on more four coefficients

c7(z, y) = d1 + d2 y

d3 z + d4 z y.
(6.12)

Here we express c7 as function of redshift and total mass however this is not true
in general. For each case, we choose which parameter should be a combination of
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the previous input parameters by looking at the one that could match better the
simulations. F is therefore a function of 21 numerical coefficients.

For the four key parameters discussed in the previous section – ∆X = ∆Ω/sr,
∆dL/dL, ∆M/M, ∆q/q – we adopt Eq. (6.11) to fit the median, 68% and 95%
confidence interval of the uncertainties in the LISA measurements. We report
the value of the coefficients for the median, 68% and 95% confidence regions for
the uncertainties on the sky localization and luminosity distance in Tab. A.1. The
value for the chirp mass and mass ratio fits are reported in Tab. A.2. In these table
the coefficients computed according to Eq. (6.12) are labeled with ‘[z, log10 Mtot]’.

For the degraded sensitivity curve we include two additional coefficients in
Eq. (6.12), i.e.

c7,degr(z, y) = d1 + d2 y

d3 z + d4 z y

d5 z
2 + d6 z

2 y

(6.13)

and replace the term (z−0.5) in Eq. (6.11) with (z−1) to better fit the simulation
results. The additional coefficients are reported in the aforementioned GitHub
repository.

Even if we perform simulations of systems with Mtot ∈ [105, 3× 107] M� and
z ∈ [0.1, 4], our formulas can be applied only on a slightly smaller subset: they are
valid for systems with Mtot ∈ [105, 107] M� and z ∈ [0.3, 3] because we choose to
focus on providing formulas that can be used for the expected majority of LISA
sources.

In the following, we provide a visual comparison between the analytical fits and
the results of the Fisher matrix simulations for binaries with Mtot = 3× 105, 3×
106, 107 M� (i.e. the ‘light’, ‘intermediate’ and ‘heavy’ systems considered in the
previous subsection) placed at z = 0.3, z = 1 and z = 3.

In Fig. 6.11 we show results for the sky localization. Overall there is a good
agreement between our fits and the outcomes of our simulations. However the
fits overestimate the sky position uncertainty for light systems at z = 0.3 1 hour
from merger by a factor 3-4. This is because the precision in the source position
for low-redshift light systems has a steep improvement close to merger, where
the accumulated S/N leads to a shrinkage of the localization area of an order of
magnitude on a short timescale (from 5 hours to 1 hour before merger). We lose
some precision when fitting the 69 and 95 percentile upper limit for intermediate
and heavy systems, especially at z = 0.3. If the system is massive and at high
redshift the orbital timescale at the ISCO is comparable to 1 hour and, since we
truncate our waveform when the MBHB separation reaches 6 Mtot as we are not
able to explore shorter time intervals. For this reason the sky position uncertainties
are flat from 5 hours to 1 hours for massive and distant sources.
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In Fig. 6.12 we perform the same comparison for the luminosity distance. Also
for this parameter, our fits reproduce well the simulation outcomes with the ex-
ception of light systems at z = 0.3 and heavy systems at z = 3 both at 1 hour
from coalescence. However here the results for the median from the fit differ from
the simulation values only by a factor of 2.

Finally, in Fig. 6.13 and Fig. 6.14 we compare our formulas for the chirp mass
and mass ratio to the simulation results. Again the fits match quite well the Fisher
outcomes with the same caveats of the sky position and luminosity distance. The
larger differences between our fits and the simulations are usually a factor 2.

We also provide fits to the sky position and luminosity distance uncertainties
for the full signal, computed from Eq. (6.7)-(6.8). Since for this case we do not
have the time dependence, we reduce the number of coefficient necessary for the
fit. As a consequence we are able to extend the validity of these formulas to the
full parameter space explored, i.e. the formulas describing the sky position and
luminosity distance uncertainties when the full signal is considered are valid for
Mtot ∈ [105, 3× 107] M� and z ∈ [0.1, 4].

In this case, however, the noise due to Galactic binaries becomes important.
Since the merger-ringdown S/N is accumulated over a relatively narrow range of
frequencies, the impact of the galactic foreground is highly mass-dependent and
to obtain an acceptable fit we have to split the mass range in two sub-intervals,
namely [105, 3 × 106] M� and [3 × 106, 3 × 107] M�. The formulas are the same
for the two ranges but, clearly, the coefficients are different. As for the inspiral,
one of the coefficients is given by a nested function of redshift. Using again y =
log10( Mtot/M�) and the redshift z, uncertainties can be expressed as

log10 ∆X =
z

m1(z)
+

+m2 z +m3 y +m4 z
2

+m5 y
2 +m6 z

3 +m7 y
3

+m8 z y +m9 z
2 y +m10 z y

2

(6.14)

where

m1(z) = n1 + n2 z

n3 z
2 + n4 z

3 + n5 z
4,

(6.15)

and ∆X = ∆Ω/sr, ∆dL/dL. Similar to what done for the fits for the inspiral
part of the signal, we provide expressions also for the 68% and 95% intervals.
We report the coefficient value for the sky position and luminosity distance for
Mtot ∈ [105, 3 × 106] M� in Tab. A.3 and for Mtot ∈ [3 × 106, 107] M� in Tab.
A.4.



108 CHAPTER 6. PARAMETER ESTIMATION OF MBHBS IN LISA

For the degraded sensitivity curve we keep the same expression without adding
any further coefficients. Also these coefficients can be found on the GitHub repos-
itory.

In Fig. 6.15 we compare the above fits to the full inspiral-merger-ringdown sky
location and luminosity distance errors obtained for our set of simulations, at three
different redshifts. At Mtot = 3× 106 there is a small gap between the fits due to
the fact that we focus on fitting the overall behaviour in both sub-intervals rather
than requiring the continuity of the equation at their point of contact. Overall our
formulas follow closely the distributions of sky location and luminosity distance
uncertainties .

