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Abstract. Let p be a prime. A continuous representation
0: G — GL1(Zp)

of a profinite group G is called a cyclotomic p-orientation if for all open
subgroups U C G and for all k,n > 1 the natural maps
H*(U,Zy (k) /p") — H*(U,Zy(k)/p)

are surjective. Here Z,(k) denotes the Zp-module of rank 1 with U-
action induced by 0|¥;. By the Rost-Voevodsky theorem, the cyclotomic
character of the absolute Galois group Gk of a field K is, indeed, a cyclo-
tomic p-orientation of Gk. We study profinite groups with a cyclotomic
p-orientation. In particular, we show that cyclotomicity is preserved by
several operations on profinite groups, and that Bloch-Kato pro-p groups
with a cyclotomic p-orientation satisfy a strong form of Tits’ alternative
and decompose as semi-direct product over a canonical abelian closed
normal subgroup.

Mathematics Subject Classification (2010). Primary 12G05; Secondary
20E18, 12F10.

Keywords. Absolute Galois groups, Rost-Voevodsky Theorem, Elemen-
tary Type Conjecture.

1. Introduction

For a prime p let Z,, denote the ring of p-adic integers. For a profinite group G,
we call a continuous representation 0: G — Z = GL1(Z,) a p-orientation of
G and call the couple (G, 8) a p-oriented profinite group. Given a p-oriented
profinite group (G,0), for k € Z let Z,(k) denote the left Z,[G]-module
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induced by 6%, namely, Z,(k) is equal to the additive group Z, and the left
G-action is given by

g-z2=0(g)" 2z, g€ G, ze€Z,(k). (1.1)

Vice-versa, if M is a topological left Z,[G]-module which as an abelian pro-p
group is isomorphic to Zj,, then there exists a unique p-orientation : G' — Z)
such that M ~ Z,(1).

The Z,[G]-module Z,(1) and the representation 6: G — Z, are said
to be k-cyclotomic, for k > 1, if for every open subgroup U of G and every
n > 1 the natural maps

H*(U, Zy(k) [p") — H*(U, Zy(k)/p) , (1.2)

induced by the epimorphism of Z,[U]-modules Z,(k)/p" — Z,(k)/p, are
surjective. If Z,(1) (respectively 6) is k-cyclotomic for every k > 1, then it
is called simply a cyclotomic Z,[G]-module (resp., cyclotomic p-orientation).
Note that Z, (1) is k-cyclotomic if, and only if, HXT (U, Z,,(k)) is a torsion free
Z,-module for every open subgroup U C G — here H  denotes continuous
cochain cohomology as introduced by J. Tate in [34] (see §.

Cyclotomic modules of profinite groups have been introduced and stud-
ied by C. De Clercq and M. Florence in [5]. Previously J.P. Labute, in [16],
considered surjectivity of in the case k = 1 and U = G — note that
demanding surjectivity for U = G only is much weaker than demanding it
for every open subgroup U C @, and this is what makes the definition of
cyclotomic modules truly new.

Let K be a field, and let K/K be a separable closure of K. If char(K) # p,
the absolute Galois group Gx = Gal(K/K) of K comes equipped with a
canonical p-orientation

Ok p: G — Aut(pp=(K)) ~Z7, (1.3)
where ji,0 (K) C K* denotes the subgroup of roots of unity of K of p-power
order. If p = char(K), we put 6k , = 1g,, the function which is constantly
1 on Gk. The following result (cf. [5 Prop. 14.19]) is a consequence of the
positive solution of the Bloch-Kato Conjecture given by M. Rost and V. Vo-
evodsky with the “C. Weibel patch” (cf. [29] [36] 40]), which from now on we
will refer to as the Rost-Voevodsky Theorem.

Theorem 1.1. Let K be a field, and let p be prime number. The canonical
p-orientation Ok ,: Gg — Z; is cyclotomic.

Theorem|[L.T]provides a fundamental class of examples of profinite groups
endowed with a cyclotomic p-orientation. Bearing in mind the exotic charac-
ter of absolute Galois groups, it also provides a strong motivation to the study
of cyclotomically p-oriented profinite groups — which is the main purpose
of this manuscript. In fact, one may recover several Galois-theoretic state-
ments already for profinite groups with a 1-cyclotomic p-orientation — e.g.,
the only finite group endowed with a 1-cyclotomic p-orientation is the finite
group Cs of order 2, with non-constant 2-orientation 6: Co — {£1} (cf. [1T}
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Ex. 3.5]), and this implies the Artin-Schreier obstruction for absolute Galois
groups. In their paper, De Clercq and Florence formulated the “Smoothness
Conjecture”, which can be restated in this context as follows: for a p-oriented
profinite group, 1-cyclotomicity implies k-cyclotomicity for all & > 1 (cf. [5]
Conj. 14.25]).

A p-oriented profinite group (G, 0) is said to be Bloch-Kato if the Fp-

algebra
(U, 0ly) = ] H*(U.F,( (1.4)
k>0
where F,,(k) = Z,(k)/p, with product given by cup-product, is quadratic for
every open subgroup U of G. Note that if im(#) C 1+ pZ, and p # 2 then
G acts trivially on Z,(k)/p. By the Rost-Voevodsky Theorem (Gk, 6k ;) is,
indeed, Bloch-Kato.

For a profinite group G, let O,(G) denote the maximal closed normal
pro-p subgroup of G. A p-oriented profinite group (G, #) has two particular
closed normal subgroups: the kernel ker(6) of 8, and the 6-center of (G, 6),
given by

Zy(G) = {a: € Op(ker(9)) | grg™' = 29 for all g € G} . (1.5)

As Zy(G) is contained in the center Z(ker(#)) of ker(d), it is abelian. The p-
oriented profinite group (G, ) will be said to be #-abelian, if ker(0) = Zg(G)
and if Zy(QG) is torsion free. In particular, for such a p-oriented profinite group
(G,0), G is a virtual pro-p group (i.e., G contains an open subgroup which
is a pro-p group). Moreover, a f-abelian pro-p group (G, #) will be said to be
split if G ~ Zy(G) x im(6).

As Zy(@G) is contained in ker(#), by definition, the canonical quotient
G = G/Z4(G) carries naturally a p-orientation §: G — Z,, and one has the
following short exact sequence of p-oriented profinite groups.

{1} ——=74(G) G—"=G {1} (1.6)

The following result can be seen as an analogue of the equal characteris-
tic transition theorem (cf. [3I], §I1.4, Exercise 1(b), p. 86]) for cyclotomically
p-oriented Bloch-Kato profinite groups.

Theorem 1.2. Let (G,0) be a cyclotomically p-oriented Bloch-Kato profinite
group. Then splits, provided that cd,(G) < oo, and one of the following
conditions hold:

(i) G is a pro-p group,

(ii) (G,8) is an oriented virtual pro-p group (see §4 ),

(iii) (G,0) is cyclotomically p-oriented and Bloch-Kato.

In the case that (G,#) is the maximal pro-p Galois group of a field K
containing a primitive p"-root of unity endowed with the p-orientation in-
duced by 0k , Zg(G) is the inertia group of the maximal p-henselian valuation

of K (cf. Remark [7.§)).
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Note that the 2-oriented pro-2 group (Cs X Zs, 6) may be f-abelian, but
6 is never 1-cyclotomic (cf. Proposition . As a consequence, in a cyclo-
tomically 2-oriented pro-2 group every element of order 2 is self-centralizing.

For p odd it was shown in [25] that a Bloch-Kato pro-p group G satisfies
a strong form of Tits alternative, i.e., either G contains a closed non-abelian
free pro-p subgroup, or there exists a p-orientation 6: G — Z; such that
G is f-abelian. In Subsection we extend this result to pro-2 groups with
a cyclotomic orientation, i.e., one has the following analogue of R. Ware’s
theorem (cf. [38]) for cyclotomically oriented Bloch-Kato pro-p groups (cf.

Fact .

Theorem 1.3. Let (G,60) be a cyclotomically p-oriented Bloch-Kato pro-p
group. If p = 2 assume further that im(0) C 1 + 4Zs. Then one — and
only one — of the following cases hold:

(i) G contains a closed non-abelian free pro-p subgroup; or
(ii)) G is 6-abelian.
It should be mentioned that for p = 2 the additional hypothesis is indeed

necessary (cf. Remark[5.8]). The class of cyclotomically p-oriented Bloch-Kato
profinite groups is closed with respect to several constructions.

Theorem 1.4. (a) The inverse limit of an inverse system of cyclotomically
p-oriented Bloch-Kato profinite groups with surjective structure maps is

a cyclotomically p-oriented Bloch-Kato profinite group (cf. C’orollary

and Corollary .

(b) The free profinite (resp. pro-p) product of two cyclotomically p-oriented
Bloch-Kato profinite (resp. pro-p) groups is a cyclotomically p-oriented
Bloch-Kato profinite (resp. pro-p) group (cf. Theorem .

(¢) The fibre product of a cyclotomically p-oriented Bloch-Kato profinite
group (G1,61) with a split O2-abelian profinite group (G, 62) is a cyclo-
tomically p-oriented Bloch-Kato profinite group (cf. Theorem and
Theorem .

(d) The quotient of a cyclotomically p-oriented Bloch-Kato profinite group
(G, 0) with respect to a closed normal subgroup N C G satisfying N C
ker(0) and N a p-perfect group is a cyclotomically p-oriented Bloch-Kato
profinite group (cf. Proposition .

Some time ago I. Efrat (cf. [7, [, []) has formulated the so-called ele-
mentary type conjecture concerning the structure of finitely generated pro-p
groups occurring as maximal pro-p quotients of an absolute Galois group.
His conjecture can be reformulated in the class of cyclotomically p-oriented
Bloch-Kato pro-p groups. Such a p-oriented pro-p group (G, ) is said to be
indecomposable if Zg(G) = {1} and if G is not a proper free pro-p product.
A positive answer to the following question would settle the elementary type
conjecture affirmatively.

Question 1.5. Let (G, ) be a finitely generated, torsion free, indecomposable,
cyclotomically oriented Bloch-Kato pro-p group. Does this imply that G is a
Poincaré duality pro-p group of dimension cd,(G) < 27
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The paper is organized as follows. In § we give some equivalent definitions
for cyclotomic p-orientations. In § [3] we study some operations of profinite groups
(inverse limits, free products and fibre products) in relation with the properties of
cyclotomicity and Bloch-Kato-ness, and we prove Theorem [I.4fa)-(b)-(c). In §
we study the quotients of cyclotomically p-oriented profinite groups over closed
normal p-perfect subgroups — in particular, we introduce oriented virtual pro-p
groups and we prove Theorem d). In § we study p-oriented profinite Poincaré
duality groups. In § [f] we focus on the presence of torsion in cyclotomically 2-
oriented pro-2 groups, and we prove that in a 1-cyclotomically 2-oriented pro-2
group every element of order 2 is self-centralizing (see Proposition . In §
we focus on the structure of cyclotomically p-oriented Bloch-Kato pro-p groups:
we prove Theorems and and show that in many cases the -center is the
maximal abelian closed normal subgroup (cf. Theorem .

