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Abstract. DYNAMAP, a European Life project, provides a real-time image of the noise
generated by vehicular traffic in urban and suburban areas, developing a dynamic acoustic map
based on a limited number of low-cost permanent noise monitoring stations. Traffic noise data
within a urban pilot area (Area 9 of Milan), collected by 24 monitoring sensors, are used to
build-up a “real time” noise map. DYNAMAP is based on a statistical approach implying
that information captured by each sensor must be representative of an extended area, and
simultaneously uncorrelated from that of other stations. The study of the correlations among
the sensors represents a further contribution in refining the sampling network design.

1. Introduction

Noise mapping are becoming a necessary tool for evaluating the noise exposure of citizens in large
cities, as it has been recognized by the strict dose-harmful effect relationships reported both in
the Directive 2002/49/EC [1] and the 2018 WHO Environmental noise guidelines [2]. Strategic
Noise Maps have been implemented to enable effective diagnostics on the acoustic environment
and provide useful information for local intervention measures and policy-making [3, 4]. They
evaluate the overall exposure to noise in a given area due to different sources and, together
with Action Plans, provide a framework to manage environmental noise and its effects. They
represent the usual approach for noise prevention and control [5, 6]. Noise maps are recently
evolving towards a multi-source predictive approach [7, 8, 9, 10]. However, the introduction
of dynamic noise maps constituted a further evolution in the direction of better representing
the “real” noise exposure. To this end, the European project DYNAMAP [11] has developed a
dynamical acoustic map in two pilot areas: a large portion of the urban area of the city of Milan
(Area 9) [12] and the motorway surrounding Rome [13]. In both cases, one can predict traffic
noise in an extended area using a limited number of monitoring sensors and the knowledge of
traffic flows. Traffic noise data, collected by the monitoring stations, each one representative of
a number of roads within the zone sharing similar characteristics (e.g. daily traffic flow), are
used to build-up a “real time” noise map [14, 15, 16]. In order to study how traffic noise in
different parts of the city is correlated, we focused on the correlations among the 24 monitoring
units belonging to DYNAMAP’s sensor network.
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2. Network of sensors and dynamic noise mapping

A sample made of 93 (24-hour) noise profiles, distributed over the entire city of Milan, has
been analyzed by standard clustering techniques. The result of the analysis is shown in Fig.1
illustrating the two mean normalized noise cluster profiles, ¢ .
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Figure 1. Mean normalized cluster profiles, 6 , and the corresponding + standard deviation.

The two clusters present a similar trend during the daytime and behave differently during the
evening/night-time and the morning rush-hour. This result suggested the idea to describe the
noise profile of an arbitrary road as a combination of the two mean cluster profiles [17, 18, 19].
The generalization of the method to all non-monitored roads can be achieved thanks to the
knowledge of a non-acoustic parameter x available for the entire road network, which we found
to be the logarithm of the total traffic flow [20, 21, 22]. As we cannot describe the noise
behaviour of each single road, because our approach is based on statistics, we decided to divide
the entire range of non-acoustic parameter into six groups in such a way that each group contains
approximatly the same number of roads. For the effective implementation of DYNAMAP, we
have 24 noise monitoring stations deployed within the pilot area, and the roads are sorted into
six groups according to the value of = denoted as (g1, g2, - - -, g6) [23, 24]. Each group of roads is
represented by a single noise map. The latter is the result of two contributions: (a) a reference
static contribution derived by the calculation of CadnaA at the time interval T,.r = (08:00-
09:00), Legyef(Tref), and (b) a dynamic contribution from each group g; retrieved from 24
monitoring stations [25, 26]. The level Leq®(t) at location a at time ¢ can then be obtained by
energetically adding the local contribution of each base map with its variation d(g;) ,

6
Leq®(t) =10 - Log Z 1O(Leqref(giva)+5(gi))/10’ (1)
=1

where 0(g;) is obtained by averaging the sensors’ §(g; j) in each group [12] [11]. Here, §(g; ;) for
the generic monitoring sensor j, is obtained as, §(g;;)(t) = Leqg, ;)(t) — LeGre (g, j)(Tref)-
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3. Measurement campaign

The recorded noise time series from the 24 monitoring stations were analized using a specifically
developed detection algorithm [27, 28] in order to detect possible anomalous noise events, which
need to be erased in order to account just for traffic noise sources. Figure 2 contains the position
of the 24 monitoring stations together with the indication of the six groups of roads represented
by different colours.
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4. Noise correlations
In this section, we study the “contemporaneity” of noise fluctuations as recorded by the
monitoring stations. In order to describe the temporal correlation between two roads (x,y)
belonging to the same network, we will use the Pearson’s correlation coefficient, p, defined as
the covariance, cov(z,y), of the two variables divided by the product of their standard deviations,
Oz,y,

_ cov(z,y) @)

Plaw) = 5 5

being the covariance a measure of the joint variability of the two variables x and y and defined
as the mean value of the product of the deviations from their mean values [29].

