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Abstract. Let p be a prime. A continuous representation

θ : G→ GL1(Zp)

of a profinite group G is called a cyclotomic p-orientation if for all open
subgroups U ⊆ G and for all k, n ≥ 1 the natural maps

Hk(U,Zp(k)/pn) −→ Hk(U,Zp(k)/p)

are surjective. Here Zp(k) denotes the Zp-module of rank 1 with U -
action induced by θ|kU . By the Rost-Voevodsky theorem, the cyclotomic
character of the absolute Galois group GK of a field K is, indeed, a cyclo-
tomic p-orientation of GK. We study profinite groups with a cyclotomic
p-orientation. In particular, we show that cyclotomicity is preserved by
several operations on profinite groups, and that Bloch-Kato pro-p groups
with a cyclotomic p-orientation satisfy a strong form of Tits’ alternative
and decompose as semi-direct product over a canonical abelian closed
normal subgroup.
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1. Introduction

For a prime p let Zp denote the ring of p-adic integers. For a profinite group G,
we call a continuous representation θ : G→ Z×p = GL1(Zp) a p-orientation of
G and call the couple (G, θ) a p-oriented profinite group. Given a p-oriented
profinite group (G, θ), for k ∈ Z let Zp(k) denote the left Zp[[G]]-module

Both authors were partially supported by the PRIN 2015 “Group Theory and Applica-

tions”. The first-named author was also partially supported by the Israel Science Fundation
(grant No. 152/13).



2 C. Quadrelli and Thomas S. Weigel

induced by θk, namely, Zp(k) is equal to the additive group Zp and the left
G-action is given by

g · z = θ(g)k · z, g ∈ G, z ∈ Zp(k). (1.1)

Vice-versa, if M is a topological left Zp[[G]]-module which as an abelian pro-p
group is isomorphic to Zp, then there exists a unique p-orientation θ : G→ Z×p
such that M ' Zp(1).

The Zp[[G]]-module Zp(1) and the representation θ : G → Z×p are said
to be k-cyclotomic, for k ≥ 1, if for every open subgroup U of G and every
n ≥ 1 the natural maps

Hk(U,Zp(k)/pn) // Hk(U,Zp(k)/p) , (1.2)

induced by the epimorphism of Zp[[U ]]-modules Zp(k)/pn → Zp(k)/p, are
surjective. If Zp(1) (respectively θ) is k-cyclotomic for every k ≥ 1, then it
is called simply a cyclotomic Zp[[G]]-module (resp., cyclotomic p-orientation).

Note that Zp(1) is k-cyclotomic if, and only if, Hk+1
cts (U,Zp(k)) is a torsion free

Zp-module for every open subgroup U ⊆ G — here H∗cts denotes continuous
cochain cohomology as introduced by J. Tate in [34] (see § 2.1).

Cyclotomic modules of profinite groups have been introduced and stud-
ied by C. De Clercq and M. Florence in [5]. Previously J.P. Labute, in [16],
considered surjectivity of (1.2) in the case k = 1 and U = G — note that
demanding surjectivity for U = G only is much weaker than demanding it
for every open subgroup U ⊆ G, and this is what makes the definition of
cyclotomic modules truly new.

Let K be a field, and let K̄/K be a separable closure of K. If char(K) 6= p,
the absolute Galois group GK = Gal(K̄/K) of K comes equipped with a
canonical p-orientation

θK,p : GK −→ Aut(µp∞(K̄)) ' Z×p , (1.3)

where µp∞(K̄) ⊆ K̄× denotes the subgroup of roots of unity of K̄ of p-power
order. If p = char(K), we put θK,p = 1GK , the function which is constantly
1 on GK. The following result (cf. [5, Prop. 14.19]) is a consequence of the
positive solution of the Bloch-Kato Conjecture given by M. Rost and V. Vo-
evodsky with the “C. Weibel patch” (cf. [29, 36, 40]), which from now on we
will refer to as the Rost-Voevodsky Theorem.

Theorem 1.1. Let K be a field, and let p be prime number. The canonical
p-orientation θK,p : GK → Z×p is cyclotomic.

Theorem 1.1 provides a fundamental class of examples of profinite groups
endowed with a cyclotomic p-orientation. Bearing in mind the exotic charac-
ter of absolute Galois groups, it also provides a strong motivation to the study
of cyclotomically p-oriented profinite groups — which is the main purpose
of this manuscript. In fact, one may recover several Galois-theoretic state-
ments already for profinite groups with a 1-cyclotomic p-orientation — e.g.,
the only finite group endowed with a 1-cyclotomic p-orientation is the finite
group C2 of order 2, with non-constant 2-orientation θ : C2 → {±1} (cf. [11,
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Ex. 3.5]), and this implies the Artin-Schreier obstruction for absolute Galois
groups. In their paper, De Clercq and Florence formulated the “Smoothness
Conjecture”, which can be restated in this context as follows: for a p-oriented
profinite group, 1-cyclotomicity implies k-cyclotomicity for all k ≥ 1 (cf. [5,
Conj. 14.25]).

A p-oriented profinite group (G, θ) is said to be Bloch-Kato if the Fp-
algebra

H•(U, θ̂|U ) =
∐
k≥0

Hk(U,Fp(k)), (1.4)

where Fp(k) = Zp(k)/p, with product given by cup-product, is quadratic for
every open subgroup U of G. Note that if im(θ) ⊆ 1 + pZp and p 6= 2 then
G acts trivially on Zp(k)/p. By the Rost-Voevodsky Theorem (GK, θK,p) is,
indeed, Bloch-Kato.

For a profinite group G, let Op(G) denote the maximal closed normal
pro-p subgroup of G. A p-oriented profinite group (G, θ) has two particular
closed normal subgroups: the kernel ker(θ) of θ, and the θ-center of (G, θ),
given by

Zθ(G) =
{
x ∈ Op(ker(θ)) | gxg−1 = xθ(g) for all g ∈ G

}
. (1.5)

As Zθ(G) is contained in the center Z(ker(θ)) of ker(θ), it is abelian. The p-
oriented profinite group (G, θ) will be said to be θ-abelian, if ker(θ) = Zθ(G)
and if Zθ(G) is torsion free. In particular, for such a p-oriented profinite group
(G, θ), G is a virtual pro-p group (i.e., G contains an open subgroup which
is a pro-p group). Moreover, a θ-abelian pro-p group (G, θ) will be said to be
split if G ' Zθ(G) o im(θ).

As Zθ(G) is contained in ker(θ), by definition, the canonical quotient
Ḡ = G/Zθ(G) carries naturally a p-orientation θ̄ : Ḡ → Z×p , and one has the
following short exact sequence of p-oriented profinite groups.

{1} // Zθ(G) // G
π // Ḡ // {1} (1.6)

The following result can be seen as an analogue of the equal characteris-
tic transition theorem (cf. [31, §II.4, Exercise 1(b), p. 86]) for cyclotomically
p-oriented Bloch-Kato profinite groups.

Theorem 1.2. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato profinite
group. Then (1.6) splits, provided that cdp(G) <∞, and one of the following
conditions hold:

(i) G is a pro-p group,
(ii) (G, θ) is an oriented virtual pro-p group (see §4 ),

(iii) (Ḡ, θ̄) is cyclotomically p-oriented and Bloch-Kato.

In the case that (G, θ) is the maximal pro-p Galois group of a field K
containing a primitive pth-root of unity endowed with the p-orientation in-
duced by θK,p, Zθ(G) is the inertia group of the maximal p-henselian valuation
of K (cf. Remark 7.8).
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Note that the 2-oriented pro-2 group (C2×Z2, θ) may be θ-abelian, but
θ is never 1-cyclotomic (cf. Proposition 6.5). As a consequence, in a cyclo-
tomically 2-oriented pro-2 group every element of order 2 is self-centralizing.

For p odd it was shown in [25] that a Bloch-Kato pro-p group G satisfies
a strong form of Tits alternative, i.e., either G contains a closed non-abelian
free pro-p subgroup, or there exists a p-orientation θ : G → Z×p such that
G is θ-abelian. In Subsection 7.1 we extend this result to pro-2 groups with
a cyclotomic orientation, i.e., one has the following analogue of R. Ware’s
theorem (cf. [38]) for cyclotomically oriented Bloch-Kato pro-p groups (cf.
Fact 7.4).

Theorem 1.3. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p
group. If p = 2 assume further that im(θ) ⊆ 1 + 4Z2. Then one — and
only one — of the following cases hold:

(i) G contains a closed non-abelian free pro-p subgroup; or
(ii) G is θ-abelian.

It should be mentioned that for p = 2 the additional hypothesis is indeed
necessary (cf. Remark 5.8). The class of cyclotomically p-oriented Bloch-Kato
profinite groups is closed with respect to several constructions.

Theorem 1.4. (a) The inverse limit of an inverse system of cyclotomically
p-oriented Bloch-Kato profinite groups with surjective structure maps is
a cyclotomically p-oriented Bloch-Kato profinite group (cf. Corollary 3.3
and Corollary 3.6).

(b) The free profinite (resp. pro-p) product of two cyclotomically p-oriented
Bloch-Kato profinite (resp. pro-p) groups is a cyclotomically p-oriented
Bloch-Kato profinite (resp. pro-p) group (cf. Theorem 3.14).

(c) The fibre product of a cyclotomically p-oriented Bloch-Kato profinite
group (G1, θ1) with a split θ2-abelian profinite group (G2, θ2) is a cyclo-
tomically p-oriented Bloch-Kato profinite group (cf. Theorem 3.11 and
Theorem 3.13).

(d) The quotient of a cyclotomically p-oriented Bloch-Kato profinite group
(G, θ) with respect to a closed normal subgroup N ⊆ G satisfying N ⊆
ker(θ) and N a p-perfect group is a cyclotomically p-oriented Bloch-Kato
profinite group (cf. Proposition 4.6).

Some time ago I. Efrat (cf. [7, 8, 9]) has formulated the so-called ele-
mentary type conjecture concerning the structure of finitely generated pro-p
groups occurring as maximal pro-p quotients of an absolute Galois group.
His conjecture can be reformulated in the class of cyclotomically p-oriented
Bloch-Kato pro-p groups. Such a p-oriented pro-p group (G, θ) is said to be
indecomposable if Zθ(G) = {1} and if G is not a proper free pro-p product.
A positive answer to the following question would settle the elementary type
conjecture affirmatively.

Question 1.5. Let (G, θ) be a finitely generated, torsion free, indecomposable,
cyclotomically oriented Bloch-Kato pro-p group. Does this imply that G is a
Poincaré duality pro-p group of dimension cdp(G) ≤ 2?
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The paper is organized as follows. In § 2 we give some equivalent definitions

for cyclotomic p-orientations. In § 3 we study some operations of profinite groups

(inverse limits, free products and fibre products) in relation with the properties of

cyclotomicity and Bloch-Kato-ness, and we prove Theorem 1.4(a)-(b)-(c). In § 4

we study the quotients of cyclotomically p-oriented profinite groups over closed

normal p-perfect subgroups — in particular, we introduce oriented virtual pro-p

groups and we prove Theorem 1.4(d). In § 5 we study p-oriented profinite Poincaré

duality groups. In § 6 we focus on the presence of torsion in cyclotomically 2-

oriented pro-2 groups, and we prove that in a 1-cyclotomically 2-oriented pro-2

group every element of order 2 is self-centralizing (see Proposition 6.5). In § 7

we focus on the structure of cyclotomically p-oriented Bloch-Kato pro-p groups:

we prove Theorems 1.2 and 1.3, and show that in many cases the θ-center is the

maximal abelian closed normal subgroup (cf. Theorem 7.7).

