Profinite groups with a cyclotomic p-orientation

Claudio Quadrelli and Thomas S. Weigel

To the memory of Vladimir Voevodsky

Abstract. Let p be a prime. A continuous representation

$$\theta \colon G \to \mathrm{GL}_1(\mathbb{Z}_p)$$

of a profinite group G is called a cyclotomic p-orientation if for all open subgroups $U \subseteq G$ and for all $k, n \ge 1$ the natural maps

$$H^k(U, \mathbb{Z}_p(k)/p^n) \longrightarrow H^k(U, \mathbb{Z}_p(k)/p)$$

are surjective. Here $\mathbb{Z}_p(k)$ denotes the \mathbb{Z}_p -module of rank 1 with U-action induced by $\theta|_U^k$. By the Rost-Voevodsky theorem, the cyclotomic character of the absolute Galois group $G_{\mathbb{K}}$ of a field \mathbb{K} is, indeed, a cyclotomic p-orientation of $G_{\mathbb{K}}$. We study profinite groups with a cyclotomic p-orientation. In particular, we show that cyclotomicity is preserved by several operations on profinite groups, and that Bloch-Kato pro-p groups with a cyclotomic p-orientation satisfy a strong form of Tits' alternative and decompose as semi-direct product over a canonical abelian closed normal subgroup.

Mathematics Subject Classification (2010). Primary 12G05; Secondary 20E18, 12F10.

Keywords. Absolute Galois groups, Rost-Voevodsky Theorem, Elementary Type Conjecture.

1. Introduction

For a prime p let \mathbb{Z}_p denote the ring of p-adic integers. For a profinite group G, we call a continuous representation $\theta \colon G \to \mathbb{Z}_p^{\times} = \mathrm{GL}_1(\mathbb{Z}_p)$ a p-orientation of G and call the couple (G, θ) a p-oriented profinite group. Given a p-oriented profinite group (G, θ) , for $k \in \mathbb{Z}$ let $\mathbb{Z}_p(k)$ denote the left $\mathbb{Z}_p[G]$ -module

Both authors were partially supported by the PRIN 2015 "Group Theory and Applications". The first-named author was also partially supported by the Israel Science Fundation (grant No. 152/13).

induced by θ^k , namely, $\mathbb{Z}_p(k)$ is equal to the additive group \mathbb{Z}_p and the left G-action is given by

$$g \cdot z = \theta(g)^k \cdot z, \qquad g \in G, \ z \in \mathbb{Z}_p(k).$$
 (1.1)

Vice-versa, if M is a topological left $\mathbb{Z}_p[\![G]\!]$ -module which as an abelian pro-p group is isomorphic to \mathbb{Z}_p , then there exists a unique p-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$ such that $M \simeq \mathbb{Z}_p(1)$.

The $\mathbb{Z}_p[\![G]\!]$ -module $\mathbb{Z}_p(1)$ and the representation $\theta\colon G\to\mathbb{Z}_p^\times$ are said to be k-cyclotomic, for $k\geq 1$, if for every open subgroup U of G and every $n\geq 1$ the natural maps

$$H^k(U, \mathbb{Z}_p(k)/p^n) \longrightarrow H^k(U, \mathbb{Z}_p(k)/p)$$
, (1.2)

induced by the epimorphism of $\mathbb{Z}_p[\![U]\!]$ -modules $\mathbb{Z}_p(k)/p^n \to \mathbb{Z}_p(k)/p$, are surjective. If $\mathbb{Z}_p(1)$ (respectively θ) is k-cyclotomic for every $k \geq 1$, then it is called simply a cyclotomic $\mathbb{Z}_p[\![G]\!]$ -module (resp., cyclotomic p-orientation). Note that $\mathbb{Z}_p(1)$ is k-cyclotomic if, and only if, $H_{\mathrm{cts}}^{k+1}(U,\mathbb{Z}_p(k))$ is a torsion free \mathbb{Z}_p -module for every open subgroup $U \subseteq G$ — here H_{cts}^* denotes continuous cochain cohomology as introduced by J. Tate in [34] (see § 2.1).

Cyclotomic modules of profinite groups have been introduced and studied by C. De Clercq and M. Florence in [5]. Previously J.P. Labute, in [16], considered surjectivity of (1.2) in the case k=1 and U=G—note that demanding surjectivity for U=G only is much weaker than demanding it for every open subgroup $U\subseteq G$, and this is what makes the definition of cyclotomic modules truly new.

Let \mathbb{K} be a field, and let $\overline{\mathbb{K}}/\mathbb{K}$ be a separable closure of \mathbb{K} . If char(\mathbb{K}) $\neq p$, the absolute Galois group $G_{\mathbb{K}} = \operatorname{Gal}(\overline{\mathbb{K}}/\mathbb{K})$ of \mathbb{K} comes equipped with a canonical p-orientation

$$\theta_{\mathbb{K},p} \colon G_{\mathbb{K}} \longrightarrow \operatorname{Aut}(\mu_{p^{\infty}}(\bar{\mathbb{K}})) \simeq \mathbb{Z}_{p}^{\times},$$
 (1.3)

where $\mu_{p^{\infty}}(\bar{\mathbb{K}}) \subseteq \bar{\mathbb{K}}^{\times}$ denotes the subgroup of roots of unity of $\bar{\mathbb{K}}$ of p-power order. If $p = \operatorname{char}(\mathbb{K})$, we put $\theta_{\mathbb{K},p} = \mathbf{1}_{G_{\mathbb{K}}}$, the function which is constantly 1 on $G_{\mathbb{K}}$. The following result (cf. [5, Prop. 14.19]) is a consequence of the positive solution of the Bloch-Kato Conjecture given by M. Rost and V. Voevodsky with the "C. Weibel patch" (cf. [29, 36, 40]), which from now on we will refer to as the Rost-Voevodsky Theorem.

Theorem 1.1. Let \mathbb{K} be a field, and let p be prime number. The canonical p-orientation $\theta_{\mathbb{K},p} \colon G_{\mathbb{K}} \to \mathbb{Z}_p^{\times}$ is cyclotomic.

Theorem 1.1 provides a fundamental class of examples of profinite groups endowed with a cyclotomic p-orientation. Bearing in mind the exotic character of absolute Galois groups, it also provides a strong motivation to the study of cyclotomically p-oriented profinite groups — which is the main purpose of this manuscript. In fact, one may recover several Galois-theoretic statements already for profinite groups with a 1-cyclotomic p-orientation — e.g., the only finite group endowed with a 1-cyclotomic p-orientation is the finite group C_2 of order 2, with non-constant 2-orientation $\theta: C_2 \to \{\pm 1\}$ (cf. [11,

Ex. 3.5]), and this implies the Artin-Schreier obstruction for absolute Galois groups. In their paper, De Clercq and Florence formulated the "Smoothness Conjecture", which can be restated in this context as follows: for a p-oriented profinite group, 1-cyclotomicity implies k-cyclotomicity for all $k \geq 1$ (cf. [5, Conj. 14.25]).

A p-oriented profinite group (G, θ) is said to be Bloch-Kato if the \mathbb{F}_p -algebra

$$H^{\bullet}(U,\widehat{\theta}|_{U}) = \coprod_{k>0} H^{k}(U, \mathbb{F}_{p}(k)), \tag{1.4}$$

where $\mathbb{F}_p(k) = \mathbb{Z}_p(k)/p$, with product given by cup-product, is quadratic for every open subgroup U of G. Note that if $\operatorname{im}(\theta) \subseteq 1 + p\mathbb{Z}_p$ and $p \neq 2$ then G acts trivially on $\mathbb{Z}_p(k)/p$. By the Rost-Voevodsky Theorem $(G_{\mathbb{K}}, \theta_{\mathbb{K},p})$ is, indeed, Bloch-Kato.

For a profinite group G, let $O_p(G)$ denote the maximal closed normal pro-p subgroup of G. A p-oriented profinite group (G, θ) has two particular closed normal subgroups: the kernel $\ker(\theta)$ of θ , and the θ -center of (G, θ) , given by

$$Z_{\theta}(G) = \left\{ x \in O_p(\ker(\theta)) \mid gxg^{-1} = x^{\theta(g)} \text{ for all } g \in G \right\}.$$
 (1.5)

As $Z_{\theta}(G)$ is contained in the center $Z(\ker(\theta))$ of $\ker(\theta)$, it is abelian. The p-oriented profinite group (G,θ) will be said to be θ -abelian, if $\ker(\theta) = Z_{\theta}(G)$ and if $Z_{\theta}(G)$ is torsion free. In particular, for such a p-oriented profinite group (G,θ) , G is a virtual pro-p group (i.e., G contains an open subgroup which is a pro-p group). Moreover, a θ -abelian pro-p group (G,θ) will be said to be $S_{\theta}(G) \times S_{\theta}(G) \times S_{\theta}(G)$.

As $Z_{\theta}(G)$ is contained in $\ker(\theta)$, by definition, the canonical quotient $\bar{G} = G/Z_{\theta}(G)$ carries naturally a *p*-orientation $\bar{\theta} \colon \bar{G} \to \mathbb{Z}_p^{\times}$, and one has the following short exact sequence of *p*-oriented profinite groups.

$$\{1\} \longrightarrow \mathbf{Z}_{\theta}(G) \longrightarrow G \xrightarrow{\pi} \bar{G} \longrightarrow \{1\}$$
 (1.6)

The following result can be seen as an analogue of the equal characteristic transition theorem (cf. [31, \S II.4, Exercise 1(b), p. 86]) for cyclotomically p-oriented Bloch-Kato profinite groups.

Theorem 1.2. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato profinite group. Then (1.6) splits, provided that $\operatorname{cd}_p(G) < \infty$, and one of the following conditions hold:

- (i) G is a pro-p group,
- (ii) (G, θ) is an oriented virtual pro-p group (see §4),
- (iii) $(\bar{G}, \bar{\theta})$ is cyclotomically p-oriented and Bloch-Kato.

In the case that (G, θ) is the maximal pro-p Galois group of a field \mathbb{K} containing a primitive p^{th} -root of unity endowed with the p-orientation induced by $\theta_{\mathbb{K},p}$, $Z_{\theta}(G)$ is the inertia group of the maximal p-henselian valuation of \mathbb{K} (cf. Remark 7.8).

Note that the 2-oriented pro-2 group $(C_2 \times \mathbb{Z}_2, \theta)$ may be θ -abelian, but θ is never 1-cyclotomic (cf. Proposition 6.5). As a consequence, in a cyclotomically 2-oriented pro-2 group every element of order 2 is self-centralizing.

For p odd it was shown in [25] that a Bloch-Kato pro-p group G satisfies a strong form of Tits alternative, i.e., either G contains a closed non-abelian free pro-p subgroup, or there exists a p-orientation $\theta: G \to \mathbb{Z}_p^{\times}$ such that G is θ -abelian. In Subsection 7.1 we extend this result to pro-2 groups with a cyclotomic orientation, i.e., one has the following analogue of R. Ware's theorem (cf. [38]) for cyclotomically oriented Bloch-Kato pro-p groups (cf. Fact 7.4).

Theorem 1.3. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p group. If p = 2 assume further that $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$. Then one — and only one — of the following cases hold:

- (i) G contains a closed non-abelian free pro-p subgroup; or
- (ii) G is θ -abelian.

It should be mentioned that for p=2 the additional hypothesis is indeed necessary (cf. Remark 5.8). The class of cyclotomically p-oriented Bloch-Kato profinite groups is closed with respect to several constructions.

- **Theorem 1.4.** (a) The inverse limit of an inverse system of cyclotomically p-oriented Bloch-Kato profinite groups with surjective structure maps is a cyclotomically p-oriented Bloch-Kato profinite group (cf. Corollary 3.3 and Corollary 3.6).
 - (b) The free profinite (resp. pro-p) product of two cyclotomically p-oriented Bloch-Kato profinite (resp. pro-p) groups is a cyclotomically p-oriented Bloch-Kato profinite (resp. pro-p) group (cf. Theorem 3.14).
 - (c) The fibre product of a cyclotomically p-oriented Bloch-Kato profinite group (G₁, θ₁) with a split θ₂-abelian profinite group (G₂, θ₂) is a cyclotomically p-oriented Bloch-Kato profinite group (cf. Theorem 3.11 and Theorem 3.13).
 - (d) The quotient of a cyclotomically p-oriented Bloch-Kato profinite group (G, θ) with respect to a closed normal subgroup $N \subseteq G$ satisfying $N \subseteq \ker(\theta)$ and N a p-perfect group is a cyclotomically p-oriented Bloch-Kato profinite group (cf. Proposition 4.6).

Some time ago I. Efrat (cf. [7, 8, 9]) has formulated the so-called elementary type conjecture concerning the structure of finitely generated pro-p groups occurring as maximal pro-p quotients of an absolute Galois group. His conjecture can be reformulated in the class of cyclotomically p-oriented Bloch-Kato pro-p groups. Such a p-oriented pro-p group (G, θ) is said to be indecomposable if $Z_{\theta}(G) = \{1\}$ and if G is not a proper free pro-p product. A positive answer to the following question would settle the elementary type conjecture affirmatively.

Question 1.5. Let (G, θ) be a finitely generated, torsion free, indecomposable, cyclotomically oriented Bloch-Kato pro-p group. Does this imply that G is a Poincaré duality pro-p group of dimension $\operatorname{cd}_p(G) \leq 2$?

The paper is organized as follows. In § 2 we give some equivalent definitions for cyclotomic p-orientations. In § 3 we study some operations of profinite groups (inverse limits, free products and fibre products) in relation with the properties of cyclotomicity and Bloch-Kato-ness, and we prove Theorem 1.4(a)-(b)-(c). In § 4 we study the quotients of cyclotomically p-oriented profinite groups over closed normal p-perfect subgroups — in particular, we introduce oriented virtual pro-p groups and we prove Theorem 1.4(d). In § 5 we study p-oriented profinite Poincaré duality groups. In § 6 we focus on the presence of torsion in cyclotomically 2-oriented pro-2 group every element of order 2 is self-centralizing (see Proposition 6.5). In § 7 we focus on the structure of cyclotomically p-oriented Bloch-Kato pro-p groups: we prove Theorems 1.2 and 1.3, and show that in many cases the θ -center is the maximal abelian closed normal subgroup (cf. Theorem 7.7).

2. Absolute Galois groups and cyclotomic p-orientations

Throughout the paper, we study profinite groups with a cyclotomic module $\mathbb{Z}_p(1)$. In contrast to [5, § 14], we refer to the associated representation $\theta \colon G \to \mathbb{Z}_p^{\times}$, rather than to the module itself. As we study several subgroups of G associated to this cyclotomic module $\mathbb{Z}_p(1)$, like $\ker(\theta)$ and $\mathbb{Z}_{\theta}(G)$, this choice of notation turns out to be convenient for our purposes. We follow the convention as established in [25, 26] and call such representations "porientations". In the case that G is a pro-p group, the couple (G, θ) was called a cyclotomic pro-p pair, in [9, § 3].

2.1. The connecting homomorphism δ^k

Let G be a profinite group, and let $\theta \colon G \to \mathbb{Z}_p^{\times}$ be a p-orientation of G. For every $k \geq 0$ one has the short exact sequence of left $\mathbb{Z}_p[\![G]\!]$ -modules

$$0 \longrightarrow \mathbb{Z}_p(k) \xrightarrow{p} \mathbb{Z}_p(k) \longrightarrow \mathbb{F}_p(k) \longrightarrow 0 , \qquad (2.1)$$

which induces the long exact sequence in cohomology

$$\cdots \xrightarrow{p} H^{k}_{\mathrm{cts}}(G, \mathbb{Z}_{p}(k)) \xrightarrow{\pi^{k}} H^{k}(G, \mathbb{F}_{p}(k)) \xrightarrow{\delta^{k}}$$

$$\longrightarrow H^{k+1}_{\mathrm{cts}}(G, \mathbb{Z}_{p}(k)) \xrightarrow{p} H^{k+1}_{\mathrm{cts}}(G, \mathbb{Z}_{p}(k)) \longrightarrow \cdots$$

$$(2.2)$$

with connecting homomorphism δ^k (cf. [34, §2]). In particular, δ^k is trivial if, and only if, multiplication by p on $H^{k+1}_{\operatorname{cts}}(G, \mathbb{Z}_p(k))$ is a monomorphism. This is equivalent to $H^{k+1}_{\operatorname{cts}}(G, \mathbb{Z}_p(k))$ being torsion free. Therefore, one concludes the following:

 $^{^1}$ For a Poincaré duality group G the representation associated to the dualizing module — which coincides with the cyclotomic module in the case of a Poincaré duality pro-p group of dimension 2 (cf. Theorem 5.7) — is sometimes also called the "orientation" of G.