2. Absolute Galois groups and cyclotomic p-orientations

Throughout the paper, we study profinite groups with a cyclotomic mod-
ule Z,(1). In contrast to [0, § 14], we refer to the associated representation
0: G — Z,, rather than to the module itself. As we study several subgroups
of G associated to this cyclotomic module Z,(1), like ker(6) and Zy(G), this
choice of notation turns out to be convenient for our purposes. We follow
the convention as established in [25] 26] and call such representations “p-
orientations”ﬂ In the case that G is a pro-p group, the couple (G,0) was
called a cyclotomic pro-p pair, in [9] § 3].

2.1. The connecting homomorphism &*

Let G be a profinite group, and let #: G — Z,* be a p-orientation of G. For
every k > 0 one has the short exact sequence of left Z,[G]-modules

0 ——Z, (k) —> Zy(k) —Fy(k) —>0, (2.1)
which induces the long exact sequence in cohomology
. ﬂ_k
o HE(GL 2y (k) — = HY (G, Ty (k) Ve (2:2)
s

Q HESN (G Zyp (k) ——= HEL (G Zp (k) — -
with connecting homomorphism 6% (cf. [34} §2]). In particular, 6* is trivial if,
and only if, multiplication by p on H% (G, Z,(k)) is a monomorphism. This
is equivalent to H: (G, Z,(k)) being torsion free. Therefore, one concludes

cts
the following:

1 For a Poincaré duality group G the representation associated to the dualizing module —
which coincides with the cyclotomic module in the case of a Poincaré duality pro-p group
of dimension 2 (cf. Theorem — is sometimes also called the “orientation” of G.
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Proposition 2.1. Let (G,0) be a p-oriented profinite group. For k > 1 and
U C G an open subgroup the following are equivalent.
(i) The map is surjective for every n > 1.
(ii) The map «*: HE (U, Z,(k)) — H*(U,F,(k)) is surjective.
(iit) The connecting homomorphism &*: H*(U,F,(k)) — HETL (U, Z,(k)) is
trivial.
(iv) The Z,-module HENN (U, Z,(k )) is torsion free.

cts

Proof. By the long exact sequence , the equivalences between (ii), (iii)
and (iv) are straightforward. For m > n > 1 let Wﬁm denote the natural
maps

(if m = oo we set p =0). If condition (i) holds then the system

(Hk(U Zp/p )7 Tm, n)
satisfies the Mittag-Leffler property. In particular,

H*(U, Zy(k)) = lim H"(U, Zy (k) /p")

n>1
(cf. [28] and [23, Thm. 2.7.5]). Thus 7 = 7% | oxk  is surjective if, and
only if| 71'712,1 is surjective for every n > 1. Conversely, if 7% is surjective then
7 = ml | omk, . yields the surjectivity of 7% | for every n. O

2.2. Profinite groups of cohomological p-dimension at most 1
Let G be a profinite group, and let #: G — Z,; be a p-orientation of G. Then

H (G, Z(0)) = Homge (G, Zy) (2.3)

is a torsion free abelian group for every profinite group G, i.e., 6 is O-
cyclotomic. If G is of cohomological p-dimension less or equal to 1, then
HQSH(G Zy(m)) = 0 for all m > 1 showing that 6 is cyclotomic. Moreover,
H*(G, 0) is a quadratic IF,-algebra for every profinite group with cd,(G) <1
and for any p-orientation 0: G — Z,. If G is of cohomological p-dimension
less or equal to 1, one has c¢d,(C) < 1 for every closed subgroup C of G (cf.

[31, §1.3.3, Proposition 14]). Thus one has the following.

Fact 2.2. Let G be a profinite group with cd,(G) <1, and let 0: G — Z, be
a p-orientation for G. Then (G, 0) is Bloch-Kato and 0 is cyclotomic.

2.3. The m!"*-norm residue symbol

Throughout this subsection we fix a field K and a separable closure K of K.

For p # char(K), p,e(K) is a divisible abelian group. By construction, one
has a canonical isomorphism

lim, _ (ppee (K), p*) ~ Zp(1) ®2 Qp = Qp(1) (2.4)

and a short exact sequence 0 — Z,(1) — Qp(1) — ppee (K) — 0 of topological
left Z,[Gx]-modules, where Gx = Gal(K/K) is the absolute Galois group of
K.
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Let KM(K), m > 0, denote the m!"-Milnor K-group of K (cf. [10,
§24.3]). For p # char(K), J. Tate constructed in [34] a homomorphism of
abelian groups

hin(K): Kl (K) — Hi (G, Zp(m), (2.5)
the so-called m"-norm residue symbol. Let K} (K),, = KM (K)/pKM(K).
Around ten years later S. Bloch and K. Kato conjectured in [I] that the
induced map

hin(K) 7t Ko (K) 7p —> H™ (G, Fp () (2.6)
is an isomorphism for all fields K, char(K) # p, and for all m > 0. This
conjecture has been proved by V. Voevodsky and M. Rost with a “patch”
of C. Weibel (cf. [29] 136, 40]). In particular, since K}*(K),, is a quadratic
[Fp-algebra and as he(K)/, is a homomorphism of algebras, this implies that
the absolute Galois group of a field K is Bloch-Kato (cf. [10, §23.4]). The
Rost-Voevodsky Theorem has also the following consequence.

Proposition 2.3. Let K be a field, let Gk denote its absolute Galois group,
and let Ok ,: Gx — Z; denote its canonical p-orientation. Then Ok p is cy-
clotomic.

Although Proposition [2.3] might be well known to specialists, we add
a short proof of it. By Proposition Proposition [2.3] in combination with
Theorem [1.4}(d) is equivalent to [5, Prop. 14.19].

Proof of Proposition[2.3 If char(K) = p, then c¢d,(Gk) < 1 (cf. [31] §I1.2.2,
Proposition 3]), and the p-orientation x , is cyclotomic by Fact So we
may assume that char(K) # p. In the commutative diagram

KEM(K) —— KM(K) — = KM(K) ,, 0
\Lhk J(hk J{(hk)/p
Iy B
Hfts(GKa Zp(k)) - Hécts(GKv Zp(k)) e Hk(GK»Fp(k)) e Hft—gl(GKv Zp(k))

(2.7)
the map 7 is surjective, and (hy), is an isomorphism. Hence o must be
surjective, and thus 8 =0, i.e.,

p: HEE (G, Zy (k) — HEL (G, Zy(K))

is an injective homomorphism of Z,-modules. Thus H (G, Z,(k)) must

be p-torsion free. Any open subgroup U of Gk is the absolute Galois group
of KY. Hence fx , is cyclotomic, and this yields the claim. O

Remark 2.4. Let K be a number field, let S be a set of places containing all
infinite places of K and all places lying above p, and let G be the Galois group
of K¥/K, where K/K is the maximal extension of K/K which is unramified
outside S. Then 0k ,: Gk — Z; induces a p-orientation 9;?711: Gg — Ly
However, it is well known (cf. [23, Prop. 8.3.11(ii)]) that,

HY(Gg,1,(1)) ~ H'(G§, 02) () = l(OF) () (2.8)
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(for the definition of I,(1) see 7 where cl(O3) denotes the ideal class group
of the Dedekind domain Oﬂg, and _ ;) denotes the p-primary component.
Hence (G§, 6% ,) is in general not cyclotomic (cf. Proposition .

3. Cohomology of p-oriented profinite groups

A homomorphism ¢: (G1,61) — (Ga,603) of two p-oriented profinite groups
(G1,61) and (Ga,02) is a continuous group homomorphism ¢: G; — Gs
satisfying 61 = 05 o ¢.

Let (G,0) be a p-oriented profinite group. For k € Z, put Q,(k) =
Zy(k) ®z, Qp, and also I,(k) = Qu(k)/Zy(k), ie., I,(k) is a discrete left
G-module and — as an abelian group — a divisible p-torsion module.

Let I, = Q,/Zy, and let _* = Homgz, (_,1,) denote the Pontryagin dual-
ity functor. Then I,(k)* is a profinite left Z,[G]-module which is isomorphic
to Zp(—k).

3.1. Criteria for cyclotomicity

The following proposition relates the continuous co-chain cohomology groups,
Galois cohomology and the Galois homology groups as defined by A. Brumer
in [3].

Proposition 3.1. Let (G, 0) be a p-oriented profinite group, let k be an integer,
and let m be a non-negative integer. Then the following are equivalent:

(1) HISYG, Zy(K)) is torsion free;

cts
(if) H™(G,L,(k)) is divisible;
(i) Hpn(G,Z,y(—k)) is torsion free.
Proof. The equivalence (1)< (ii) is a direct consequence of [34, Prop. 2.3], and
(ii)<(iii) follows from [33| (3.4.5)]. O

The direct limit of divisible p-torsion modules is a divisible p-torsion
module. From this fact — and Proposition |3.1]— one concludes the following.

Corollary 3.2. Let (G, 0) be a cyclotomically p-oriented profinite group. Then
H™(C,1,(m)) is divisible for all m > 0 and all C closed in G.

Proof. Tt suffices to show (ii)=-(i). Let C be a closed subgroup of G. Then
H™(C.L(m) ~ lm H™(U,L,(m)),

where B¢ denotes the set of all open subgroups of G containing C' (cf. [31]
81.2.2, Proposition 8]). Hence Proposition yields the claim. O

In combination with [3, Corollary 4.3(ii)], Proposition implies the
following.



Cyclotomic p-orientations 9

Corollary 3.3. Let (I,=) be a directed set, let (G,0) be a p-oriented profinite
group, and let (N;);cr be a family of closed normal subgroups of G satisfying
Nj € Ny C ker(0) for i = j such that ();c; Ni = {1} and the induced p-
orientation 0;: G/N; — L) is cyclotomic for all i € I. Then 0: G — Z) is
cyclotomic.