6.4.4 Time progression of parameter estimation

The analytical fits provided in the previous section can be used to generate ‘ad-
vanced warning’ contour plots across the parameter space. In practice, one can
fix a desired precision of a given parameter and ask how long prior to merger such
precision is achieved across the mass-redshift parameter space. This is particularly
useful, for example, to assess under which circumstances and for which sources a
specific instrument is appropriate to search for a counterpart, or to pre-select on
the fly candidates from existing galaxy catalogs in the expected mass and redshift
ranges to concentrate follow-up efforts on the most promising candidates. We now
show the contour maps of each parameter and discuss specific examples of their
use in the next section.

In the two panels of Fig. 6.16 we plot the remaining time prior to coalescence for
progressively smaller values of the sky position uncertainty. For example, a MBHB
with Mtot = 106 M� at z ' 0.6 (z ' 1.5) can be localized within ∆Ω = 10 deg2

(100 deg2) 2 days before merger. However the source has to be at z < 0.5 (z ' 1.1)
for a 1 week earlier alert. Note that in this and in the following figures, contours
are produced using the fit to the median values of the parameter estimation. As
shown in Fig. 6.6, the sky location estimate is subjected to large uncertainties,
which affects also the contour plots and in turn the redshift at which a source can
be localized with a solid angle at a given time prior coalescence. An example of
this is given in the upper panel of Fig. 6.16 and refers to localization of 10 deg2,
2 days before merger. Depending on the specific parameters at the source, the
redshift at which a MBHB with Mtot = 106 M� can be localized with a 10 deg2

accuracy 2 days before merger ranges from ' 0.3 up to 1.2. The lower panel of
Fig. 6.16 shows that median localizations of 1 deg2 or better (0.4 deg2) can only be
achieved 5 hours (1 hour) before merger for MBHBs at z . 0.5. Again depending
on the source parameters, the redshift at which a MBHB with Mtot = 106 M� can
be localized within 0.4 deg2 1 hour before merging ranges similarly from less than
0.3 up to about 1.3.
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Figure 6.16: Contours of constant ‘remaining’ time in the (Mtot, z) plane, for
selected values of the median sky localization reached during the binary inspiral,
as indicated in the legend. The shaded blue (yellow) area in the top (bottom)
panel corresponds to the 68 percentile of the distribution around the median value
of ∆Ω = 10 deg2 2 days before merger (∆Ω = 0.4 deg2 1 hour before merger ). In
the bottom panel the dash-dotted red (yellow) line gives the line of constant ∆Ω
equal to 1 deg2 (0.4 deg2) when we account for the full signal, i.e. including the
’merger’.

However measurements improve right after merger, when the full signal is con-
sidered in the parameter estimation. This is shown by the dashed-dotted lines,
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Figure 6.17: Contours of constant ‘remaining’ time in the (Mtot, z) plane for two
selected values of the precision on the luminosity distance (upper panel) and red-
shift (lower panel) estimates reached during the binary inspiral, as indicated in the
legend. The green area corresponds to the 68 percentile of the relative uncertainty
distribution on dL (upper panel) and ∆z/z (lower panel), calculated 1 week before
coalescence, assuming ∆dL/dL = 10% and ∆z/z = 10%, respectively.

which highlight how sources in the interval between a few 105 M� up to a few
106 M� can be localized to sub− deg2 precision beyond z = 3.

The results of the same type of analysis for the luminosity distance are pre-
sented in Fig. 6.17. For a MBHB with Mtot = 106 M�, 10% dL precision can be
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Figure 6.18: Lines of constant ∆z/z as labeled in the plot in the (Mtot, z) plane
when we account for the full signal, i.e. including the ’merger’. Also here we are
neglecting lensing errors.

generally achieved one week (10 hours) before merger at redshift z ≈ 1 (z ≈ 2).
Getting to the 1% precision level, however, is much more challenging during the
inspiral, and is generally possible only few hours before merger for systems at
z . 1. Albeit to a lesser extent than sky localization, results still depend on the
specific parameter of the source, with the uncertainty range marked by the green
shade in Fig. 6.17. For example, the luminosity distance of a particularly favorable
MBHB with Mtot = 106 M� can be measured with 10% precision 1 week before
merger even if it is at z ≈ 1.5. For an unfavorable system, the same performance
is achieved only if it is located at z ≈ 0.8.

Following Eq.(3.7) in [204] and assuming a fixed cosmology (∆H0 = ∆ΩΛ = 0),
we convert the error on luminosity distance in a redshift error and give the result
in the lower panel of Fig. 6.17. For a system with Mtot = 106 M� the redshift
can be determined to 10% precision 1 week before merger if the source lies in
z ∈ [0.9, 1.6]. For the same binary 1% accuracy is attained 1 hour (10 hours) prior
merging for z ∼ 1 (z ∼ 0.4). Redshift uncertainties clearly mirror those on the
luminosity distance.

In Fig. 6.18 we report the ∆z/z uncertainties when the full signal is considered.
Systems with Mtot ' 106 M� are localized with a precision of ∆z/z ' 0.1 (0.3)%
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Figure 6.19: Contours of constant ‘remaining’ time in the (Mtot, z) plane for se-
lected values of the median relative error for chirp mass (upper panel) and mass
ratio (bottom panel) as labeled. Green and blue lines refer to a precision of 10%
and 1%, respectively. The green area in each panel corresponds to the 68 percentile
of the uncertainty distribution on M and q evaluated 1 week before coalescence
assuming a precision of 10%.

up to z . 1 (2.3). Except for the most massive systems (Mtot > 3× 106 M�), the
redshift of all MBHB mergers can be determined by LISA to a precision of 1% up
to z ' 4.
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Figure 6.20: Contours of constant sky position (left panel) and luminosity dis-
tance (right panel) uncertainties in the (Mtot, z) plane. Continue (dashed) [dotted-
dashed] lines correspond to 1 hour (1 day) [1 week] before merger.