2. Absolute Galois groups and cyclotomic p-orientations

Throughout the paper, we study profinite groups with a cyclotomic mod-
ule Zp(1). In contrast to [5, § 14], we refer to the associated representation
θ : G→ Z×p , rather than to the module itself. As we study several subgroups
of G associated to this cyclotomic module Zp(1), like ker(θ) and Zθ(G), this
choice of notation turns out to be convenient for our purposes. We follow
the convention as established in [25, 26] and call such representations “p-
orientations”.1 In the case that G is a pro-p group, the couple (G, θ) was
called a cyclotomic pro-p pair, in [9, § 3].

2.1. The connecting homomorphism δk

Let G be a profinite group, and let θ : G → Z×p be a p-orientation of G. For
every k ≥ 0 one has the short exact sequence of left Zp[[G]]-modules

0 // Zp(k)
p· // Zp(k) // Fp(k) // 0 , (2.1)

which induces the long exact sequence in cohomology

· · ·
p· // Hk

cts(G,Zp(k))
πk

// Hk(G,Fp(k))
δk

// Hk+1
cts (G,Zp(k))

p // Hk+1
cts (G,Zp(k)) // · · ·

(2.2)

with connecting homomorphism δk (cf. [34, §2]). In particular, δk is trivial if,

and only if, multiplication by p on Hk+1
cts (G,Zp(k)) is a monomorphism. This

is equivalent to Hk+1
cts (G,Zp(k)) being torsion free. Therefore, one concludes

the following:

1 For a Poincaré duality group G the representation associated to the dualizing module —

which coincides with the cyclotomic module in the case of a Poincaré duality pro-p group
of dimension 2 (cf. Theorem 5.7) — is sometimes also called the “orientation” of G.
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Proposition 2.1. Let (G, θ) be a p-oriented profinite group. For k ≥ 1 and
U ⊆ G an open subgroup the following are equivalent.

(i) The map (1.2) is surjective for every n ≥ 1.
(ii) The map πk : Hk

cts(U,Zp(k))→ Hk(U,Fp(k)) is surjective.

(iii) The connecting homomorphism δk : Hk(U,Fp(k)) → Hk+1
cts (U,Zp(k)) is

trivial.
(iv) The Zp-module Hk+1

cts (U,Zp(k)) is torsion free.

Proof. By the long exact sequence (2.2), the equivalences between (ii), (iii)
and (iv) are straightforward. For m ≥ n ≥ 1 let πkm,n denote the natural
maps

πkm,n : Hk(U,Zp(k)/pm) −→ Hk(U,Zp(k)/pn)

(if m =∞ we set p∞ = 0). If condition (i) holds then the system

(Hk(U,Zp/pn), πkm,n)

satisfies the Mittag-Leffler property. In particular,

Hk(U,Zp(k)) ' lim←−
n≥1

Hk(U,Zp(k)/pn)

(cf. [28] and [23, Thm. 2.7.5]). Thus πk = πkn,1 ◦ πk∞,n is surjective if, and

only if, πkn,1 is surjective for every n ≥ 1. Conversely, if πk is surjective then

πk = πkn,1 ◦ πk∞,n yields the surjectivity of πkn,1 for every n. �

2.2. Profinite groups of cohomological p-dimension at most 1

Let G be a profinite group, and let θ : G→ Z×p be a p-orientation of G. Then

H1
cts(G,Zp(0)) = Homgrp(G,Zp) (2.3)

is a torsion free abelian group for every profinite group G, i.e., θ is 0-
cyclotomic. If G is of cohomological p-dimension less or equal to 1, then
Hm+1

cts (G,Zp(m)) = 0 for all m ≥ 1 showing that θ is cyclotomic. Moreover,

H•(G, θ̂) is a quadratic Fp-algebra for every profinite group with cdp(G) ≤ 1
and for any p-orientation θ : G → Z×p . If G is of cohomological p-dimension
less or equal to 1, one has cdp(C) ≤ 1 for every closed subgroup C of G (cf.
[31, §I.3.3, Proposition 14]). Thus one has the following.

Fact 2.2. Let G be a profinite group with cdp(G) ≤ 1, and let θ : G→ Z×p be
a p-orientation for G. Then (G, θ) is Bloch-Kato and θ is cyclotomic.

2.3. The mth-norm residue symbol

Throughout this subsection we fix a field K and a separable closure K̄ of K.
For p 6= char(K), µp∞(K̄) is a divisible abelian group. By construction, one
has a canonical isomorphism

lim←−k≥0
(µp∞(K̄), pk) ' Zp(1)⊗Z Qp = Qp(1) (2.4)

and a short exact sequence 0→ Zp(1)→ Qp(1)→ µp∞(K̄)→ 0 of topological
left Zp[[GK]]-modules, where GK = Gal(K̄/K) is the absolute Galois group of
K.
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Let KM
m (K), m ≥ 0, denote the mth-Milnor K-group of K (cf. [10,

§24.3]). For p 6= char(K), J. Tate constructed in [34] a homomorphism of
abelian groups

hm(K) : KM
m (K) −→ Hm

cts(GK,Zp(m)), (2.5)

the so-called mth-norm residue symbol. Let KM
m (K)/p = KM

m (K)/pKM
m (K).

Around ten years later S. Bloch and K. Kato conjectured in [1] that the
induced map

hm(K)/p : KM
m (K)/p −→ Hm(GK,Fp(m)) (2.6)

is an isomorphism for all fields K, char(K) 6= p, and for all m ≥ 0. This
conjecture has been proved by V. Voevodsky and M. Rost with a “patch”
of C. Weibel (cf. [29, 36, 40]). In particular, since KM

• (K)/p is a quadratic
Fp-algebra and as h•(K)/p is a homomorphism of algebras, this implies that
the absolute Galois group of a field K is Bloch-Kato (cf. [10, §23.4]). The
Rost-Voevodsky Theorem has also the following consequence.

Proposition 2.3. Let K be a field, let GK denote its absolute Galois group,
and let θK,p : GK → Z×p denote its canonical p-orientation. Then θK,p is cy-
clotomic.

Although Proposition 2.3 might be well known to specialists, we add
a short proof of it. By Proposition 2.1, Proposition 2.3 in combination with
Theorem 1.4-(d) is equivalent to [5, Prop. 14.19].

Proof of Proposition 2.3. If char(K) = p, then cdp(GK) ≤ 1 (cf. [31, §II.2.2,
Proposition 3]), and the p-orientation θK,p is cyclotomic by Fact 2.2. So we
may assume that char(K) 6= p. In the commutative diagram

KM
k (K)

p //

hk

��

KM
k (K)

hk

��

π // KM
k (K)/p //

(hk)/p

��

0

Hk
cts(GK,Zp(k))

p // Hk
cts(GK,Zp(k))

α // Hk(GK,Fp(k))
β // Hk+1

cts (GK,Zp(k))

(2.7)
the map π is surjective, and (hk)/p is an isomorphism. Hence α must be
surjective, and thus β = 0, i.e.,

p : Hk+1
cts (GK,Zp(k)) −→ Hk+1

cts (GK,Zp(k))

is an injective homomorphism of Zp-modules. Thus Hk+1
cts (GK,Zp(k)) must

be p-torsion free. Any open subgroup U of GK is the absolute Galois group
of K̄U . Hence θK,p is cyclotomic, and this yields the claim. �

Remark 2.4. Let K be a number field, let S be a set of places containing all
infinite places of K and all places lying above p, and letGSK be the Galois group
of K̄S/K, where K̄S/K is the maximal extension of K̄/K which is unramified
outside S. Then θK,p : GK → Z×p induces a p-orientation θSk,p : GSK → Z×p .

However, it is well known (cf. [23, Prop. 8.3.11(ii)]) that,

H1(GSK, Ip(1)) ' H1(GSK,OSK̄)(p) ' cl(OSK)(p) (2.8)
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(for the definition of Ip(1) see §3), where cl(OSK) denotes the ideal class group
of the Dedekind domain OSK, and (p) denotes the p-primary component.

Hence (GSK, θ
S
K,p) is in general not cyclotomic (cf. Proposition 3.1).

3. Cohomology of p-oriented profinite groups

A homomorphism φ : (G1, θ1) → (G2, θ2) of two p-oriented profinite groups
(G1, θ1) and (G2, θ2) is a continuous group homomorphism φ : G1 → G2

satisfying θ1 = θ2 ◦ φ.

Let (G, θ) be a p-oriented profinite group. For k ∈ Z, put Qp(k) =
Zp(k) ⊗Zp

Qp, and also Ip(k) = Qp(k)/Zp(k), i.e., Ip(k) is a discrete left
G-module and — as an abelian group — a divisible p-torsion module.

Let Ip = Qp/Zp, and let ∗ = HomZp( , Ip) denote the Pontryagin dual-
ity functor. Then Ip(k)∗ is a profinite left Zp[[G]]-module which is isomorphic
to Zp(−k).

3.1. Criteria for cyclotomicity

The following proposition relates the continuous co-chain cohomology groups,
Galois cohomology and the Galois homology groups as defined by A. Brumer
in [3].

Proposition 3.1. Let (G, θ) be a p-oriented profinite group, let k be an integer,
and let m be a non-negative integer. Then the following are equivalent:

(i) Hm+1
cts (G,Zp(k)) is torsion free;

(ii) Hm(G, Ip(k)) is divisible;
(iii) Hm(G,Zp(−k)) is torsion free.

Proof. The equivalence (i)⇔(ii) is a direct consequence of [34, Prop. 2.3], and
(ii)⇔(iii) follows from [33, (3.4.5)]. �

The direct limit of divisible p-torsion modules is a divisible p-torsion
module. From this fact — and Proposition 3.1 — one concludes the following.

Corollary 3.2. Let (G, θ) be a cyclotomically p-oriented profinite group. Then
Hm(C, Ip(m)) is divisible for all m ≥ 0 and all C closed in G.

Proof. It suffices to show (ii)⇒(i). Let C be a closed subgroup of G. Then

Hm(C, Ip(m)) ' lim−→
U∈BC

Hm(U, Ip(m)),

where BC denotes the set of all open subgroups of G containing C (cf. [31,
§I.2.2, Proposition 8]). Hence Proposition 3.1 yields the claim. �

In combination with [3, Corollary 4.3(ii)], Proposition 3.1 implies the
following.
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Corollary 3.3. Let (I,�) be a directed set, let (G, θ) be a p-oriented profinite
group, and let (Ni)i∈I be a family of closed normal subgroups of G satisfying
Nj ⊆ Ni ⊆ ker(θ) for i � j such that

⋂
i∈I Ni = {1} and the induced p-

orientation θi : G/Ni → Z×p is cyclotomic for all i ∈ I. Then θ : G → Z×p is
cyclotomic.

Proof. Let U ⊆ G be a open subgroup of G. Hypothesis (iii) implies that the
group Hm(UNi/Ni,Zp(−m)) is torsion free for all i ∈ I (cf. Proposition 3.1).
Thus, by [3, Corollary 4.3(ii)], Hm(U,Zp(−m)) is torsion free, and hence, by
Proposition 3.1, θ : G→ Z×p is a cyclotomic p-orientation. �

3.2. The mod-p cohomology ring

An N0-graded Fp-algebra A =
∐
k≥0 Ak is said to be anti-commutative if

for x ∈ As and y ∈ At one has y · x = (−1)st · x · y. E.g., if V is an Fp-
vector space, the exterior algebra Λ•(V ) (cf. [18, Chapter 4]) is an N0-graded
anti-commutative Fp-algebra. Moreover, if G is a profinite group, then its
cohomology ring H•(G,Fp) is an N0-graded anti-commutative Fp-algebra (cf.
[23, Prop. 1.4.4]).