Proof. Let U C G be a open subgroup of G. Hypothesis (iii) implies that the
group H,,,(UN;/N;, Zy(—m)) is torsion free for all i € I (cf. Proposition [3.1).
Thus, by [3, Corollary 4.3(ii)], H, (U, Z,(—m)) is torsion free, and hence, by
Proposition 0: G — Z) is a cyclotomic p-orientation. O

3.2. The mod-p cohomology ring

An Ny-graded Fj,-algebra A = [[,~, A is said to be anti-commutative if
for z € A, and y € A, one has y -2 = (-1)*t -z -y. E.g., if V is an Fp-
vector space, the exterior algebra Ae(V') (cf. [18, Chapter 4]) is an Ny-graded
anti-commutative Fj-algebra. Moreover, if G is a profinite group, then its
cohomology ring H*(G,F),) is an Ny-graded anti-commutative [F,-algebra (cf.
[23] Prop. 1.4.4)).

Let T(V) =[50 V®* denote the tensor algebra generated by the F,-
vector space V. A Ny-graded associative F,-algebra A is said to be quadratic
if the canonical homomorphism 7 : T(A;) — A is surjective, and

Ker(A) = T(A4) @ ker(n) ® T(A,) (3.1)
(cf. [24} § 1.2]). E.g., A = A4(V) is quadratic.

If A and B are anti-commutative Ny-graded F,-algebras, then A @ B
is again an anti-commutative Ny-graded F,-algebra, where

(21 @ 1) - (22 @ y2) = (1) - (21 - 22) ® (y1 - 2), (3.2)

for x1 € Ag,, x2 € A, 11 € By, y2 € By,. In particular, if A and B are
quadratic, then A ® B is quadratic as well.

A direct set (I, <) maybe considered as a small category with objects
given by the set I and precisely one morphism ¢; ; for all ¢ < 5, 4,5 € I, i.e,,
ti; = id;. One has the following.

Fact 3.4. Let F be a field, let (I,=<) be a direct system, and let A: (I,=
) — rqalg be a covariant functor with values in the category of quadratic
F-algebras. Then B = lim, A(i) is a quadratic F-algebra.

Let (G,6) be a p-oriented profinite group, and let 0: G — F) be the

map induced by 6. If 6= 14, then the mod-p cohomology ring of H*® (G,é)
coincides with H*(G,F,) (see (1.4))), and hence it is anti-commutative. Fur-

A~

thermore, if 6 # 1 and G° = ker(#), restriction
resg; go: H*(G,0) — H*(G°,F,) (3.3)

is an injective homomorphism of Ny-graded algebras. Hence the mod-p coho-
mology ring H*(G,0) is anti-commutative. In particular, if M) denotes the
homogeneous component of the left F,,[G/G°]-module M, on which G/G° acts
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by 6%, the Hochschild-Serre spectral sequence (cf. [23, § I1.4, Exercise 4(ii)])
shows that

HE(G,B) = H (G, Fy) . (3.4
From [31], §1.2.2, Prop. 8] and Fact one concludes the following.

Corollary 3.5. Let (G, 0) be a p-oriented profinite group which is Bloch-Kato.
Then H*(C,0|¢) is quadratic for all C' closed in G.

Corollary 3.6. Let (I, =) be a directed set, let (G,0) be a p-oriented profinite
group, and let (N;)ier be a family of closed normal subgroups of G, N; C
N; C ker(0) for i < j, such that (,c; N; = {1} and (G/N;,8y,) is Bloch-
Kato. Then (G,0) is Bloch-Kato.

Remark 3.7. Let G be a pro-p group with minimal presentation
G = <l’1,. -5 &g | [1171,1’2”[133,‘%4],1'5} = 1> )

with d > 5. In [22, Ex. 7.3] and [21, § 4.3] it is shown that G does not occur
as maximal pro-p Galois group of a field containing a primitive p**-root of
unity, relying on the properties of Massey products. It would be interesting
to know whether GG admits a cyclotomic p-orientation 6: G' — Z,' such that
(G, 0) is Bloch-Kato. By Theorem a negative answer would provide a
“Massey-free” proof of the aforementioned fact.

3.3. Fibre products

Let (G1,01), (G2, 02) be p-oriented profinite groups. The fibre product (G, 0) =
(G1,01) ® (G2, 02) denotes the pull-back of the diagram

G -7 (3.5)
A 7

\ 0 Taz

G- — > GQ

Remark 3.8. By restricting to the suitable subgroups if necessary, for the
analysis of a fibre product (G, 0) = (G1,61) K (Gg, 02) one may assume that
im(f;) = im(é2). In particular, if (Gag,63) is split f3-abelian and Go ~ A x
im(f,) for some free abelian pro-p group A, then G ~ A x G with gag™! =
a®9) for alla € A and g € G.

Fact 3.9. Let (G,0) be a p-oriented profinite group, and let N be a finitely
generated non-trivial torsion free closed subgroup of Zg(G), i.e., N ~ Z,(1)"
as left Z,[G]-modules for some r > 1. Then for k > 0 one has

HY(N,L(k)) ~T,(k—1)" (3.6)
as left Z,]|G]-module.

The following property will be useful for the analysis of fibre products.
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Lemma 3.10. Let (G1,0) be a cyclotomically p-oriented profinite group, and
set (G,0) = (G1,601) K (Ga,02), where (Ga,03) is split O2-abelian with Z =
Zo,(G2). Let m: G — G be the canonical projection, and let U C G be an
open subgroup. Then U ~ (ZNU) x w(U).

Proof. Without loss of generality we may assume that Z ~ Z,, so that Z N
U = 2" for some k > 0. It suffices to show that there exists an open subgroup
Uy of U satistying Z N Uy = {1} and #n(U;) = = (U).

By choosing a section o: G; — G (see Remark7 one has a continuous
homomorphism 7 = g o 7: G — (7 and a continuous function : G — Z
such that each g € G can be uniquely written as g = n(g)-7(g). In particular,
for h,hi,hs € U and z € ZNU = ZP" one has

n(z-h)=z-n(h)  and  y(hy-he) =n(h) - " (h). (3.7)
Let ny = x on|y, where x: Z — Z/Zpk is the canonical projection. By ,
nu defines a crossed-homomorphism 7y : U — Z/Zpk, where U = U/Z?".
As U is canonically isomorphic to an open subgroup of Gy, (U, 6;|7) is cy-
clotomically p-oriented. (Note that Z ~ Z,(1) as Z,[U]-modules.) Hence,
HL(U,Z,(1)) - HY(U,Z,(1)/p") is surjective by Proposition and the
snake lemma applied to the commutative diagram

0—=BYU,2) — 2Y(U, Z) —— HY(U,Z,(1)) —=0  (3.8)

i | |

0—BY(U,2z/27") — 2\(U, Z/2?") — H' (U, Z,(1)/p") — 0

where the left-side and right-side vertical arrows are surjective, shows that
Z\U,2) — 24U, Z/Zpk) is surjective. Thus there exists n, € Z1(U, Z) such
that fjy = xon,. It is straightforward to verify that U; = {n,(h)-o(h) | h € U}
is an open subgroup of GG satisfying the requirements. O

Theorem 3.11. Let (G1,61) be a cyclotomically p-oriented profinite group,
and let (Ga,02) be split O2-abelian. Then (G1,01) X (Ga,02) is cyclotomically
p-oriented.

Remark 3.12. (a) If p is odd, then every 6-abelian profinite group (G, 0) is
split. However, a 2-oriented #-abelian profinite group (G,0) is split if, and
only if, it is cyclotomically 2-oriented (cf. Proposition .

(b) If (G, 0) is 6-abelian and H C G is a closed subgroup, then (H,0|p) is
also f-abelian.

Proof of Theorem[3.11. Put (G,0) = (G1,61) K (G2,62) and Z = Zy,(G2).
We may also assume that im(6;) = im(f2). As (Gz,02) is split fs-abelian,
one has G = Z x (Gy.

We first show the claim for Z ~ Z,. Let U be an open subgroup of
G. By Lemma (U,0|y) ~ (Uy,0,) B (Us, 0,) where U is isomorphic to
an open subgroup of G; and (Us,#,) is split fo-abelian with N = ker(fs)
open in Z. As cd,(N) = 1, one has H™(N,I,(k)) =0 for m > 2 and k£ > 0.
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Therefore, the Es-term of the Hochschild-Serre spectral sequence associated
to the short exact sequence of profinite groups

{1} N U U, {1} (3.9)

and evaluated on the discrete Z, [U]-module I,,(k), is concentrated on the first
and the second row. In particular, d5* = 0 for r > 3. As (3.9) splits, and as
I,(k) is inflated from Uy, one has Ey°(I,(k)) = E2(T,(k)) for s > 0 (cf. [23]
Prop. 2.4.5]). Hence dy* = 0 for all s, > 0, i.e., By'(I,(k)) = E3L(I,(k)),
and the spectral sequence collapses. Thus, using the isomorphism 7 for
every k > 1 one has a short exact sequence

0 — HH (UL, (k) =5 HH(U.L(k)) — H¥}(Ur, Ly (k — 1)) —0,
(3.10)
where the right- and left-hand side are divisible p-torsion modules. As such
Zy-modules are injective, splits showing that H* (U, I,(k)) is p-divisible.
Therefore, by Proposition (G, 0) is cyclotomic.

Thus, by induction the claim holds for all split #5-abelian groups (G2, 02)
satisfying rk(Zg,(G2)) < oo. In general, as Z is a torsion free abelian pro-p
group, there exists an inverse system (Z;);c of closed subgroups of Z such
that Z/Z; is torsion free, of finite rank, and Z = Mie] Z/Z;. Since Z; is

normal in G and
(G/Z:,0) ~ (G1,61) R (G2/Z;,65)
is cyclotomically p-oriented, Corollary [3.3] yields the claim. O

The following theorem can be seen as a generalization of a result of
A. Wadsworth [37, Thm. 3.6].

Theorem 3.13. Let (G;,0;), i = 1,2, be p-oriented profinite groups satisfying
im(0,) = im(6s). Assume further that (Ga,02) is split Os-abelian. Then for
(G,0) = (G1,0,) X (Ga,02) one has that

H*(G, 5) ~ H*(Gy, 51) ® Ao ((ker(62)/ker(62)P)*) . (3.11)
Moreover, if (G1,61) is Bloch-Kato, then (G, ) is Bloch-Kato.