Proposition 2.1. Let (G,θ) be a p-oriented profinite group. For k > 1 and $U \subseteq G$ an open subgroup the following are equivalent.

- (i) The map (1.2) is surjective for every n > 1.
- (ii) The map $\pi^k: H^k_{\mathrm{cts}}(U, \mathbb{Z}_p(k)) \to H^k(U, \mathbb{F}_p(k))$ is surjective. (iii) The connecting homomorphism $\delta^k: H^k(U, \mathbb{F}_p(k)) \to H^{k+1}_{\mathrm{cts}}(U, \mathbb{Z}_p(k))$ is trivial.
- (iv) The \mathbb{Z}_p -module $H^{k+1}_{cts}(U,\mathbb{Z}_p(k))$ is torsion free.

Proof. By the long exact sequence (2.2), the equivalences between (ii), (iii) and (iv) are straightforward. For $m \geq n \geq 1$ let $\pi_{m,n}^k$ denote the natural maps

$$\pi_{m,n}^k \colon H^k(U, \mathbb{Z}_p(k)/p^m) \longrightarrow H^k(U, \mathbb{Z}_p(k)/p^n)$$

(if $m=\infty$ we set $p^{\infty}=0$). If condition (i) holds then the system

$$(H^k(U,\mathbb{Z}_p/p^n),\pi^k_{m,n})$$

satisfies the Mittag-Leffler property. In particular,

$$H^k(U, \mathbb{Z}_p(k)) \simeq \varprojlim_{n>1} H^k(U, \mathbb{Z}_p(k)/p^n)$$

(cf. [28] and [23, Thm. 2.7.5]). Thus $\pi^k = \pi^k_{n,1} \circ \pi^k_{\infty,n}$ is surjective if, and only if, $\pi_{n,1}^k$ is surjective for every $n \geq 1$. Conversely, if π^k is surjective then $\pi^k = \pi_{n,1}^k \circ \pi_{\infty,n}^k$ yields the surjectivity of $\pi_{n,1}^k$ for every n.

2.2. Profinite groups of cohomological *p*-dimension at most 1

Let G be a profinite group, and let $\theta \colon G \to \mathbb{Z}_p^{\times}$ be a p-orientation of G. Then

$$H^{1}_{\mathrm{cts}}(G, \mathbb{Z}_{p}(0)) = \mathrm{Hom}_{\mathrm{grp}}(G, \mathbb{Z}_{p})$$
 (2.3)

is a torsion free abelian group for every profinite group G, i.e., θ is 0cyclotomic. If G is of cohomological p-dimension less or equal to 1, then $H_{\mathrm{cts}}^{m+1}(G,\mathbb{Z}_p(m))=0$ for all $m\geq 1$ showing that θ is cyclotomic. Moreover, $H^{\bullet}(G,\hat{\theta})$ is a quadratic \mathbb{F}_p -algebra for every profinite group with $\mathrm{cd}_p(G) \leq 1$ and for any p-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$. If G is of cohomological p-dimension less or equal to 1, one has $\operatorname{cd}_p(C) \leq 1$ for every closed subgroup C of G (cf. [31, §I.3.3, Proposition 14]). Thus one has the following.

Fact 2.2. Let G be a profinite group with $\operatorname{cd}_p(G) \leq 1$, and let $\theta \colon G \to \mathbb{Z}_p^{\times}$ be a p-orientation for G. Then (G, θ) is Bloch-Kato and θ is cyclotomic.

2.3. The m^{th} -norm residue symbol

Throughout this subsection we fix a field \mathbb{K} and a separable closure \mathbb{K} of \mathbb{K} . For $p \neq \operatorname{char}(\mathbb{K})$, $\mu_{p^{\infty}}(\overline{\mathbb{K}})$ is a divisible abelian group. By construction, one has a canonical isomorphism

$$\underset{k\geq 0}{\varprojlim}_{k\geq 0}(\mu_{p^{\infty}}(\bar{\mathbb{K}}), p^k) \simeq \mathbb{Z}_p(1) \otimes_{\mathbb{Z}} \mathbb{Q}_p = \mathbb{Q}_p(1)$$
 (2.4)

and a short exact sequence $0 \to \mathbb{Z}_p(1) \to \mathbb{Q}_p(1) \to \mu_{p^{\infty}}(\bar{\mathbb{K}}) \to 0$ of topological left $\mathbb{Z}_p[\![G_{\mathbb{K}}]\!]$ -modules, where $G_{\mathbb{K}} = \operatorname{Gal}(\bar{\mathbb{K}}/\mathbb{K})$ is the absolute Galois group of $\mathbb{K}.$

Let $K_m^M(\mathbb{K})$, $m \geq 0$, denote the m^{th} -Milnor K-group of \mathbb{K} (cf. [10, §24.3]). For $p \neq \operatorname{char}(\mathbb{K})$, J. Tate constructed in [34] a homomorphism of abelian groups

$$h_m(\mathbb{K}) \colon K_m^M(\mathbb{K}) \longrightarrow H_{\mathrm{cts}}^m(G_{\mathbb{K}}, \mathbb{Z}_p(m)),$$
 (2.5)

the so-called m^{th} -norm residue symbol. Let $K_m^M(\mathbb{K})_{/p} = K_m^M(\mathbb{K})/pK_m^M(\mathbb{K})$. Around ten years later S. Bloch and K. Kato conjectured in [1] that the induced map

$$h_m(\mathbb{K})_{/p} \colon K_m^M(\mathbb{K})_{/p} \longrightarrow H^m(G_{\mathbb{K}}, \mathbb{F}_p(m))$$
 (2.6)

is an isomorphism for all fields \mathbb{K} , $\operatorname{char}(\mathbb{K}) \neq p$, and for all $m \geq 0$. This conjecture has been proved by V. Voevodsky and M. Rost with a "patch" of C. Weibel (cf. [29, 36, 40]). In particular, since $K_{\bullet}^{M}(\mathbb{K})_{/p}$ is a quadratic \mathbb{F}_{p} -algebra and as $h_{\bullet}(\mathbb{K})_{/p}$ is a homomorphism of algebras, this implies that the absolute Galois group of a field \mathbb{K} is Bloch-Kato (cf. [10, §23.4]). The Rost-Voevodsky Theorem has also the following consequence.

Proposition 2.3. Let \mathbb{K} be a field, let $G_{\mathbb{K}}$ denote its absolute Galois group, and let $\theta_{\mathbb{K},p} \colon G_{\mathbb{K}} \to \mathbb{Z}_p^{\times}$ denote its canonical p-orientation. Then $\theta_{\mathbb{K},p}$ is cyclotomic.

Although Proposition 2.3 might be well known to specialists, we add a short proof of it. By Proposition 2.1, Proposition 2.3 in combination with Theorem 1.4-(d) is equivalent to [5, Prop. 14.19].

Proof of Proposition 2.3. If $\operatorname{char}(\mathbb{K}) = p$, then $\operatorname{cd}_p(G_{\mathbb{K}}) \leq 1$ (cf. [31, §II.2.2, Proposition 3]), and the *p*-orientation $\theta_{\mathbb{K},p}$ is cyclotomic by Fact 2.2. So we may assume that $\operatorname{char}(\mathbb{K}) \neq p$. In the commutative diagram

$$K_{k}^{M}(\mathbb{K}) \xrightarrow{p} K_{k}^{M}(\mathbb{K}) \xrightarrow{\pi} K_{k}^{M}(\mathbb{K})_{/p} \longrightarrow 0$$

$$\downarrow^{h_{k}} \qquad \downarrow^{h_{k}} \qquad \downarrow^{(h_{k})_{/p}}$$

$$H_{\mathrm{cts}}^{k}(G_{\mathbb{K}}, \mathbb{Z}_{p}(k)) \xrightarrow{p} H_{\mathrm{cts}}^{k}(G_{\mathbb{K}}, \mathbb{Z}_{p}(k)) \xrightarrow{\alpha} H^{k}(G_{\mathbb{K}}, \mathbb{F}_{p}(k)) \xrightarrow{\beta} H_{\mathrm{cts}}^{k+1}(G_{\mathbb{K}}, \mathbb{Z}_{p}(k))$$

$$(2.7)$$

the map π is surjective, and $(h_k)_{/p}$ is an isomorphism. Hence α must be surjective, and thus $\beta = 0$, i.e.,

$$p \colon H^{k+1}_{\mathrm{cts}}(G_{\mathbb{K}}, \mathbb{Z}_p(k)) \longrightarrow H^{k+1}_{\mathrm{cts}}(G_{\mathbb{K}}, \mathbb{Z}_p(k))$$

is an injective homomorphism of \mathbb{Z}_p -modules. Thus $H^{k+1}_{\mathrm{cts}}(G_{\mathbb{K}},\mathbb{Z}_p(k))$ must be p-torsion free. Any open subgroup U of $G_{\mathbb{K}}$ is the absolute Galois group of \mathbb{K}^U . Hence $\theta_{\mathbb{K},p}$ is cyclotomic, and this yields the claim.

Remark 2.4. Let \mathbb{K} be a number field, let S be a set of places containing all infinite places of \mathbb{K} and all places lying above p, and let $G_{\mathbb{K}}^{S}$ be the Galois group of $\overline{\mathbb{K}}^{S}/\mathbb{K}$, where $\overline{\mathbb{K}}^{S}/\mathbb{K}$ is the maximal extension of $\overline{\mathbb{K}}/\mathbb{K}$ which is unramified outside S. Then $\theta_{\mathbb{K},p} \colon G_{\mathbb{K}} \to \mathbb{Z}_p^{\times}$ induces a p-orientation $\theta_{k,p}^{S} \colon G_{\mathbb{K}}^{S} \to \mathbb{Z}_p^{\times}$. However, it is well known (cf. [23, Prop. 8.3.11(ii)]) that,

$$H^1(G_{\mathbb{K}}^S, \mathbb{I}_p(1)) \simeq H^1(G_{\mathbb{K}}^S, \mathcal{O}_{\widetilde{\mathbb{K}}}^S)_{(p)} \simeq \operatorname{cl}(\mathcal{O}_{\mathbb{K}}^S)_{(p)}$$
 (2.8)

(for the definition of $\mathbb{I}_p(1)$ see §3), where $\mathrm{cl}(\mathcal{O}_{\mathbb{K}}^S)$ denotes the *ideal class group* of the Dedekind domain $\mathcal{O}_{\mathbb{K}}^S$, and $\underline{}_{(p)}$ denotes the *p*-primary component. Hence $(G_{\mathbb{K}}^S, \theta_{\mathbb{K},p}^S)$ is in general not cyclotomic (cf. Proposition 3.1).

3. Cohomology of p-oriented profinite groups

A homomorphism $\phi: (G_1, \theta_1) \to (G_2, \theta_2)$ of two *p*-oriented profinite groups (G_1, θ_1) and (G_2, θ_2) is a continuous group homomorphism $\phi: G_1 \to G_2$ satisfying $\theta_1 = \theta_2 \circ \phi$.

Let (G,θ) be a p-oriented profinite group. For $k \in \mathbb{Z}$, put $\mathbb{Q}_p(k) = \mathbb{Z}_p(k) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, and also $\mathbb{I}_p(k) = \mathbb{Q}_p(k)/\mathbb{Z}_p(k)$, i.e., $\mathbb{I}_p(k)$ is a discrete left G-module and — as an abelian group — a divisible p-torsion module.

Let $\mathbb{I}_p = \mathbb{Q}_p/\mathbb{Z}_p$, and let $\underline{\hspace{0.1cm}}^* = \operatorname{Hom}_{\mathbb{Z}_p}(\underline{\hspace{0.1cm}}, \mathbb{I}_p)$ denote the Pontryagin duality functor. Then $\mathbb{I}_p(k)^*$ is a profinite left $\mathbb{Z}_p[\![G]\!]$ -module which is isomorphic to $\mathbb{Z}_p(-k)$.

3.1. Criteria for cyclotomicity

The following proposition relates the continuous co-chain cohomology groups, Galois cohomology and the Galois homology groups as defined by A. Brumer in [3].

Proposition 3.1. Let (G, θ) be a p-oriented profinite group, let k be an integer, and let m be a non-negative integer. Then the following are equivalent:

- (i) $H_{\text{cts}}^{m+1}(G, \mathbb{Z}_p(k))$ is torsion free;
- (ii) $H^m(G, \mathbb{I}_p(k))$ is divisible;
- (iii) $H_m(G, \mathbb{Z}_p(-k))$ is torsion free.

Proof. The equivalence (i) \Leftrightarrow (ii) is a direct consequence of [34, Prop. 2.3], and (ii) \Leftrightarrow (iii) follows from [33, (3.4.5)].

The direct limit of divisible p-torsion modules is a divisible p-torsion module. From this fact — and Proposition 3.1 — one concludes the following.

Corollary 3.2. Let (G, θ) be a cyclotomically p-oriented profinite group. Then $H^m(C, \mathbb{I}_p(m))$ is divisible for all $m \geq 0$ and all C closed in G.

Proof. It suffices to show (ii) \Rightarrow (i). Let C be a closed subgroup of G. Then

$$H^m(C, \mathbb{I}_p(m)) \simeq \varinjlim_{U \in \mathfrak{B}_C} H^m(U, \mathbb{I}_p(m)),$$

where \mathfrak{B}_C denotes the set of all open subgroups of G containing C (cf. [31, $\S I.2.2$, Proposition 8]). Hence Proposition 3.1 yields the claim.

In combination with [3, Corollary 4.3(ii)], Proposition 3.1 implies the following.

Corollary 3.3. Let (I, \preceq) be a directed set, let (G, θ) be a p-oriented profinite group, and let $(N_i)_{i \in I}$ be a family of closed normal subgroups of G satisfying $N_j \subseteq N_i \subseteq \ker(\theta)$ for $i \preceq j$ such that $\bigcap_{i \in I} N_i = \{1\}$ and the induced p-orientation $\theta_i \colon G/N_i \to \mathbb{Z}_p^{\times}$ is cyclotomic for all $i \in I$. Then $\theta \colon G \to \mathbb{Z}_p^{\times}$ is cyclotomic.

Proof. Let $U \subseteq G$ be a open subgroup of G. Hypothesis (iii) implies that the group $H_m(UN_i/N_i, \mathbb{Z}_p(-m))$ is torsion free for all $i \in I$ (cf. Proposition 3.1). Thus, by [3, Corollary 4.3(ii)], $H_m(U, \mathbb{Z}_p(-m))$ is torsion free, and hence, by Proposition 3.1, $\theta \colon G \to \mathbb{Z}_p^{\times}$ is a cyclotomic p-orientation.

3.2. The mod-p cohomology ring

An \mathbb{N}_0 -graded \mathbb{F}_p -algebra $\mathbf{A} = \coprod_{k \geq 0} \mathbf{A}_k$ is said to be anti-commutative if for $x \in \mathbf{A}_s$ and $y \in \mathbf{A}_t$ one has $y \cdot x = (-1)^{st} \cdot x \cdot y$. E.g., if V is an \mathbb{F}_p -vector space, the exterior algebra $\Lambda_{\bullet}(V)$ (cf. [18, Chapter 4]) is an \mathbb{N}_0 -graded anti-commutative \mathbb{F}_p -algebra. Moreover, if G is a profinite group, then its cohomology ring $H^{\bullet}(G, \mathbb{F}_p)$ is an \mathbb{N}_0 -graded anti-commutative \mathbb{F}_p -algebra (cf. [23, Prop. 1.4.4]).

Let $\mathbf{T}(V) = \coprod_{k \geq 0} V^{\otimes k}$ denote the tensor algebra generated by the \mathbb{F}_p -vector space V. A \mathbb{N}_0 -graded associative \mathbb{F}_p -algebra \mathbf{A} is said to be quadratic if the canonical homomorphism $\eta^{\mathbf{A}} \colon \mathbf{T}(\mathbf{A}_1) \to \mathbf{A}$ is surjective, and

$$\ker(\eta^{\mathbf{A}}) = \mathbf{T}(\mathbf{A}_1) \otimes \ker(\eta_2^{\mathbf{A}}) \otimes \mathbf{T}(\mathbf{A}_1)$$
(3.1)

(cf. [24, § 1.2]). E.g., $\mathbf{A} = \Lambda_{\bullet}(V)$ is quadratic.