We stress again that the reported uncertainties in the luminosity distance
do not take into account the weak lensing error. The lensing limit our error
∆dL/dL ' 1% already at z = 1. At z = 0.5, 1, 2 this translates to a ∆z/z '
0.83%, 0.81%, 0.82% respectively

Finally, in Fig. 6.19 we plot the same time contour levels in progression, i.e.
those times at which a parameter is determined at 1% and 10% precision for the
source’s intrinsic parameters; namely chirp mass and mass ratio.

As expected, when increasing the total mass of the system or the source red-
shift, the amount of time left, when the required precision is reached, is reduced
for both parameters (note that this is not always the case for extrinsic parameters
discussed before). Starting from the upper panel, LISA could constrain the chirp
mass at 1% (10%) 1 week from coalescence for a system with Mtot = 106 M� at
z ' 0.4 (z ' 2).

Overall, the chirp mass is basically determined with 10% precision 1 day before
merger for the whole parameter space considered in this study and even 1 month
before merger for sources with Mtot . 106 M� out to z . 1. However we stress
that, even for the chirp mass determination, there are large uncertainties in the
progression of times to coalescence. The chirp mass of systems with Mtot = 107 M�
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Figure 6.21: Same as Fig. 6.20 for chirp mass (left panel) and mass ratio (right
panel) uncertainties.

can be determined with 10% precision 1 week prior merger if the redshift of the
source is z ∈ [0.6, 1], depending on the exact parameters. For a systems with
Mtot = 106 M� the same is true but out to much larger redshifts, z ∈ [1.5, 2.5].

In the bottom panel of Fig. 6.19 we see that LISA can constrain the mass ratio
for a MBHB with Mtot = 106 M� with a precision of 1% (10%) at 10 hours before
merger if the source is at z ' 0.5 (z ' 2.5). With the exception of more massive
systems (Mtot > 3 × 106 M�) at relatively high redshift (z > 2.5), the mass ratio
should be measured with an accuracy of 10% when there are still 10 hours left
before the merger. Also in this case, we highlight that the reported contours are
affected by large uncertainties: the mass ratio of a MBHB with Mtot = 105 M�
(Mtot = 106 M�) can be determined to 10% precision 1 week before the merger if
the source redshift is ' [1.5, 2.7] (' [0.7, 1.4]).

In Fig. 6.20 we plot sky position and luminosity distance contour levels of
uncertainties at different times before merger. A system with Mtot = 106 M� is
localized with a median value of 10 deg2 (5 deg2) 1 week (1 day) before merger
if the system is located at z ' 0.5. All systems are localized within 10 deg2 1
hour before merger if they are at z < 1.5. The same is true for an accuracy of
' 0.5 deg2 if the systems lie at z . 0.6. Moving to the right panel, the luminosity
distance of all systems with Mtot ∈ [105, 106] M� is constrained to 10% (1%) 1
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week (1 hour) before merger if the systems are at z . 1. For heavy systems with
Mtot = 107 M� the same precision is reached only if the binary is at z < 0.5. Note
that, for simplicity, here are not showing the uncertainties in the median values as
in Fig. 6.16-6.19.

Finally in Fig. 6.21 we show the same contour levels at different time from
coalescence for the chirp mass and mass ratio uncertainties. The chirp mass for
all systems is determined to 0.1% (1%) precision if the systems are located at
z < 0.5 (z < 2.5) at 1 hour from merger. ∆M/M ' 1% precision is reached one
week before merger only for binaries with Mtot . 106 M� located at z < 0.5. The
mass ratio is constrained to 0.3% 1 hour before merger for all systems if the source
is located at z < 0.5. One day before merger a 3% precision is reached only for
light systems only if they are at z . 1.

6.4.5 Multi-messenger potential
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Figure 6.22: Contours of number of cycles spent by sources in the time interval
ranging from the moment at which S/N = 8 (left panel), ∆Ω = 100 deg2 (central
panel) and ∆Ω = 10 deg2 (right panel) up to ISCO as function of total mass and
redshift. The values of fISCO are computed in the source-frame.

The analytic fits and results presented in the previous section are useful tools
to explore potential synergies between LISA and EM telescopes, to select the best
instrumentation to perform early warning searches and follow-ups, and to devise
optimal survey strategies. Especially on the fly, the necessity of covering relatively
large sky localization areas (generally of several deg2) calls for wide field of view
(FOV) instruments. Spanning the EM spectrum, primary candidates for fruitful
synergies that are expected to be operational at the time LISA fly are the Square
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Kilometre Array (SKA, [247]) in the radio, the Large Synoptic Survey Telescope
(LSST, [248]) in optical and Athena in X-ray. We briefly discuss the potential of
each of them in the following, deferring a more systematic investigation to future
work.

Starting from the high frequencies, Athena is an X-ray satellite selected as ESA
L2 mission and due to fly at the same time as LISA. 3 The WFI instrument on
board has a FOV of 0.4 deg2, reaching a soft X-ray flux limit of ≈ 3 × 10−16erg
cm−2 s−1 in 100 ks (about 1 day) of exposure [249]. This roughly corresponds
to the received flux from a 106 M� MBH accreting at the Eddington limit at
z ≈ 2. As clear from Fig. 6.16, only systems at z . 0.5 can be localized within
0.4 deg2 during the inspiral, and only few hours before merger, which provides just
enough time to repoint Athena in the source direction before the merger occurs.
However, post-merger localization is generally better than the FOV of Athena
out to z & 3. Considering also the long exposure times required, Athena’s is
therefore optimal to search for post-merger signatures [196] associated, e.g. to the
emergence of a relativistic jet [250]. Particularly favorable are low redshift sources,
which will allow a single field pointing of Athena few hours before merger, enabling
the detection of a putative X-ray flash at merger (e.g. [251]).