Proof. Assume first that d(Zg,(G2)) is finite. If d(Zg,(G2)) = 1 then one ob-
tains the isomorphism (3.11)) from [37, Thm. 3.1], which uses the Hochschild-
Serre spectral sequence associated to the short exact sequence of profinite
groups

{1} ——= 74, (G2) —= G —— G /7y, (G2) — {1}
and evaluated on the discrete Z,[G]-module F,(k), to compute H*(G, 9). If
d(Zp,(G2)) > 1, then applying induction on d(Zg,(G2)) yields the isomor-
phism . Finally, if Zg, (G2) is not finitely generated, then a limit argu-
ment similar to the one used in the proof Theorem and Corollary
yield the claim. O



Cyclotomic p-orientations 13

3.4. Coproducts

For two profinite groups G; and G let G = G111G5 denote the coproduct (or
free product) in the category of profinite groups (cf. [27, § 9.1]). In particular,
if (G1,01) and (G2, 02) are two p-oriented profinite groups, the p-orientations
¢h and 0 induce a p-orientation ¢: G'— Z, via the universal property of of
the free product. Thus, we may interpret II as the coproduct in the category
of p-oriented profinite groups (cf. [9, §3]). The same applies to ITP — the
coproduct in the category of pro-p groups.

Theorem 3.14. Let (G1,61) and (Ga,03) be two cyclotomically p-oriented
profinite groups. Then their coproduct (G,0) = (G1,01) I (Ga,02) is cyclo-
tomically oriented. Moreover, if (G1,01) and (Ga,02) are Bloch-Kato, then
(G, 0) is Bloch-Kato.

Proof. Let (U,0|y) be an open subgroup of (G,#). Then, by the Kurosh
subgroup theorem (cf. [27, Thm. 9.1.9]),

U~ [[Ceano) ] (G.nU)ITF, (3.12)
sES) tES2
where YG; = yG;y~ ! for y € G. The sets S; and S, are sets of representatives
of the double cosets U\G/G1 and U\G/G3, respectively. In particular, the
sets S; and Ss are finite, and F' is a free profinite subgroup of finite rank.
Put U, = *G1NU for all s € S, and V; = Gy NU for all t € Sy. By
[23, Thm. 4.1.4], one has an isomorphism

H*(U, T, (k) ~ @ H* (U, 1, (k) & €@ H*(V;, I,(k)), (3.13)

sEST teESa

for k£ > 2, and an exact sequence
M —= HY(U,1,(1)) —= M' ——=0. (3.14)

If (G1, 61) and (G4, 03) are cyclotomically p-oriented, then, by hypothesis and
(-13), H*(U,1,(k)) is a divisible p-torsion module for k > 2. In (3.14)), the
module M is a homomorphic image of a p-divisible p-torsion module, and the
module M’ is the direct sum of p-divisible p-torsion modules, showing that
H'(U,1,(1)) is divisible. Hence, by Proposition and Corollary (G,0)
is cyclotomically p-oriented.

Assume that (G1,61) and (Gg, 62) are Bloch-Kato. Then — for U as in

(3.12)) — one has by (3.13) and (3.14) that
HYU,0ly) ~ Ao P H*(U,,0lv,) & P H*(Vi.0lv,) © H*(F.0]r) (3.15)
s€S1 teSs

where A is a quadratic algebra, and & denotes the direct sum in the category
of quadratic algebras (cf. [24 p. 55]). In particular, H*(U, 8|y ) is quadratic.
O

For pro-p groups one has also the following.
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Theorem 3.15. Let (G1,601) and (Ga,63) be two cyclotomically oriented pro-p
groups. Then their coproduct (G,0) = (G1,601) 1P (Ga,02) is cyclotomically
oriented. Moreover, if (G1,61) and (Ga,02) are Bloch-Kato, then (G,0) is
Bloch-Kato.

Proof. The Kurosh subgroup theorem is also valid in the category of pro-p

groups with ITP replacing IT (cf. [27, Thm. 9.1.9]), and (3.13) and (3.14) hold
also in this context (cf. [23, Thm. 4.1.4]). Hence the proof for cyclotomicity

can be transferred verbatim. The Bloch-Kato property was already shown in
[25, Thm. 5.2]. O

4. Oriented virtual pro-p groups

We say that a p-oriented profinite group (G, @) is an oriented virtual pro-p
group if ker(f) is a pro-p group. In particular, G is a virtual pro-p group.
Since ZJ is a pro-2 group, every oriented virtual pro-2 group is in fact a
pro-2 group. For p # 2 let 0: G — F,™ be the homomorphism induced by 6,
and put G° = ker(). Then G/G° ~ im(f) is a finite cyclic group of order
co-prime to p. The profinite version of the Schur-Zassenhaus theorem (cf. [14]
Lemma 22.10.1]) implies that the short exact sequence of profinite groups

g

VR

) {1} (4.1)

splits. Indeed, if C C G is a p’-Hall subgroup of G, then 7|¢: C — im(é) is
an isomorphism, and o = (7|¢)~! is a canonical section for .

Note that Z) = F; x Z,, where =, = O,(Z,’) is the pro-p Sylow sub-
group of Z,;, and where we denoted by F* also the image of the Teichmiiller
section 7: F — Z,. Hence a p-orientation : G — Z; on G defines a ho-

m Ge G

momorphism 6: G — F) and also a homomorphism 6¥: G — E,. On the
contrary a pair of continuous homomorphisms (6, 0"), where 0: G — F) and
0¥: G — E,, defines a p-orientation §: G — Z) given by 0(g) = 0(g) - 6 (g)
for g € G.

Fact 4.1. Let6: G — Fy, o: im(é) — G be homomorphisms of groups satisfy-
ing (4.1). A homomorphism 0°: G° — E,, defines a p-orientation 0: G — 7,

provided for all ¢ € im(0) and for all g € G° one has
0°(a(c) - g-o(c)™") =0°(g) (4.2)

Proof. By (4.1)), one has G = G° x3 ¥, where ¥ = im(9), B: & — Aut(G°)
and (B(c) is left conjugation by o(c) for ¢ € X. Thus, by (4.2]), the map
6v: G — E, given by 9v(g,cz = 6°(g) is a continuous homomorphism of

groups, and (¢,0V), where ¢: ¥ — [} is the canonical inclusion, defines a
p-orientation of G. (]
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Let (G, 0) be an oriented virtual pro-p group satisfying (4.1)). As6: G —
7 is a homomorphism onto an abelian group one has

P
0(c-g-c ') =0(g) (4.3)
forallc € C =im(o) and g € G. Thus, if i, € Aut(G) denotes left conjugation
by ¢ € C, one has
0=0o0oi,. (4.4)
for all c € C.

4.1. Oriented ¥-virtual pro-p groups

From now on let p be odd, and fix a subgroup ¥ of [F*. An oriented virtual pro-
p group (G, #) is said to be an oriented X-virtual pro-p group, if im(é) =3.
Hence, by the previous subsection, for such a group one has a split short
exact sequence

{1} G° G—ts=% {1} . (4.5)

By abuse of notation, we consider from now on (G,,0) as an oriented %-
virtual pro-p group. As the following fact shows there is also an alternative
form of a ¥-virtual pro-p group.

Fact 4.2. Let ¥ be a subgroup of FJ. Let Q be a pro-p group, let 6°: Q — E,
be a continuous homomorphism, and let vo: ¥ — Aut.(Q) be a homomor-
phism of groups, where Aut.(_) is the group of continuous automorphisms,
satisfying

0°(vq(e)(q)) = 6°(a), (4.6)

for all g € Q and ¢ € X, then (Q Mg ¥,0,1) is an oriented L-virtual pro-p
group, where 1: ¥ — Q Xoyg Y is the canonical map, and 8: Q Mg PO Zy
is the homomorphism induced by 6° (cf. Fact .

If (G1,01,01) and (Ga,602,02) are oriented Y-virtual pro-p groups, a
continuous group homomorphism ¢: G; — Gs is said to be a morphism of
Y-virtual pro-p groups, if o3 = ¢ooy and §; = 0 ¢. Similarly, if (Q, 0% Q)
and (R,0%,vr) are S-virtual pro-p groups in alternative form (cf. Fact ,
the continuous group homomorphism ¢: @ — R is a homomorphims of -
virtual pro-p groups provided g o ¢ = g and if for all ¢ € ¥ and for all
q € @Q one has that

Tr(€)(0(q) = (1q(c)(q))- (4.7)

With this slightly more sophisticated set-up the category of ¥-virtual
pro-p groups admits coproducts. In more detail, let (Q, 0%, vq) and (R, 0%, Vr)
be Y-virtual pro-p groups in alternative form. Put X = Q II® R. Then for
every element ¢ € ¥ there exists an element J(c) € Aut(X) making the
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diagram
Q—2-Xx<2— (4.8)
VQ(C)l d(c) Yr(c)
Q——>X<=_R
commute. Since =, is a pro-p group, there exists a continuous group homo-
morphism §°: X — =, making the lower two rows of the diagram

0% x <t g (4.9)

“/Q(C)\L l5(0) l’YR(C)

QJQXJRR

90
02, 0%,

—

P

commute. Since 63, p = 0,z 0 /r(c) forall c € 3, one has 6° = 0°04(c) for
all ¢ € 3. The commutativity of the diagram yields that the group ho-
momorphisms jg: (Q,05,7q) — (X,0°,6) and jr: (R,0%,7r) — (X,0°,0)
are homomorphisms of oriented ¥-virtual pro-p groups in alternative form.
Moreover, one has the following.

Proposition 4.3. The oriented ¥-virtual pro-p group (X,0°,8) together with
the homomorphisms jo: @ — X, and jr: R — X is a coproduct in the
category of oriented X -virtual pro-p groups.

Proof. Let (H,0p,vx) be an oriented ¥-virtual pro-p group in alternative
form, and let ¢g: @ — H and ¢r: R — H be homomorphisms of oriented
Y-virtual pro-p groups in alternative form. Then there exists a unique homo-
morphism of pro-p groups ¢: X — H making the diagram concentrated on
the second and third row of

Q- x<" R (4.10)
’YQ(C)\L 5(c) l'YR(C)
0 JjQ X Jr R
‘A ¢A
H
02, 02,
03
EP

commute. Since ¢q,r © Yo /r(c) = YH(C) 0 dg R for all ¢ € ¥, the uniqueness
of ¢ implies that ¢ o d(c) = vu(c) o ¢ for all ¢ € Y. As ¢g: Q — H and
¢r: R — H are homomorphisms of Y-virtual pro-p groups, one has that
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922/12 = 0% o ¢ r- This implies that (0% o0 ¢) o jo/r = 92;)/12’ and from the
construction of §°: X — =, one concludes that §° = 67 o ¢. This implies
that ¢ is a homomorphism of oriented X-virtual pro-p groups. O

Example 4.4. For p = 3 set ¥ = F; = {1,s}. Then the free product
(Z%,id) I* (25 ,id) is isomorphic to F x ¥, where F = (x,y) is a free pro-3

group of rank 2 and the induced isomorphism s: F' — F satisfies s(z) = 271,

s(y) =y~

Proposition 4.5. Let (Q,0q,7q) be an oriented S-virtual pro-p group, and
let Z be a normal L-invariant subgroup of Q isomorphic to Zy, which is not
contained in the Frattini subgroup ®(Q) = cl([Q, Q]QP) of Q. Then there
exists a mazimal closed subgroup M of Q which is L-invariant, such that
M-Z=Q and M NZ =7P.