If **A** and **B** are anti-commutative \mathbb{N}_0 -graded \mathbb{F}_p -algebras, then $\mathbf{A} \otimes \mathbf{B}$ is again an anti-commutative \mathbb{N}_0 -graded \mathbb{F}_p -algebra, where

$$(x_1 \otimes y_1) \cdot (x_2 \otimes y_2) = (-1)^{s_2 t_1} \cdot (x_1 \cdot x_2) \otimes (y_1 \cdot y_2), \tag{3.2}$$

for $x_1 \in \mathbf{A}_{s_1}$, $x_2 \in \mathbf{A}_{s_2}$ $y_1 \in \mathbf{B}_{t_1}$, $y_2 \in \mathbf{B}_{t_2}$. In particular, if **A** and **B** are quadratic, then $\mathbf{A} \otimes \mathbf{B}$ is quadratic as well.

A direct set (I, \preceq) maybe considered as a small category with objects given by the set I and precisely one morphism $\iota_{i,j}$ for all $i \preceq j, i, j \in I$, i.e., $\iota_{i,i} = \mathrm{id}_i$. One has the following.

Fact 3.4. Let \mathbb{F} be a field, let (I, \preceq) be a direct system, and let $\mathbf{A}: (I, \preceq) \to \mathbb{F}$ qalg be a covariant functor with values in the category of quadratic \mathbb{F} -algebras. Then $\mathbf{B} = \varinjlim_{i \in \mathbf{A}} \mathbf{A}(i)$ is a quadratic \mathbb{F} -algebra.

Let (G, θ) be a *p*-oriented profinite group, and let $\widehat{\theta} \colon G \to \mathbb{F}_p^{\times}$ be the map induced by θ . If $\widehat{\theta} = \mathbf{1}_G$, then the mod-p cohomology ring of $H^{\bullet}(G, \widehat{\theta})$ coincides with $H^{\bullet}(G, \mathbb{F}_p)$ (see (1.4)), and hence it is anti-commutative. Furthermore, if $\widehat{\theta} \neq \mathbf{1}_G$ and $G^{\circ} = \ker(\widehat{\theta})$, restriction

$$\operatorname{res}_{G,G^{\circ}}^{\bullet}: H^{\bullet}(G,\hat{\theta}) \longrightarrow H^{\bullet}(G^{\circ}, \mathbb{F}_{p})$$
(3.3)

is an injective homomorphism of \mathbb{N}_0 -graded algebras. Hence the mod-p cohomology ring $H^{\bullet}(G,\theta)$ is anti-commutative. In particular, if $M_{(k)}$ denotes the homogeneous component of the left $\mathbb{F}_p[G/G^{\circ}]$ -module M, on which G/G° acts

by $\widehat{\theta}^k$, the Hochschild-Serre spectral sequence (cf. [23, \S II.4, Exercise 4(ii)]) shows that

$$H^{k}(G,\widehat{\theta}) = H^{k}(G^{\circ}, \mathbb{F}_{p})_{(-k)}. \tag{3.4}$$

From [31, §I.2.2, Prop. 8] and Fact 3.4 one concludes the following.

Corollary 3.5. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato. Then $H^{\bullet}(C, \widehat{\theta}|_{C})$ is quadratic for all C closed in G.

Corollary 3.6. Let (I, \preceq) be a directed set, let (G, θ) be a p-oriented profinite group, and let $(N_i)_{i \in I}$ be a family of closed normal subgroups of G, $N_j \subseteq N_i \subseteq \ker(\theta)$ for $i \preceq j$, such that $\bigcap_{i \in I} N_i = \{1\}$ and $(G/N_i, \widehat{\theta}_{N_i})$ is Bloch-Kato. Then (G, θ) is Bloch-Kato.

Remark 3.7. Let G be a pro-p group with minimal presentation

$$G = \langle x_1, \dots, x_d \mid [x_1, x_2][[x_3, x_4], x_5] = 1 \rangle,$$

with $d \geq 5$. In [22, Ex. 7.3] and [21, § 4.3] it is shown that G does not occur as maximal pro-p Galois group of a field containing a primitive p^{th} -root of unity, relying on the properties of $Massey\ products$. It would be interesting to know whether G admits a cyclotomic p-orientation $\theta\colon G\to \mathbb{Z}_p^\times$ such that (G,θ) is Bloch-Kato. By Theorem 1.1, a negative answer would provide a "Massey-free" proof of the aforementioned fact.

3.3. Fibre products

Let $(G_1, \theta_1), (G_2, \theta_2)$ be *p*-oriented profinite groups. The fibre product $(G, \theta) = (G_1, \theta_1) \boxtimes (G_2, \theta_2)$ denotes the pull-back of the diagram

$$G_{1} \xrightarrow{\theta_{1}} \mathbb{Z}_{p}^{\times}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Remark 3.8. By restricting to the suitable subgroups if necessary, for the analysis of a fibre product $(G, \theta) = (G_1, \theta_1) \boxtimes (G_2, \theta_2)$ one may assume that $\operatorname{im}(\theta_1) = \operatorname{im}(\theta_2)$. In particular, if (G_2, θ_2) is split θ_2 -abelian and $G_2 \simeq A \rtimes \operatorname{im}(\theta_2)$ for some free abelian pro-p group A, then $G \simeq A \rtimes G_1$ with $gag^{-1} = a^{\theta_1(g)}$ for all $a \in A$ and $g \in G_1$.

Fact 3.9. Let (G, θ) be a p-oriented profinite group, and let N be a finitely generated non-trivial torsion free closed subgroup of $\mathbb{Z}_{\theta}(G)$, i.e., $N \simeq \mathbb{Z}_{p}(1)^{r}$ as left $\mathbb{Z}_{p}[\![G]\!]$ -modules for some $r \geq 1$. Then for $k \geq 0$ one has

$$H^1(N, \mathbb{I}_p(k)) \simeq \mathbb{I}_p(k-1)^r \tag{3.6}$$

as left $\mathbb{Z}_p[\![G]\!]$ -module.

The following property will be useful for the analysis of fibre products.

Lemma 3.10. Let (G_1, θ) be a cyclotomically p-oriented profinite group, and set $(G, \theta) = (G_1, \theta_1) \boxtimes (G_2, \theta_2)$, where (G_2, θ_2) is split θ_2 -abelian with $Z = Z_{\theta_2}(G_2)$. Let $\pi: G \to G_1$ be the canonical projection, and let $U \subseteq G$ be an open subgroup. Then $U \simeq (Z \cap U) \rtimes \pi(U)$.

Proof. Without loss of generality we may assume that $Z \simeq \mathbb{Z}_p$, so that $Z \cap U = Z^{p^k}$ for some $k \geq 0$. It suffices to show that there exists an open subgroup U_1 of U satisfying $Z \cap U_1 = \{1\}$ and $\pi(U_1) = \pi(U)$.

By choosing a section $\sigma \colon G_1 \to G$ (see Remark 3.8), one has a continuous homomorphism $\tau = \sigma \circ \pi \colon G \to G_1$ and a continuous function $\eta \colon G \to Z$ such that each $g \in G$ can be uniquely written as $g = \eta(g) \cdot \tau(g)$. In particular, for $h, h_1, h_2 \in U$ and $z \in Z \cap U = Z^{p^k}$ one has

$$\eta(z \cdot h) = z \cdot \eta(h)$$
 and $\eta(h_1 \cdot h_2) = \eta(h_1) \cdot {}^{h_1}\eta(h_2)$. (3.7)

Let $\eta_U = \chi \circ \eta|_U$, where $\chi \colon Z \to Z/Z^{p^k}$ is the canonical projection. By (3.7), η_U defines a crossed-homomorphism $\tilde{\eta}_U \colon \bar{U} \to Z/Z^{p^k}$, where $\bar{U} = U/Z^{p^k}$. As \bar{U} is canonically isomorphic to an open subgroup of G_1 , $(\bar{U}, \theta_1|_{\bar{U}})$ is cyclotomically p-oriented. (Note that $Z \simeq \mathbb{Z}_p(1)$ as $\mathbb{Z}_p[\![U]\!]$ -modules.) Hence, $H^1_{\mathrm{cts}}(\bar{U}, \mathbb{Z}_p(1)) \to H^1(\bar{U}, \mathbb{Z}_p(1)/p^k)$ is surjective by Proposition 2.1, and the snake lemma applied to the commutative diagram

$$0 \longrightarrow \mathcal{B}^{1}(\bar{U}, Z) \longrightarrow \mathcal{Z}^{1}(\bar{U}, Z) \longrightarrow H^{1}(\bar{U}, \mathbb{Z}_{p}(1)) \longrightarrow 0 \qquad (3.8)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

where the left-side and right-side vertical arrows are surjective, shows that $\mathcal{Z}^1(\bar{U},Z) \to \mathcal{Z}^1(\bar{U},Z/Z^{p^k})$ is surjective. Thus there exists $\eta_{\circ} \in \mathcal{Z}^1(\bar{U},Z)$ such that $\tilde{\eta}_U = \chi \circ \eta_{\circ}$. It is straightforward to verify that $U_1 = \{\eta_{\circ}(\bar{h}) \cdot \sigma(\bar{h}) \mid \bar{h} \in \bar{U}\}$ is an open subgroup of G_1 satisfying the requirements.

Theorem 3.11. Let (G_1, θ_1) be a cyclotomically p-oriented profinite group, and let (G_2, θ_2) be split θ_2 -abelian. Then $(G_1, \theta_1) \boxtimes (G_2, \theta_2)$ is cyclotomically p-oriented.

Remark 3.12. (a) If p is odd, then every θ -abelian profinite group (G, θ) is split. However, a 2-oriented θ -abelian profinite group (G, θ) is split if, and only if, it is cyclotomically 2-oriented (cf. Proposition 6.7).

(b) If (G, θ) is θ -abelian and $H \subseteq G$ is a closed subgroup, then $(H, \theta|_H)$ is also θ -abelian.

Proof of Theorem 3.11. Put $(G, \theta) = (G_1, \theta_1) \boxtimes (G_2, \theta_2)$ and $Z = \mathbb{Z}_{\theta_2}(G_2)$. We may also assume that $\operatorname{im}(\theta_1) = \operatorname{im}(\theta_2)$. As (G_2, θ_2) is split θ_2 -abelian, one has $G = Z \rtimes G_1$.

We first show the claim for $Z \simeq \mathbb{Z}_p$. Let U be an open subgroup of G. By Lemma 3.10, $(U, \theta|_U) \simeq (U_1, \bar{\theta}_1) \boxtimes (U_2, \bar{\theta}_2)$ where U_1 is isomorphic to an open subgroup of G_1 and $(U_2, \bar{\theta}_2)$ is split $\bar{\theta}_2$ -abelian with $N = \ker(\bar{\theta}_2)$ open in Z. As $\operatorname{cd}_p(N) = 1$, one has $H^m(N, \mathbb{I}_p(k)) = 0$ for $m \geq 2$ and $k \geq 0$.

Therefore, the E_2 -term of the Hochschild-Serre spectral sequence associated to the short exact sequence of profinite groups

$$\{1\} \longrightarrow N \longrightarrow U \longrightarrow U_1 \longrightarrow \{1\}$$
 (3.9)

and evaluated on the discrete $\mathbb{Z}_p[\![U]\!]$ -module $\mathbb{I}_p(k)$, is concentrated on the first and the second row. In particular, $d_r^{s,t}=0$ for $r\geq 3$. As (3.9) splits, and as $\mathbb{I}_p(k)$ is inflated from U_1 , one has $E_2^{s,0}(\mathbb{I}_p(k))=E_\infty^{s,0}(\mathbb{I}_p(k))$ for $s\geq 0$ (cf. [23, Prop. 2.4.5]). Hence $d_2^{s,t}=0$ for all $s,t\geq 0$, i.e., $E_2^{s,t}(\mathbb{I}_p(k))=E_\infty^{s,t}(\mathbb{I}_p(k))$, and the spectral sequence collapses. Thus, using the isomorphism (3.6), for every $k\geq 1$ one has a short exact sequence

$$0 \longrightarrow H^{k}(U_{1}, \mathbb{I}_{p}(k)) \xrightarrow{\inf} H^{k}(U, \mathbb{I}_{p}(k)) \longrightarrow H^{k-1}(U_{1}, \mathbb{I}_{p}(k-1)) \longrightarrow 0,$$
(3.10)

where the right- and left-hand side are divisible p-torsion modules. As such \mathbb{Z}_p -modules are injective, (3.10) splits showing that $H^k(U, \mathbb{I}_p(k))$ is p-divisible. Therefore, by Proposition 3.1, (G, θ) is cyclotomic.

Thus, by induction the claim holds for all split θ_2 -abelian groups (G_2, θ_2) satisfying $\operatorname{rk}(Z_{\theta_2}(G_2)) < \infty$. In general, as Z is a torsion free abelian pro-p group, there exists an inverse system $(Z_i)_{i \in I}$ of closed subgroups of Z such that Z/Z_i is torsion free, of finite rank, and $Z = \varprojlim_{i \in I} Z/Z_i$. Since Z_i is normal in G and

$$(G/Z_i, \bar{\theta}) \simeq (G_1, \theta_1) \boxtimes (G_2/Z_i, \bar{\theta}_2)$$

is cyclotomically p-oriented, Corollary 3.3 yields the claim.

The following theorem can be seen as a generalization of a result of A. Wadsworth [37, Thm. 3.6].

Theorem 3.13. Let (G_i, θ_i) , i = 1, 2, be p-oriented profinite groups satisfying $im(\theta_1) = im(\theta_2)$. Assume further that (G_2, θ_2) is split θ_2 -abelian. Then for $(G, \theta) = (G_1, \theta_1) \boxtimes (G_2, \theta_2)$ one has that

$$H^{\bullet}(G,\widehat{\theta}) \simeq H^{\bullet}(G_1,\widehat{\theta}_1) \otimes \Lambda_{\bullet} \left((\ker(\theta_2)/\ker(\theta_2)^p)^* \right).$$
 (3.11)

Moreover, if (G_1, θ_1) is Bloch-Kato, then (G, θ) is Bloch-Kato.

Proof. Assume first that $d(Z_{\theta_2}(G_2))$ is finite. If $d(Z_{\theta_2}(G_2)) = 1$ then one obtains the isomorphism (3.11) from [37, Thm. 3.1], which uses the Hochschild-Serre spectral sequence associated to the short exact sequence of profinite groups

$$\{1\} \longrightarrow \mathbf{Z}_{\theta_2}(G_2) \longrightarrow G \longrightarrow G/\mathbf{Z}_{\theta_2}(G_2) \longrightarrow \{1\}$$

and evaluated on the discrete $\mathbb{Z}_p[\![G]\!]$ -module $\mathbb{F}_p(k)$, to compute $H^{\bullet}(G,\widehat{\theta})$. If $d(\mathbb{Z}_{\theta_2}(G_2)) > 1$, then applying induction on $d(\mathbb{Z}_{\theta_2}(G_2))$ yields the isomorphism (3.11). Finally, if $\mathbb{Z}_{\theta_2}(G_2)$ is not finitely generated, then a limit argument similar to the one used in the proof Theorem 3.11 and Corollary 3.6 yield the claim.

3.4. Coproducts

For two profinite groups G_1 and G_2 let $G = G_1 \coprod G_2$ denote the *coproduct* (or free product) in the category of profinite groups (cf. [27, § 9.1]). In particular, if (G_1, θ_1) and (G_2, θ_2) are two *p*-oriented profinite groups, the *p*-orientations θ_1 and θ_2 induce a *p*-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$ via the universal property of of the free product. Thus, we may interpret Π as the coproduct in the category of *p*-oriented profinite groups (cf. [9, §3]). The same applies to Π^p — the coproduct in the category of pro-*p* groups.

Theorem 3.14. Let (G_1, θ_1) and (G_2, θ_2) be two cyclotomically p-oriented profinite groups. Then their coproduct $(G, \theta) = (G_1, \theta_1) \coprod (G_2, \theta_2)$ is cyclotomically oriented. Moreover, if (G_1, θ_1) and (G_2, θ_2) are Bloch-Kato, then (G, θ) is Bloch-Kato.

Proof. Let $(U, \theta|_U)$ be an open subgroup of (G, θ) . Then, by the Kurosh subgroup theorem (cf. [27, Thm. 9.1.9]),

$$U \simeq \coprod_{s \in \mathcal{S}_1} ({}^sG_1 \cap U) \coprod \coprod_{t \in \mathcal{S}_2} ({}^tG_2 \cap U) \coprod F, \tag{3.12}$$

where ${}^yG_i = yG_iy^{-1}$ for $y \in G$. The sets S_1 and S_2 are sets of representatives of the double cosets $U \setminus G/G_1$ and $U \setminus G/G_2$, respectively. In particular, the sets S_1 and S_2 are finite, and F is a free profinite subgroup of finite rank.