At the low frequency end, SKA will be surveying the radio sky. In its first
operational stage, SKA1-MID is expected to have a FOV of 1 deg2, reaching a
detection flux limit of 2µJy in 1 hour integration time4. In this case, considerations
similar to those made for Athena apply. SKA1-MID will be optimally suited to
identify the launch of a post-merger radio jet. The subsequent stage, SKA2-MID,
is more uncertain, but the goal is to improve both the sensitivity and FOV by
roughly factor of ten, getting to 0.1µJy over 10 deg2, allowing effective pre-merger
searches, at least out to z ≈ 1.

Moving to the optical, LSST can also play primary partnership role with LISA.
In its 9.6 deg2 FOV, this telescope can reach a limiting magnitude of about 24.5
in mere 30 seconds of pointing [252], sufficient to detect a 106 M� MBH accreting
at the Eddington rate out to z ≈ 1.5. Note that the survey speed easily allows
to cover in just five minutes the ∆Ω = 100 deg2 with which LISA sources out to
z ≈ 1.5 are expected to be localized two days before merger. A viable strategy
would then be to survey the whole area every few minutes with LSST for the last
two days of inspiral, which would allow to construct an ≈ 1000 point light curve
of each object within the (evolving) LISA error box. Note that in this time, the
MBHB will complete several orbits, resulting in a large number of GW cycles. For
a given time to coalescence, the corresponding GW frequency ft can be obtained

3We refer the reader to https://www.cosmos.esa.int/documents/
678316/1700384/Athena_LISA_Whitepaper_Iss1.0.pdf for a preview on this theme.

4https://www.skatelescope.org/technical/info-sheets/
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using Eq. (2.7) of [230]. Then, ignoring higher post-Newtonian corrections, an
estimate of the number of GW cycles experienced by a binary when it sweeps from
ft to ISCO is given by

Ncyc =
1

32π8/3

(
c3

GMz

)5/3

(f
−5/3
t − f−5/3

ISCO) (6.16)

where fISCO = c3/[6
√

6πGMtot(1 + z)].
In Fig. 6.22 we show in the mass-redshift plane, the number of cycles left to

merger when a source first accumulates S/N = 8 in the LISA band, and when it is
localized within 100 deg2 and 10 deg2, respectively. The right panel shows that a
3× 105 M� MBHB at z = 1 still needs to complete 100 orbits when it is localized
within 10 deg2 about ten hours before merger. If any EM periodicity rises during
the GW chirp, LSST will have the potential to effectively uncover it. We note that
similar arguments apply to SKA2-MID, which might potentially detect a periodic
signal due to e.g. a precessing radio jet.
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Figure 6.23: Contours of observed frequency ff when sources are localized with
∆Ω = 10 deg2 accuracy as function of total mass in the source frame and redshift.

We can further correlate the frequency ft at which the median of ∆Ω equals
10 deg2 with the binary separation in units of the binary Schwarzschild radius
rschw = 2GMtot/c

2
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(6.17)

to show that light binaries are sufficiently separated that minidisks that may
form around each black hole might leave a periodic imprint on the EM light cure
in the approach to merger. In Fig. 6.23 we show contour lines of constant ft when
∆Ω = 10 deg2 as a function of redshift and total mass in the source frame.

We note that few days before merger, the distance and mass of the GW source is
typically known within 10% precision, as shown in Fig. 6.17 and Fig. 6.19. Assum-
ing the concordance cosmological model at the time of discovery, the luminosity
distance can be converted into a redshift. This will help in reducing the number
of candidates already on the fly and to cut sources outside the relevant redshift
and host galaxy mass range to potentially uncover a precursor signal.

Sources at z ≈ 1 are localized within ' 0.1 deg2 when the full signal is con-
sidered, as illustrated in Fig. 6.6. Likewise, the luminosity distance and redshift,
assuming a cosmology, are also known with a precision of a few percents. Consid-
ering that there are about 106 galaxies per deg2, projected on the sky, the redshift
information from the GW signal can greatly help in weeding out galaxies in the sky
error area using galaxy catalogs. Ideally, once the EM counterpart is identified,
optical/near-IR imaging and spectroscopy of the host galaxy would let us study
in a new and unique way the relationship between the MBH mass, inferred from
the GW signal, and the galaxy mass, beside having an independent measure of the
redshift to carry on estimates on the cosmological parameters [253]. Furthermore,
any discrepancy between the two values of the redshifts may help detecting false
positive associations, i.e. turn on AGN not having any secure connection with the
GW event, given that after merger the onset of accretion might have a delay.

A multi-objects spectrograph like MOONS on VLT, with ∼ 1000 fibers over a
field of view of ∼ 500 square arcmin would be an excellent instrument for spectro-
scopic follow-ups. Spectroscopic surveys or follow-ups can help select a putative
EM counterpart also through AGN narrow emission lines and the presence of
broad lines, although the dynamical environment close to a MBH merger can al-
ter the “standard” picture [254]. A comparison between the MBH mass from the
GW signal with that inferred using standard AGN techniques [255, and references
therein] would be invaluable as consistency between the two mass measurements
might reveal how the emission region changes under the highly dynamical condi-
tions present in the post merger gaseous environment.

One important caveat is that LISA MBHs have relatively low masses, therefore
they will not be bright sources in absolute terms, even if they accrete at the
Eddington rate. A 106 M� MBH at redshift z ∼ 1 accreting at the Eddington
limit would emit a [2-10] keV X-ray flux of about 8 × 10−16 in cgs units, and
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could be detected with a 5 ks exposure with Athena with an apparent magnitude
of ∼ 25.4 in the B band. A host galaxy 1000 times heavier than the MBH, and
on the star formation “main sequence” [256], would have magnitude ∼ 24 − 25.4
depending on its dust content.This means that if the MBH is accreting at sub-
Eddington rates the galaxy will be generally brighter than the AGN at optical
wavelengths. As a consequence, in terms of identifying the GW source, optical
selection cannot rely on AGN features, such color selection or broad or narrow
AGN emission lines, since these will be weak except for MBHs accreting close
to the Eddington rate. Study of the host galaxy, however, would be facilitated
because the spectral energy distribution is in this case dominated by the galaxy
properties. Optical spectroscopy near the MBH where broad lines are produced
would require instruments with very high sensitivity, e.g., a long-lived James Webb
Space Telescope (JWST) or Wide Field Infrared Survey Telescope (WFIRST),
which can look for spectroscopic signatures of the MBH-powered AGN once the
host galaxy has been identified.