Proof. Let Q@ = Q/®(Q). Then 7y induces a homomorphism Yo: r -
Aut.(Q) making @ a compact F,[E]-module. Let © = Hom%(Q,F,), where
F, denotes the finite field F, with canonical left $-action. By Pontryagin
duality, one has [ cq ker(w) = {0}. Thus, by hypothesis, there exists ¢ €
such that ¥|z # 0. Hence M = ker(t)) has the desired properties. O

4.2. The maximal oriented virtual pro-p quotient

For a prime p and a profinite group G we denote by OP (&) the closed subgroup
of G generated by all Sylow pro-£ subgroups of G, ¢ # p. In particular, O?(G)
is p-perfect, i.e., H'(OP(@),F,) = 0, and one has the short exact sequence

{1} or(a) G G(p) {1},

where G(p) denotes the maximal pro-p quotient of G.
For a p-oriented profinite group (G, 8), we denote by

G(0) = G/OP(G°)

the maximal p-oriented virtual pro-p quotient of G (for the definition of G°
see the beginning of § . By construction, it carries naturally a p-orientation
¢0: G(0) — Z, inherited by G.

Note that if im(#) is a pro-p group, then G° = G, and G(0) = G(p).

Proposition 4.6. Let (G,0) be a p-oriented Bloch-Kato profinite group, and
let O C G be a p-perfect subgroup such that O C ker(0). Then the inflation
map

inf*(M): HE (G/O, M) — HE

cts(G’ M)a (4'11)
is an isomorphism for all k > 0 and all M € ob(z [a/01Prf), where 7,1 o1prf

denotes the abelian category of profinite left Z,[G/O]-modules.

Proof. As O C ker(0), Z,(k) is a trivial Z,[O]-module for every k € Z. Since
O is p-perfect, and as the F,-algebra H*(O,F,) is quadratic, H*(O,F,) is
1-dimensional concentrated in degree 0. By Pontryagin duality, this is equiva-
lent to Hy(O,F,) = 0 for all k£ > 0, where Hj(O,_) denotes Galois homology
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as defined by A. Brumer in [3]. Thus, the long exact sequence in Galois
homology implies that Hy(O,Z,) =0 for all & > 0.

Let (P,, 0, €) be a projective resolution of the trivial left Z,[G]-module
in the category z [gyprf. For a projective left Z,, [G]-module P € ob(z,[¢yprf)
define

def(P) = defg o (P) = Z,[G/O] &¢ P, (4.12)

where ® denotes the completed tensor product as defined in [3]. Then, by
the Eckmann-Shapiro lemma in homology, one has that

Hy(def(Py), def(a)) ~ H,(0,Z,). (4.13)

Hence, by the previously mentioned remark, (def(P, ), def(9,)) is a projective
resolution of Z, in the category 7z [c,01prf.

Let M € ob(z,ja/o1prf). Then for every projective profinite left Z,[G]-
module P, one has a natural isomorphism

Homg o (def(P), M) ~ Homg (P, M). (4.14)

Hence Homg /o (def(P, ), M) and Homg (P,, M) are isomorphic co-chain com-
plexes, and the induced maps in cohomology — which coincide with inf® (M)
— are isomorphisms. O

Corollary 4.7. Let (G, 0) be a p-oriented profinite group which is Bloch-Kato,
respectively cyclotomically oriented. Then the maximal oriented virtual pro-p
quotient (G(0),0) is Bloch-Kato, respectively cyclotomically oriented.

5. Profinite Poincaré duality groups and p-orientations

5.1. Profinite Poincaré duality groups

Let G be a profinite group, and let p be a prime number. Then G is called a
p-Poincaré duality group of dimension d, if
(PD1) cdp(G) =d;
(PDy) |HE (G, A)| < oo for every finite discrete left G-module A of p-power
order;
(PD3) HE(G,Z,[G]) =0 for k # d, and HE (G, Z,[G]) ~ Z,.
Although quite different at first glance, for a pro-p group our definition of
p-Poincaré duality coincides with the definition given by J-P. Serre in [31],
§1.4.5]. However, some authors prefer to omit the condition (PD32) in the def-
inition of a p-Poincaré duality group (cf. [23] Chap. III, §7, Definition 3.7.1]).
For a profinite p-Poincaré duality group G of dimension d the profinite
right Z,[G]-module Dg = H& (G, Z,[G]) is called the dualizing module.
Since D¢ is isomorphic to Z, as a pro-p group, there exists a unique p-
orientation 0g: G — Z; such that for g € G and z € D¢ one has

z-g=2-0g(9) =9a(g) - 2.

We call 0¢ the dualizing p-orientation.
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Let * D¢ denote the associated profinite left Z,[G]-module, i.e., setwise
* D¢ coincides with Dg and for g € G and z € * D¢ one has

g-z=2-9 ' =0c(g") 2
For a profinite p-Poincaré duality group of dimension d the usual standard ar-
guments (cf. [2, §VIIT.10] for the discrete case) provide natural isomorphisms

Tory (Da, —) ~ Hi MG, ),

cts

(5.1)
EXt]&(XDGvf) = Hd—k(Gaf)a

where TorS (_, _) denotes the left derived functor of _®¢_, and Ext$ (_, _)
denotes the right derived functors of Homg(—, ) in the category z, gjprf
(cf. [3]).

If A is a discrete left G-module which is also a p-torsion module, then
A* carries naturally the structure of a left (profinite) Z,[G]-module (cf. [27,
p. 171]). Then, by [31), § 1.3.5, Proposition 17], Pontryagin duality and [33]
(3.4.5)], one obtains for every finite discrete left Z,[G]-module A of p-power
order that

He (G, A) ~ Homg(A, Ig)* ~ Homg (I}, A*)* ~ (I5)* ®¢ A, (5.2)

where I denotes the discrete left dualizing module of G (cf. [31], §1.3.5]). In
particular, by (5.1), Dg ~ (I£)*.

Example 5.1. Let Gk be the absolute Galois group of an ¢-adic field K. Then
Gk satisfies p-Poincaré duality of dimension 2 for all prime numbers p. One

has Ig o ppe (K) (cf. [B1) §I1.5.2, Theorem 1]). Hence * D¢y, =~ Z,(—1) with
respect to the cyclotomic p-orientation 0k ,: Gx — Z,', i.e., 0gx = Ok p-

As we will see in the next proposition, the final conclusion in Exam-
ple is a consequence of a general property of Poincaré duality groups.

Proposition 5.2. Let G be a p-Poincaré duality group of dimension d, and
let 0: G — Z,; be a cyclotomic p-orientation of G. Then 641 = dg and
*Dg ~ Zy(1 —d).

Proof. By (5.1) and the hypothesis, H% (G, Z,(d — 1)) =~ Dg ® Z,(d — 1) is
torsion free, and hence isomorphic to Z,. This implies dg = 0971 ]

5.2. Finitely generated #-abelian pro-p groups

Recall that (G, 0) is said to be f-abelian if ker(0) = Zo(G) and Zg(G) is p-
torsion free — in particular ker(#) is an abelian pro-p group. If G is finitely
generated then one has an isomorphism of left Z, [G]-modules N ~ Z,(1)" for
some non-negative integer r, and either I' = im(#) is a finite group of order
coprime to p, or I' is a p-Poincaré duality group of dimension 1 satisfying
Or = 1r (cf. 23, Prop. 3.7.6]). Moreover, one has isomorphisms of left Z,[G]-
modules

r

Hy(N,Z,) = A(N) = Z,,(k) (&), (5.3)
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where Aq(—) denotes the exterior algebra over the ring Z,,. Since ¢d,,(I") < 1,
the Hochschild-Serre spectral sequence for homology (cf. [39] § 6.8])

B2, = Hy (U, Hy(N, Zp(=m))) = Hy1t(G, Zp(—m)) (5-4)

is concentrated in the first two columns. Hence, the spectral sequence col-
lapses at the E2-term, i.e., ESQ!t = E25. Thus, for n > 1 one has a short exact
sequence

0— Hp1(N, Zp<_m))F —= Hp (G, Zp(—m)) —= Hy (N, Zyp(—=m))r — 0

(5.5)
if e¢d,(T') = 1, and isomorphisms

H™(G, Zy(~m)) = Hy (N, Z,(~m))r (5.6)

if " is a finite group of order coprime p. Here we used the fact that Hy(I', ) =
_r coincides with the coinvariants of T', and that Hy(T,_) = _T coincides
with the invariants of I' if I is a p-Poincaré duality group of dimension 1 with
Or = 1r. Since H,,—1(N, Z,(—m)) is a torsion free abelian pro-p group, and
as

Hon (N, Zy(=m))r = (Hin(N, Z) © Zy(=m))r = An(N)  (5.7)
by (B.3)), one concludes from and that H,,(G,Z,(—m)) is torsion

free.

Proposition 5.3. Let (G, 0) be a 6-abelian p-oriented virtual pro-p group such
that N = ker(0) is a finitely generated torsion free abelian pro-p group, and
that T = im(6) is p-torsion free. Then G is a p-Poincaré duality group of
dimension d = cd(G), and 0 is cyclotomic.

Proof. By hypothesis, G is a p-torsion free p-adic analytic group. Hence the
former assertion is a direct consequence of M. Lazard’s theorem (cf. [33]
Thm. 5.1.5]). The latter follows from Proposition O

From Proposition [5.2] one concludes the following;:

Corollary 5.4. Let (G,0) be a 0-abelian pro-p group. If p =2 assume further
that im(60) is torsion free.

(a) The orientation 8 is cyclotomic.

(b) Suppose that G is finitely generated with minimun number of generators
d=d(G) < co. If p =2 assume further that im(0) C 1+ 4Zy. Then G
is a Poincaré duality pro-p group of dimension d. Moreover, dg = 0971,

(¢) If G satisfies the hypothesis of (b) and d(G) > 2, then for p odd, any
cyclotomic orientation 0': G — Z) of G must coincide with 0, i.e.,
0 = 0. For p = 2 any cyclotomic orientation 0': G — 75 satisfying
im(0") C 1+ 4Zs must coincide with 6.