Put $U_s = {}^sG_1 \cap U$ for all $s \in \mathcal{S}_1$, and $V_t = {}^tG_2 \cap U$ for all $t \in \mathcal{S}_2$. By [23, Thm. 4.1.4], one has an isomorphism

$$H^k(U, \mathbb{I}_p(k)) \simeq \bigoplus_{s \in \mathcal{S}_1} H^k(U_s, \mathbb{I}_p(k)) \oplus \bigoplus_{t \in \mathcal{S}_2} H^k(V_t, \mathbb{I}_p(k)),$$
 (3.13)

for $k \geq 2$, and an exact sequence

$$M \xrightarrow{\alpha} H^1(U, \mathbb{I}_p(1)) \longrightarrow M' \longrightarrow 0.$$
 (3.14)

If (G_1, θ_1) and (G_2, θ_2) are cyclotomically p-oriented, then, by hypothesis and (3.13), $H^k(U, \mathbb{I}_p(k))$ is a divisible p-torsion module for $k \geq 2$. In (3.14), the module M is a homomorphic image of a p-divisible p-torsion module, and the module M' is the direct sum of p-divisible p-torsion modules, showing that $H^1(U, \mathbb{I}_p(1))$ is divisible. Hence, by Proposition 3.1 and Corollary 3.3, (G, θ) is cyclotomically p-oriented.

Assume that (G_1, θ_1) and (G_2, θ_2) are Bloch-Kato. Then — for U as in (3.12) — one has by (3.13) and (3.14) that

$$H^{\bullet}(U,\widehat{\theta}|_{U}) \simeq \mathbf{A} \oplus \bigoplus_{s \in \mathcal{S}_{1}} H^{\bullet}(U_{s},\widehat{\theta}|_{U_{s}}) \oplus \bigoplus_{t \in \mathcal{S}_{2}} H^{\bullet}(V_{t},\widehat{\theta}|_{V_{t}}) \oplus H^{\bullet}(F,\widehat{\theta}|_{F})$$
 (3.15)

where **A** is a quadratic algebra, and \oplus denotes the *direct sum* in the category of quadratic algebras (cf. [24, p. 55]). In particular, $H^{\bullet}(U, \widehat{\theta}|_{U})$ is quadratic.

For pro-p groups one has also the following.

Theorem 3.15. Let (G_1, θ_1) and (G_2, θ_2) be two cyclotomically oriented pro-p groups. Then their coproduct $(G, \theta) = (G_1, \theta_1) \coprod^p (G_2, \theta_2)$ is cyclotomically oriented. Moreover, if (G_1, θ_1) and (G_2, θ_2) are Bloch-Kato, then (G, θ) is Bloch-Kato.

Proof. The Kurosh subgroup theorem is also valid in the category of pro-p groups with Π^p replacing Π (cf. [27, Thm. 9.1.9]), and (3.13) and (3.14) hold also in this context (cf. [23, Thm. 4.1.4]). Hence the proof for cyclotomicity can be transferred verbatim. The Bloch-Kato property was already shown in [25, Thm. 5.2].

4. Oriented virtual pro-p groups

We say that a p-oriented profinite group (G,θ) is an oriented virtual pro-p group if $\ker(\theta)$ is a pro-p group. In particular, G is a virtual pro-p group. Since \mathbb{Z}_2^{\times} is a pro-p group, every oriented virtual pro-p group is in fact a pro-p group. For $p \neq p$ let $\hat{\theta} : G \to \mathbb{F}_p^{\times}$ be the homomorphism induced by θ , and put $G^{\circ} = \ker(\hat{\theta})$. Then $G/G^{\circ} \simeq \operatorname{im}(\hat{\theta})$ is a finite cyclic group of order co-prime to p. The profinite version of the Schur-Zassenhaus theorem (cf. [14, Lemma 22.10.1]) implies that the short exact sequence of profinite groups

$$\{1\} \longrightarrow G^{\circ} \longrightarrow G \xrightarrow{\hat{\theta}} \operatorname{im}(\hat{\theta}) \longrightarrow \{1\}$$
 (4.1)

splits. Indeed, if $C \subseteq G$ is a p'-Hall subgroup of G, then $\pi|_C \colon C \to \operatorname{im}(\hat{\theta})$ is an isomorphism, and $\sigma = (\pi|_C)^{-1}$ is a canonical section for $\hat{\theta}$.

Note that $\mathbb{Z}_p^{\times} = \mathbb{F}_p^{\times} \times \Xi_p$, where $\Xi_p = O_p(\mathbb{Z}_p^{\times})$ is the pro-p Sylow subgroup of \mathbb{Z}_p^{\times} , and where we denoted by \mathbb{F}_p^{\times} also the image of the Teichmüller section $\tau \colon \mathbb{F}_p^{\times} \to \mathbb{Z}_p^{\times}$. Hence a p-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$ on G defines a homomorphism $\hat{\theta} \colon G \to \mathbb{F}_p^{\times}$ and also a homomorphism $\theta^{\vee} \colon G \to \Xi_p$. On the contrary a pair of continuous homomorphisms $(\hat{\theta}, \theta^{\vee})$, where $\hat{\theta} \colon G \to \mathbb{F}_p^{\times}$ and $\theta^{\vee} \colon G \to \Xi_p$, defines a p-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$ given by $\theta(g) = \hat{\theta}(g) \cdot \theta^{\vee}(g)$ for $g \in G$.

Fact 4.1. Let $\hat{\theta} \colon G \to \mathbb{F}_p^{\times}$, $\sigma \colon \operatorname{im}(\hat{\theta}) \to G$ be homomorphisms of groups satisfying (4.1). A homomorphism $\theta^{\circ} \colon G^{\circ} \to \Xi_p$ defines a p-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$, provided for all $c \in \operatorname{im}(\hat{\theta})$ and for all $g \in G^{\circ}$ one has

$$\theta^{\circ}(\sigma(c) \cdot g \cdot \sigma(c)^{-1}) = \theta^{\circ}(g)$$
 (4.2)

Proof. By (4.1), one has $G = G^{\circ} \rtimes_{\beta} \bar{\Sigma}$, where $\bar{\Sigma} = \operatorname{im}(\hat{\theta})$, $\beta \colon \bar{\Sigma} \to \operatorname{Aut}(G^{\circ})$ and $\beta(c)$ is left conjugation by $\sigma(c)$ for $c \in \bar{\Sigma}$. Thus, by (4.2), the map $\theta^{\vee} \colon G \to \Xi_p$ given by $\theta^{\vee}(g,c) = \theta^{\circ}(g)$ is a continuous homomorphism of groups, and (ι,θ^{\vee}) , where $\iota \colon \bar{\Sigma} \to \mathbb{F}_p^{\times}$ is the canonical inclusion, defines a p-orientation of G.

Let (G, θ) be an oriented virtual pro-p group satisfying (4.1). As $\theta \colon G \to \mathbb{Z}_p^{\times}$ is a homomorphism onto an abelian group one has

$$\theta(c \cdot g \cdot c^{-1}) = \theta(g) \tag{4.3}$$

for all $c \in C = \operatorname{im}(\sigma)$ and $g \in G$. Thus, if $i_c \in \operatorname{Aut}(G)$ denotes left conjugation by $c \in C$, one has

$$\theta = \theta \circ i_c \tag{4.4}$$

for all $c \in C$.

4.1. Oriented $\bar{\Sigma}$ -virtual pro-p groups

From now on let p be odd, and fix a subgroup $\bar{\Sigma}$ of \mathbb{F}_p^{\times} . An oriented virtual prop group (G,θ) is said to be an oriented $\bar{\Sigma}$ -virtual pro-p group, if $\operatorname{im}(\hat{\theta}) = \bar{\Sigma}$. Hence, by the previous subsection, for such a group one has a split short exact sequence

$$\{1\} \longrightarrow G^{\circ} \longrightarrow G \xrightarrow{\stackrel{\sigma}{\widehat{\theta}}} \bar{\Sigma} \longrightarrow \{1\} .$$
 (4.5)

By abuse of notation, we consider from now on (G, θ, σ) as an oriented $\bar{\Sigma}$ -virtual pro-p group. As the following fact shows there is also an alternative form of a $\bar{\Sigma}$ -virtual pro-p group.

Fact 4.2. Let $\bar{\Sigma}$ be a subgroup of \mathbb{F}_p^{\times} . Let Q be a pro-p group, let $\theta^{\circ}: Q \to \Xi_p$ be a continuous homomorphism, and let $\gamma_Q: \bar{\Sigma} \to \operatorname{Aut}_c(Q)$ be a homomorphism of groups, where $\operatorname{Aut}_c(\underline{\ })$ is the group of continuous automorphisms, satisfying

$$\theta^{\circ}(\gamma_Q(c)(q)) = \theta^{\circ}(q),$$
 (4.6)

for all $q \in Q$ and $c \in \bar{\Sigma}$, then $(Q \rtimes_{\gamma_Q} \bar{\Sigma}, \theta, \iota)$ is an oriented $\bar{\Sigma}$ -virtual pro-p group, where $\iota \colon \bar{\Sigma} \to Q \rtimes_{\gamma_Q} \bar{\Sigma}$ is the canonical map, and $\theta \colon Q \rtimes_{\gamma_Q} \bar{\Sigma} \to \mathbb{Z}_p^{\times}$ is the homomorphism induced by θ° (cf. Fact 4.1).

If $(G_1, \theta_1, \sigma_1)$ and $(G_2, \theta_2, \sigma_2)$ are oriented $\bar{\Sigma}$ -virtual pro-p groups, a continuous group homomorphism $\phi \colon G_1 \to G_2$ is said to be a morphism of $\bar{\Sigma}$ -virtual pro-p groups, if $\sigma_2 = \phi \circ \sigma_1$ and $\theta_1 = \theta_2 \circ \phi$. Similarly, if $(Q, \theta_Q^\circ, \gamma_Q)$ and $(R, \theta_R^\circ, \gamma_R)$ are $\bar{\Sigma}$ -virtual pro-p groups in alternative form (cf. Fact 4.2), the continuous group homomorphism $\phi \colon Q \to R$ is a homomorphism of $\bar{\Sigma}$ -virtual pro-p groups provided $\theta_R \circ \phi = \theta_Q$ and if for all $c \in \bar{\Sigma}$ and for all $q \in Q$ one has that

$$\gamma_R(c)(\phi(q)) = \phi(\gamma_Q(c)(q)). \tag{4.7}$$

With this slightly more sophisticated set-up the category of $\bar{\Sigma}$ -virtual pro-p groups admits coproducts. In more detail, let $(Q, \theta_Q^{\circ}, \gamma_Q)$ and $(R, \theta_R^{\circ}, \gamma_R)$ be $\bar{\Sigma}$ -virtual pro-p groups in alternative form. Put $X = Q \coprod^p R$. Then for every element $c \in \bar{\Sigma}$ there exists an element $\delta(c) \in \mathrm{Aut}(X)$ making the

diagram

$$Q \xrightarrow{\iota_{1}} X \overset{\iota_{2}}{\longleftarrow} R$$

$$\gamma_{Q}(c) \downarrow \qquad \qquad \downarrow \delta(c) \qquad \qquad \downarrow \gamma_{R}(c)$$

$$Q \xrightarrow{\iota_{1}} X \overset{\iota_{2}}{\longleftarrow} R$$

$$(4.8)$$

commute. Since Ξ_p is a pro-p group, there exists a continuous group homomorphism $\theta^{\circ} \colon X \to \Xi_p$ making the lower two rows of the diagram

commute. Since $\theta_{Q/R}^{\circ} = \theta_{Q/R}^{\circ} \circ \gamma_{Q/R}(c)$ for all $c \in \overline{\Sigma}$, one has $\theta^{\circ} = \theta^{\circ} \circ \delta(c)$ for all $c \in \overline{\Sigma}$. The commutativity of the diagram (4.9) yields that the group homomorphisms $j_Q \colon (Q, \theta_Q^{\circ}, \gamma_Q) \to (X, \theta^{\circ}, \delta)$ and $j_R \colon (R, \theta_R^{\circ}, \gamma_R) \to (X, \theta^{\circ}, \delta)$ are homomorphisms of oriented $\overline{\Sigma}$ -virtual pro-p groups in alternative form. Moreover, one has the following.

Proposition 4.3. The oriented $\bar{\Sigma}$ -virtual pro-p group $(X, \theta^{\circ}, \delta)$ together with the homomorphisms $j_Q \colon Q \to X$, and $j_R \colon R \to X$ is a coproduct in the category of oriented $\bar{\Sigma}$ -virtual pro-p groups.

Proof. Let (H, θ_H, γ_H) be an oriented $\bar{\Sigma}$ -virtual pro-p group in alternative form, and let $\phi_Q \colon Q \to H$ and $\phi_R \colon R \to H$ be homomorphisms of oriented $\bar{\Sigma}$ -virtual pro-p groups in alternative form. Then there exists a unique homomorphism of pro-p groups $\phi \colon X \to H$ making the diagram concentrated on the second and third row of

commute. Since $\phi_{Q/R} \circ \gamma_{Q/R}(c) = \gamma_H(c) \circ \phi_{Q/R}$ for all $c \in \bar{\Sigma}$, the uniqueness of ϕ implies that $\phi \circ \delta(c) = \gamma_H(c) \circ \phi$ for all $c \in \bar{\Sigma}$. As $\phi_Q \colon Q \to H$ and $\phi_R \colon R \to H$ are homomorphisms of $\bar{\Sigma}$ -virtual pro-p groups, one has that

 $\theta_{Q/R}^{\circ} = \theta_{H}^{\circ} \circ \phi_{Q/R}$. This implies that $(\theta_{H}^{\circ} \circ \phi) \circ j_{Q/R} = \theta_{Q/R}^{\circ}$, and from the construction of $\theta^{\circ} : X \to \Xi_{p}$ one concludes that $\theta^{\circ} = \theta_{H}^{\circ} \circ \phi$. This implies that ϕ is a homomorphism of oriented $\bar{\Sigma}$ -virtual pro-p groups.

Example 4.4. For p=3 set $\bar{\Sigma}=\mathbb{F}_3^{\times}=\{1,s\}$. Then the free product $(\mathbb{Z}_3^{\times},\mathrm{id}) \coprod^{\bar{\Sigma}} (\mathbb{Z}_3^{\times},\mathrm{id})$ is isomorphic to $F\rtimes \bar{\Sigma}$, where $F=\langle x,y\rangle$ is a free pro-3 group of rank 2 and the induced isomorphism $s\colon F\to F$ satisfies $s(x)=x^{-1},$ $s(y)=y^{-1}.$

Proposition 4.5. Let (Q, θ_Q, γ_Q) be an oriented $\bar{\Sigma}$ -virtual pro-p group, and let Z be a normal $\bar{\Sigma}$ -invariant subgroup of Q isomorphic to \mathbb{Z}_p , which is not contained in the Frattini subgroup $\Phi(Q) = \operatorname{cl}([Q,Q]Q^p)$ of Q. Then there exists a maximal closed subgroup M of Q which is $\bar{\Sigma}$ -invariant, such that $M \cdot Z = Q$ and $M \cap Z = Z^p$.

Proof. Let $\bar{Q} = Q/\Phi(Q)$. Then γ_Q induces a homomorphism $\bar{\gamma}_{\bar{Q}} \colon \bar{\Sigma} \to \operatorname{Aut}_c(\bar{Q})$ making \bar{Q} a compact $\mathbb{F}_p[\bar{\Sigma}]$ -module. Let $\Omega = \operatorname{Hom}_{\bar{\Sigma}}^c(\bar{Q}, \mathbb{F}_p)$, where \mathbb{F}_p denotes the finite field \mathbb{F}_p with canonical left $\bar{\Sigma}$ -action. By Pontryagin duality, one has $\bigcap_{\omega \in \Omega} \ker(\omega) = \{0\}$. Thus, by hypothesis, there exists $\psi \in \Omega$ such that $\psi|_{\mathbf{Z}} \neq 0$. Hence $M = \ker(\psi)$ has the desired properties. \square

4.2. The maximal oriented virtual pro-p quotient

For a prime p and a profinite group G we denote by $O^p(G)$ the closed subgroup of G generated by all Sylow pro- ℓ subgroups of G, $\ell \neq p$. In particular, $O^p(G)$ is p-perfect, i.e., $H^1(O^p(G), \mathbb{F}_p) = 0$, and one has the short exact sequence

$$\{1\} \longrightarrow O^p(G) \longrightarrow G \longrightarrow G(p) \longrightarrow \{1\} \ ,$$

where G(p) denotes the maximal pro-p quotient of G.