6.5 Discussion

We discuss the role of each binary parameter in shaping the sky position, lumi-
nosity distance, chirp mass and mass ratio uncertainties distributions. For each of
these parameters we compared different cases:

(I) q = 0.1, 0.5, 1 and randomly distributed in [0.1, 1];

(II) tc = 0.5, 2, 4 yr and tc ∈ [0, 4 yr];

(III) χ1 = χ2 = 0.1, 0.5, 0.9 and χ1, χ2 ∈ [0, 1];

(IV) inclination i = 0, π/4, π/2 and uniformly distributed;

(V) different sky positions.

For each case, we assume a MBHB with Mtot = 106 M� at z = 1 and randomize
over N = 103 realizations for the other parameters.

Mass ratio

In Fig. 6.24 we show sky position uncertainties for different values of the mass ratio
and for the case of random extraction in the interval [0.1, 1]. The sky position of
systems with q = 0.1 is recovered better than the one for equal-mass system at all
times before merger. At 1 month from coalescence, systems with q = 0.1 and q = 1
are localized with a median accuracy of ' 200 deg2 and ' 103 deg2, respectively.
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Figure 6.24: Sky localization uncertainties as function of time to coalescence for
different mass ratios as given in each panel. Colors as in Fig. 6.6.

At 1 hour from merger equal-mass systems are localized with a median of ' 3 deg2,
while the uncertainties for q = 0.1 systems are smaller by a factor of ' 5. This
is expected due to the fact that higher harmonics turns out to be important for
small mass ratios and can lead to an improvement in the parameter estimation.

However at merger nearly equal-mass systems have higher S/N and the recov-
ered area is usually smaller than the one for unequal-mass systems. In this case
the increase in S/N compensates the suppression of the higher harmonics, leading
to a better sky position estimate for equal-mass systems.

The distributions for unequal-mass systems are usually narrow but they still
cover several orders of magnitude. In both q = 0.1 and q = 1 cases the recovered
areas cover more than an order of magnitude at 1 month from coalescence and
over two orders of magnitude at 1 hour from merger.

The cases for q = 0.5 and q ∈ [0.1, 1] show intermediate behaviour. From these
results, we choose to randomize over the mass ratio.
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We find similar trend also for the luminosity distance, chirp mass and mass
ratio uncertainties.

Time to coalescence

In Fig. 6.25 we show the recovered binary position errors for systems at different
times to coalescence. In particular, we consider systems with coalescence time fixed
at tc = 0.5, 2, 4 yr and randomly distributed in [0, 4] yr. This time corresponds to
the time left before merger and we assume that LISA is observing the full signal.
In other words for the case tc = 4 yr we assume that, when LISA starts taking data
for the first time, there is a system that will coalesce in exactly four years. Even
if systems are detected only months before merger, the accumulated signal brings
further information that lead to a better estimate of the source sky position.
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Figure 6.25: Same as Fig. 6.24 for case (II), i.e. for different coalescence times as
reported in each panel.

MBHBs merging in 4 yr are localized 4 times better than systems at only 0.5 yr
from coalescence at 1 hour from merger. The intermediate case with tc = 2 yr and
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the case for random distributed coalescence time show intermediate behaviour.
Since there is small difference between the two extreme cases, we chose to ran-
domize over coalescence time when providing analytical formulas.

Spin magnitude

In Fig. 6.26 we give the sky uncertainty distributions for three different values of
spin magnitude, namely χ1 = χ2 = 0.1, 0.5, 0.9, and the case where spin magni-
tudes are both randomly extracted in [0, 1]. In all cases, we leave spin directions
uniformly distributed over a sphere. Higher spins help in breaking degeneracies
and usually allow to recover better sky positions. At the end of the inspiral, spin-
precession effects become important and high-spinning (low-spinning) systems can
be localized with a median value of ' 0.9 deg2 (' 4 deg2). However the distribu-
tions show similar range. Since spin values do not seem to affect significantly the
recovered area, we choose to randomize over the allowed range.

10 3
10 2
10 1
100
101
102
103
104

[d
eg

2 ]

1 = 2 = 0.1 1 = 2 = 0.5

1 
m

on
th

1 
we

ek
3 

da
ys

1 
da

y
10

 h
ou

rs
5 

ho
ur

s
1 

ho
ur

10 4
10 3
10 2
10 1
100
101
102
103
104

[d
eg

2 ]

1 = 2 = 0.9

m
er

ge
r

1 
m

on
th

1 
we

ek
3 

da
ys

1 
da

y
10

 h
ou

rs
5 

ho
ur

s
1 

ho
ur

1, 2 [0.1, 1]

m
er

ge
r

Figure 6.26: Same as Fig. 6.24 for case (III), i.e. for different spin magnitudes as
reported in each panel.
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Binary inclination

In Fig. 6.27 we show the sky uncertainty distribution for three different inclination
values and for the case ι ∈ [0, π/2]. Face-on systems are localized with a better
precision during all the inspiral with uncertainties smaller of one order of mag-
nitude at 1 hour before merger. The difference is larger at merger since face-on
systems have larger S/N . Different inclination values affect only the median value,
while the distributions present similar ranges. Even if the inclination affects the
recovered error on the sky position, we choose to randomize over this parameter.
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Figure 6.27: Same as Fig. 6.24 for case (IV), i.e. for different inclination values as
reported in each panel.