Let T(V ) =
∐
k≥0 V

⊗k denote the tensor algebra generated by the Fp-
vector space V . A N0-graded associative Fp-algebra A is said to be quadratic
if the canonical homomorphism ηA : T(A1)→ A is surjective, and

ker(ηA) = T(A1)⊗ ker(ηA2 )⊗T(A1) (3.1)

(cf. [24, § 1.2]). E.g., A = Λ•(V ) is quadratic.
If A and B are anti-commutative N0-graded Fp-algebras, then A ⊗ B

is again an anti-commutative N0-graded Fp-algebra, where

(x1 ⊗ y1) · (x2 ⊗ y2) = (−1)s2t1 · (x1 · x2)⊗ (y1 · y2), (3.2)

for x1 ∈ As1 , x2 ∈ As2 y1 ∈ Bt1 , y2 ∈ Bt2 . In particular, if A and B are
quadratic, then A⊗B is quadratic as well.

A direct set (I,�) maybe considered as a small category with objects
given by the set I and precisely one morphism ιi,j for all i � j, i, j ∈ I, i.e.,
ιi,i = idi. One has the following.

Fact 3.4. Let F be a field, let (I,�) be a direct system, and let A : (I,�
) → Fqalg be a covariant functor with values in the category of quadratic
F-algebras. Then B = lim−→i∈A A(i) is a quadratic F-algebra.

Let (G, θ) be a p-oriented profinite group, and let θ̂ : G → F×p be the

map induced by θ. If θ̂ = 1G, then the mod-p cohomology ring of H•(G, θ̂)
coincides with H•(G,Fp) (see (1.4)), and hence it is anti-commutative. Fur-

thermore, if θ̂ 6= 1G and G◦ = ker(θ̂), restriction

res•G,G◦ : H•(G, θ̂) −→ H•(G◦,Fp) (3.3)

is an injective homomorphism of N0-graded algebras. Hence the mod-p coho-
mology ring H•(G, θ) is anti-commutative. In particular, if M(k) denotes the
homogeneous component of the left Fp[G/G◦]-moduleM , on whichG/G◦ acts
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by θ̂k, the Hochschild-Serre spectral sequence (cf. [23, § II.4, Exercise 4(ii)])
shows that

Hk(G, θ̂) = Hk(G◦,Fp)(−k). (3.4)

From [31, §I.2.2, Prop. 8] and Fact 3.4 one concludes the following.

Corollary 3.5. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato.

Then H•(C, θ̂|C) is quadratic for all C closed in G.

Corollary 3.6. Let (I,�) be a directed set, let (G, θ) be a p-oriented profinite
group, and let (Ni)i∈I be a family of closed normal subgroups of G, Nj ⊆
Ni ⊆ ker(θ) for i � j, such that

⋂
i∈I Ni = {1} and (G/Ni, θ̂Ni

) is Bloch-
Kato. Then (G, θ) is Bloch-Kato.

Remark 3.7. Let G be a pro-p group with minimal presentation

G = 〈x1, . . . , xd | [x1, x2][[x3, x4], x5] = 1 〉 ,

with d ≥ 5. In [22, Ex. 7.3] and [21, § 4.3] it is shown that G does not occur
as maximal pro-p Galois group of a field containing a primitive pth-root of
unity, relying on the properties of Massey products. It would be interesting
to know whether G admits a cyclotomic p-orientation θ : G→ Z×p such that
(G, θ) is Bloch-Kato. By Theorem 1.1, a negative answer would provide a
“Massey-free” proof of the aforementioned fact.

3.3. Fibre products

Let (G1, θ1), (G2, θ2) be p-oriented profinite groups. The fibre product (G, θ) =
(G1, θ1) � (G2, θ2) denotes the pull-back of the diagram

G1
θ1 // Z×p

G

OO

//

θ
>>

G2

θ2

OO
(3.5)

Remark 3.8. By restricting to the suitable subgroups if necessary, for the
analysis of a fibre product (G, θ) = (G1, θ1) � (G2, θ2) one may assume that
im(θ1) = im(θ2). In particular, if (G2, θ2) is split θ2-abelian and G2 ' A o
im(θ2) for some free abelian pro-p group A, then G ' AoG1 with gag−1 =
aθ1(g) for all a ∈ A and g ∈ G1.

Fact 3.9. Let (G, θ) be a p-oriented profinite group, and let N be a finitely
generated non-trivial torsion free closed subgroup of Zθ(G), i.e., N ' Zp(1)r

as left Zp[[G]]-modules for some r ≥ 1. Then for k ≥ 0 one has

H1(N, Ip(k)) ' Ip(k − 1)r (3.6)

as left Zp[[G]]-module.

The following property will be useful for the analysis of fibre products.
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Lemma 3.10. Let (G1, θ) be a cyclotomically p-oriented profinite group, and
set (G, θ) = (G1, θ1) � (G2, θ2), where (G2, θ2) is split θ2-abelian with Z =
Zθ2(G2). Let π : G → G1 be the canonical projection, and let U ⊆ G be an
open subgroup. Then U ' (Z ∩ U) o π(U).

Proof. Without loss of generality we may assume that Z ' Zp, so that Z ∩
U = Zp

k

for some k ≥ 0. It suffices to show that there exists an open subgroup
U1 of U satisfying Z ∩ U1 = {1} and π(U1) = π(U).

By choosing a section σ : G1 → G (see Remark 3.8), one has a continuous
homomorphism τ = σ ◦ π : G → G1 and a continuous function η : G → Z
such that each g ∈ G can be uniquely written as g = η(g) ·τ(g). In particular,

for h, h1, h2 ∈ U and z ∈ Z ∩ U = Zp
k

one has

η(z · h) = z · η(h) and η(h1 · h2) = η(h1) · h1η(h2). (3.7)

Let ηU = χ ◦ η|U , where χ : Z → Z/Zp
k

is the canonical projection. By (3.7),

ηU defines a crossed-homomorphism η̃U : Ū → Z/Zp
k

, where Ū = U/Zp
k

.
As Ū is canonically isomorphic to an open subgroup of G1, (Ū , θ1|Ū ) is cy-
clotomically p-oriented. (Note that Z ' Zp(1) as Zp[[U ]]-modules.) Hence,
H1

cts(Ū ,Zp(1)) → H1(Ū ,Zp(1)/pk) is surjective by Proposition 2.1, and the
snake lemma applied to the commutative diagram

0 // B1(Ū , Z) //

����

Z1(Ū , Z) //

��

H1(Ū ,Zp(1)) //

����

0

0 // B1(Ū , Z/Zp
k

) // Z1(Ū , Z/Zp
k

) // H1(Ū ,Zp(1)/pk) // 0

(3.8)

where the left-side and right-side vertical arrows are surjective, shows that

Z1(Ū , Z)→ Z1(Ū , Z/Zp
k

) is surjective. Thus there exists η◦ ∈ Z1(Ū , Z) such
that η̃U = χ◦η◦. It is straightforward to verify that U1 = {η◦(h̄)·σ(h̄) | h̄ ∈ Ū}
is an open subgroup of G1 satisfying the requirements. �

Theorem 3.11. Let (G1, θ1) be a cyclotomically p-oriented profinite group,
and let (G2, θ2) be split θ2-abelian. Then (G1, θ1)� (G2, θ2) is cyclotomically
p-oriented.

Remark 3.12. (a) If p is odd, then every θ-abelian profinite group (G, θ) is
split. However, a 2-oriented θ-abelian profinite group (G, θ) is split if, and
only if, it is cyclotomically 2-oriented (cf. Proposition 6.7).
(b) If (G, θ) is θ-abelian and H ⊆ G is a closed subgroup, then (H, θ|H) is
also θ-abelian.

Proof of Theorem 3.11. Put (G, θ) = (G1, θ1) � (G2, θ2) and Z = Zθ2(G2).
We may also assume that im(θ1) = im(θ2). As (G2, θ2) is split θ2-abelian,
one has G = Z oG1.

We first show the claim for Z ' Zp. Let U be an open subgroup of
G. By Lemma 3.10, (U, θ|U ) ' (U1, θ̄1) � (U2, θ̄2) where U1 is isomorphic to
an open subgroup of G1 and (U2, θ̄2) is split θ̄2-abelian with N = ker(θ̄2)
open in Z. As cdp(N) = 1, one has Hm(N, Ip(k)) = 0 for m ≥ 2 and k ≥ 0.
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Therefore, the E2-term of the Hochschild-Serre spectral sequence associated
to the short exact sequence of profinite groups

{1} // N // U // U1
// {1} (3.9)

and evaluated on the discrete Zp[[U ]]-module Ip(k), is concentrated on the first
and the second row. In particular, ds,tr = 0 for r ≥ 3. As (3.9) splits, and as

Ip(k) is inflated from U1, one has Es,02 (Ip(k)) = Es,0∞ (Ip(k)) for s ≥ 0 (cf. [23,

Prop. 2.4.5]). Hence ds,t2 = 0 for all s, t ≥ 0, i.e., Es,t2 (Ip(k)) = Es,t∞ (Ip(k)),
and the spectral sequence collapses. Thus, using the isomorphism (3.6), for
every k ≥ 1 one has a short exact sequence

0 // Hk(U1, Ip(k))
inf // Hk(U, Ip(k)) // Hk−1(U1, Ip(k − 1)) // 0,

(3.10)
where the right- and left-hand side are divisible p-torsion modules. As such
Zp-modules are injective, (3.10) splits showing thatHk(U, Ip(k)) is p-divisible.
Therefore, by Proposition 3.1, (G, θ) is cyclotomic.

Thus, by induction the claim holds for all split θ2-abelian groups (G2, θ2)
satisfying rk(Zθ2(G2)) < ∞. In general, as Z is a torsion free abelian pro-p
group, there exists an inverse system (Zi)i∈I of closed subgroups of Z such
that Z/Zi is torsion free, of finite rank, and Z = lim←−i∈I Z/Zi. Since Zi is

normal in G and

(G/Zi, θ̄) ' (G1, θ1) � (G2/Zi, θ̄2)

is cyclotomically p-oriented, Corollary 3.3 yields the claim. �

The following theorem can be seen as a generalization of a result of
A. Wadsworth [37, Thm. 3.6].

Theorem 3.13. Let (Gi, θi), i = 1, 2, be p-oriented profinite groups satisfying
im(θ1) = im(θ2). Assume further that (G2, θ2) is split θ2-abelian. Then for
(G, θ) = (G1, θ1) � (G2, θ2) one has that

H•(G, θ̂) ' H•(G1, θ̂1)⊗ Λ• ((ker(θ2)/ker(θ2)p)∗) . (3.11)

Moreover, if (G1, θ1) is Bloch-Kato, then (G, θ) is Bloch-Kato.

Proof. Assume first that d(Zθ2(G2)) is finite. If d(Zθ2(G2)) = 1 then one ob-
tains the isomorphism (3.11) from [37, Thm. 3.1], which uses the Hochschild-
Serre spectral sequence associated to the short exact sequence of profinite
groups

{1} // Zθ2(G2) // G // G/Zθ2(G2) // {1}

and evaluated on the discrete Zp[[G]]-module Fp(k), to compute H•(G, θ̂). If
d(Zθ2(G2)) > 1, then applying induction on d(Zθ2(G2)) yields the isomor-
phism (3.11). Finally, if Zθ2(G2) is not finitely generated, then a limit argu-
ment similar to the one used in the proof Theorem 3.11 and Corollary 3.6
yield the claim. �
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3.4. Coproducts

For two profinite groups G1 and G2 let G = G1qG2 denote the coproduct (or
free product) in the category of profinite groups (cf. [27, § 9.1]). In particular,
if (G1, θ1) and (G2, θ2) are two p-oriented profinite groups, the p-orientations
θ1 and θ2 induce a p-orientation θ : G→ Z×p via the universal property of of
the free product. Thus, we may interpret q as the coproduct in the category
of p-oriented profinite groups (cf. [9, §3]). The same applies to qp — the
coproduct in the category of pro-p groups.