For a p-oriented profinite group (G, θ) , we denote by

$$G(\theta) = G/O^p(G^\circ)$$

the maximal p-oriented virtual pro-p quotient of G (for the definition of G° see the beginning of § 4). By construction, it carries naturally a p-orientation $\theta \colon G(\theta) \to \mathbb{Z}_p^{\times}$ inherited by G.

Note that if $\operatorname{im}(\theta)$ is a pro-p group, then $G^{\circ} = G$, and $G(\theta) = G(p)$.

Proposition 4.6. Let (G, θ) be a p-oriented Bloch-Kato profinite group, and let $O \subseteq G$ be a p-perfect subgroup such that $O \subseteq \ker(\theta)$. Then the inflation map

$$\inf^{k}(M) : H^{k}_{\mathrm{cts}}(G/O, M) \longrightarrow H^{k}_{\mathrm{cts}}(G, M),$$
 (4.11)

is an isomorphism for all $k \geq 0$ and all $M \in ob(\mathbb{Z}_p[\![G/O]\!]\mathbf{prf})$, where $\mathbb{Z}_p[\![G/O]\!]\mathbf{prf}$ denotes the abelian category of profinite left $\mathbb{Z}_p[\![G/O]\!]$ -modules.

Proof. As $O \subseteq \ker(\theta)$, $\mathbb{Z}_p(k)$ is a trivial $\mathbb{Z}_p[\![O]\!]$ -module for every $k \in \mathbb{Z}$. Since O is p-perfect, and as the \mathbb{F}_p -algebra $H^{\bullet}(O, \mathbb{F}_p)$ is quadratic, $H^{\bullet}(O, \mathbb{F}_p)$ is 1-dimensional concentrated in degree 0. By Pontryagin duality, this is equivalent to $H_k(O, \mathbb{F}_p) = 0$ for all k > 0, where $H_k(O, \underline{\hspace{0.5cm}})$ denotes Galois homology

as defined by A. Brumer in [3]. Thus, the long exact sequence in Galois homology implies that $H_k(O, \mathbb{Z}_p) = 0$ for all k > 0.

Let $(P_{\bullet}, \partial_{\bullet}, \varepsilon)$ be a projective resolution of the trivial left $\mathbb{Z}_p[\![G]\!]$ -module in the category $\mathbb{Z}_p[\![G]\!]$ **prf**. For a projective left $\mathbb{Z}_p[\![G]\!]$ -module $P \in \text{ob}(\mathbb{Z}_p[\![G]\!]$ define

$$\operatorname{def}(P) = \operatorname{def}_{G/O}^{G}(P) = \mathbb{Z}_{p} \llbracket G/O \rrbracket \, \widehat{\otimes}_{G} \, P, \tag{4.12}$$

where $\widehat{\otimes}$ denotes the completed tensor product as defined in [3]. Then, by the Eckmann-Shapiro lemma in homology, one has that

$$H_k(\operatorname{def}(P_{\bullet}), \operatorname{def}(\partial_{\bullet})) \simeq H_k(O, \mathbb{Z}_p).$$
 (4.13)

Hence, by the previously mentioned remark, $(\operatorname{def}(P_{\bullet}), \operatorname{def}(\partial_{\bullet}))$ is a projective resolution of \mathbb{Z}_p in the category $\mathbb{Z}_p \llbracket G/O \rrbracket \mathbf{prf}$.

Let $M \in \text{ob}(\mathbb{Z}_p[\![G/O]\!]\mathbf{prf})$. Then for every projective profinite left $\mathbb{Z}_p[\![G]\!]$ -module P, one has a natural isomorphism

$$\operatorname{Hom}_{G/O}(\operatorname{def}(P), M) \simeq \operatorname{Hom}_{G}(P, M).$$
 (4.14)

Hence $\operatorname{Hom}_{G/O}(\operatorname{def}(P_{\bullet}), M)$ and $\operatorname{Hom}_{G}(P_{\bullet}, M)$ are isomorphic co-chain complexes, and the induced maps in cohomology — which coincide with $\inf^{\bullet}(M)$ — are isomorphisms.

Corollary 4.7. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato, respectively cyclotomically oriented. Then the maximal oriented virtual propauotient $(G(\theta), \theta)$ is Bloch-Kato, respectively cyclotomically oriented.

5. Profinite Poincaré duality groups and p-orientations

5.1. Profinite Poincaré duality groups

Let G be a profinite group, and let p be a prime number. Then G is called a p-Poincaré duality group of dimension d, if

 $(PD_1) \operatorname{cd}_p(G) = d;$

(PD₂) $|H_{\mathrm{cts}}^k(G,A)| < \infty$ for every finite discrete left G-module A of p-power order;

$$(\mathrm{PD}_3)\ H^k_{\mathrm{cts}}(G,\mathbb{Z}_p[\![G]\!])=0 \text{ for } k\neq d, \text{ and } H^d_{\mathrm{cts}}(G,\mathbb{Z}_p[\![G]\!])\simeq \mathbb{Z}_p.$$

Although quite different at first glance, for a pro-p group our definition of p-Poincaré duality coincides with the definition given by J-P. Serre in [31, $\S I.4.5$]. However, some authors prefer to omit the condition (PD₂) in the definition of a p-Poincaré duality group (cf. [23, Chap. III, $\S 7$, Definition 3.7.1]).

For a profinite p-Poincaré duality group G of dimension d the profinite right $\mathbb{Z}_p[\![G]\!]$ -module $D_G = H^d_{\operatorname{cts}}(G, \mathbb{Z}_p[\![G]\!])$ is called the *dualizing module*. Since D_G is isomorphic to \mathbb{Z}_p as a pro-p group, there exists a unique p-orientation $\eth_G \colon G \to \mathbb{Z}_p^{\times}$ such that for $g \in G$ and $z \in D_G$ one has

$$z \cdot g = z \cdot \eth_G(g) = \eth_G(g) \cdot z.$$

We call \eth_G the dualizing p-orientation.

Let ${}^{\times}D_G$ denote the associated profinite left $\mathbb{Z}_p\llbracket G \rrbracket$ -module, i.e., setwise ${}^{\times}D_G$ coincides with D_G and for $g \in G$ and $z \in {}^{\times}D_G$ one has

$$g \cdot z = z \cdot g^{-1} = \eth_G(g^{-1}) \cdot z.$$

For a profinite p-Poincaré duality group of dimension d the usual standard arguments (cf. [2, \S VIII.10] for the discrete case) provide natural isomorphisms

$$\operatorname{Tor}_{k}^{G}(D_{G}, \underline{\ }) \simeq H_{\operatorname{cts}}^{d-k}(G, \underline{\ }),$$

$$\operatorname{Ext}_{G}^{k}({}^{\times}D_{G}, \underline{\ }) \simeq H_{d-k}(G, \underline{\ }),$$
(5.1)

where $\operatorname{Tor}_{\bullet}^{G}(\underline{\ },\underline{\ })$ denotes the left derived functor of $\underline{\widehat{\otimes}}_{G}$, and $\operatorname{Ext}_{G}^{\bullet}(\underline{\ },\underline{\ })$ denotes the right derived functors of $\operatorname{Hom}_{G}(\underline{\ },\underline{\ })$ in the category $\mathbb{Z}_{p}\llbracket G \rrbracket \operatorname{prf}$ (cf. [3]).

If A is a discrete left G-module which is also a p-torsion module, then A^* carries naturally the structure of a left (profinite) $\mathbb{Z}_p[\![G]\!]$ -module (cf. [27, p. 171]). Then, by [31, \S I.3.5, Proposition 17], Pontryagin duality and [33, (3.4.5)], one obtains for every finite discrete left $\mathbb{Z}_p[\![G]\!]$ -module A of p-power order that

$$H^d_{\mathrm{cts}}(G, A) \simeq \mathrm{Hom}_G(A, I_G)^* \simeq \mathrm{Hom}_G(I_G^*, A^*)^* \simeq (I_G^*)^{\times} \widehat{\otimes}_G A,$$
 (5.2)

where I_G denotes the discrete left dualizing module of G (cf. [31, §I.3.5]). In particular, by (5.1), $D_G \simeq (I_G^*)^{\times}$.

Example 5.1. Let $G_{\mathbb{K}}$ be the absolute Galois group of an ℓ -adic field \mathbb{K} . Then $G_{\mathbb{K}}$ satisfies p-Poincaré duality of dimension 2 for all prime numbers p. One has $I_G \simeq \mu_{p^{\infty}}(\overline{\mathbb{K}})$ (cf. [31, §II.5.2, Theorem 1]). Hence ${}^{\times}D_{G_{\mathbb{K}}} \simeq \mathbb{Z}_p(-1)$ with respect to the cyclotomic p-orientation $\theta_{\mathbb{K},p} \colon G_{\mathbb{K}} \to \mathbb{Z}_p^{\times}$, i.e., $\mathfrak{I}_{G_{\mathbb{K}}} = \theta_{\mathbb{K},p}$.

As we will see in the next proposition, the final conclusion in Example 5.1 is a consequence of a general property of Poincaré duality groups.

Proposition 5.2. Let G be a p-Poincaré duality group of dimension d, and let $\theta: G \to \mathbb{Z}_p^{\times}$ be a cyclotomic p-orientation of G. Then $\theta^{d-1} = \eth_G$ and ${}^{\times}D_G \simeq \mathbb{Z}_p(1-d)$.

Proof. By (5.1) and the hypothesis, $H^d_{\mathrm{cts}}(G, \mathbb{Z}_p(d-1)) \simeq D_G \widehat{\otimes} \mathbb{Z}_p(d-1)$ is torsion free, and hence isomorphic to \mathbb{Z}_p . This implies $\eth_G = \theta^{d-1}$.

5.2. Finitely generated θ -abelian pro-p groups

Recall that (G, θ) is said to be θ -abelian if $\ker(\theta) = \mathbb{Z}_{\theta}(G)$ and $\mathbb{Z}_{\theta}(G)$ is p-torsion free — in particular $\ker(\theta)$ is an abelian pro-p group. If G is finitely generated then one has an isomorphism of left $\mathbb{Z}_p[\![G]\!]$ -modules $N \simeq \mathbb{Z}_p(1)^r$ for some non-negative integer r, and either $\Gamma = \operatorname{im}(\theta)$ is a finite group of order coprime to p, or Γ is a p-Poincaré duality group of dimension 1 satisfying $\mathfrak{F}_{\Gamma} = \mathbf{1}_{\Gamma}$ (cf. [23, Prop. 3.7.6]). Moreover, one has isomorphisms of left $\mathbb{Z}_p[\![G]\!]$ -modules

$$H_k(N, \mathbb{Z}_p) \simeq \Lambda_k(N) \simeq \mathbb{Z}_p(k)^{\binom{r}{k}},$$
 (5.3)

where $\Lambda_{\bullet}(_)$ denotes the exterior algebra over the ring \mathbb{Z}_p . Since $\operatorname{cd}_p(\Gamma) \leq 1$, the Hochschild-Serre spectral sequence for homology (cf. [39, § 6.8])

$$E_{s,t}^2 = H_s(\Gamma, H_t(N, \mathbb{Z}_p(-m))) \implies H_{s+t}(G, \mathbb{Z}_p(-m))$$
 (5.4)

is concentrated in the first two columns. Hence, the spectral sequence collapses at the E^2 -term, i.e., $E^2_{s,t}=E^\infty_{s,t}$. Thus, for $n\geq 1$ one has a short exact sequence

$$0 \longrightarrow H_{n-1}(N, \mathbb{Z}_p(-m))^{\Gamma} \longrightarrow H_n(G, \mathbb{Z}_p(-m)) \longrightarrow H_n(N, \mathbb{Z}_p(-m))_{\Gamma} \longrightarrow 0$$
(5.5)

if $\operatorname{cd}_p(\Gamma) = 1$, and isomorphisms

$$H^n(G, \mathbb{Z}_p(-m)) \simeq H_n(N, \mathbb{Z}_p(-m))_{\Gamma}$$
 (5.6)

if Γ is a finite group of order coprime p. Here we used the fact that $H_0(\Gamma, _) = _\Gamma$ coincides with the coinvariants of Γ , and that $H_1(\Gamma, _) = _\Gamma$ coincides with the invariants of Γ if Γ is a p-Poincaré duality group of dimension 1 with $\eth_{\Gamma} = \mathbf{1}_{\Gamma}$. Since $H_{m-1}(N, \mathbb{Z}_p(-m))^{\Gamma}$ is a torsion free abelian pro-p group, and as

$$H_m(N, \mathbb{Z}_p(-m))_{\Gamma} = (H_m(N, \mathbb{Z}_p) \otimes \mathbb{Z}_p(-m))_{\Gamma} \simeq \Lambda_m(N)$$
 (5.7)

by (5.3), one concludes from (5.5) and (5.6) that $H_m(G, \mathbb{Z}_p(-m))$ is torsion free.

Proposition 5.3. Let (G, θ) be a θ -abelian p-oriented virtual pro-p group such that $N = \ker(\theta)$ is a finitely generated torsion free abelian pro-p group, and that $\Gamma = \operatorname{im}(\theta)$ is p-torsion free. Then G is a p-Poincaré duality group of dimension $d = \operatorname{cd}(G)$, and θ is cyclotomic.

Proof. By hypothesis, G is a p-torsion free p-adic analytic group. Hence the former assertion is a direct consequence of M. Lazard's theorem (cf. [33, Thm. 5.1.5]). The latter follows from Proposition 3.1.

From Proposition 5.2 one concludes the following:

Corollary 5.4. Let (G, θ) be a θ -abelian pro-p group. If p = 2 assume further that $\operatorname{im}(\theta)$ is torsion free.

- (a) The orientation θ is cyclotomic.
- (b) Suppose that G is finitely generated with minimum number of generators $d = d(G) < \infty$. If p = 2 assume further that $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$. Then G is a Poincaré duality pro-p group of dimension d. Moreover, $\eth_G = \theta^{d-1}$.
- (c) If G satisfies the hypothesis of (b) and $d(G) \geq 2$, then for p odd, any cyclotomic orientation $\theta' \colon G \to \mathbb{Z}_p^{\times}$ of G must coincide with θ , i.e., $\theta' = \theta$. For p = 2 any cyclotomic orientation $\theta' \colon G \to \mathbb{Z}_2^{\times}$ satisfying $\operatorname{im}(\theta') \subseteq 1 + 4\mathbb{Z}_2$ must coincide with θ .

Proof. (a) follows from Proposition 5.3.

(b) By hypothesis, G is uniformly powerful (cf. [6, Ch. 4]), or equi-p-value, as it is called in [17]. Hence the claim follows from Proposition 5.3. By Proposition 5.2, $\eth_G = \theta^{d-1}$.

(c) An element $\phi \in \operatorname{Hom}_{\operatorname{grp}}(G, \mathbb{Z}_p^{\times})$ has finite order if, and only if, $\operatorname{im}(\phi)$ is finite. Proposition 5.2 and part (b) imply that

$$\theta^{d-1} = \eth_G = (\theta')^{d-1}.$$

Hence $(\theta^{-1}\theta')^{d-1} = \mathbf{1}_G$. For p odd, $\operatorname{Hom}_{\operatorname{grp}}(G, \mathbb{Z}_p^{\times})$ does not contain non-trivial elements of finite order. Hence $\theta' = \theta$. For p = 2 the hypothesis implies that $\operatorname{im}(\theta^{-1}\theta') \subseteq 1 + 4\mathbb{Z}_2$. Hence $(\theta^{-1}\theta')^{d-1} = \mathbf{1}_G$ implies that $\theta' = \theta$.

Note that, by Fact 2.2, Corollary 5.4(c) cannot hold if d(G) = 1.

5.3. Profinite p-Poincaré duality groups of dimension 2

As the following theorem shows, for a profinite p-Poincaré duality group G of dimension 2, the dualizing p-orientation $\eth_G \colon G \to \mathbb{Z}_p^{\times}$ is always cyclotomic.

Theorem 5.5. Let G be a profinite p-Poincaré duality group of dimension 2. Then $\eth_G \colon G \to \mathbb{Z}_p^{\times}$ is a cyclotomic p-orientation.