Sky position

In Fig. 6.28 we show the uncertainties on the sky position, luminosity distance,
chirp mass and mass ratio at different sky positions. Similarly to [207], we define
µN = cos(θN) and divided the interval µN ∈ [−1, 1] in 40 bins. In each bin, we
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perform N = 104 realizations, varying µN in the bin range. We keep Mtot = 106 M�
and z = 1.
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Figure 6.28: Distribution of sky position, luminosity distance, chirp mass and mass
ratio uncertainties as function of µN for a system with Mtot = 106, z = 1.

All recovered distribution are symmetric respect to µN = 0 as expected and the
small differences are due to statistical fluctuations. LISA is able to constrain the
sky position of sources lying outside the galactic plane better by a factor of 2 than
sources lying in the plane. Luminosity distance uncertainties show three peaks at
central value and approaching the poles. The central peak is slightly higher than
the outlying ones. Chirp mass and mass ratio show opposite trends and they are
recovered better for sources lying in the galactic plane with an improvement of
' 10% respect to sources lying outside.

Finally, we find no strong dependence for the recovered uncertainties on the
polarization or the initial phase, so we average over them.

6.6 Comparison with previous studies

In this section we compare our results against previous results in the literature. In
Fig. 6.29, we plot the fiducial LISA design sensitivity adopted in this study and
the sensitivity adopted in past studies focusing on LISA ability to constrain source
parameters during the inspiral [197, 207]. At f = 10−4 Hz, the old LISA design
sensitivity is roughly an order of magnitude higher, i.e. has a lower characteristic
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strain than the current one. Also in the bucket of the curve, f ' 5× 10−3 Hz, old
LISA design had a higher sensitivity.
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Figure 6.29: Old LISA design (dotted-dashed blue line) and current LISA design
(continue red line) sensitivity.

As a consequence, in past studies, LISA sources where better localized in the
sky already at 1 month from coalescence. In Fig. 6.30 we plot the sky position un-
certainties as function of time to coalescence for the two sensitivity curves reported
in Fig. 6.29 for a MBHB with Mtot = 3× 106 at z = 1. We change only the sensi-
tivity curve, randomizing all the other parameters in the same range over N = 103

realizations. The improved low-frequency sensitivity of the old LISA design leads
to a median sky position error of ' 4 deg2 at 1 month from coalescence, almost
three order of magnitude better compared to the current LISA design. When
the system approaches merger the difference between the two configurations nar-
rows down, leading to a median sky localization uncertainty of ' 0.3 deg2 at 1
hour from coalescence, to be compared with a fiducial value of ' 2 deg2. Similar
considerations hold also when the full signal is considered.

6.7 Estimation of binary angular momentum

In this section we estimate the uncertainties in the direction of the binary angular
momentum L, relative to the line of sight from the source to the observer. To
compute ∆ΩL, we adopted the same formula for the sky-position ∆Ω, but replacing
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Figure 6.30: Sky position uncertainty as function of time to coalescence for a
MBHB as labeled in the plot at z = 1. Solid (dashed) lines are obtained with the
old (current) LISA sensitivity. Colors as in Fig. 6.6.

the uncertainties on [cos(θN), φN ] with the one on [cos(θL), φL] (neglecting the
cross-correlation term). In Fig. 6.31 we show LISA ability to constrain the binary
angular momentum as function of time left before merger. At 1 month from merger,
the binary angular momentum is not constrained, but, at 1 hour from merger, it is
determined with an accuracy of ' 10 deg2, corresponding to an uncertainty of ∼ 3
deg. This is a key information, as the EM emission, i.e. its level of variability and
spectral properties, depend on the inclination of the orbital plane relative to the
observer and knowing the direction of L could help identifying the EM counterpart
through its expected peculiar emission [192, 193]

The orbital angular momentum contributes to the total angular momentum,
J, defined as

J = L + S1 + S2 (6.18)

where S1 and S2 are the BH spin vectors. Therefore it would also be interesting
to investigate LISA ability to constrain on the fly the directions of the individual
spins to trigger EM alerts informative of the potential directions of incipient jets.
We suspect that this will be possible only when the full signal is considered. Thus,
a complete and exhaustive analysis is beyond the scope of this paper.
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Figure 6.31: Binary angular momentum uncertainty as function of time to coales-
cence for a MBHB as labeled in the plot at z = 1. Colors as in Fig. 6.6.

Here, we would like to highlight few key points:

• During the inspiral, if each BH produces a jet, the jet is likely to be aligned
with the spin direction [257]. LISA ability to constrain spin orientations
might play a key role in discriminating sources for which jets are pointing
towards us.

• After the merger, a jet might be launched aligned with the spin of the rem-
nant BH and, therefore, to the total angular momentum J . However we
observed that the error on the individual spin orientation is larger than that
on the binary angular momentum, leading to an overall degraded estimate
for J by more than an order of magnitude (on average) at the end of the
inspiral.

• If spin magnitudes are small, the total angular momentum is determined
basically by the binary angular momentum. This could suppress the large
uncertainties connected with spin orientation.

• Gas accretion is expected to align BH spins to the binary angular momentum
[220, 257]. In this case randomizing over spin orientations, as we have done
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in this paper, might not be ideal. Moreover in this situation the recoil kick
is in the orbital plane and it might trigger EM emission [197].

For these reasons, here we report the uncertainties on the binary angular momen-
tum only (these data can be found at the aforementioned GitHub page)

6.8 Summary
MBHBs of 105−3×107 M� coalescing in low redshift galaxies (z < 4) have been the
focus of this chapter. In the inspiral phase the GW signal is sufficiently long-lived
to enable a pre-merger astrophysical characterization of these sources. To this aim,
we carried out a parameter estimation on the fly, i.e. as a function of the time to
coalescence. When the GW inspiral event is evolving in time, the signal-to-noise
ratio continues to rise and uncertainties in the parameter estimates reduce. In our
study we selected a sequence of times, from one month down to one hour prior to
coalescence and considered the source sky localization, luminosity distance, chirp
mass and mass ratio as key parameters, providing ready-to-use analytical fits of
their associated uncertainties as a function of time.