Theorem 3.14. Let (G1, θ1) and (G2, θ2) be two cyclotomically p-oriented
profinite groups. Then their coproduct (G, θ) = (G1, θ1) q (G2, θ2) is cyclo-
tomically oriented. Moreover, if (G1, θ1) and (G2, θ2) are Bloch-Kato, then
(G, θ) is Bloch-Kato.

Proof. Let (U, θ|U ) be an open subgroup of (G, θ). Then, by the Kurosh
subgroup theorem (cf. [27, Thm. 9.1.9]),

U '
∐
s∈S1

(sG1 ∩ U)q
∐
t∈S2

(tG2 ∩ U)q F, (3.12)

where yGi = yGiy
−1 for y ∈ G. The sets S1 and S2 are sets of representatives

of the double cosets U\G/G1 and U\G/G2, respectively. In particular, the
sets S1 and S2 are finite, and F is a free profinite subgroup of finite rank.

Put Us = sG1 ∩ U for all s ∈ S1, and Vt = tG2 ∩ U for all t ∈ S2. By
[23, Thm. 4.1.4], one has an isomorphism

Hk(U, Ip(k)) '
⊕
s∈S1

Hk(Us, Ip(k))⊕
⊕
t∈S2

Hk(Vt, Ip(k)), (3.13)

for k ≥ 2, and an exact sequence

M
α // H1(U, Ip(1)) // M ′ // 0. (3.14)

If (G1, θ1) and (G2, θ2) are cyclotomically p-oriented, then, by hypothesis and
(3.13), Hk(U, Ip(k)) is a divisible p-torsion module for k ≥ 2. In (3.14), the
module M is a homomorphic image of a p-divisible p-torsion module, and the
module M ′ is the direct sum of p-divisible p-torsion modules, showing that
H1(U, Ip(1)) is divisible. Hence, by Proposition 3.1 and Corollary 3.3, (G, θ)
is cyclotomically p-oriented.

Assume that (G1, θ1) and (G2, θ2) are Bloch-Kato. Then — for U as in
(3.12) — one has by (3.13) and (3.14) that

H•(U, θ̂|U ) ' A⊕
⊕
s∈S1

H•(Us, θ̂|Us
)⊕

⊕
t∈S2

H•(Vt, θ̂|Vt
)⊕H•(F, θ̂|F ) (3.15)

where A is a quadratic algebra, and ⊕ denotes the direct sum in the category

of quadratic algebras (cf. [24, p. 55]). In particular, H•(U, θ̂|U ) is quadratic.
�

For pro-p groups one has also the following.
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Theorem 3.15. Let (G1, θ1) and (G2, θ2) be two cyclotomically oriented pro-p
groups. Then their coproduct (G, θ) = (G1, θ1) qp (G2, θ2) is cyclotomically
oriented. Moreover, if (G1, θ1) and (G2, θ2) are Bloch-Kato, then (G, θ) is
Bloch-Kato.

Proof. The Kurosh subgroup theorem is also valid in the category of pro-p
groups with qp replacing q (cf. [27, Thm. 9.1.9]), and (3.13) and (3.14) hold
also in this context (cf. [23, Thm. 4.1.4]). Hence the proof for cyclotomicity
can be transferred verbatim. The Bloch-Kato property was already shown in
[25, Thm. 5.2]. �

4. Oriented virtual pro-p groups

We say that a p-oriented profinite group (G, θ) is an oriented virtual pro-p
group if ker(θ) is a pro-p group. In particular, G is a virtual pro-p group.
Since Z×2 is a pro-2 group, every oriented virtual pro-2 group is in fact a

pro-2 group. For p 6= 2 let θ̂ : G→ Fp× be the homomorphism induced by θ,

and put G◦ = ker(θ̂). Then G/G◦ ' im(θ̂) is a finite cyclic group of order
co-prime to p. The profinite version of the Schur-Zassenhaus theorem (cf. [14,
Lemma 22.10.1]) implies that the short exact sequence of profinite groups

{1} // G◦ // G
θ̂ // im(θ̂) //

σ

��
{1} (4.1)

splits. Indeed, if C ⊆ G is a p′-Hall subgroup of G, then π|C : C → im(θ̂) is

an isomorphism, and σ = (π|C)−1 is a canonical section for θ̂.
Note that Z×p = F×p × Ξp, where Ξp = Op(Z×p ) is the pro-p Sylow sub-

group of Z×p , and where we denoted by F×p also the image of the Teichmüller

section τ : F×p → Z×p . Hence a p-orientation θ : G → Z×p on G defines a ho-

momorphism θ̂ : G → F×p and also a homomorphism θ∨ : G → Ξp. On the

contrary a pair of continuous homomorphisms (θ̂, θ∨), where θ̂ : G→ F×p and

θ∨ : G→ Ξp, defines a p-orientation θ : G→ Z×p given by θ(g) = θ̂(g) · θ∨(g)
for g ∈ G.

Fact 4.1. Let θ̂ : G→ F×p , σ : im(θ̂)→ G be homomorphisms of groups satisfy-

ing (4.1). A homomorphism θ◦ : G◦ → Ξp defines a p-orientation θ : G→ Z×p ,

provided for all c ∈ im(θ̂) and for all g ∈ G◦ one has

θ◦(σ(c) · g · σ(c)−1) = θ◦(g) (4.2)

Proof. By (4.1), one has G = G◦ oβ Σ̄, where Σ̄ = im(θ̂), β : Σ̄ → Aut(G◦)
and β(c) is left conjugation by σ(c) for c ∈ Σ̄. Thus, by (4.2), the map
θ∨ : G → Ξp given by θ∨(g, c) = θ◦(g) is a continuous homomorphism of
groups, and (ι, θ∨), where ι : Σ̄ → F×p is the canonical inclusion, defines a
p-orientation of G. �
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Let (G, θ) be an oriented virtual pro-p group satisfying (4.1). As θ : G→
Z×p is a homomorphism onto an abelian group one has

θ(c · g · c−1) = θ(g) (4.3)

for all c ∈ C = im(σ) and g ∈ G. Thus, if ic ∈ Aut(G) denotes left conjugation
by c ∈ C, one has

θ = θ ◦ ic (4.4)

for all c ∈ C.

4.1. Oriented Σ̄-virtual pro-p groups

From now on let p be odd, and fix a subgroup Σ̄ of F×p . An oriented virtual pro-

p group (G, θ) is said to be an oriented Σ̄-virtual pro-p group, if im(θ̂) = Σ̄.
Hence, by the previous subsection, for such a group one has a split short
exact sequence

{1} // G◦ // G
θ̂ // Σ̄ //

σ
||

{1} . (4.5)

By abuse of notation, we consider from now on (G, θ, σ) as an oriented Σ̄-
virtual pro-p group. As the following fact shows there is also an alternative
form of a Σ̄-virtual pro-p group.

Fact 4.2. Let Σ̄ be a subgroup of F×p . Let Q be a pro-p group, let θ◦ : Q→ Ξp
be a continuous homomorphism, and let γQ : Σ̄ → Autc(Q) be a homomor-
phism of groups, where Autc( ) is the group of continuous automorphisms,
satisfying

θ◦(γQ(c)(q)) = θ◦(q), (4.6)

for all q ∈ Q and c ∈ Σ̄, then (Q oγQ Σ̄, θ, ι) is an oriented Σ̄-virtual pro-p

group, where ι : Σ̄ → Q oγQ Σ̄ is the canonical map, and θ : Q oγQ Σ̄ → Z×p
is the homomorphism induced by θ◦ (cf. Fact 4.1).

If (G1, θ1, σ1) and (G2, θ2, σ2) are oriented Σ̄-virtual pro-p groups, a
continuous group homomorphism φ : G1 → G2 is said to be a morphism of
Σ̄-virtual pro-p groups, if σ2 = φ◦σ1 and θ1 = θ2 ◦φ. Similarly, if (Q, θ◦Q, γQ)

and (R, θ◦R, γR) are Σ̄-virtual pro-p groups in alternative form (cf. Fact 4.2),
the continuous group homomorphism φ : Q → R is a homomorphims of Σ̄-
virtual pro-p groups provided θR ◦ φ = θQ and if for all c ∈ Σ̄ and for all
q ∈ Q one has that

γR(c)(φ(q)) = φ(γQ(c)(q)). (4.7)

With this slightly more sophisticated set-up the category of Σ̄-virtual
pro-p groups admits coproducts. In more detail, let (Q, θ◦Q, γQ) and (R, θ◦R, γR)

be Σ̄-virtual pro-p groups in alternative form. Put X = Q qp R. Then for
every element c ∈ Σ̄ there exists an element δ(c) ∈ Aut(X) making the
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diagram

Q
ι1 //

γQ(c)

��

X

δ(c)

��

R
ι2oo

γR(c)

��
Q

ι1 // X R
ι2oo

(4.8)

commute. Since Ξp is a pro-p group, there exists a continuous group homo-
morphism θ◦ : X → Ξp making the lower two rows of the diagram

Q
jQ //

γQ(c)

��

X

δ(c)

��

R
jRoo

γR(c)

��
Q

jQ //

θ◦Q ��

X

θ◦

��

R
jRoo

θ◦R��
Ξp

(4.9)

commute. Since θ◦Q/R = θ◦Q/R◦γQ/R(c) for all c ∈ Σ̄, one has θ◦ = θ◦◦δ(c) for

all c ∈ Σ̄. The commutativity of the diagram (4.9) yields that the group ho-
momorphisms jQ : (Q, θ◦Q, γQ) → (X, θ◦, δ) and jR : (R, θ◦R, γR) → (X, θ◦, δ)

are homomorphisms of oriented Σ̄-virtual pro-p groups in alternative form.
Moreover, one has the following.

Proposition 4.3. The oriented Σ̄-virtual pro-p group (X, θ◦, δ) together with
the homomorphisms jQ : Q → X, and jR : R → X is a coproduct in the
category of oriented Σ̄-virtual pro-p groups.

Proof. Let (H, θH , γH) be an oriented Σ̄-virtual pro-p group in alternative
form, and let φQ : Q → H and φR : R → H be homomorphisms of oriented
Σ̄-virtual pro-p groups in alternative form. Then there exists a unique homo-
morphism of pro-p groups φ : X → H making the diagram concentrated on
the second and third row of

Q
jQ //

γQ(c)

��

X

δ(c)

��

R
jRoo

γR(c)

��
Q

θ◦Q

""

jQ //

φQ   

X

φ

��

R

θ◦R

||

jRoo

φR~~
H

θ◦H
��

Ξp

(4.10)

commute. Since φQ/R ◦ γQ/R(c) = γH(c) ◦ φQ/R for all c ∈ Σ̄, the uniqueness

of φ implies that φ ◦ δ(c) = γH(c) ◦ φ for all c ∈ Σ̄. As φQ : Q → H and
φR : R → H are homomorphisms of Σ̄-virtual pro-p groups, one has that
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θ◦Q/R = θ◦H ◦ φQ/R. This implies that (θ◦H ◦ φ) ◦ jQ/R = θ◦Q/R, and from the

construction of θ◦ : X → Ξp one concludes that θ◦ = θ◦H ◦ φ. This implies
that φ is a homomorphism of oriented Σ̄-virtual pro-p groups. �

Example 4.4. For p = 3 set Σ̄ = F×3 = {1, s}. Then the free product

(Z×3 , id)qΣ̄ (Z×3 , id) is isomorphic to F o Σ̄, where F = 〈x, y 〉 is a free pro-3
group of rank 2 and the induced isomorphism s : F → F satisfies s(x) = x−1,
s(y) = y−1.