Proof. (a) follows from Proposition

(b) By hypothesis, G is uniformly powerful (cf. [6, Ch. 4]), or equi-p-value, as
it is called in [I7]. Hence the claim follows from Proposition By Propo-
sition g = 091,



Cyclotomic p-orientations 21

(c) An element ¢ € Homg,,(G,Z,)) has finite order if, and only if, im(¢) is
finite. Proposition and part (b) imply that

gdfl _ 6G _ (9/)d71'

Hence (6'0")?"! = 1. For p odd, Homg,,(G,ZX) does not contain non-
trivial elements of finite order. Hence 6’ = 6. For p = 2 the hypothesis implies
that im(6710") C 1 + 4Zy. Hence (§710")4~! = 15 implies that ¢/ = 9. O

Note that, by Fact Corollary [5.4]c) cannot hold if d(G) = 1.

5.3. Profinite p-Poincaré duality groups of dimension 2

As the following theorem shows, for a profinite p-Poincaré duality group G of
dimension 2, the dualizing p-orientation ¢ : G — Z,; is always cyclotomic.

Theorem 5.5. Let G be a profinite p-Poincaré duality group of dimension 2.
Then 0g: G — Z,; is a cyclotomic p-orientation.

Proof. As every p-oriented profinite group is 0-cyclotomic, it suffices to show
that H2 (U, Z,(1)) is torsion free for every open subgroup U C G. By Propo-
sition Z,(—1) ~ * D¢g. Hence, from the Eckmann-Shapiro lemma in ho-
mology and , one concludes that

H,(U,Zy(-1)) = TOI"?(ZP»ZP(*U) = Torllj(Zp(*l)XaZp)
~ Torl (D L, [G/UY) ~ HLL(G.Z,IG/UT)  (5.9)
~ Homg,, (U, Zy,).

Hence H:(U,Z,(—1)) is a torsion free Z,-module, and, by Proposition
HZ2 (U, Z,(1)) is torsion free as well. O
Remark 5.6. Let G be a profinite p-Poincaré duality group of dimension 2,
and let 0g: G — Z,° be the dualizing p-orientation. Then (G,0d¢) is not
necessarily Bloch-Kato, as the following example shows.

Let p = 2 and let A = PSLa(gq) where ¢ =3 mod 4. Then there exists
a p-Frattini extension m: G — A of A such that G is a 2-Poincaré duality
group of dimension 2, i.e., ker(w) is a pro-2 group contained in the Frattini
subgroup of G (cf. [41]). In particular, G is perfect, and thus dg = 1g.
Hence Fy(1) = Fy(0) is the trivial F3[G]-module, and — as G is perfect
— H(G,Fy(1)) = 0. Moreover, H?(G,F5(2)) ~ Fo, as G is a profinite 2-
Poincaré duality group of dimension 2 with g = 1. Therefore, H*(G,1¢)
is not quadratic.

A pro-p group G which satisfies p-Poincaré duality in dimension 2 is
also called a Demuskin group (cf. [23] Def. 3.9.9]). For this class of groups
one has the following.

Corollary 5.7. Let G be a Demuskin pro-p group. Then G is a Bloch-Kato
pro-p group, and 0g: G — Z, is a cyclotomic p-orientation.
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Proof. By Theorem it suffices to show that (G,d¢g) is Bloch-Kato. It
is well known that H*(G,d¢) is quadratic (cf. [31, §1.4.5]). Moreover, every
open subgroup U of G is again a Demuskin group, with 0y = 9¢|y (cf. [23]
Thm. 3.9.15]). Hence (G, d¢) is Bloch-Kato. O

Remark 5.8. [The Klein bottle pro-2 group] Let G be the pro-2 group given
by the presentation
G=(z,y|layz"ly=1) (5.9)
Then G is a Demuskin pro-2 group containing the free abelian pro-2 group
H = (22,y) of rank 2. Thus, by Corolla (G,0¢) is cyclotomic. Since
3.1

H(G,13(0)) ~ I & Z/27Z, Proposition [3.1] implies that g # 1g is non-
trivial. In particular, since Og|g = 1, this implies that im(dg) = {£1}.
Note that H = ker(d¢) and that one has a canonical isomorphism
H={(2*)® (y) ~ Zs(0) ® Zs(1). (5.10)
In particular, (G,0¢) is not dg-abelian.
Example 5.9. Let G be the pro-p group with presentation
G=(z,yz|le,yl=27")

If p =2 then G is a Demuskin group, and dg: G — ZJ is given by 0g(z) =
Oc(y) = 1, 9g(2) = —1. On the other hand, if p # 2 then G is not a
Demuskin group, and any p-orientations §: G — Z,; is not 1-cyclotomic (cf.

[TT, Thm. 8.1]). However, H*(G,#) is still quadratic.

6. Torsion

It is well known that a Bloch-Kato pro-p group may have non-trivial torsion
only if, p = 2. More precisely, a Bloch-Kato pro-2 group G is torsion if, and
only if, G is abelian and of exponent 2. Moreover, any such group is a Bloch-
Kato pro-2 group (cf. [25, §2]). The following result — which appeared first
in [26] Prop. 2.13] — holds for 1-cyclotomically oriented pro-p groups (see
also [I1], Ex. 3.5] and [0l Ex. 14.27]).

Proposition 6.1. Let (G, 0) be a 1-cyclotomically oriented pro-p group.

(a) Ifim(6) is torsion free, then G is torsion free.

(b) If G is non-trivial and torsion, then p =2, G ~ Cy and 0 is injective.
Remark 6.2. Let 0: Cy — ZJ be an injective homomorphism of groups. Then
Z5(1) ~ we, is isomorphic to the augmentation ideal

wWe, = ker(Zg [CQ} — Zg)
Hence — by dimension shifting —
H?(C3,7Z5(1)) = H'(C2,Z2(0)) = 0.
Thus — as Cs has periodic cohomology of period 2 — one concludes that

H?(Cq,Z4(t)) = 0 for s odd and t even, and also for s even and ¢ odd. Hence
(C4,0) is cyclotomic.
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From Proposition [6.1| and the profinite version of Sylow’s theorem one
concludes the following corollary, which can be seen as a version of the Artin-
Schreier theorem for 1-cyclotomically p-oriented profinite groups.

Corollary 6.3. Let p be a prime number, and let (G,0) be a profinite group
with a 1-cyclotomic p-orientation.

(a) If p is odd, then G has no p-torsion.
(b) If p =2, then every non-trivial 2-torsion subgroup is isomorphic to Cs.
Moreover, if im(0) has no 2-torsion, then G has no 2-torsion.

Remark 6.4. Let 0: Zys — Z5 be the homomorphism of groups given by
0(1+ A) = —1 and 6(\) = 1 for all A € 2Z,. Then 6 is a 2-orientation of
G = Z, satistying im(0) = {£1}. As cd2(Z3) = 1, Fact implies that
(Z3,0) is Bloch-Kato and cyclotomically 2-oriented. However, im () is not
torsion free.

6.1. Orientations on C5 X Zo

As we have seen in Proposition for p odd, every f-abelian oriented pro-p
group is cyclotomically p-oriented. For p = 2, this is not true. Indeed, one
has the following.

Proposition 6.5. Any 2-orientation 0: G — Z5 on G ~ Cy x Zsg is not 1-
cyclotomic.

Proof. Suppose that (G,0) is 1-cyclotomically 2-oriented. Let z,y be ele-
ments of G such that 2> = 1 and ord(y) = 2%, and that x,y generate
G. Proposition applied to the cyclic pro-2 group generated by z yields
6(x) = —1. Put 6(y) = 1 + 2\ for some X\ € Zy. By [I6, Prop. 6], if 6
is 1-cyclotomic then for any pair of elements c,,c, € Zz(1) there exists
a continuous crossed-homomorphism c¢: G — Zy(1) (i.e., a map satisfying
c(g192) = c(g1) + 6(g1)c(g2), cf. 23] p. 15]) such that c(z) = ¢, c(y) = ¢y.
Set ¢; = ¢y = 1. Then one computes

clzy) =cy +6(x)cy, =1-1=0, and

c(yz) = ¢y +0(y)es =1+ 1+ 2A,

which yields A = —1. The element zy has the same properties as y. Hence
the previously mentioned argument applied to the element zy yields 6(zy) =
1—2 = —1, whereas 6(zy) = 0(x)8(y) = 1, a contradiction. O

Remark 6.6. From Proposition [6.1] and Proposition [6.5 one deduces that in
a l-cyclotomically 2-oriented pro-2 group, every element of order 2 is self-
centralizing, which is a remarkable property of absolute Galois groups (cf. [4}
Prop. 2.3] and [I9, Cor. 2.3)).

Proposition 6.7. Let (G,0) be a 0-abelian oriented pro-2 group. Then 0 is
cyclotomic if, and only if, either

(a) im(0) is torsion free; or

(b) im(#) has order 2.
In both these cases (G, 0) is split 6-abelian.
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Proof. Assume first that im(#) is torsion free. Then the short exact sequence
{1} = ker(f) — G — im(0) — {1} splits, as im(0) ~ Z, is a projective pro-2
group. Moreover, (G, 0) is cyclotomic by Proposition

Second assume that 6 is cyclotomic, p = 2 and that im(0) O {£1}. If
g € G satisfies 0(g) = —1, then g° € ker(6) = Zy(G), and consequently

=99 g =(*)"9 =g

i.e., g* = 1. Since (ker(#),1) is cyclotomically 2-oriented, ker(f) is torsion
free, and one deduces that g2 = 1. Therefore, the short exact sequence

(1} H G Oy (1}

splits (here H = ker(m o ), where 7 is the canonical epimorphism Z; —»
{£1}). Since (H,0|y) is again cyclotomically 2-oriented and as im(0|y) is
torsion free, (H,0|y) is split | g-abelian by the previously mentioned argu-
ment. We claim that H = ker(6). Indeed, suppose there exists h € H such
that 0(h) # 1. Put A = (14 6(h))/2 and let z = ghgh™! = [g,h™1] € ker(6).
Then — as g = g~ ! and 9( ) = —1 — one has

g( gt = (92 ) h*g
=z (ghg) - (ghgh™" - h)?
=27 (zhzh7!. h2) = A 2
— Z)\h?7

i.e., g and 2*h? commute which implies that ( g, 22 h? ) ~ Cy x Z,, contradict-
ing Proposition Therefore, H = ker(#) is a free abelian pro-2 group, and
G~Hx CQ.