Proof. As every p-oriented profinite group is 0-cyclotomic, it suffices to show that $H^2_{\text{cts}}(U, \mathbb{Z}_p(1))$ is torsion free for every open subgroup $U \subseteq G$. By Proposition 5.2, $\mathbb{Z}_p(-1) \simeq {}^{\times}D_G$. Hence, from the Eckmann-Shapiro lemma in homology and (5.1), one concludes that

$$H_1(U, \mathbb{Z}_p(-1)) = \operatorname{Tor}_1^U(\mathbb{Z}_p, \mathbb{Z}_p(-1)) \simeq \operatorname{Tor}_1^U(\mathbb{Z}_p(-1)^{\times}, \mathbb{Z}_p)$$

$$\simeq \operatorname{Tor}_1^G(D_G, \mathbb{Z}_p[\![G/U]\!]) \simeq H_{\operatorname{cts}}^1(G, \mathbb{Z}_p[\![G/U]\!])$$

$$\simeq \operatorname{Hom}_{\operatorname{grp}}(U, \mathbb{Z}_p).$$
(5.8)

Hence $H_1(U, \mathbb{Z}_p(-1))$ is a torsion free \mathbb{Z}_p -module, and, by Proposition 3.1, $H^2_{\mathrm{cts}}(U, \mathbb{Z}_p(1))$ is torsion free as well.

Remark 5.6. Let G be a profinite p-Poincaré duality group of dimension 2, and let $\eth_G \colon G \to \mathbb{Z}_p^{\times}$ be the dualizing p-orientation. Then (G, \eth_G) is not necessarily Bloch-Kato, as the following example shows.

Let p=2 and let $A=\mathrm{PSL}_2(q)$ where $q\equiv 3\mod 4$. Then there exists a p-Frattini extension $\pi\colon G\to A$ of A such that G is a 2-Poincaré duality group of dimension 2, i.e., $\ker(\pi)$ is a pro-2 group contained in the Frattini subgroup of G (cf. [41]). In particular, G is perfect, and thus $\eth_G=\mathbf{1}_G$. Hence $\mathbb{F}_2(1)=\mathbb{F}_2(0)$ is the trivial $\mathbb{F}_2[\![G]\!]$ -module, and — as G is perfect — $H^1(G,\mathbb{F}_2(1))=0$. Moreover, $H^2(G,\mathbb{F}_2(2))\simeq \mathbb{F}_2$, as G is a profinite 2-Poincaré duality group of dimension 2 with $\eth_G=\mathbf{1}_G$. Therefore, $H^{\bullet}(G,\mathbf{1}_G)$ is not quadratic.

A pro-p group G which satisfies p-Poincaré duality in dimension 2 is also called a Demuškin group (cf. [23, Def. 3.9.9]). For this class of groups one has the following.

Corollary 5.7. Let G be a Demuškin pro-p group. Then G is a Bloch-Kato pro-p group, and $\eth_G \colon G \to \mathbb{Z}_p^{\times}$ is a cyclotomic p-orientation.

Proof. By Theorem 5.5, it suffices to show that (G, \eth_G) is Bloch-Kato. It is well known that $H^{\bullet}(G, \hat{\eth}_G)$ is quadratic (cf. [31, §I.4.5]). Moreover, every open subgroup U of G is again a Demuškin group, with $\eth_U = \eth_G|_U$ (cf. [23, Thm. 3.9.15]). Hence (G, \eth_G) is Bloch-Kato.

Remark 5.8. [The Klein bottle pro-2 group] Let G be the pro-2 group given by the presentation

$$G = \langle x, y \mid xyx^{-1}y = 1 \rangle \tag{5.9}$$

Then G is a Demuškin pro-2 group containing the free abelian pro-2 group $H = \langle x^2, y \rangle$ of rank 2. Thus, by Corollary 5.7 (G, \eth_G) is cyclotomic. Since $H^1(G, \mathbb{I}_2(0)) \simeq \mathbb{I}_2 \oplus \mathbb{Z}/2\mathbb{Z}$, Proposition 3.1 implies that $\eth_G \neq \mathbf{1}_G$ is non-trivial. In particular, since $\eth_G|_H = \mathbf{1}_H$, this implies that $\operatorname{im}(\eth_G) = \{\pm 1\}$. Note that $H = \ker(\eth_G)$ and that one has a canonical isomorphism

$$H = \langle x^2 \rangle \oplus \langle y \rangle \simeq \mathbb{Z}_2(0) \oplus \mathbb{Z}_2(1). \tag{5.10}$$

In particular, (G, \eth_G) is not \eth_G -abelian.

Example 5.9. Let G be the pro-p group with presentation

$$G = \langle x, y, z \mid [x, y] = z^{-p} \rangle.$$

If p=2 then G is a Demuškin group, and $\eth_G\colon G\to\mathbb{Z}_2^\times$ is given by $\eth_G(x)=\eth_G(y)=1,\ \eth_G(z)=-1.$ On the other hand, if $p\neq 2$ then G is not a Demuškin group, and any p-orientations $\theta\colon G\to\mathbb{Z}_p^\times$ is not 1-cyclotomic (cf. [11, Thm. 8.1]). However, $H^\bullet(G,\hat{\theta})$ is still quadratic.

6. Torsion

It is well known that a Bloch-Kato pro-p group may have non-trivial torsion only if, p=2. More precisely, a Bloch-Kato pro-2 group G is torsion if, and only if, G is abelian and of exponent 2. Moreover, any such group is a Bloch-Kato pro-2 group (cf. [25, §2]). The following result — which appeared first in [26, Prop. 2.13] — holds for 1-cyclotomically oriented pro-p groups (see also [11, Ex. 3.5] and [5, Ex. 14.27]).

Proposition 6.1. Let (G, θ) be a 1-cyclotomically oriented pro-p group.

- (a) If $im(\theta)$ is torsion free, then G is torsion free.
- (b) If G is non-trivial and torsion, then p=2, $G \simeq C_2$ and θ is injective.

Remark 6.2. Let $\theta \colon C_2 \to \mathbb{Z}_2^{\times}$ be an injective homomorphism of groups. Then $\mathbb{Z}_2(1) \simeq \omega_{C_2}$ is isomorphic to the augmentation ideal

$$\omega_{C_2} = \ker(\mathbb{Z}_2[C_2] \to \mathbb{Z}_2).$$

Hence — by dimension shifting —

$$H^2(C_2, \mathbb{Z}_2(1)) = H^1(C_2, \mathbb{Z}_2(0)) = 0.$$

Thus — as C_2 has periodic cohomology of period 2 — one concludes that $H^s(C_2, \mathbb{Z}_2(t)) = 0$ for s odd and t even, and also for s even and t odd. Hence (C_2, θ) is cyclotomic.

From Proposition 6.1 and the profinite version of Sylow's theorem one concludes the following corollary, which can be seen as a version of the Artin-Schreier theorem for 1-cyclotomically *p*-oriented profinite groups.

Corollary 6.3. Let p be a prime number, and let (G, θ) be a profinite group with a 1-cyclotomic p-orientation.

- (a) If p is odd, then G has no p-torsion.
- (b) If p = 2, then every non-trivial 2-torsion subgroup is isomorphic to C_2 . Moreover, if $\operatorname{im}(\theta)$ has no 2-torsion, then G has no 2-torsion.

Remark 6.4. Let $\theta \colon \mathbb{Z}_2 \to \mathbb{Z}_2^{\times}$ be the homomorphism of groups given by $\theta(1+\lambda) = -1$ and $\theta(\lambda) = 1$ for all $\lambda \in 2\mathbb{Z}_2$. Then θ is a 2-orientation of $G = \mathbb{Z}_2$ satisfying $\operatorname{im}(\theta) = \{\pm 1\}$. As $\operatorname{cd}_2(\mathbb{Z}_2) = 1$, Fact 2.2 implies that (\mathbb{Z}_2, θ) is Bloch-Kato and cyclotomically 2-oriented. However, $\operatorname{im}(\theta)$ is not torsion free.

6.1. Orientations on $C_2 \times \mathbb{Z}_2$

As we have seen in Proposition 5.3, for p odd, every θ -abelian oriented pro-p group is cyclotomically p-oriented. For p=2, this is not true. Indeed, one has the following.

Proposition 6.5. Any 2-orientation $\theta: G \to \mathbb{Z}_2^{\times}$ on $G \simeq C_2 \times \mathbb{Z}_2$ is not 1-cyclotomic.

Proof. Suppose that (G,θ) is 1-cyclotomically 2-oriented. Let x,y be elements of G such that $x^2=1$ and $\operatorname{ord}(y)=2^\infty$, and that x,y generate G. Proposition 6.1 applied to the cyclic pro-2 group generated by x yields $\theta(x)=-1$. Put $\theta(y)=1+2\lambda$ for some $\lambda\in\mathbb{Z}_2$. By [16, Prop. 6], if θ is 1-cyclotomic then for any pair of elements $c_x,c_y\in\mathbb{Z}_2(1)$ there exists a continuous crossed-homomorphism $c\colon G\to\mathbb{Z}_2(1)$ (i.e., a map satisfying $c(g_1g_2)=c(g_1)+\theta(g_1)c(g_2)$, cf. [23, p. 15]) such that $c(x)=c_x$, $c(y)=c_y$. Set $c_x=c_y=1$. Then one computes

$$c(xy) = c_x + \theta(x)c_y = 1 - 1 = 0,$$
 and
 $c(yx) = c_y + \theta(y)c_x = 1 + 1 + 2\lambda,$

which yields $\lambda = -1$. The element xy has the same properties as y. Hence the previously mentioned argument applied to the element xy yields $\theta(xy) = 1 - 2 = -1$, whereas $\theta(xy) = \theta(x)\theta(y) = 1$, a contradiction.

Remark 6.6. From Proposition 6.1 and Proposition 6.5 one deduces that in a 1-cyclotomically 2-oriented pro-2 group, every element of order 2 is self-centralizing, which is a remarkable property of absolute Galois groups (cf. [4, Prop. 2.3] and [19, Cor. 2.3]).

Proposition 6.7. Let (G, θ) be a θ -abelian oriented pro-2 group. Then θ is cyclotomic if, and only if, either

- (a) $im(\theta)$ is torsion free; or
- (b) $im(\theta)$ has order 2.

In both these cases (G, θ) is split θ -abelian.

Proof. Assume first that $\operatorname{im}(\theta)$ is torsion free. Then the short exact sequence $\{1\} \to \ker(\theta) \to G \to \operatorname{im}(\theta) \to \{1\}$ splits, as $\operatorname{im}(\theta) \simeq \mathbb{Z}_2$ is a projective pro-2 group. Moreover, (G, θ) is cyclotomic by Proposition 5.3.

Second assume that θ is cyclotomic, p=2 and that $\operatorname{im}(\theta) \supseteq \{\pm 1\}$. If $g \in G$ satisfies $\theta(g) = -1$, then $g^2 \in \ker(\theta) = \operatorname{Z}_{\theta}(G)$, and consequently

$$g^2 = g \cdot g^2 \cdot g^{-1} = (g^2)^{\theta(g)} = g^{-2},$$

i.e., $g^4 = 1$. Since $(\ker(\theta), \mathbf{1})$ is cyclotomically 2-oriented, $\ker(\theta)$ is torsion free, and one deduces that $g^2 = 1$. Therefore, the short exact sequence

$$\{1\} \longrightarrow H \longrightarrow G \longrightarrow C_2 \longrightarrow \{1\}$$

splits (here $H = \ker(\pi \circ \theta)$, where π is the canonical epimorphism $\mathbb{Z}_2^{\times} \to \{\pm 1\}$). Since $(H, \theta|_H)$ is again cyclotomically 2-oriented and as $\operatorname{im}(\theta|_H)$ is torsion free, $(H, \theta|_H)$ is split $\theta|_H$ -abelian by the previously mentioned argument. We claim that $H = \ker(\theta)$. Indeed, suppose there exists $h \in H$ such that $\theta(h) \neq 1$. Put $\lambda = (1 + \theta(h))/2$ and let $z = ghgh^{-1} = [g, h^{-1}] \in \ker(\theta)$. Then — as $g = g^{-1}$ and $\theta(g) = -1$ — one has

$$\begin{split} g(z^{\lambda}h^2)g^{-1} &= (gzg)^{\lambda} \cdot gh^2g \\ &= z^{-\lambda} \cdot (ghg)^2 = z^{-\lambda} \cdot (ghgh^{-1} \cdot h)^2 \\ &= z^{-\lambda} \cdot (zhzh^{-1} \cdot h^2) = z^{-\lambda+1+\theta(h)}h^2 \\ &= z^{\lambda}h^2. \end{split}$$

i.e., g and $z^{\lambda}h^2$ commute which implies that $\langle g, z^{\lambda}h^2 \rangle \simeq C_2 \times \mathbb{Z}_p$ contradicting Proposition 6.5. Therefore, $H = \ker(\theta)$ is a free abelian pro-2 group, and $G \simeq H \rtimes C_2$.

Finally, let p=2 and assume that $\operatorname{im}(\theta)=\{\pm 1\}$. By Remark 6.2, we may also assume that $\ker(\theta)$ is non-trivial. Then, either

Case I: $\theta^{-1}(\{-1\})$ contains an element of order 2 and (G, θ) is split θ -abelian, i.e., $G \simeq \ker(\theta) \rtimes C_2$ with $\ker(\theta)$ a free abelian pro-2 group, or

Case II: all elements in $x \in \theta^{-1}(\{-1\})$ are of infinite order. Then for $y \in \ker(\theta)$, the group $K = \langle x, y \rangle$ must be isomorphic to the Klein bottle pro-2 group which is impossible as G is θ -abelian and thus contains only θ -abelian closed subgroups (cf. Remark 3.12(b)). Hence Case II is impossible.

By Lemma 3.10, if $U \subseteq G$ is an open subgroup, then either $U \subseteq \ker(\theta)$, or $U \simeq V \rtimes C_2$ for some open subgroup V of $\ker(\theta)$. In the first case, $(U, \mathbf{1})$ is cyclotomically 2-oriented by Proposition 5.3. For the second case, we claim that $H^k(U, \mathbb{I}_2(k))$ is 2-divisibe for all $k \geq 1$.

Recall that $\mathbb{Z}_2[C_2]$ has periodic cohomology (of period 2), and that one has the equalities of $\mathbb{Z}_2[U]$ -modules $\mathbb{I}_2(k) = \mathbb{I}_2(0)$ for k even and $\mathbb{I}_2(k) = \mathbb{I}_2(-1)$ for k odd. Moreover,

$$\hat{H}^{0}(C_{2}, \mathbb{I}_{2}(0)) = \mathbb{I}_{2}(0)^{C_{2}}/N_{C_{2}}\mathbb{I}_{2}(0) = \mathbb{I}_{2}(0)/2 \cdot \mathbb{I}_{2}(0) = 0,$$

$$\hat{H}^{-1}(C_{2}, \mathbb{I}_{2}(-1)) = \ker(N_{C_{2}})/\omega_{C_{2}}\mathbb{I}_{2}(-1) = \mathbb{I}_{2}(-1)/2 \cdot \mathbb{I}_{2}(-1) = 0,$$
(6.1)

where \hat{H}^k denotes Tate cohomology, $N_{C_2} = \sum_{x \in C_2} x \in \mathbb{Z}_2[C_2]$ is the norm element, and ω_{C_2} is the augmentation ideal of the group algebra $\mathbb{Z}_2[C_2]$ (cf. [23, § I.2]). Thus, by (6.1), one has

$$H^m(C_2, \mathbb{I}_2(m)) = \hat{H}^m(C_2, \mathbb{I}_2(m)) \simeq \hat{H}^k(C_2, \mathbb{I}_2(k)) = 0,$$
 (6.2)

for all positive integers m > 0 and $m \equiv k \pmod{2}$.

Suppose first that $V \simeq \mathbb{Z}_2$. As in the proof of Theorem 3.11, the E_2 -term of the Hochschild-Serre spectral sequence associated to the short exact sequence $\{1\} \to V \to U \to C_2 \to \{1\}$ evaluated on $\mathbb{I}_2(k)$ is concentrated in the first and the second row. In particular, $d_2^{\bullet,\bullet} = 0$ and thus $E_2^{s,t}(\mathbb{I}_2(k)) = E_{\infty}^{s,t}(\mathbb{I}_2(k))$. Thus, by Fact 3.9, for every $k \geq 1$ one has a short exact sequence

$$0 \longrightarrow H^k(C_2,\mathbb{I}_2(k)) \longrightarrow H^k(U,\mathbb{I}_2(k)) \longrightarrow H^{k-1}(C_2,\mathbb{I}_2(k-1)) \longrightarrow 0 \ ,$$

and $H^k(C_2, \mathbb{I}_2(k)) = 0$ by (2.6). Hence, $(U, \theta|_U)$ is cyclotomically 2-oriented by Proposition 3.1. If $V \simeq \mathbb{Z}_2^n$ with n > 1, then $H^k(U, \mathbb{I}_2(k)) = 0$ by induction on n and the previously mentioned argument. Finally, Corollary 3.3 yields the claim in case V not finitely generated.