Proposition 4.5. Let (Q, θQ, γQ) be an oriented Σ̄-virtual pro-p group, and
let Z be a normal Σ̄-invariant subgroup of Q isomorphic to Zp, which is not
contained in the Frattini subgroup Φ(Q) = cl([Q,Q]Qp) of Q. Then there
exists a maximal closed subgroup M of Q which is Σ̄-invariant, such that
M · Z = Q and M ∩ Z = Zp.

Proof. Let Q̄ = Q/Φ(Q). Then γQ induces a homomorphism γ̄Q̄ : Σ̄ →
Autc(Q̄) making Q̄ a compact Fp[Σ̄]-module. Let Ω = Homc

Σ̄(Q̄,Fp), where
Fp denotes the finite field Fp with canonical left Σ̄-action. By Pontryagin
duality, one has

⋂
ω∈Ω ker(ω) = {0}. Thus, by hypothesis, there exists ψ ∈ Ω

such that ψ|Z 6= 0. Hence M = ker(ψ) has the desired properties. �

4.2. The maximal oriented virtual pro-p quotient

For a prime p and a profinite groupG we denote byOp(G) the closed subgroup
of G generated by all Sylow pro-` subgroups of G, ` 6= p. In particular, Op(G)
is p-perfect, i.e., H1(Op(G),Fp) = 0, and one has the short exact sequence

{1} // Op(G) // G // G(p) // {1} ,

where G(p) denotes the maximal pro-p quotient of G.
For a p-oriented profinite group (G, θ), we denote by

G(θ) = G/Op(G◦)

the maximal p-oriented virtual pro-p quotient of G (for the definition of G◦

see the beginning of § 4). By construction, it carries naturally a p-orientation
θ : G(θ)→ Z×p inherited by G.

Note that if im(θ) is a pro-p group, then G◦ = G, and G(θ) = G(p).

Proposition 4.6. Let (G, θ) be a p-oriented Bloch-Kato profinite group, and
let O ⊆ G be a p-perfect subgroup such that O ⊆ ker(θ). Then the inflation
map

infk(M) : Hk
cts(G/O,M) −→ Hk

cts(G,M), (4.11)

is an isomorphism for all k ≥ 0 and all M ∈ ob(Zp[[G/O]]prf), where Zp[[G/O]]prf
denotes the abelian category of profinite left Zp[[G/O]]-modules.

Proof. As O ⊆ ker(θ), Zp(k) is a trivial Zp[[O]]-module for every k ∈ Z. Since
O is p-perfect, and as the Fp-algebra H•(O,Fp) is quadratic, H•(O,Fp) is
1-dimensional concentrated in degree 0. By Pontryagin duality, this is equiva-
lent to Hk(O,Fp) = 0 for all k > 0, where Hk(O, ) denotes Galois homology
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as defined by A. Brumer in [3]. Thus, the long exact sequence in Galois
homology implies that Hk(O,Zp) = 0 for all k > 0.

Let (P•, ∂•, ε) be a projective resolution of the trivial left Zp[[G]]-module
in the category Zp[[G]]prf . For a projective left Zp[[G]]-module P ∈ ob(Zp[[G]]prf)
define

def(P ) = defGG/O(P ) = Zp[[G/O]] ⊗̂G P, (4.12)

where ⊗̂ denotes the completed tensor product as defined in [3]. Then, by
the Eckmann-Shapiro lemma in homology, one has that

Hk(def(P•),def(∂•)) ' Hk(O,Zp). (4.13)

Hence, by the previously mentioned remark, (def(P•),def(∂•)) is a projective
resolution of Zp in the category Zp[[G/O]]prf .

Let M ∈ ob(Zp[[G/O]]prf). Then for every projective profinite left Zp[[G]]-
module P , one has a natural isomorphism

HomG/O(def(P ),M) ' HomG(P,M). (4.14)

Hence HomG/O(def(P•),M) and HomG(P•,M) are isomorphic co-chain com-
plexes, and the induced maps in cohomology — which coincide with inf•(M)
— are isomorphisms. �

Corollary 4.7. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato,
respectively cyclotomically oriented. Then the maximal oriented virtual pro-p
quotient (G(θ), θ) is Bloch-Kato, respectively cyclotomically oriented.

5. Profinite Poincaré duality groups and p-orientations

5.1. Profinite Poincaré duality groups

Let G be a profinite group, and let p be a prime number. Then G is called a
p-Poincaré duality group of dimension d, if

(PD1) cdp(G) = d;
(PD2) |Hk

cts(G,A)| < ∞ for every finite discrete left G-module A of p-power
order;

(PD3) Hk
cts(G,Zp[[G]]) = 0 for k 6= d, and Hd

cts(G,Zp[[G]]) ' Zp.
Although quite different at first glance, for a pro-p group our definition of
p-Poincaré duality coincides with the definition given by J-P. Serre in [31,
§I.4.5]. However, some authors prefer to omit the condition (PD2) in the def-
inition of a p-Poincaré duality group (cf. [23, Chap. III, §7, Definition 3.7.1]).

For a profinite p-Poincaré duality group G of dimension d the profinite
right Zp[[G]]-module DG = Hd

cts(G,Zp[[G]]) is called the dualizing module.
Since DG is isomorphic to Zp as a pro-p group, there exists a unique p-
orientation ðG : G→ Z×p such that for g ∈ G and z ∈ DG one has

z · g = z · ðG(g) = ðG(g) · z.

We call ðG the dualizing p-orientation.
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Let ×DG denote the associated profinite left Zp[[G]]-module, i.e., setwise
×DG coincides with DG and for g ∈ G and z ∈ ×DG one has

g · z = z · g−1 = ðG(g−1) · z.

For a profinite p-Poincaré duality group of dimension d the usual standard ar-
guments (cf. [2, §VIII.10] for the discrete case) provide natural isomorphisms

TorGk (DG, ) ' Hd−k
cts (G, ),

ExtkG(×DG, ) ' Hd−k(G, ),
(5.1)

where TorG• ( , ) denotes the left derived functor of ⊗̂G , and Ext•G( , )
denotes the right derived functors of HomG( , ) in the category Zp[[G]]prf
(cf. [3]).

If A is a discrete left G-module which is also a p-torsion module, then
A∗ carries naturally the structure of a left (profinite) Zp[[G]]-module (cf. [27,
p. 171]). Then, by [31, § I.3.5, Proposition 17], Pontryagin duality and [33,
(3.4.5)], one obtains for every finite discrete left Zp[[G]]-module A of p-power
order that

Hd
cts(G,A) ' HomG(A, IG)∗ ' HomG(I∗G, A

∗)∗ ' (I∗G)× ⊗̂GA, (5.2)

where IG denotes the discrete left dualizing module of G (cf. [31, §I.3.5]). In
particular, by (5.1), DG ' (I∗G)×.

Example 5.1. Let GK be the absolute Galois group of an `-adic field K. Then
GK satisfies p-Poincaré duality of dimension 2 for all prime numbers p. One
has IG ' µp∞(K̄) (cf. [31, §II.5.2, Theorem 1]). Hence ×DGK ' Zp(−1) with
respect to the cyclotomic p-orientation θK,p : GK → Z×p , i.e., ðGK = θK,p.

As we will see in the next proposition, the final conclusion in Exam-
ple 5.1 is a consequence of a general property of Poincaré duality groups.

Proposition 5.2. Let G be a p-Poincaré duality group of dimension d, and
let θ : G → Z×p be a cyclotomic p-orientation of G. Then θd−1 = ðG and
×DG ' Zp(1− d).

Proof. By (5.1) and the hypothesis, Hd
cts(G,Zp(d− 1)) ' DG ⊗̂Zp(d− 1) is

torsion free, and hence isomorphic to Zp. This implies ðG = θd−1. �

5.2. Finitely generated θ-abelian pro-p groups

Recall that (G, θ) is said to be θ-abelian if ker(θ) = Zθ(G) and Zθ(G) is p-
torsion free — in particular ker(θ) is an abelian pro-p group. If G is finitely
generated then one has an isomorphism of left Zp[[G]]-modules N ' Zp(1)r for
some non-negative integer r, and either Γ = im(θ) is a finite group of order
coprime to p, or Γ is a p-Poincaré duality group of dimension 1 satisfying
ðΓ = 1Γ (cf. [23, Prop. 3.7.6]). Moreover, one has isomorphisms of left Zp[[G]]-
modules

Hk(N,Zp) ' Λk(N) ' Zp(k)(
r
k), (5.3)
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where Λ•( ) denotes the exterior algebra over the ring Zp. Since cdp(Γ) ≤ 1,
the Hochschild-Serre spectral sequence for homology (cf. [39, § 6.8])

E2
s,t = Hs(Γ, Ht(N,Zp(−m))) =⇒ Hs+t(G,Zp(−m)) (5.4)

is concentrated in the first two columns. Hence, the spectral sequence col-
lapses at the E2-term, i.e., E2

s,t = E∞s,t. Thus, for n ≥ 1 one has a short exact
sequence

0 // Hn−1(N,Zp(−m))Γ // Hn(G,Zp(−m)) // Hn(N,Zp(−m))Γ
// 0

(5.5)
if cdp(Γ) = 1, and isomorphisms

Hn(G,Zp(−m)) ' Hn(N,Zp(−m))Γ (5.6)

if Γ is a finite group of order coprime p. Here we used the fact that H0(Γ, ) =

Γ coincides with the coinvariants of Γ, and that H1(Γ, ) = Γ coincides
with the invariants of Γ if Γ is a p-Poincaré duality group of dimension 1 with
ðΓ = 1Γ. Since Hm−1(N,Zp(−m))Γ is a torsion free abelian pro-p group, and
as

Hm(N,Zp(−m))Γ = (Hm(N,Zp)⊗ Zp(−m))Γ ' Λm(N) (5.7)

by (5.3), one concludes from (5.5) and (5.6) that Hm(G,Zp(−m)) is torsion
free.

Proposition 5.3. Let (G, θ) be a θ-abelian p-oriented virtual pro-p group such
that N = ker(θ) is a finitely generated torsion free abelian pro-p group, and
that Γ = im(θ) is p-torsion free. Then G is a p-Poincaré duality group of
dimension d = cd(G), and θ is cyclotomic.

Proof. By hypothesis, G is a p-torsion free p-adic analytic group. Hence the
former assertion is a direct consequence of M. Lazard’s theorem (cf. [33,
Thm. 5.1.5]). The latter follows from Proposition 3.1. �

From Proposition 5.2 one concludes the following:

Corollary 5.4. Let (G, θ) be a θ-abelian pro-p group. If p = 2 assume further
that im(θ) is torsion free.

(a) The orientation θ is cyclotomic.
(b) Suppose that G is finitely generated with minimun number of generators

d = d(G) < ∞. If p = 2 assume further that im(θ) ⊆ 1 + 4Z2. Then G
is a Poincaré duality pro-p group of dimension d. Moreover, ðG = θd−1.

(c) If G satisfies the hypothesis of (b) and d(G) ≥ 2, then for p odd, any
cyclotomic orientation θ′ : G → Z×p of G must coincide with θ, i.e.,

θ′ = θ. For p = 2 any cyclotomic orientation θ′ : G → Z×2 satisfying
im(θ′) ⊆ 1 + 4Z2 must coincide with θ.