Here we enumerate our key findings and concluding remarks:

• Between 3×105 M� and 3×106 M�, the S/N of MBHBs at z = 1 rises above
8 - assumed as threshold for detection - 1 month to 1 week (for the heaviest
system in this range) before coalescence. 5 hours prior merging the S/N is
in the hundreds and at coalescence it reaches values in the thousands.

• Between 3 × 105 M� and 3 × 106 M�, the binary chirp mass and mass ratio
are determined with a fractional error . 10% 1 month to 1 week (for the
heaviest system in this range) before merging. 5 hours before coalescence the
accuracy narrows down at 1% level or even less (for the lightest MBHBs),
and continues to improve significantly down to the end of inspiral. The
luminosity distance and redshift 1 week before merging are inferred with an
accuracy of about 10%.

• The median of the sky localization error ∆Ω during the inspiral phase de-
creases by more than two orders of magnitude, due to the increase of the S/N
as time progresses. Moreover close to merger, spin-precession effects, higher
harmonics and doppler modulations help breaking degeneracies and further
reduces uncertainties . However at any given time the uncertainty of ∆Ω
around the median value widens as the binary approaches coalescence. This
allows the lightest sources (with masses of a few 105 M�) in the best (worst)
configurations to be localized within ' 1 deg2 (' 100 deg2) one day before
coalescence. For systems of a few 106 M� the uncertainty in the sky position



6.8. SUMMARY 129

is larger, between ' 10 deg2 and ' 103 deg2, few days prior merging. Only
at ’merger’ the median of ∆Ω plummets down to ' 10−1 deg2. Some sources
can be localized with square arc-minute precision at the time of coalescence.

• Low redshift (z . 1), low mass MBHBs (Mtot . 5×106 M�) can be detected
first by large field-of-view telescopes as LSST and SKA from 2 days to few
hours in advance if precursor emission exists, and later as time progresses
by X-ray telescopes such as Athena at merger. These sources cover about
100 to 30 cycles before coalescence, within a sky localization uncertainty
∆Ω ' 10 deg2, opening the possibility of detecting any periodicity, if present,
in the EM signal possibly correlated with the periodicity in the inspiral signal.

• MBHBs with total mass around ' 107 M� at z ' 1 appear in the GW sky
few days before merging and display a rapid increase in the S/N just in the
last few hours. For these binaries the chirp mass and mass ratio is known
to a precision of 10% about 3 days before merger. The sky-position remains
highly uncertain across the entire inspiral phase. For these systems, the sky
localization can be reconstructed at ‘merger’ by exploiting the amplitude and
phase of the harmonics of the ringdown as shown in [210].

• Moving to higher redshift (1 < z ≤ 3) and to binaries with masses between
3× 105 M� and 3× 106 M�, the information on the chirp mass (mass ratio)
accumulates in the last few days (few hours) reaching 10% precision. A sim-
ilar trend is observed for the uncertainty in the luminosity distance. During
the inspiral phase, a median sky localization of 10 deg2 is reached about 1
hour before coalescence. The localization improves when the full signal is
recovered. MBHBs with total mass ' 107 M� are localized within 10 deg2 in
their inspiral phase 10 to 1 hour prior merger up to z . 1.3.

• The analysis post-merger of the full GW signal allows sky localization of
' 0.4 deg2 out to z ' 3, for those sources clustering around a mass interval
between ' 3 × 105 M� and ' 106 M� that could be detected by Athena at
mergers and in the post-merger phase.

MBHB mergers are expected to be rare events in the Universe and there are
large uncertainties in the predicted number of events (see [258, 259] for a recent
discussion). In this paper we focus on LISA’s ability to constrain source param-
eters without accounting for the expected number of events. To assess LISA’s
possibilities to detect EM counterparts, our simulations have to be convolved with
a realistic population of merging MBHBs. We defer this point to later studies.

Moreover we did not include any estimate about LISA ability to estimate the
time of coalescence of MBHB GW signals. This is an important information for
multimessenger potential and it will be subject of later studies.
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In this analysis we did not include neither the scheduled gaps in the data due to
LISA communication with Earth, antennas repointing or laser locking [18], nor the
gaps due to unexpected failures requiring system’s reboot. Gaps would degrade
our results especially in the early inspiral. However, when an event is detected, a
protected period might be established around the time of the merger reducing the
effect of the scheduled gaps since most of the S/N is built close to merger.

In a recent work Marsat et al. [211] reported the appearance of eight degen-
erate points in the posterior distribution for the sky position of the source when
performing Bayesian parameter estimation for inspiral-merger-ringdown signals.
These degeneracies can be broken close to merger with the inclusion of higher
harmonics and the frequency-dependence in the LISA response function (that is
what we observed with ptmcmc). The Fisher matrix approach is unable to track
these degenerate points so our results have to be considered conservative in the
early inspiral.

In this study we considered only LISA. If other space-born GW observatories
[260, 261] sensitive to the same frequencies joined LISA in the sky, they might help
further reducing the uncertainties , especially for the sky position of the source.

In summary, MBHBs with masses between ' 3 × 105 M� and ' 3 × 106 M�
at z ' 1 carry exquisite information on their astrophysical parameters during the
inspiral phase that can be inferred on the fly. The contribution of higher harmonics,
included in this investigation, make these unequal and relatively long-lived binaries
the best sources for coordinated searches of EM counterparts. GRMHD/radiative
transfer simulations should focus on these systems to enhance our knowledge on
their emerging spectra and variability.