7. Cyclotomically oriented pro-p groups

For a cyclotomically oriented pro-2 group (G, θ) satisfying $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$ one has the following.

Fact 7.1. Let (G, θ) be a pro-2 group with a cyclotomic orientation satisfying $\operatorname{im}(\theta) \subseteq 1+4\mathbb{Z}_2$. Then $\chi \cup \chi = 0$ for all $\chi \in H^1(G, \mathbb{F}_2)$, i.e., the first Bockstein morphism $\beta^1 \colon H^1(G, \mathbb{F}_2) \to H^2(G, \mathbb{F}_2)$ vanishes.

Proof. Since $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$, the action of G on $\mathbb{F}_2(1)$ is trivial. The epimorphism of $\mathbb{Z}_2[\![G]\!]$ -modules $\mathbb{Z}_2(1)/4 \to \mathbb{F}_2$ induces a long exact sequence

where the connecting homomorphism is the first Bockstein morphism. Since θ is cyclotomic, the map $\pi_{2,1}^1$ is surjective, and thus β^1 is the 0-map.

Remark 7.2. As before for a finitely generated pro-p group G let d(G) denote its minimum number of generators. If p is odd and G is a finitely generated Bloch-Kato pro-p group, the cohomology ring $(H^{\bullet}(G, \mathbb{F}_p), \cup)$ is a quotient of the exterior \mathbb{F}_p -algebra $\Lambda_{\bullet} = \Lambda_{\bullet}(H^1(G, \mathbb{F}_p))$. In particular, $\operatorname{cd}_p(G) \leq d(G)$. Moreover, $\Lambda_{d(G)}$ is the unique minimal ideal of Λ_{\bullet} . Hence equality of $\operatorname{cd}_p(G)$ and d(G) is equivalent to $H^{\bullet}(G, \mathbb{F}_p)$ being isomorphic to Λ_{\bullet} . It is well known that this implies that G is uniformly powerful (cf. [33, Thm. 5.1.6]), and that there exists a p-orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$ such that G is θ -abelian (cf. [25, Thm. 4.6]).

Let p=2, and let (G,θ) be a cyclotomically oriented Bloch-Kato pro-2 group satisfying $\operatorname{im}(\theta)\subseteq 1+4\mathbb{Z}_2$. Then Proposition 7.1 implies that the cohomology ring $(H^{\bullet}(G,\mathbb{F}_2),\cup)$ is a quotient of the exterior \mathbb{F}_2 -algebra $\Lambda_{\bullet}=\Lambda_{\bullet}(H^1(G,\mathbb{F}_2))$, and hence $\operatorname{cd}_2(G)\leq d(G)$. If $\operatorname{cd}_2(G)=d(G)$, the previously mentioned argument, Proposition 7.1 and [42] imply that G is uniformly powerful. Finally, [25, Thm. 4.11] yields that G is θ' -abelian for some orientation $\theta'\colon G\to\mathbb{Z}_2^{\times}$. Thus, if $d(G)\geq 2$, one has $\theta=\theta'$ by Corollary 5.4(c).

From the above remark and J-P. Serre's theorem (cf. [30]) one concludes the following fact.

Fact 7.3. Let (G, θ) be a finitely generated cyclotomically oriented torsion free Bloch-Kato pro-2 group. Then $\operatorname{cd}_2(G) < \infty$.

7.1. Tits' alternative

From Remark 7.2 one concludes the following.

- **Fact 7.4.** (a) Let p be odd, and let G be a Bloch-Kato pro-p group satisfying $d(G) \leq 2$. Then G is either isomorphic to a free pro-p group, or G is θ -abelian for some orientation $\theta \colon G \to \mathbb{Z}_p^{\times}$.
- (b) Let p=2, and let (G,θ) be a cyclotomically oriented Bloch-Kato pro-2 group satisfying $\operatorname{im}(\theta) \subseteq 1+4\mathbb{Z}_2$ and $d(G) \leq 2$. Then G is either isomorphic to a free pro-2 group, or G is θ -abelian.
- In [25, Thm. 4.6] it was shown, that for p odd any Bloch-Kato pro-p group satisfies a strong form of Tits' alternative (cf. [35]), i.e., either G contains a closed non-abelian free pro-p subgroup, or there exists a p-orientation $\theta: G \to \mathbb{Z}_p^{\times}$ such that G is θ -abelian. Using the results from the previous subsection and [25, Thm. 4.11], one obtains the following version of Tits' alternative if p is equal to 2.

Proposition 7.5. Let (G, θ) be a cyclotomically oriented virtual pro-2 group which is also Bloch-Kato, such that $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$. Then either G contains a closed non-abelian free pro-2 subgroup; or G is θ -abelian.

Proof. As $\operatorname{im}(\theta) \subseteq 1+4\mathbb{Z}_2$, Proposition 6.1-(a) implies that G is torsion free. From Proposition 7.1 one concludes that the first Bockstein morphism β^1 vanishes. Thus, the hypothesis of [25, Thm. 4.11] are satisfied (cf. Remark 7.2), and this yields the claim.

Remark 7.6. Note that Proposition 7.5 without the hypothesis $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$ does not remain true (cf. Remark 5.8).

7.2. The θ -center

One has the following characterization of the θ -center for a cyclotomically oriented Bloch-Kato pro-p group (G, θ) .

Theorem 7.7. Let (G, θ) be a cyclotomically oriented torsion free Bloch-Kato pro-p group. If p = 2 assume further that $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$. Then $Z_{\theta}(G)$ is the unique maximal closed abelian normal subgroup of G contained in $\ker(\theta)$.

Proof. Let $A \subseteq \ker(\theta)$ be a closed abelian normal subgroup of G, let $z \in A$, $z \neq 1$, and let $x \in G$ be an arbitrary element. Put $C = \operatorname{cl}(\langle x, z \rangle) \subseteq G$. Then either $C \simeq \mathbb{Z}_p$ or C is a 2-generated pro-p group. Thus, by Fact 7.4, one has to distinguish three cases:

- (i) d(C) = 1;
- (ii) d(C) = 2 and C is isomorphic to a free pro-p group; or
- (iii) d(C) = 2 and C is θ' -abelian for some p-orientation $\theta' : C \to \mathbb{Z}_n^{\times}$.

In case (i), x and z commute. If C is generated by z, then $C \subseteq \ker(\theta)$ and $\theta(x) = 1$. If C is generated by x, then $z = x^{\lambda}$ for some $\lambda \in \mathbb{Z}_p$, and $1 = \theta(z) = \theta(x)^{\lambda}$. Hence $\theta(x) = 1$, as $\operatorname{im}(\theta)$ is torsion free. In both cases

$$xzx^{-1} = z = z^{\theta(x)}.$$

Case (ii) cannot hold: by hypothesis, $A \cap C \neq \{1\}$, but free pro-p groups of rank 2 do not contain non-trivial closed abelian normal subgroups.

Suppose that case (iii) holds. Then $\theta' = \theta|_C$ by Corollary 5.4(c), and $z \in \ker(\theta|_C) = \mathbf{Z}_{\theta|_C}(C)$. Therefore,

$$xzx^{-1} = z^{\theta|_C(x)} = z^{\theta(x)}.$$

Hence we have shown that for all $z \in A$ and all $x \in G$ one has that $xzx^{-1} = z^{\theta(x)}$. This yields the claim.

The above result can be seen as the group theoretic generalization of [12, Corollary 3.3] and [13, Thm. 4.6]. Note that in the case p=2 the additional hypothesis in Theorem 7.7 is necessary (cf. Remark 5.8). Indeed, if G is the Klein bottle pro-2 group then $\langle x^2 \rangle$ is another maximal closed abelian normal subgroup of G contained in $\ker(\eth_G)$.

Remark 7.8. Let \mathbb{K} be a field containing a primitive p^{th} -root of unity. Theorem 7.7, together with [12, Thm. 3.1] and [13, Thm. 4.6], implies that the $\theta_{\mathbb{K},p}$ -center of the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ is the inertia group of the maximal p-henselian valuation admitted by \mathbb{K} .

7.3. Isolated subgroups

Let G be a pro-p group, and let $S \subseteq G$ be a closed subgroup of G. Then S is called *isolated*, if for all $g \in G$ for which there exists $k \ge 1$ such that $g^{p^k} \in S$ follows that $g \in S$. Hence a closed normal subgroup N of G is isolated if, and only if, G/N is torsion free.

Proposition 7.9. Let (G, θ) be an oriented Bloch-Kato pro-p group. In the case p = 2 assume further that $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$ and that θ is 1-cyclotomic. Then $Z_{\theta}(G)$ is an isolated subgroup of G.

Proof. Suppose there exists $x \in G \setminus Z_{\theta}(G)$ and $k \geq 1$ such that $x^{p^k} \in Z_{\theta}(G)$. By changing the element x if necessary, we may assume that k = 1, i.e., $x^p \in Z_{\theta}(G)$. As G is torsion free (cf. Corollary 6.3), one has that $x^p \neq 1$.

For an arbitrary $g \in G$, the subgroup $C(g) = \operatorname{cl}(\langle g, x \rangle) \subseteq G$ is not free, as $gx^pg^{-1} = x^{p\theta(g)}$. Thus, from Fact 7.4 one concludes that C(g) is

 $\theta|_{C(g)}$ -abelian. Moreover, as $\operatorname{im}(\theta)$ is torsion-free, $\theta(x^p) = \theta(x)^p = 1$ implies that

$$x \in \ker(\theta|_{C(g)}) = \mathbf{Z}_{\theta|_{C(g)}}(C(g)).$$
 Thus, $x \in \bigcap_{g \in G} \mathbf{Z}_{\theta_{C(g)}}(C(g)) \subseteq \mathbf{Z}_{\theta}(G).$

Proposition 7.9 generalises to profinite groups as follows.

Corollary 7.10. Let (G, θ) be a torsion free p-oriented Bloch-Kato profinite group. For p=2 assume also that $\operatorname{im}(\theta) \subseteq 1+4\mathbb{Z}_2$ and that θ is 1-cyclotomic. Then $Z_{\theta}(G)$ is an isolated subgroup of G.

Proof. Let $x \in \mathcal{Z}_{\theta}(G)$, $y \in G$ and $n \in \mathbb{N}$ such that $x = y^n$. Then $Y = \operatorname{cl}(\langle y \rangle)$ is pro-cyclic and virtually pro-p. Thus, as G is torsion free by hypothesis, Y is a cyclic pro-p group, and n is a p-power. Let $P \in \operatorname{Syl}_p(G)$ be a pro-p Sylow subgroup of G containing Y. Then $(P, \theta|_P)$ satisfies the hypothesis of Proposition 7.9, which yields the claim.

7.4. Split extensions

Proposition 7.11. Let (G, θ) be a p-oriented Bloch-Kato pro-p group of finite cohomological dimension satisfying $\operatorname{im}(\theta) \subseteq 1 + p\mathbb{Z}_p$ (resp. $\operatorname{im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$ if p = 2), and let Z be a closed normal subgroup of G isomorphic to \mathbb{Z}_p such that G/Z is torsion free. Then $Z \not\subseteq G^p[G, G]$.

Proof. Let $d = \operatorname{cd}_p(G)$. As $\operatorname{cd}(Z) = 1$, and as $H^1(Z, \mathbb{F}_p) \simeq \mathbb{F}_p$, one has $\operatorname{vcd}_p(G/Z) = d-1$ (cf. [43]). Thus, as G/Z is torsion free, J-P. Serre's theorem (cf. [30]) implies that $\operatorname{cd}_p(G/Z) = d-1$.

Suppose that $Z\subseteq G^p[G,G]$. Then $\inf_{G,Z}^1\colon H^1(G/Z,\mathbb{F}_p)\to H^1(G,\mathbb{F}_p)$ is an isomorphism. For $\chi\in H^1(G,\mathbb{F}_p)$, set $\bar\chi\in H^1(G/Z,\mathbb{F}_p)$ such that $\chi=\inf_{G,Z}^1(\bar\chi)$. Then, by [23, Prop. 1.5.3] one has

$$\chi_1 \cup \ldots \cup \chi_k = \inf_{G,Z}^1(\bar{\chi}_1) \cup \ldots \cup \inf_{G,Z}^1(\bar{\chi}_k) = \inf_{G,Z}^k(\bar{\chi}_1 \cup \ldots \cup \bar{\chi}_k)$$

for any $\chi_1, \ldots, \chi_k \in H^1(G, \mathbb{F}_p)$, i.e.,

$$\inf_{G,Z}^k : H^k(G/Z, \mathbb{F}_p) \longrightarrow H^k(G, \mathbb{F}_p)$$
 (7.2)

is surjective for all $k \geq 0$. Let

$$(E_r^{st}, d_r) \Rightarrow H^{s+t}(G, \mathbb{F}_p), \qquad E_2^{st} = H^s\left(G/Z, H^t(Z, \mathbb{F}_p)\right)$$
 (7.3)

denote the Hochschild-Serre spectral sequence associated to the extension of pro-p groups $Z \to G \to G/Z$ with coefficients in the discrete G-module \mathbb{F}_p . We claim that E_∞^{st} is concentrated on the buttom row, i.e., $E_\infty^{st}=0$ for all $t\geq 1$. Since $\operatorname{cd}_p(Z)=1$ and $\operatorname{cd}_p(G/Z)=d-1$, one has $E_2^{st}=0$ for $t\geq 2$ or $s\geq d$. Hence, d_r^{st} is the 0-map for every $s,t\geq 0$ and $r\geq 3$, i.e., $E_\infty^{st}\simeq E_3^{st}$. The total complex $\operatorname{tot}_\bullet(E_\infty^{\bullet\bullet})$ of the graded \mathbb{F}_p -bialgebra $E_\infty^{\bullet\bullet}$ coincides with $H^\bullet(G,\mathbb{F}_p)$, which is quadratic by hypothesis. Thus $E_\infty^{\bullet\bullet}$ is generated by

$$\mathbf{tot}_1(E_{\infty}^{\bullet \bullet}) = E_{\infty}^{1,0} = E_2^{1,0}.$$

Hence, $E_3^{st} = 0$ for $t \ge 1$.

On the other hand, $H^1(Z, \mathbb{F}_p)$ is a trivial G/Z-module isomorphic to \mathbb{F}_p , and thus, as $\operatorname{cd}_p(G/Z) = d - 1$, one has

$$E_2^{d-1,1} = H^{d-1}\left(G/Z, H^1(Z, \mathbb{F}_p)\right) \neq 0. \tag{7.4}$$

Moreover, $d_2^{d-1,1}$ is the 0-map, thus $E_3^{d-1,1}=\ker(d_2^{d-1,1})=E_\infty^{d-1,1}\neq 0$, a contradiction, and this yields the claim.

Proposition 7.11 has the following consequence.

Proposition 7.12. Let (G, θ) be a p-oriented Bloch-Kato pro-p group (resp. virtual pro-p group) of finite cohomological p-dimension, and let Z be a closed normal subgroup of G isomorphic to \mathbb{Z}_p such that G/Z is torsion free. Then there exists a Z-complement C in G, i.e., the extension of profinite groups

$$\{1\} \longrightarrow Z \longrightarrow G \longrightarrow G/Z \longrightarrow \{1\}$$
 (7.5)

splits.

Proof. Assume first that G is a pro-p group. By Proposition 7.11, one has that $Z \not\subseteq \Phi(G) = G^p[G,G]$. Hence there exists a maximal closed subgroup C_1 of G such that

$$C_1Z = G$$
 and $Z_1 = C_1 \cap Z = Z^p$.

Moreover, Z_1 is a closed normal subgroup in C_1 such that C_1/Z_1 is torsion free and $Z_1 \simeq \mathbb{Z}_p$. From Proposition 7.11 again, one concludes that $Z_1 \not\subseteq \Phi(C_1)$. Thus repeating this process one finds open subgroup C_k of G of index p^k such that

$$C_k Z = G$$
 and $Z_k = C_k \cap Z = Z^{p^k}$.

Hence $C = \bigcap_{k>1} C_k$ is a Z-complement in G.