Proof. (a) follows from Proposition 5.3.
(b) By hypothesis, G is uniformly powerful (cf. [6, Ch. 4]), or equi-p-value, as
it is called in [17]. Hence the claim follows from Proposition 5.3. By Propo-
sition 5.2, ðG = θd−1.
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(c) An element φ ∈ Homgrp(G,Z×p ) has finite order if, and only if, im(φ) is
finite. Proposition 5.2 and part (b) imply that

θd−1 = ðG = (θ′)d−1.

Hence (θ−1θ′)d−1 = 1G. For p odd, Homgrp(G,Z×p ) does not contain non-
trivial elements of finite order. Hence θ′ = θ. For p = 2 the hypothesis implies
that im(θ−1θ′) ⊆ 1 + 4Z2. Hence (θ−1θ′)d−1 = 1G implies that θ′ = θ. �

Note that, by Fact 2.2, Corollary 5.4(c) cannot hold if d(G) = 1.

5.3. Profinite p-Poincaré duality groups of dimension 2

As the following theorem shows, for a profinite p-Poincaré duality group G of
dimension 2, the dualizing p-orientation ðG : G→ Z×p is always cyclotomic.

Theorem 5.5. Let G be a profinite p-Poincaré duality group of dimension 2.
Then ðG : G→ Z×p is a cyclotomic p-orientation.

Proof. As every p-oriented profinite group is 0-cyclotomic, it suffices to show
that H2

cts(U,Zp(1)) is torsion free for every open subgroup U ⊆ G. By Propo-
sition 5.2, Zp(−1) ' ×DG. Hence, from the Eckmann-Shapiro lemma in ho-
mology and (5.1), one concludes that

H1(U,Zp(−1)) = TorU1 (Zp,Zp(−1)) ' TorU1 (Zp(−1)×,Zp)

' TorG1 (DG,Zp[[G/U ]]) ' H1
cts(G,Zp[[G/U ]])

' Homgrp(U,Zp).
(5.8)

Hence H1(U,Zp(−1)) is a torsion free Zp-module, and, by Proposition 3.1,
H2

cts(U,Zp(1)) is torsion free as well. �

Remark 5.6. Let G be a profinite p-Poincaré duality group of dimension 2,
and let ðG : G → Z×p be the dualizing p-orientation. Then (G,ðG) is not
necessarily Bloch-Kato, as the following example shows.

Let p = 2 and let A = PSL2(q) where q ≡ 3 mod 4. Then there exists
a p-Frattini extension π : G → A of A such that G is a 2-Poincaré duality
group of dimension 2, i.e., ker(π) is a pro-2 group contained in the Frattini
subgroup of G (cf. [41]). In particular, G is perfect, and thus ðG = 1G.
Hence F2(1) = F2(0) is the trivial F2[[G]]-module, and — as G is perfect
— H1(G,F2(1)) = 0. Moreover, H2(G,F2(2)) ' F2, as G is a profinite 2-
Poincaré duality group of dimension 2 with ðG = 1G. Therefore, H•(G,1G)
is not quadratic.

A pro-p group G which satisfies p-Poincaré duality in dimension 2 is
also called a Demuškin group (cf. [23, Def. 3.9.9]). For this class of groups
one has the following.

Corollary 5.7. Let G be a Demuškin pro-p group. Then G is a Bloch-Kato
pro-p group, and ðG : G→ Z×p is a cyclotomic p-orientation.
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Proof. By Theorem 5.5, it suffices to show that (G,ðG) is Bloch-Kato. It

is well known that H•(G, ð̂G) is quadratic (cf. [31, §I.4.5]). Moreover, every
open subgroup U of G is again a Demuškin group, with ðU = ðG|U (cf. [23,
Thm. 3.9.15]). Hence (G,ðG) is Bloch-Kato. �

Remark 5.8. [The Klein bottle pro-2 group] Let G be the pro-2 group given
by the presentation

G = 〈x, y | xyx−1y = 1 〉 (5.9)

Then G is a Demuškin pro-2 group containing the free abelian pro-2 group
H = 〈x2, y 〉 of rank 2. Thus, by Corollary 5.7 (G,ðG) is cyclotomic. Since
H1(G, I2(0)) ' I2 ⊕ Z/2Z, Proposition 3.1 implies that ðG 6= 1G is non-
trivial. In particular, since ðG|H = 1H , this implies that im(ðG) = {±1 }.
Note that H = ker(ðG) and that one has a canonical isomorphism

H = 〈x2 〉 ⊕ 〈 y 〉 ' Z2(0)⊕ Z2(1). (5.10)

In particular, (G,ðG) is not ðG-abelian.

Example 5.9. Let G be the pro-p group with presentation

G = 〈x, y, z | [x, y] = z−p 〉.
If p = 2 then G is a Demuškin group, and ðG : G→ Z×2 is given by ðG(x) =
ðG(y) = 1, ðG(z) = −1. On the other hand, if p 6= 2 then G is not a
Demuškin group, and any p-orientations θ : G→ Z×p is not 1-cyclotomic (cf.

[11, Thm. 8.1]). However, H•(G, θ̂) is still quadratic.

6. Torsion

It is well known that a Bloch-Kato pro-p group may have non-trivial torsion
only if, p = 2. More precisely, a Bloch-Kato pro-2 group G is torsion if, and
only if, G is abelian and of exponent 2. Moreover, any such group is a Bloch-
Kato pro-2 group (cf. [25, §2]). The following result — which appeared first
in [26, Prop. 2.13] — holds for 1-cyclotomically oriented pro-p groups (see
also [11, Ex. 3.5] and [5, Ex. 14.27]).

Proposition 6.1. Let (G, θ) be a 1-cyclotomically oriented pro-p group.

(a) If im(θ) is torsion free, then G is torsion free.
(b) If G is non-trivial and torsion, then p = 2, G ' C2 and θ is injective.

Remark 6.2. Let θ : C2 → Z×2 be an injective homomorphism of groups. Then
Z2(1) ' ωC2 is isomorphic to the augmentation ideal

ωC2
= ker(Z2[C2]→ Z2).

Hence — by dimension shifting —

H2(C2,Z2(1)) = H1(C2,Z2(0)) = 0.

Thus — as C2 has periodic cohomology of period 2 — one concludes that
Hs(C2,Z2(t)) = 0 for s odd and t even, and also for s even and t odd. Hence
(C2, θ) is cyclotomic.
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From Proposition 6.1 and the profinite version of Sylow’s theorem one
concludes the following corollary, which can be seen as a version of the Artin-
Schreier theorem for 1-cyclotomically p-oriented profinite groups.

Corollary 6.3. Let p be a prime number, and let (G, θ) be a profinite group
with a 1-cyclotomic p-orientation.

(a) If p is odd, then G has no p-torsion.
(b) If p = 2, then every non-trivial 2-torsion subgroup is isomorphic to C2.

Moreover, if im(θ) has no 2-torsion, then G has no 2-torsion.

Remark 6.4. Let θ : Z2 → Z×2 be the homomorphism of groups given by
θ(1 + λ) = −1 and θ(λ) = 1 for all λ ∈ 2Z2. Then θ is a 2-orientation of
G = Z2 satisfying im(θ) = {±1}. As cd2(Z2) = 1, Fact 2.2 implies that
(Z2, θ) is Bloch-Kato and cyclotomically 2-oriented. However, im(θ) is not
torsion free.

6.1. Orientations on C2 × Z2

As we have seen in Proposition 5.3, for p odd, every θ-abelian oriented pro-p
group is cyclotomically p-oriented. For p = 2, this is not true. Indeed, one
has the following.

Proposition 6.5. Any 2-orientation θ : G → Z×2 on G ' C2 × Z2 is not 1-
cyclotomic.

Proof. Suppose that (G, θ) is 1-cyclotomically 2-oriented. Let x, y be ele-
ments of G such that x2 = 1 and ord(y) = 2∞, and that x, y generate
G. Proposition 6.1 applied to the cyclic pro-2 group generated by x yields
θ(x) = −1. Put θ(y) = 1 + 2λ for some λ ∈ Z2. By [16, Prop. 6], if θ
is 1-cyclotomic then for any pair of elements cx, cy ∈ Z2(1) there exists
a continuous crossed-homomorphism c : G → Z2(1) (i.e., a map satisfying
c(g1g2) = c(g1) + θ(g1)c(g2), cf. [23, p. 15]) such that c(x) = cx, c(y) = cy.
Set cx = cy = 1. Then one computes

c(xy) = cx + θ(x)cy = 1− 1 = 0, and

c(yx) = cy + θ(y)cx = 1 + 1 + 2λ,

which yields λ = −1. The element xy has the same properties as y. Hence
the previously mentioned argument applied to the element xy yields θ(xy) =
1− 2 = −1, whereas θ(xy) = θ(x)θ(y) = 1, a contradiction. �

Remark 6.6. From Proposition 6.1 and Proposition 6.5 one deduces that in
a 1-cyclotomically 2-oriented pro-2 group, every element of order 2 is self-
centralizing, which is a remarkable property of absolute Galois groups (cf. [4,
Prop. 2.3] and [19, Cor. 2.3]).

Proposition 6.7. Let (G, θ) be a θ-abelian oriented pro-2 group. Then θ is
cyclotomic if, and only if, either

(a) im(θ) is torsion free; or
(b) im(θ) has order 2.

In both these cases (G, θ) is split θ-abelian.
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Proof. Assume first that im(θ) is torsion free. Then the short exact sequence
{1} → ker(θ)→ G→ im(θ)→ {1} splits, as im(θ) ' Z2 is a projective pro-2
group. Moreover, (G, θ) is cyclotomic by Proposition 5.3.

Second assume that θ is cyclotomic, p = 2 and that im(θ) ⊇ {±1}. If
g ∈ G satisfies θ(g) = −1, then g2 ∈ ker(θ) = Zθ(G), and consequently

g2 = g · g2 · g−1 = (g2)θ(g) = g−2,

i.e., g4 = 1. Since (ker(θ),1) is cyclotomically 2-oriented, ker(θ) is torsion
free, and one deduces that g2 = 1. Therefore, the short exact sequence

{1} // H // G // C2
// {1}

splits (here H = ker(π ◦ θ), where π is the canonical epimorphism Z×2 �
{±1}). Since (H, θ|H) is again cyclotomically 2-oriented and as im(θ|H) is
torsion free, (H, θ|H) is split θ|H -abelian by the previously mentioned argu-
ment. We claim that H = ker(θ). Indeed, suppose there exists h ∈ H such
that θ(h) 6= 1. Put λ = (1 + θ(h))/2 and let z = ghgh−1 = [g, h−1] ∈ ker(θ).
Then — as g = g−1 and θ(g) = −1 — one has

g(zλh2)g−1 = (gzg)λ · gh2g

= z−λ · (ghg)2 = z−λ · (ghgh−1 · h)2

= z−λ · (zhzh−1 · h2) = z−λ+1+θ(h)h2

= zλh2,

i.e., g and zλh2 commute which implies that 〈 g, zλh2 〉 ' C2×Zp contradict-
ing Proposition 6.5. Therefore, H = ker(θ) is a free abelian pro-2 group, and
G ' H o C2.

Finally, let p = 2 and assume that im(θ) = {±1}. By Remark 6.2, we
may also assume that ker(θ) is non-trivial. Then, either

Case I: θ−1({−1}) contains an element of order 2 and (G, θ) is split θ-abelian,
i.e., G ' ker(θ) o C2 with ker(θ) a free abelian pro-2 group, or

Case II: all elements in x ∈ θ−1({−1}) are of infinite order. Then for y ∈
ker(θ), the group K = 〈x, y 〉 must be isomorphic to the Klein bottle pro-2
group which is impossible as G is θ-abelian and thus contains only θ-abelian
closed subgroups (cf. Remark 3.12(b)). Hence Case II is impossible.