Conclusion

In this Thesis I presented a detailed study and analysis of BHBs, ranging from the
light BHs expected as outcome of stellar evolution to the heavy MBHs residing at
the center of galaxies. I summarise the major findings of our work.

We investigated the necessary waveform accuracy to track SBHBs in their
inspiral in LISA. SBHBs are expected to perform thousand of cycles in band. As
a consequence, an accurate description of the waveform is necessary to prevent
biases in the parameter estimation. To simulate the signal we adopted an inspiral
waveform with spin precession and higher harmonics. Our waveform is computed
according to the PN formalism therefore, the condition on waveform accuracy can
be translated in the number of minimum PN order necessary to track the phase
of the signal.

We tested the effect of total mass, mass ratio and time to coalescence on the PN
accuracy requirement. We found that the main parameter affecting the waveform
precision is the time to coalescence while varying the total mass or mass ratio
produces null or negligible effects. As expected, systems closer to coalescence
require higher PN contributions: multiband SBHBs require up to the 3PN order,
while binaries at more than 5 yr from coalescence require < 1.5PN term.

We applied our code to a realistic population of SBHBs in LISA and concluded
that most of the detectable sources will be properly described by waveforms with
< 2PN corrections. Moreover each PN sub-populations is reasonably separate in
function of time to coalescence.

Our results will help the construction of reliable and fast template bank for the
parameter estimation of SBHBs in LISA.

We explored the possibility to form SBHBs above the pair-instability mass gap.
Starting from SFR, metallicity and IMF, we built a coherent model to describe
the formation of BHs above the mass gap, evolving single stars and combining
them in binaries. We employed different models and predicted the expected num-
ber of events for current and future interferometers. We initially checked that
our ‘below-gap’ sub-population was consistent with the results from more accu-
rate population synthesis code and that the detected rates from ‘across-gap’ and
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‘above-gap’ binaries were consistent with a non detection so far. For ground-based
detector, we expect LIGO/Virgo at design sensitivity to detect few events per year
in the optimistic scenario. ET should be able to detect ' 10 per year from the
‘across-gap’ and ‘above-gap’ sub-populations in the pessimistic scenario. These
rates increase to & 200 events in the optimistic model.

At low frequency, LISA is expect to detect ‘above-gap’ SBHBs even in the pes-
simistic scenario. In addition, ' 50% of detected events will be multiband sources
that will be detectable by LIGO/Virgo or ET. We also predict that the unresolved
‘across-gap’ and ‘above-gap’ sources might form a stochastic background for fre-
quency < 10−3 Hz comparable to the one expected from ‘below-gap’ binaries and
galactic sources.

Moving to MBHs, we performed a preliminary study to asses the possibility
to detect a premerger Doppler modulated X-ray emission in phase with the GW
signal. The emission is expected to be produced by the accreting gas in mini-disk
surrounding the merging MBHs while the modulation is the result of the orbital
motion of the binary. Detecting the modulated EM emission in phase with the
GW signal during the inspiral, would allow to pinpoint the exact source location
in the relatively large area recovered by LISA. To detect the EM emission, we
combined LISA and TAP, a proposed NASA mission with an X-Ray Telescope on
board. We found that the modulation detection will probably come from massive
unequal systems with inclination ' 45◦ respect to the line of sight. We also
explored different observational strategies and concluded that the most promising
one might be start TAP observations when LISA area drops below ' 20 deg2 in
order to free more time for other sources and avoid the observation of wide portion
of sky. Assuming fiducial rates for MBHBs, we estimated few detections over LISA
time mission.

We investigated LISA ability to constrain source parameter during the inspiral.
In particular we focus on the sky position, luminosity distance, chirp mass and
mass ratio estimates as function of time to coalescence. We simulated systems
with Mtot ∈ [105, 3 × 107] M� and z ∈ [0.1, 4] and run 104 realisations for each
combination of total mass and redshift.

At z = 1 light systems can be localized within ' [1, 100] deg2 one day before
merger. Increasing the total mass of the system reduces LISA ability to constrain
source parameters: MBHBs with 3× 106 M� are localized within ' [10, 103] deg2

few days before coalescence while MBHBs with 107 M� are basically not localized
until the very end of the inspiral. Including merger and ringdown leads to a
significant improvement of the sky localization down to ' 0.1 deg2. In particular
MBHBs between ' 3× 105 M� and ' 106 M� can be localised up to z ' 3 within
0.4 deg2. Chirp mass, mass ratio and luminosity distance are constrained at 1% at
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the end of inspiral. We extensively discussed multimessenger potential combining
LISA with future EM facilities like Athena or LSST.

We released the set of data on which these results are based on and provided an-
alytical formulas to fit the running uncertainties in the range Mtot ∈ [105, 107] M�
and z ∈ [0.3, 3]. Our formulas take few input parameters (the time left before
merger, the total mass and the redshift) and are in good agreements with the
simulations outcomes.
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Appendix A

Coefficients tables

In this appendix we report the coefficients for the formulas introduced in Chapter 6
to fit the uncertainties on sky position, luminosity distance, chirp mass and mass
ratio. In Tab. A.1 we report the coefficients for the uncertainties on sky position
and luminosity distance during the inspiral. Similarly, in Tab. A.2 we report
the chirp mass and mass ratio formula coefficients. In Tab. A.3 we report the
coefficients to fit the sky position and luminosity distance at merger for systems
with Mtot < 3× 106 M�. In Tab. A.4 we report the same coefficients for systems
with Mtot > 3× 106 M�.
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Table A.2: Same as Tab. A.1 for chirp mass and mass ratio uncertainties.
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Table A.3: Coefficients for the fit reported in Section 6.4.3 for the sky position and
luminosity distance uncertainties at merger for systems with Mtot ≤ 3× 106 M�.
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Table A.4: Coefficients for the fit reported in Section 6.4.3 for the sky position and
luminosity distance uncertainties at merger for systems with Mtot > 3× 106 M�.
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