If G is a p-oriented virtual pro-p group, then G is a $\bar{\Sigma}$ -virtual pro-p group for $\bar{\Sigma}=\operatorname{im}(\hat{\theta})$ (cf. 4.1), and thus corresponds to $(O_p(G),\theta^\circ,\gamma)$ in alternative form. In particular, the maximal subgroup C_1 and hence all closed subgroups C_k can be chosen to be $\bar{\Sigma}$ -invariant (cf. Proposition 4.5). Hence $C=\bigcap_{k\in\mathbb{N}}C_k$ carries canonically a left $\bar{\Sigma}$ -action, and thus defines a Z complement $H=C\rtimes\bar{\Sigma}$ in G.

The proof of Theorem 1.2 can be deduced from Proposition 7.12 as follows.

Proof of Theorem 1.2. Assume first that G is either pro-p, or virtually pro-p. To prove statement (i) (and (ii)), we proceed by induction on $d = \operatorname{cd}_p(G) = \operatorname{cd}(G)$. For d = 1, G is free (resp. virtually free) (cf. [23, Prop. 3.5.17]), and thus $Z_{\theta}(G) = \{1\}$. So assume that $d \geq 1$, and that the claim holds for d - 1. Note that $Z_{\theta}(G)$ is a finitely generated abelian pro-p group satisfying

$$d_{\circ} = d(\mathbf{Z}_{\theta}(G)) = \mathrm{cd}_{p}(\mathbf{Z}_{\theta}(G)) \leq d.$$

If $d_{\circ} = 0$, there is nothing to prove. If $d_{\circ} \geq 1$, $Z_{\theta}(G)$ contains an isolated closed subgroup Z satisfying d(Z) = 1. By definition, Z is normal in G. Hence Proposition 7.12 implies that there exists a subgroup $C \subseteq G$ satisfying

 $C \cap Z = \{1\}$ and C Z = G. As $C \simeq G/Z$, the main result of [43] implies that $\operatorname{cd}(C) = \operatorname{vcd}(C) = d - 1$. Since $\operatorname{Z}_{\theta|C}(C) Z = \operatorname{Z}_{\theta}(G)$, the claim then follows by induction.

To prove statement (iii), let $G^{\circ} = \ker(\hat{\theta} \colon G \to \mathbb{F}_p^{\times})$ and $\bar{G}^{\circ} = \ker(\hat{\theta} \colon \bar{G} \to \mathbb{F}_p^{\times})$, and put $\bar{O} = O^p(\bar{G}^{\circ})$ and

$$O = \{ g \in G^{\circ} \mid g Z_{\theta}(G) \in \bar{O}^{p}(\bar{G}) \}. \tag{7.6}$$

Then, by construction, $\operatorname{im}(\hat{\theta}|_{\bar{O}})$ is a pro-p group and hence trivial. In particular, the left $\mathbb{F}_p[\![\bar{O}]\!]$ -module $\mathbb{F}_p(1)$ is the trivial module. Thus, as \bar{O} is p-perfect, one concludes that

$$H^1(\bar{O}, \mathbb{F}_p(1)) = 0.$$
 (7.7)

By hypothesis, $(\bar{G}, \bar{\theta})$ is Bloch-Kato, and therefore $(\bar{O}, \mathbf{1})$ is Bloch-Kato. Hence (7.7) yields that

$$H^k(\bar{O}, \mathbb{F}_p(j)) = H^k(\bar{O}, \mathbb{F}_p(0)) = 0 \tag{7.8}$$

for all positive integers k, j. Note that $\mathbb{Z}_p(1)$ is the trivial $\mathbb{Z}_p[\![\bar{O}]\!]$ -module isomorphic to \mathbb{Z}_p as abelian pro-p group. The cyclotomicity of $(\bar{O}, \mathbf{1})$ implies that $H^2(\bar{O}, \mathbb{Z}_p(1))$ is p-torsion free, and from the exact sequence

$$0 \longrightarrow H^{2}(\bar{O}, \mathbb{Z}_{p}(1)) \xrightarrow{\cdot p} H^{2}(\bar{O}, \mathbb{Z}_{p}(1)) \longrightarrow H^{2}(\bar{O}, \mathbb{F}_{p}(1)) \longrightarrow 0$$

$$(7.9)$$

one concludes that

$$H^{2}(\bar{O}, \mathbb{Z}_{p}(1)) = 0. \tag{7.10}$$

By hypothesis, $\operatorname{cd}_p(\operatorname{Z}_{\theta}(G)) \leq \operatorname{cd}_p(G) < \infty$, and thus $\operatorname{Z}_{\theta}(G) \simeq \mathbb{Z}_p(1)^r$ is a trivial left $\mathbb{Z}_p[\![\bar{O}]\!]$ -module and a finitely generated free (abelian pro-p group). Hence

$$H^2(\bar{O}, \mathcal{Z}_{\theta}(G)) = 0, \tag{7.11}$$

which implies that

$$\{1\} \longrightarrow \mathbf{Z}_{\theta}(G) \longrightarrow O \xrightarrow{\pi} \bar{O} \longrightarrow \{1\}$$
 (7.12)

is a split short exact sequence of profinite groups. From this fact one concludes that

$$O = \mathcal{Z}_{\theta}(G) \cdot O^{p}(G^{\circ}) \quad \text{and} \quad \mathcal{Z}_{\theta}(G) \cap O^{p}(G^{\circ}) = \{1\}. \tag{7.13}$$

Let $\tilde{G} = G/O^p(G^\circ)$. Then for all abelian pro-p groups M with a continuous left $\mathbb{Z}_p[\![\tilde{G}]\!]$ -action inflation induces an isomorphism in cohomology

$$\inf_{\tilde{G}}^{G}(-) \colon H_{\operatorname{cts}}^{k}(\tilde{G}, M) \longrightarrow H_{\operatorname{cts}}^{k}(G, M)$$
 (7.14)

(cf. Proposition 4.6). Moreover, as $\theta|_O = \mathbf{1}$ is the constant 1 function, θ induces a p-orientation $\tilde{\theta} \colon \tilde{G} \to \mathbb{Z}_p^{\times}$ on \tilde{G} . In particular, from (7.14) one concludes that $\operatorname{cd}_p(\tilde{G}) < \infty$, and that $(\tilde{G}, \tilde{\theta})$ is cyclotomic and Bloch-Kato. Thus, by part (i), the exact sequence of virtual pro-p groups

$$\{1\} \longrightarrow \frac{\mathrm{Z}_{\theta}(G)O^{p}(G^{\circ})}{O^{p}(G^{\circ})} \longrightarrow \tilde{G} \stackrel{\tilde{\pi}}{\longrightarrow} \bar{G}/\bar{O} \longrightarrow \{1\}$$
 (7.15)

splits. Let $\tilde{H} \subset \tilde{G}$ be a complement for $Z_{\theta}(G)O^{p}(G^{\circ})/O^{p}(G^{\circ})$ in \tilde{G} , and let

$$H = \{ g \in G^{\circ} \mid gO^{p}(G^{\circ}) \in \tilde{H} \}. \tag{7.16}$$

Then, by construction, $H \cap \mathcal{Z}_{\theta}(G)O^{p}(G^{\circ}) \subseteq O^{p}(G^{\circ})$. Thus $HO^{p}(G^{\circ})$ is a complement of $\mathcal{Z}_{\theta}(G)$ in G.

Finally, we ask whether the converse of Theorem 3.13 holds true.

Question 7.13. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p group, and suppose that

$$H^{\bullet}(G, \mathbb{F}_p) \simeq H^{\bullet}(C, \mathbb{F}_p) \otimes \Lambda_{\bullet}(V),$$

for some subgroup $C \subseteq G$ and some nontrivial subspace $V \subseteq H^1(G, \mathbb{F}_p)$. Does there exist an isolated closed subgroup $Z \subseteq Z_{\theta}(G)$ such that G = CZ and $Z/Z^p \simeq V^* = \text{Hom}(V, \mathbb{F}_p)$?

7.5. The elementary type conjecture

In order to formulate a conjecture concerning the maximal pro-p Galois groups of fields, I. Efrat introduced in [9] the class C_{FG} of p-oriented pro-p groups (resp. cyclotomic pro-p pairs) of elementary type.

This class consists of all finitely generated p-oriented pro-p groups which can be constructed from \mathbb{Z}_p and Demuškin groups using coproducts and fibre products (cf. [9, § 3]).

Efrat's elementary type conjecture asks whether every pair $(G_{\mathbb{K}}(p), \theta_{\mathbb{K},p})$ for which \mathbb{K} contains a primitive p^{th} -root of unity and $G_{\mathbb{K}}(p)$ is finitely generated, belongs to \mathcal{C}_{FG} (see [7], and also [15] for the case p=2). This conjecture originates from the theory of quadratic forms (cf. [20], [10, p. 268]).

One may extend slightly Efrat's class by defining the class \mathcal{E}_{CO} of cyclotomically p-oriented Bloch-Kato pro-p groups of elementary type to be the smallest class of cyclotomically p-oriented pro-p groups containing

- (a) (F, θ) , with F a finitely generated free pro-p group and $\theta \colon F \to \mathbb{Z}_p^{\times}$ any p-orientation;
- (b) (G, \eth_G) , with G a Demuškin pro-p group;
- (c) $(\mathbb{Z}/2\mathbb{Z}, \theta)$, with $\operatorname{im}(\theta) = \{\pm 1\}$ in case that p = 2;

and which is closed under coproducts and under fibre products with respect to finitely generated split θ -abelian pro-p groups, i.e., if (G_1, θ_1) and (G_2, θ_2) are contained in \mathcal{E}_{CO} , then

- (d) $(G, \theta) = (G_1, \theta_1) \coprod (G_2, \theta_2) \in \mathcal{E}_{CO}$; and
- (e) $(G, \theta) = \mathbb{Z}_p \rtimes_{\theta_1} (G_1, \theta_1) \in \mathcal{E}_{CO}$.

Question 1.5 asks whether every finitely generated cyclotomically poriented Bloch-Kato pro-p group belongs to the class \mathcal{E}_{CO} . By Theorem 1.1,
Question 1.5 is stronger than Efrat's elementary type conjecture. Nevertheless, it is stated in purely group theoretic terms.

Remark 7.14. Recently, Question 1.5 has received a positive solution in the class of trivially p-oriented right-angled Artin pro-p groups: I. Snopce and P.A. Zalesskiĭ proved that the only indecomposable right-angled Artin pro-p group which is Bloch-Kato and cyclotomically p-oriented is $(\mathbb{Z}_p, \mathbf{1})$ (cf. [32]).

Acknowledgments

The authors are grateful to I. Efrat, for the interesting discussion they had together at the Ben-Gurion University of the Negev in 2016; and to D. Neftin and I. Snopce, for their interest. Also, the first-named author wishes to thank M. Florence and P. Guillot for the discussions on the preprint [5].

References

- S. Bloch and K. Kato. p-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math., 63:107–152, 1986.
- [2] K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
- [3] A. Brumer. Pseudocompact algebras, profinite groups and class formations. J. Algebra, 4:442–470, 1966.
- [4] T. C. Craven and T. L. Smith. Formally real fields from a Galois-theoretic perspective. J. Pure Appl. Algebra, 145(1):19–36, 2000.
- [5] C. De Clercq and M. Florence. Lifting theorems and smooth profinite groups. preprint, available at arxiv:1710.10631, 2017.
- [6] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal. Analytic pro-p groups, volume 61 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1999.
- [7] I. Efrat. Orderings, valuations, and free products of Galois groups. Sem. Structure Algébriques Ordonnées, Univ. Paris VII, 1995.
- [8] I. Efrat. Pro-p Galois groups of algebraic extensions of Q. J. Number Theory, 64(1):84-99, 1997.
- [9] I. Efrat. Small maximal pro-p Galois groups. Manuscripta Math., 95(2):237–249, 1998.
- [10] I. Efrat. Valuations, orderings, and Milnor K-theory, volume 124 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006.
- [11] I. Efrat and C. Quadrelli. The Kummerian property and maximal pro-p Galois groups. J. Algebra, 525:284–310, 2019.
- [12] A. J. Engler and J. Koenigsmann. Abelian subgroups of pro-p Galois groups. Trans. Amer. Math. Soc., 350(6):2473-2485, 1998.
- [13] A. J. Engler and J. B. Nogueira. Maximal abelian normal subgroups of Galois pro-2-groups. J. Algebra, 166(3):481–505, 1994.
- [14] M. Fried and M. Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, third edition, 2008. Revised by Jarden.
- [15] B. Jacob and R. Ware. A recursive description of the maximal pro-2 Galois group via Witt rings. Math. Z., 200(3):379–396, 1989.
- [16] J. P. Labute. Classification of Demushkin groups. Canad. J. Math., 19:106–132, 1967.

- [17] M. Lazard. Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math., 26:389–603, 1965.
- [18] S. Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition.
- [19] L. Mahé, J. Mináč, and T. L. Smith. Additive structure of multiplicative subgroups of fields and Galois theory. Doc. Math., 9:301–355, 2004.
- [20] M. Marshall. The elementary type conjecture in quadratic form theory. In Algebraic and arithmetic theory of quadratic forms, volume 344 of Contemp. Math., pages 275–293. Amer. Math. Soc., Providence, RI, 2004.
- [21] J. Mináč and N. D. Tân. Triple Massey products vanish over all fields. J. Lond. Math. Soc. (2), 94(3):909–932, 2016.
- [22] J. Mináč and N. D. Tân. Triple Massey products and Galois theory. J. Eur. Math. Soc. (JEMS), 19(1):255–284, 2017.
- [23] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.
- [24] A. Polishchuk and L. Positselski. Quadratic algebras, volume 37 of University Lecture Series. American Mathematical Society, Providence, RI, 2005.
- [25] C. Quadrelli. Bloch-Kato pro-p groups and locally powerful groups. Forum Math., 26(3):793–814, 2014.
- [26] C. Quadrelli. Cohomology of Absolute Galois Groups. PhD thesis, University of Western Ontario, 2015.
- [27] L. Ribes and P. A. Zalesskiĭ. Profinite groups, volume 40. Springer-Verlag, Berlin, 2000.
- [28] J-E. Roos. Sur les foncteurs dérivés de <u>lim</u>. Applications. C. R. Acad. Sci. Paris, 252:3702–3704, 1961.
- [29] M. Rost. Norm varieties and algebraic cobordism. In Proceedings of the International Congress of Mathematicians. Vol. II (Beijing, 2002), pages 77–85. Higher Ed. Press, Beijing, 2002.
- [30] J-P. Serre. Sur la dimension cohomologique des groupes profinis. *Topology*, 3:413–420, 1965.
- [31] J-P. Serre. Galois cohomology. Springer-Verlag, Berlin, 1997.
- [32] I. Snopce and P. A. Zalesskiĭ. Right-angled artin pro-p groups. preprint, available at arXiv:2005.01685, 2020.
- [33] P. Symonds and Th. Weigel. Cohomology of p-adic analytic groups. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 349–410. Birkhäuser Boston, Boston, MA, 2000.
- [34] J. Tate. Relations between K₂ and Galois cohomology. *Invent. Math.*, 36:257–274, 1976.
- [35] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250–270, 1972.
- [36] V. Voevodsky. On motivic cohomology with Z/l-coefficients. Ann. of Math. (2), 174(1):401–438, 2011.
- [37] A. R. Wadsworth. p-Henselian field: K-theory, Galois cohomology, and graded Witt rings. Pacific J. Math., 105(2):473–496, 1983.

- [38] R. Ware. Galois groups of maximal p-extensions. Trans. Amer. Math. Soc., 333(2):721–728, 1992.
- [39] Ch. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.
- [40] Ch. A. Weibel. The norm residue isomorphism theorem. J. Topol., 2(2):346–372, 2009.
- [41] Th. Weigel. Frattini extensions and class field theory. In *Groups St. Andrews* 2005. Vol. 2, volume 340 of London Math. Soc. Lecture Note Ser., pages 661–684. Cambridge Univ. Press, Cambridge, 2007.
- [42] Th. Weigel. A characterization of powerful pro-2 groups by their cohomology. preprint, 2016.
- [43] Th. Weigel and P. A. Zalesskiĭ. Profinite groups of finite cohomological dimension. C. R., Math., Acad. Sci. Paris, 338(5):353–358, 2004.

Claudio Quadrelli

Department of Mathematics and Applications University of Milan-Bicocca 20125 Milan Italy - ${\rm EU}$

Thomas S. Weigel
Department of Mathematics and Applications
University of Milan-Bicocca

e-mail: claudio.quadrelli@unimib.it

20125 Milan Italy - EU

e-mail: thomas.weigel@unimib.it