By Lemma 3.10, if U ⊆ G is an open subgroup, then either U ⊆ ker(θ),
or U ' V oC2 for some open subgroup V of ker(θ). In the first case, (U,1) is
cyclotomically 2-oriented by Proposition 5.3. For the second case, we claim
that Hk(U, I2(k)) is 2-divisibe for all k ≥ 1.

Recall that Z2[C2] has periodic cohomology (of period 2), and that one
has the equalities of Z2[[U ]]-modules I2(k) = I2(0) for k even and I2(k) =
I2(−1) for k odd. Moreover,

Ĥ0(C2, I2(0)) = I2(0)C2/NC2
I2(0) = I2(0)/2 · I2(0) = 0,

Ĥ−1(C2, I2(−1)) = ker(NC2
)/ωC2

I2(−1) = I2(−1)/2 · I2(−1) = 0,
(6.1)
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where Ĥk denotes Tate cohomology, NC2
=
∑
x∈C2

x ∈ Z2[C2] is the norm

element, and ωC2 is the augmentation ideal of the group algebra Z2[C2] (cf.
[23, § I.2]). Thus, by (6.1), one has

Hm(C2, I2(m)) = Ĥm(C2, I2(m)) ' Ĥk(C2, I2(k)) = 0, (6.2)

for all positive integers m > 0 and m ≡ k( mod 2).
Suppose first that V ' Z2. As in the proof of Theorem 3.11, the E2-

term of the Hochschild-Serre spectral sequence associated to the short exact
sequence {1} → V → U → C2 → {1} evaluated on I2(k) is concentrated in

the first and the second row. In particular, d•,•2 = 0 and thus Es,t2 (I2(k)) =
Es,t∞ (I2(k)). Thus, by Fact 3.9, for every k ≥ 1 one has a short exact sequence

0 // Hk(C2, I2(k)) // Hk(U, I2(k)) // Hk−1(C2, I2(k − 1)) // 0 ,

and Hk(C2, I2(k)) = 0 by (2.6). Hence, (U, θ|U ) is cyclotomically 2-oriented
by Proposition 3.1. If V ' Zn2 with n > 1, then Hk(U, I2(k)) = 0 by induction
on n and the previously mentioned argument. Finally, Corollary 3.3 yields
the claim in case V not finitely generated. �

7. Cyclotomically oriented pro-p groups

For a cyclotomically oriented pro-2 group (G, θ) satisfying im(θ) ⊆ 1 + 4Z2

one has the following.

Fact 7.1. Let (G, θ) be a pro-2 group with a cyclotomic orientation satisfying
im(θ) ⊆ 1+4Z2. Then χ∪χ = 0 for all χ ∈ H1(G,F2), i.e., the first Bockstein
morphism β1 : H1(G,F2)→ H2(G,F2) vanishes.

Proof. Since im(θ) ⊆ 1 + 4Z2, the action of G on F2(1) is trivial. The epi-
morphism of Z2[[G]]-modules Z2(1)/4→ F2 induces a long exact sequence

· · · 2· // H1(G,Z2(1)/4)
π1
2,1 // Hk(G,F2)

β1

// H2(G,F2)
2· // H2(G,Z2(1)/4) // · · ·

(7.1)

where the connecting homomorphism is the first Bockstein morphism. Since
θ is cyclotomic, the map π1

2,1 is surjective, and thus β1 is the 0-map. �

Remark 7.2. As before for a finitely generated pro-p group G let d(G) denote
its minimum number of generators. If p is odd and G is a finitely generated
Bloch-Kato pro-p group, the cohomology ring (H•(G,Fp),∪) is a quotient of
the exterior Fp-algebra Λ• = Λ•(H

1(G,Fp)). In particular, cdp(G) ≤ d(G).
Moreover, Λd(G) is the unique minimal ideal of Λ•. Hence equality of cdp(G)
and d(G) is equivalent to H•(G,Fp) being isomorphic to Λ•. It is well known
that this implies that G is uniformly powerful (cf. [33, Thm. 5.1.6]), and that
there exists a p-orientation θ : G → Z×p such that G is θ-abelian (cf. [25,
Thm. 4.6]).
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Let p = 2, and let (G, θ) be a cyclotomically oriented Bloch-Kato
pro-2 group satisfying im(θ) ⊆ 1 + 4Z2. Then Proposition 7.1 implies that
the cohomology ring (H•(G,F2),∪) is a quotient of the exterior F2-algebra
Λ• = Λ•(H

1(G,F2)), and hence cd2(G) ≤ d(G). If cd2(G) = d(G), the previ-
ously mentioned argument, Proposition 7.1 and [42] imply that G is uniformly
powerful. Finally, [25, Thm. 4.11] yields that G is θ′-abelian for some orien-
tation θ′ : G→ Z×2 . Thus, if d(G) ≥ 2, one has θ = θ′ by Corollary 5.4(c).

From the above remark and J-P. Serre’s theorem (cf. [30]) one concludes
the following fact.

Fact 7.3. Let (G, θ) be a finitely generated cyclotomically oriented torsion free
Bloch-Kato pro-2 group. Then cd2(G) <∞.

7.1. Tits’ alternative

From Remark 7.2 one concludes the following.

Fact 7.4. (a) Let p be odd, and let G be a Bloch-Kato pro-p group satisfying
d(G) ≤ 2. Then G is either isomorphic to a free pro-p group, or G is θ-abelian
for some orientation θ : G→ Z×p .
(b) Let p = 2, and let (G, θ) be a cyclotomically oriented Bloch-Kato pro-2
group satisfying im(θ) ⊆ 1 + 4Z2 and d(G) ≤ 2. Then G is either isomorphic
to a free pro-2 group, or G is θ-abelian.

In [25, Thm. 4.6] it was shown, that for p odd any Bloch-Kato pro-p
group satisfies a strong form of Tits’ alternative (cf. [35]), i.e., either G con-
tains a closed non-abelian free pro-p subgroup, or there exists a p-orientation
θ : G → Z×p such that G is θ-abelian. Using the results from the previous
subsection and [25, Thm. 4.11], one obtains the following version of Tits’
alternative if p is equal to 2.

Proposition 7.5. Let (G, θ) be a cyclotomically oriented virtual pro-2 group
which is also Bloch-Kato, such that im(θ) ⊆ 1 + 4Z2. Then either G contains
a closed non-abelian free pro-2 subgroup; or G is θ-abelian.

Proof. As im(θ) ⊆ 1 + 4Z2, Proposition 6.1-(a) implies that G is torsion free.
From Proposition 7.1 one concludes that the first Bockstein morphism β1 van-
ishes. Thus, the hypothesis of [25, Thm. 4.11] are satisfied (cf. Remark 7.2),
and this yields the claim. �

Remark 7.6. Note that Proposition 7.5 without the hypothesis im(θ) ⊆ 1 +
4Z2 does not remain true (cf. Remark 5.8).

7.2. The θ-center

One has the following characterization of the θ-center for a cyclotomically
oriented Bloch-Kato pro-p group (G, θ).

Theorem 7.7. Let (G, θ) be a cyclotomically oriented torsion free Bloch-Kato
pro-p group. If p = 2 assume further that im(θ) ⊆ 1 + 4Z2. Then Zθ(G) is
the unique maximal closed abelian normal subgroup of G contained in ker(θ).



Cyclotomic p-orientations 27

Proof. Let A ⊆ ker(θ) be a closed abelian normal subgroup of G, let z ∈ A,
z 6= 1, and let x ∈ G be an arbitrary element. Put C = cl(〈x, z 〉) ⊆ G. Then
either C ' Zp or C is a 2-generated pro-p group. Thus, by Fact 7.4, one has
to distinguish three cases:

(i) d(C) = 1;
(ii) d(C) = 2 and C is isomorphic to a free pro-p group; or
(iii) d(C) = 2 and C is θ′-abelian for some p-orientation θ′ : C → Z×p .

In case (i), x and z commute. If C is generated by z, then C ⊆ ker(θ)
and θ(x) = 1. If C is generated by x, then z = xλ for some λ ∈ Zp, and
1 = θ(z) = θ(x)λ. Hence θ(x) = 1, as im(θ) is torsion free. In both cases

xzx−1 = z = zθ(x).

Case (ii) cannot hold: by hypothesis, A∩C 6= {1}, but free pro-p groups
of rank 2 do not contain non-trivial closed abelian normal subgroups.

Suppose that case (iii) holds. Then θ′ = θ|C by Corollary 5.4(c), and
z ∈ ker(θ|C) = Zθ|C (C). Therefore,

xzx−1 = zθ|C(x) = zθ(x).

Hence we have shown that for all z ∈ A and all x ∈ G one has that
xzx−1 = zθ(x). This yields the claim. �

The above result can be seen as the group theoretic generalization of [12,
Corollary 3.3] and [13, Thm. 4.6]. Note that in the case p = 2 the additional
hypothesis in Theorem 7.7 is necessary (cf. Remark 5.8). Indeed, if G is the
Klein bottle pro-2 group then 〈x2 〉 is another maximal closed abelian normal
subgroup of G contained in ker(ðG).

Remark 7.8. Let K be a field containing a primitive pth-root of unity. The-
orem 7.7, together with [12, Thm. 3.1] and [13, Thm. 4.6], implies that the
θK,p-center of the maximal pro-p Galois group GK(p) is the inertia group of
the maximal p-henselian valuation admitted by K.

7.3. Isolated subgroups

Let G be a pro-p group, and let S ⊆ G be a closed subgroup of G. Then S is

called isolated, if for all g ∈ G for which there exists k ≥ 1 such that gp
k ∈ S

follows that g ∈ S. Hence a closed normal subgroup N of G is isolated if, and
only if, G/N is torsion free.

Proposition 7.9. Let (G, θ) be an oriented Bloch-Kato pro-p group. In the
case p = 2 assume further that im(θ) ⊆ 1 + 4Z2 and that θ is 1-cyclotomic.
Then Zθ(G) is an isolated subgroup of G.

Proof. Suppose there exists x ∈ GrZθ(G) and k ≥ 1 such that xp
k ∈ Zθ(G).

By changing the element x if necessary, we may assume that k = 1, i.e.,
xp ∈ Zθ(G). As G is torsion free (cf. Corollary 6.3), one has that xp 6= 1.

For an arbitrary g ∈ G, the subgroup C(g) = cl(〈 g, x 〉) ⊆ G is not
free, as gxpg−1 = xpθ(g). Thus, from Fact 7.4 one concludes that C(g) is



28 C. Quadrelli and Thomas S. Weigel

θ|C(g)-abelian. Moreover, as im(θ) is torsion-free, θ(xp) = θ(x)p = 1 implies
that

x ∈ ker(θ|C(g)) = Zθ|C(g)
(C(g)).

Thus, x ∈
⋂
g∈G ZθC(g)

(C(g)) ⊆ Zθ(G). �

Proposition 7.9 generalises to profinite groups as follows.

Corollary 7.10. Let (G, θ) be a torsion free p-oriented Bloch-Kato profinite
group. For p = 2 assume also that im(θ) ⊆ 1+4Z2 and that θ is 1-cyclotomic.
Then Zθ(G) is an isolated subgroup of G.