Finally, let p = 2 and assume that im(f) = {£1}. By Remark we
may also assume that ker(6) is non-trivial. Then, either
Case I: 671({—1}) contains an element of order 2 and (G, ) is split #-abelian,
ie., G ~ker(d) x Cy with ker(0) a free abelian pro-2 group, or
Case II: all elements in z € §71({—1}) are of infinite order. Then for y €
ker(#), the group K = (x,y) must be isomorphic to the Klein bottle pro-2
group which is impossible as G is #-abelian and thus contains only #-abelian
closed subgroups (cf. Remark [3.12|b)). Hence Case II is impossible.

By Lemma if U C G is an open subgroup, then either U C ker(6),
or U =~ V x Cy for some open subgroup V of ker(6). In the first case, (U, 1) is
cyclotomically 2-oriented by Proposition [5.3] For the second case, we claim
that H*(U,Iy(k)) is 2-divisibe for all k > 1.

Recall that Z3[Cs] has periodic cohomology (of period 2), and that one
has the equalities of Zs[U]-modules Iy(k) = I5(0) for k even and Iy (k) =
Iy(—1) for k odd. Moreover,

H(Cy,15(0)) = 15(0)°2 /Ng, I(0) = 1(0)/2 - I5(0) = 0,

(6.1)
HY(Cy,I(—1)) = ker(Ne, ) Jwe, Ia(—1) = I(~1)/2 - Iy(—1) = 0,
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where H* denotes Tate cohomology, N¢, = Y wec, T € Z2[Cs] is the norm
element, and w¢, is the augmentation ideal of the group algebra Z[C2] (cf.

[23, § 1.2]). Thus, by , one has
H™(Cy,I5(m)) = H™(Cy,I5(m)) ~ H*(Cy, Iy(k)) = 0, (6.2)

for all positive integers m > 0 and m = k( mod 2).

Suppose first that V ~ Z,. As in the proof of Theorem the Es-
term of the Hochschild-Serre spectral sequence associated to the short exact
sequence {1} -V — U — Cy — {1} evaluated on Iy(k) is concentrated in
the first and the second row. In particular, d3’® = 0 and thus E3*'(Iy(k)) =
E3t(Iy(k)). Thus, by Fact for every k > 1 one has a short exact sequence

0— Hk(CQ,]IQ(k)) — Hk(U, Hg(k')) — Hkil(CQ,]IQ(]C — 1)) —0,

and H*(Cy,T5(k)) = 0 by . Hence, (U, 0|y) is cyclotomically 2-oriented
by Proposition If V ~ Z% with n > 1, then H*(U,I2(k)) = 0 by induction
on n and the previously mentioned argument. Finally, Corollary yields
the claim in case V not finitely generated. ([

7. Cyclotomically oriented pro-p groups

For a cyclotomically oriented pro-2 group (G, 0) satisfying im(0) C 1 + 47,
one has the following.

Fact 7.1. Let (G,6) be a pro-2 group with a cyclotomic orientation satisfying
im(6) C 1+47Zy. Then xUx = 0 for all x € H' (G, Fy), i.e., the first Bockstein
morphism B': HY(G,Fy) — H?(G,F3) vanishes.

Proof. Since im(6) C 1 + 47Z,, the action of G on Fy(1) is trivial. The epi-
morphism of Zs[G]-modules Z2(1)/4 — F5 induces a long exact sequence

1
2,1

-~ HY (G, Z(1)/4)

ﬁl

C—>H2(G,IF2) — 2 S H%(G,Z(1)/4) — - --

where the connecting homomorphism is the first Bockstein morphism. Since
0 is cyclotomic, the map 77%,1 is surjective, and thus ' is the O-map. (I

H*(G,Fs) > (7.1)

Remark 7.2. As before for a finitely generated pro-p group G let d(G) denote
its minimum number of generators. If p is odd and G is a finitely generated
Bloch-Kato pro-p group, the cohomology ring (H*(G,F,),U) is a quotient of
the exterior Fp-algebra Ay = Ao(H'(G,F))). In particular, cd,(G) < d(G).
Moreover, Ay is the unique minimal ideal of A,. Hence equality of cd,(G)
and d(G) is equivalent to H*(G,F,) being isomorphic to A,. It is well known
that this implies that G is uniformly powerful (cf. [33] Thm. 5.1.6]), and that
there exists a p-orientation §: G — Z) such that G is 6-abelian (cf. [25,
Thm. 4.6]).
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Let p = 2, and let (G,0) be a cyclotomically oriented Bloch-Kato
pro-2 group satisfying im(¢) C 1 + 4Z5. Then Proposition implies that
the cohomology ring (H*(G,F3),U) is a quotient of the exterior Fa-algebra
Ao = Ao(HY(G,Fy)), and hence cdz(G) < d(G). If cda(G) = d(G), the previ-
ously mentioned argument, Propositionand [42] imply that G is uniformly
powerful. Finally, [25] Thm. 4.11] yields that G is §’-abelian for some orien-
tation 0": G — Z5. Thus, if d(G) > 2, one has § = 6’ by Corollary c).

From the above remark and J-P. Serre’s theorem (cf. [30]) one concludes
the following fact.

Fact 7.3. Let (G, 0) be a finitely generated cyclotomically oriented torsion free
Bloch-Kato pro-2 group. Then cda(G) < co.

7.1. Tits’ alternative
From Remark one concludes the following.

Fact 7.4. (a) Let p be odd, and let G be a Bloch-Kato pro-p group satisfying
d(G) < 2. Then G is either isomorphic to a free pro-p group, or G is 0-abelian
for some orientation 0: G — 7.

(b) Let p = 2, and let (G,0) be a cyclotomically oriented Bloch-Kato pro-2
group satisfying im(0) C 14 4Zs and d(G) < 2. Then G s either isomorphic
to a free pro-2 group, or G is 0-abelian.

In [25] Thm. 4.6] it was shown, that for p odd any Bloch-Kato pro-p
group satisfies a strong form of Tits’ alternative (cf. [35]), i.e., either G con-
tains a closed non-abelian free pro-p subgroup, or there exists a p-orientation
0: G — Z, such that G is f-abelian. Using the results from the previous
subsection and [25] Thm. 4.11], one obtains the following version of Tits’
alternative if p is equal to 2.

Proposition 7.5. Let (G,0) be a cyclotomically oriented virtual pro-2 group
which is also Bloch-Kato, such that im(0) C 1+47Zy. Then either G contains
a closed non-abelian free pro-2 subgroup; or G is 0-abelian.

Proof. As im(0) C 1+ 47Z», Proposition (a) implies that G is torsion free.
From Propositionone concludes that the first Bockstein morphism 8! van-
ishes. Thus, the hypothesis of [25] Thm. 4.11] are satisfied (cf. Remark ,
and this yields the claim. ([l

Remark 7.6. Note that Proposition without the hypothesis im(f) C 1+
475 does not remain true (cf. Remark [5.8)).

7.2. The 6-center
One has the following characterization of the @-center for a cyclotomically

oriented Bloch-Kato pro-p group (G, 6).

Theorem 7.7. Let (G, 0) be a cyclotomically oriented torsion free Bloch-Kato
pro-p group. If p = 2 assume further that im(0) C 1 4 4Zs. Then Zy(QG) is
the unique maximal closed abelian normal subgroup of G contained in ker(6).
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Proof. Let A C ker(#) be a closed abelian normal subgroup of G, let z € A,
z # 1, and let € G be an arbitrary element. Put C' = cl({z,z)) C G. Then
either C' ~ Z, or C' is a 2-generated pro-p group. Thus, by Fact @, one has
to distinguish three cases:
(i) d(C) =1;
(ii) d(C) =2 and C is isomorphic to a free pro-p group; or
(iii) d(C) =2 and C' is ¢'-abelian for some p-orientation 6": C' — Z.
In case (i),  and z commute. If C is generated by z, then C C ker(6)
and 0(z) = 1. If C is generated by z, then z = 2* for some \ € Z,, and
1 =0(z) = 0(x)*. Hence §(x) = 1, as im(#) is torsion free. In both cases
O L O
Case (ii) cannot hold: by hypothesis, ANC # {1}, but free pro-p groups
of rank 2 do not contain non-trivial closed abelian normal subgroups.
Suppose that case (iii) holds. Then 6’ = 0|¢ by Corollary C), and
z € ker(f|c) = Zg). (C). Therefore,

zaxt = Zflo(@) = ,0()

Hence we have shown that for all z € A and all + € G one has that
zzz—! = 2 This yields the claim. O

The above result can be seen as the group theoretic generalization of [12}
Corollary 3.3] and [I3], Thm. 4.6]. Note that in the case p = 2 the additional
hypothesis in Theorem is necessary (cf. Remark . Indeed, if G is the
Klein bottle pro-2 group then (22 ) is another maximal closed abelian normal
subgroup of G contained in ker(d¢g).

Remark 7.8. Let K be a field containing a primitive p*"-root of unity. The-
orem together with [12] Thm. 3.1] and [I3, Thm. 4.6], implies that the
Ok p-center of the maximal pro-p Galois group Gk(p) is the inertia group of
the maximal p-henselian valuation admitted by K.

7.3. Isolated subgroups

Let G be a pro-p group, and let S C G be a closed subgroup of G. Then S is
called isolated, if for all g € G for which there exists £ > 1 such that g”k esS
follows that g € S. Hence a closed normal subgroup NN of G is isolated if, and
only if, G/N is torsion free.

Proposition 7.9. Let (G,0) be an oriented Bloch-Kato pro-p group. In the
case p = 2 assume further that im(0) C 1+ 4Z4 and that 0 is 1-cyclotomic.
Then Zo(G) is an isolated subgroup of G.

Proof. Suppose there exists z € G\ Zg(G) and k > 1 such that e Zy(Q).
By changing the element z if necessary, we may assume that k = 1, i.e.,
a? € Zg(G). As G is torsion free (cf. Corollary [6.3), one has that ¥ # 1.
For an arbitrary g € G, the subgroup C(g) = cl({g,z)) C G is not
free, as gzPg~! = xP?(9). Thus, from Fact one concludes that C(g) is
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0]c(g)-abelian. Moreover, as im(f) is torsion-free, 6(x?) = f(x)? = 1 implies
that

z € ker(0|c(g)) = Zo|c(,, (C(9))-
Thus, z € (,eq Zoc(,, (C(9)) € Zo(G). O

Proposition [7.9] generalises to profinite groups as follows.