4.1. Noise correlations among network monitoring stations
To study the noise correlations among the 24 sensors, we use the equivalent levels recorded
over a period of five consecutive days, and employ two normalization procedures: (P1) From
each time series, we remove the hourly median value. In this way, we obtain what we called a
de-trended time series. (P2) From each time series, we remove the mean Leq level calculated
between (06:00)-(22:00). We calculate the correlation coefficient p, Eq.(2), and took the median
value. The left panel in Fig.3 reports the median of the correlation coefficient among all the
de-trended monitoring stations (P1). _The reported band corresponds to the median absolute
deviation, MAD=| z; — X |, where X = median(X) and X = (z1,....,x,). The correlation
coefficient is rather low, around 0.1, for all the integratioin times considered (5 min, 10 min, 15
min, 30 min, 60 min). The results within each group g are reported in the right panel of Fig.3.
Procedure P1 removes all long period fluctuations, thus only high frequency fluctuations
remain. To analyse this feature, we calculated the power spectrum of a five-day time series
recorded at the monitoring station hb129. In this case, the normalizazion refers to a ”standard”
normalization, i.e. according to procedure P2. The resulting periodgram is shown in Fig.4.
We can clearly identify two regions: a long period regime (low frequencies) and a short period
regime (high frequencies). The former is associated with daily, morning and night long time
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Figure 3. Left panel: Median of the correlation coefficient among all the de-trended
monitoring stations normalized according to P1. The reported band corresponds to the median
absolute deviation, MAD. Right panel: Median of the correlation coefficient among the de-
trended monitoring stations within each group g; (P1). The dashed line is the median correlation
among all stations, and is included for comparison.
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Figure 4. Power spectrum of a five-days time series recorded by the monitoring station hb129.
Blue vertical lines refer to high frequency fluctuations. Red vertical lines refer to low frequency
fluctuations.

fluctuations (the maximum period is at 86400s corresponding to 1 day (the dashed red lines
are harmonics), and the second one regards time periods of the order 1 min (~75s, the dashed
blue lines in Fig.4 are harmonics). The features at high frequencies are the result of short time
scale fluctuations as those produced by the presence of traffic lights. Thus, the low correlation
coefficients at “high frequencies” are much likely due to the low strength of the spectral density
observed. For P2, the correlation coefficient increases considerably even at very low integration
times. At 1s integration time, the correlation coefficient is 0.4 going up to about 0.8 at 1h, as
displayed in the left panel of Fig.5 for all the monitoring stations. The coefficients within each
group are reported in the right panel of Fig.5. In both right panels of Figs. 3 and 5, group ¢;
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presents the lowest correlation. This is due to the group classification process based on the road
membership according to its non-acoustic parameter x. In fact, group ¢; contains roads with
x values within the interval (0 — 3), corresponding to a total daily flow of (1 — 1000) vehicles
and therefore with a large dynamic variability. This variability impacts considerebly on the
intra-group correlation over long time scales.
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Figure 5. Left panel: Median of the correlation coefficient among all the monitoring stations
normalized according to procedure P2. The reported band corresponds to the median absolute
deviation, MAD. Right panel: Median of the correlation coefficient among all the monitoring
stations normalized according to procedure P2. The dashed line is the median correlation among
all stations, and is included for comparison.

5. Discussion and Conclusions

Designing a dynamic noise mapping is a complex task owing to the large number of parameters
that need to be considered in order to describe with sufficient accuracy the traffic noise in
urban areas [12]. Here we stress that, in designing a DYNAMAP network, one needs to calcute
correlations among sensors at different times scales to optimze their locations. As traffic flow
is highly fluctuating on short time scales, we expect the correlations among monitoring sensors
to be very low. This is illustrated for the Milan network in Fig.3, using procedure P1 aimed at
detecting short time correlations. Indeed, only for group gs we observe an increase of correlations
over times 30-60 min, which could be a sign that some sensor locations within the group have
not been chosen appropriately. This behavior remains to be understood. On the other hand,
DYNAMAP requires a high correlation over long time scales to be accurate. In this sense, Fig.5
(using procedure P2 suitable for long time correlations) suggests that correlations are high at
long times, as required, but one loose correlations within a group over times shoter than 5 min.
This would imply that roads belonging to a group could undergo a group change.

To conclude, in this paper we studied the correlations among monitoring sensors that make up
the dynamic noise mapping of DYNAMAP. In general, in statistically-based noise mapping over
large areas, each monitoring sensor must provide as much independent information as possible,
as it represents also the noise of a broader area (group). For this reason, as a general rule, each
sensor should be uncorrelated with respect to the other sensors, both inside its own group and
within the whole network, over short time scales, and become highly correlated over long time
scales within each group to achieve optimal predictive results.
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