Proof. Let x ∈ Zθ(G), y ∈ G and n ∈ N such that x = yn. Then Y = cl(〈 y 〉)
is pro-cyclic and virtually pro-p. Thus, as G is torsion free by hypothesis,
Y is a cyclic pro-p group, and n is a p-power. Let P ∈ Sylp(G) be a pro-p
Sylow subgroup of G containing Y . Then (P, θ|P ) satisfies the hypothesis of
Proposition 7.9, which yields the claim. �

7.4. Split extensions

Proposition 7.11. Let (G, θ) be a p-oriented Bloch-Kato pro-p group of finite
cohomological dimension satisfying im(θ) ⊆ 1 + pZp (resp. im(θ) ⊆ 1 + 4Z2

if p = 2), and let Z be a closed normal subgroup of G isomorphic to Zp such
that G/Z is torsion free. Then Z 6⊆ Gp[G,G].

Proof. Let d = cdp(G). As cd(Z) = 1, and as H1(Z,Fp) ' Fp, one has
vcdp(G/Z) = d−1 (cf. [43]). Thus, as G/Z is torsion free, J-P. Serre’s theorem
(cf. [30]) implies that cdp(G/Z) = d− 1.

Suppose that Z ⊆ Gp[G,G]. Then inf1
G,Z : H1(G/Z,Fp) → H1(G,Fp)

is an isomorphism. For χ ∈ H1(G,Fp), set χ̄ ∈ H1(G/Z,Fp) such that χ =

inf1
G,Z(χ̄). Then, by [23, Prop. 1.5.3] one has

χ1 ∪ . . . ∪ χk = inf1
G,Z(χ̄1) ∪ . . . ∪ inf1

G,Z(χ̄k) = infkG,Z(χ̄1 ∪ . . . ∪ χ̄k)

for any χ1, . . . , χk ∈ H1(G,Fp), i.e.,

infkG,Z : Hk(G/Z,Fp) −→ Hk(G,Fp) (7.2)

is surjective for all k ≥ 0. Let

(Estr , dr)⇒ Hs+t(G,Fp), Est2 = Hs
(
G/Z,Ht(Z,Fp)

)
(7.3)

denote the Hochschild-Serre spectral sequence associated to the extension of
pro-p groups Z → G → G/Z with coefficients in the discrete G-module Fp.
We claim that Est∞ is concentrated on the buttom row, i.e., Est∞ = 0 for all
t ≥ 1. Since cdp(Z) = 1 and cdp(G/Z) = d− 1, one has Est2 = 0 for t ≥ 2 or
s ≥ d. Hence, dstr is the 0-map for every s, t ≥ 0 and r ≥ 3, i.e., Est∞ ' Est3 .
The total complex tot•(E

••
∞ ) of the graded Fp-bialgebra E••∞ coincides with

H•(G,Fp), which is quadratic by hypothesis. Thus E••∞ is generated by

tot1(E••∞ ) = E1,0
∞ = E1,0

2 .

Hence, Est3 = 0 for t ≥ 1.
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On the other hand, H1(Z,Fp) is a trivial G/Z-module isomorphic to
Fp, and thus, as cdp(G/Z) = d− 1, one has

Ed−1,1
2 = Hd−1

(
G/Z,H1(Z,Fp)

)
6= 0. (7.4)

Moreover, dd−1,1
2 is the 0-map, thus Ed−1,1

3 = ker(dd−1,1
2 ) = Ed−1,1

∞ 6= 0, a
contradiction, and this yields the claim. �

Proposition 7.11 has the following consequence.

Proposition 7.12. Let (G, θ) be a p-oriented Bloch-Kato pro-p group (resp.
virtual pro-p group) of finite cohomological p-dimension, and let Z be a closed
normal subgroup of G isomorphic to Zp such that G/Z is torsion free. Then
there exists a Z-complement C in G, i.e., the extension of profinite groups

{1} // Z // G // G/Z // {1} (7.5)

splits.

Proof. Assume first that G is a pro-p group. By Proposition 7.11, one has
that Z 6⊆ Φ(G) = Gp[G,G]. Hence there exists a maximal closed subgroup
C1 of G such that

C1Z = G and Z1 = C1 ∩ Z = Zp.

Moreover, Z1 is a closed normal subgroup in C1 such that C1/Z1 is torsion free
and Z1 ' Zp. From Proposition 7.11 again, one concludes that Z1 6⊆ Φ(C1).
Thus repeating this process one finds open subgroup Ck of G of index pk

such that
Ck Z = G and Zk = Ck ∩ Z = Zp

k

.

Hence C =
⋂
k≥1 Ck is a Z-complement in G.

If G is a p-oriented virtual pro-p group, then G is a Σ̄-virtual pro-p group

for Σ̄ = im(θ̂) (cf. 4.1), and thus corresponds to (Op(G), θ◦, γ) in alternative
form. In particular, the maximal subgroup C1 and hence all closed subgroups
Ck can be chosen to be Σ̄-invariant (cf. Proposition 4.5). Hence C =

⋂
k∈N Ck

carries canonically a left Σ̄-action, and thus defines a Z complement H =
C o Σ̄ in G. �

The proof of Theorem 1.2 can be deduced from Proposition 7.12 as
follows.

Proof of Theorem 1.2. Assume first that G is either pro-p, or virtually pro-p.
To prove statement (i) (and (ii)), we proceed by induction on d = cdp(G) =
cd(G). For d = 1, G is free (resp. virtually free) (cf. [23, Prop. 3.5.17]), and
thus Zθ(G) = {1}. So assume that d ≥ 1, and that the claim holds for d− 1.
Note that Zθ(G) is a finitely generated abelian pro-p group satisfying

d◦ = d(Zθ(G)) = cdp(Zθ(G)) ≤ d.
If d◦ = 0, there is nothing to prove. If d◦ ≥ 1, Zθ(G) contains an isolated
closed subgroup Z satisfying d(Z) = 1. By definition, Z is normal in G.
Hence Proposition 7.12 implies that there exists a subgroup C ⊆ G satisfying
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C ∩Z = {1} and C Z = G. As C ' G/Z, the main result of [43] implies that
cd(C) = vcd(C) = d−1. Since Zθ|C (C)Z = Zθ(G), the claim then follows by
induction.

To prove statement (iii), letG◦ = ker(θ̂ : G→ F×p ) and Ḡ◦ = ker(ˆ̄θ : Ḡ→
F×p ), and put Ō = Op(Ḡ◦) and

O = { g ∈ G◦ | gZθ(G) ∈ Ōp(Ḡ) }. (7.6)

Then, by construction, im(ˆ̄θ|Ō) is a pro-p group and hence trivial. In particu-
lar, the left Fp[[Ō]]-module Fp(1) is the trivial module. Thus, as Ō is p-perfect,
one concludes that

H1(Ō,Fp(1)) = 0. (7.7)

By hypothesis, (Ḡ, θ̄) is Bloch-Kato, and therefore (Ō,1) is Bloch-Kato.
Hence (7.7) yields that

Hk(Ō,Fp(j)) = Hk(Ō,Fp(0)) = 0 (7.8)

for all positive integers k, j. Note that Zp(1) is the trivial Zp[[Ō]]-module
isomorphic to Zp as abelian pro-p group. The cyclotomicity of (Ō,1) implies
that H2(Ō,Zp(1)) is p-torsion free, and from the exact sequence

0 // H2(Ō,Zp(1))
·p // H2(Ō,Zp(1)) // H2(Ō,Fp(1)) // 0

(7.9)
one concludes that

H2(Ō,Zp(1)) = 0. (7.10)

By hypothesis, cdp(Zθ(G)) ≤ cdp(G) < ∞, and thus Zθ(G) ' Zp(1)r is a
trivial left Zp[[Ō]]-module and a finitely generated free (abelian pro-p group).
Hence

H2(Ō,Zθ(G)) = 0, (7.11)

which implies that

{1} // Zθ(G) // O
π // Ō // {1} (7.12)

is a split short exact sequence of profinite groups. From this fact one concludes
that

O = Zθ(G) ·Op(G◦) and Zθ(G) ∩Op(G◦) = {1}. (7.13)

Let G̃ = G/Op(G◦). Then for all abelian pro-p groups M with a continuous

left Zp[[G̃]]-action inflation induces an isomorphism in cohomology

infG
G̃

(−) : Hk
cts(G̃,M) −→ Hk

cts(G,M) (7.14)

(cf. Proposition 4.6). Moreover, as θ|O = 1 is the constant 1 function, θ

induces a p-orientation θ̃ : G̃ → Z×p on G̃. In particular, from (7.14) one

concludes that cdp(G̃) < ∞, and that (G̃, θ̃) is cyclotomic and Bloch-Kato.
Thus, by part (i), the exact sequence of virtual pro-p groups

{1} // Zθ(G)Op(G◦)

Op(G◦)
// G̃

π̃ // Ḡ/Ō // {1} (7.15)



Cyclotomic p-orientations 31

splits. Let H̃ ⊂ G̃ be a complement for Zθ(G)Op(G◦)/Op(G◦) in G̃, and let

H = { g ∈ G◦ | gOp(G◦) ∈ H̃ }. (7.16)

Then, by construction, H ∩ Zθ(G)Op(G◦) ⊆ Op(G◦). Thus HOp(G◦) is a
complement of Zθ(G) in G. �

Finally, we ask whether the converse of Theorem 3.13 holds true.

Question 7.13. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p
group, and suppose that

H•(G,Fp) ' H•(C,Fp)⊗ Λ•(V ),

for some subgroup C ⊆ G and some nontrivial subspace V ⊆ H1(G,Fp).
Does there exist an isolated closed subgroup Z ⊆ Zθ(G) such that G = CZ
and Z/Zp ' V ∗ = Hom(V,Fp)?
7.5. The elementary type conjecture

In order to formulate a conjecture concerning the maximal pro-p Galois
groups of fields, I. Efrat introduced in [9] the class CFG of p-oriented pro-
p groups (resp. cyclotomic pro-p pairs) of elementary type.

This class consists of all finitely generated p-oriented pro-p groups which
can be constructed from Zp and Demuškin groups using coproducts and fibre
products (cf. [9, § 3]).

Efrat’s elementary type conjecture asks whether every pair (GK(p), θK,p)
for which K contains a primitive pth-root of unity and GK(p) is finitely gener-
ated, belongs to CFG (see [7], and also [15] for the case p = 2). This conjecture
originates from the theory of quadratic forms (cf. [20], [10, p. 268]).

One may extend slightly Efrat’s class by defining the class ECO of cyclo-
tomically p-oriented Bloch-Kato pro-p groups of elementary type to be the
smallest class of cyclotomically p-oriented pro-p groups containing

(a) (F, θ), with F a finitely generated free pro-p group and θ : F → Z×p any
p-orientation;

(b) (G,ðG), with G a Demuškin pro-p group;
(c) (Z/2Z, θ), with im(θ) = {±1} in case that p = 2;

and which is closed under coproducts and under fibre products with respect
to finitely generated split θ-abelian pro-p groups, i.e., if (G1, θ1) and (G2, θ2)
are contained in ECO, then

(d) (G, θ) = (G1, θ1)q (G2, θ2) ∈ ECO; and
(e) (G, θ) = Zp oθ1 (G1, θ1) ∈ ECO.

Question 1.5 asks whether every finitely generated cyclotomically p-
oriented Bloch-Kato pro-p group belongs to the class ECO. By Theorem 1.1,
Question 1.5 is stronger than Efrat’s elementary type conjecture. Neverthe-
less, it is stated in purely group theoretic terms.

Remark 7.14. Recently, Question 1.5 has received a positive solution in the
class of trivially p-oriented right-angled Artin pro-p groups: I. Snopce and
P.A. Zalesskĭı proved that the only indecomposable right-angled Artin pro-p
group which is Bloch-Kato and cyclotomically p-oriented is (Zp,1) (cf. [32]).
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