Corollary 7.10. Let (G,0) be a torsion free p-oriented Bloch-Kato profinite
group. For p = 2 assume also that im(0) C 14+4Z9 and that 0 is 1-cyclotomic.
Then Zo(G) is an isolated subgroup of G.

Proof. Let © € Zyg(G), y € G and n € N such that z = y™. Then Y = cl({y))
is pro-cyclic and virtually pro-p. Thus, as G is torsion free by hypothesis,
Y is a cyclic pro-p group, and n is a p-power. Let P € Sylp(G) be a pro-p
Sylow subgroup of G containing Y. Then (P, 0|p) satisfies the hypothesis of
Proposition which yields the claim. O

7.4. Split extensions

Proposition 7.11. Let (G, 6) be a p-oriented Bloch-Kato pro-p group of finite
cohomological dimension satisfying im(6) C 1+ pZ, (resp. im(6) C 1 + 4Z,
if p=2), and let Z be a closed normal subgroup of G isomorphic to Z, such
that G/Z is torsion free. Then Z € GP[G, G].

Proof. Let d = ¢d,(G). As cd(Z) = 1, and as H'(Z,F,) ~ F,, one has
ved,(G/Z) = d—1 (cf. [43]). Thus, as G/Z is torsion free, J-P. Serre’s theorem
(cf. [30]) implies that c¢d,(G/Z) =d — 1.

Suppose that Z C GP[G,G]. Then infg; ,: HY(G/Z,F,) — HY(G,F,)
is an isomorphism. For x € H*(G,F,), set x € H(G/Z,F,) such that xy =
infé’z()z). Then, by [23 Prop. 1.5.3] one has

X1U...Uxe =infg 4 (x1) U... Uinfg 5 (¥e) = inf§ (X1 U... U Xk)
for any x1,...,xx € H'(G,Fp), i.e.,
inf; ,: H*(G/Z,F,) — H"(G,F,) (7.2)
is surjective for all £ > 0. Let
(Eﬁt,dr) = HSH(G,FP), E§t =H* (G/Z, HY(Z, ]Fp)) (7.3)

denote the Hochschild-Serre spectral sequence associated to the extension of
pro-p groups Z — G — G/Z with coefficients in the discrete G-module F,,.
We claim that E3! is concentrated on the buttom row, i.e., ES{ = 0 for all
t > 1. Since ¢dy(Z) =1 and ¢d,(G/Z) = d — 1, one has E5' =0 for t > 2 or
s > d. Hence, d! is the O-map for every s,t > 0 and r > 3, i.e., ES! ~ E3t.
The total complex tote(E2S) of the graded F,-bialgebra E3S coincides with
H*(G,F,), which is quadratic by hypothesis. Thus E2® is generated by

toty (E3*) = EL0 = E)°.
Hence, E5t =0 for ¢t > 1.
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On the other hand, H!(Z,F,) is a trivial G/Z-module isomorphic to
F,, and thus, as c¢d,(G/Z) = d — 1, one has

BN = HIY(G/Z, HY(2,F,)) # 0. (7.4)
Moreover, di~ "' is the O-map, thus B "' = ker(di ") = B4 L1 £ 0, a
contradiction, and this yields the claim. O

Proposition has the following consequence.

Proposition 7.12. Let (G,0) be a p-oriented Bloch-Kato pro-p group (resp.
virtual pro-p group) of finite cohomological p-dimension, and let Z be a closed
normal subgroup of G isomorphic to Z, such that G/Z is torsion free. Then
there exists a Z-complement C in G, i.e., the extension of profinite groups

m Z G G/Z 1 (7.5)

splits.

Proof. Assume first that G is a pro-p group. By Proposition [7.11] one has
that Z € ®(G) = GP[G, G]. Hence there exists a maximal closed subgroup
(1 of G such that

01Z:G and leClﬂZ:Z”.
Moreover, Z; is a closed normal subgroup in C; such that C1/Z; is torsion free
and Z; ~ Z,. From Proposition again, one concludes that Z; Z ®(Ch).
Thus repeating this process one finds open subgroup Cj of G of index pF
such that

CvZ=G and Zy=CynZ=2".
Hence C' =(;»; Ck is a Z-complement in G.

IfGisa p—_oriented virtual pro-p group, then G is a ¥-virtual pro-p group
for & = im(f) (cf. , and thus corresponds to (O,(G),60°,) in alternative
form. In particular, the maximal subgroup C; and hence all closed subgroups
C}. can be chosen to be S-invariant (cf. Proposition. Hence C' = (), Ck

carries canonically a left Y-action, and thus defines a Z complement H =
CxYinG. 0

The proof of Theorem can be deduced from Proposition as
follows.

Proof of Theorem[I.4 Assume first that G is either pro-p, or virtually pro-p.
To prove statement (i) (and (ii)), we proceed by induction on d = ¢d,(G) =
cd(G). For d = 1, G is free (resp. virtually free) (cf. [23] Prop. 3.5.17]), and
thus Zy(G) = {1}. So assume that d > 1, and that the claim holds for d — 1.
Note that Zg(G) is a finitely generated abelian pro-p group satisfying

do = d(Zo(Q)) = cdp(Zy(G)) < d.
If d, = 0, there is nothing to prove. If d, > 1, Zy(G) contains an isolated

closed subgroup Z satisfying d(Z) = 1. By definition, Z is normal in G.
Hence Proposition [7.12]implies that there exists a subgroup C' C G satisfying
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CnZ={1}and CZ =G. As C ~ G/Z, the main result of [43] implies that
cd(C) = ved(C) = d —1. Since Zg|, (C) Z = Z¢(G), the claim then follows by
induction. .

To prove statement (iii), let G° = ker(6: G — F)and G° = ker(0: G —
F), and put O = OP(G°) and

O=1{geG|gZ(G) e OP(G) ). (7.6)

Then, by construction, im(é |0) is a pro-p group and hence trivial. In particu-
lar, the left F,,[O]-module F,,(1) is the trivial module. Thus, as O is p-perfect,
one concludes that B

i HY(O,F,(1)) =0. (7.7)
By hypothesis, (G,0) is Bloch-Kato, and therefore (O,1) is Bloch-Kato.

Hence yields that
H"O,F,(j)) = H*(O,F,(0)) = 0 (7.8)

for all positive integers k, j. Note that Z,(1) is the trivial Z,[O]-module
isomorphic to Zj, as abelian pro-p group. The cyclotomicity of (O, 1) implies
that H?(0,Z,(1)) is p-torsion free, and from the exact sequence

00— H%(0,Z,(1)) —= H?(0,Z(1)) —= H*(0,F,(1)) —= 0
(7.9)
one concludes that
H?*(0,Z,(1)) = 0. (7.10)
By hypothesis, cd,(Zg(G)) < c¢dp(G) < o0, and thus Zg(G) ~ Z,(1)" is a
trivial left Z,[O]-module and a finitely generated free (abelian pro-p group).
Hence
H?*(0,7Z6(@)) = 0, (7.11)
which implies that

{1} —= Z4(G) 0—"=0 {1} (7.12)

is a split short exact sequence of profinite groups. From this fact one concludes
that

0 =7Z¢(GQ) - OP(G°) and Zo(G)NOP(G°) = {1}. (7.13)
Let G = G/OP(G®). Then for all abelian pro-p groups M with a continuous

left Z,[G]-action inflation induces an isomorphism in cohomology

inf&(—): H5 (G, M) — HE (G, M) (7.14)
(cf. Proposition . Moreover, as 8]o = 1 is the constant 1 function, 6
induces a p-orientation 6: G — Z); on G. In particular, from (7.14) one
concludes that cd,(G) < oo, and that (G, 6) is cyclotomic and Bloch-Kato.
Thus, by part (i), the exact sequence of virtual pro-p groups

) BOOE)

G/O {1} (7.15)
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splits. Let H C G be a complement for Zg(G)OP(G°)/OP(G®) in G, and let

H={geG°|gOP(G°) e H}. (7.16)
Then, by construction, H N Zy(G)OP(G°) C OP(G°). Thus HOP(G®) is a
complement of Zg(G) in G. O

Finally, we ask whether the converse of Theorem holds true.

Question 7.13. Let (G, 0) be a cyclotomically p-oriented Bloch-Kato pro-p
group, and suppose that

H*(G,F,) ~ H*(C,F,) @ A (V),

for some subgroup C' C G and some nontrivial subspace V. C H(G,F)).
Does there exist an isolated closed subgroup Z C Zy(G) such that G = CZ
and Z/ZP ~ V* = Hom(V,F,)?

7.5. The elementary type conjecture

In order to formulate a conjecture concerning the maximal pro-p Galois
groups of fields, I. Efrat introduced in [9] the class Cpg of p-oriented pro-
p groups (resp. cyclotomic pro-p pairs) of elementary type.

This class consists of all finitely generated p-oriented pro-p groups which
can be constructed from Z, and Demuskin groups using coproducts and fibre
products (cf. [9] § 3]).

Efrat’s elementary type conjecture asks whether every pair (Gk(p), 0k p)
for which K contains a primitive pt"-root of unity and Gk (p) is finitely gener-
ated, belongs to Crg (see [7], and also [15] for the case p = 2). This conjecture
originates from the theory of quadratic forms (cf. [20], [I0, p. 268]).

One may extend slightly Efrat’s class by defining the class Eco of cyclo-
tomically p-oriented Bloch-Kato pro-p groups of elementary type to be the
smallest class of cyclotomically p-oriented pro-p groups containing

(a) (F,0), with F a finitely generated free pro-p group and 0: F' — Z any

p-orientation;

(b) (G,d¢), with G a Demuskin pro-p group;

(¢) (Z/27Z,0), with im(0) = {£1} in case that p = 2;
and which is closed under coproducts and under fibre products with respect
to finitely generated split 8-abelian pro-p groups, i.e., if (G1,61) and (Ga, 62)
are contained in £co, then

(d) (G,0) = (G1,01) L (G2,62) € Eco; and

(e) (G, 9) = Zp Xg, (G1,01) € &co-

Question [1.5] asks whether every finitely generated cyclotomically p-
oriented Bloch-Kato pro-p group belongs to the class Eco. By Theorem
Question [1.5] is stronger than Efrat’s elementary type conjecture. Neverthe-
less, it is stated in purely group theoretic terms.

Remark 7.14. Recently, Question has received a positive solution in the
class of trivially p-oriented right-angled Artin pro-p groups: 1. Snopce and
P.A. Zalesskil proved that the only indecomposable right-angled Artin pro-p
group which is Bloch-Kato and cyclotomically p-oriented is (Z,,1) (cf. [32]).
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