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Hierarchies for embodied action
perception

Dimitri Ognibene, Yan Wu, Kyuhwa Lee, and Yiannis Demiris

Abstract During social interactions, humans are capable of initiating and re-
sponding to rich and complex social actions despite having incomplete world
knowledge as well as physical, perceptual and computational constraints. This
capability relies on action perception mechanisms, which exploit regularities
in observed goal-oriented behaviours to generate robust predictions, and re-
duce the workload of sensing systems. To achieve this essential capability,
we argue that the following three factors are fundamental. Firstly, human
knowledge is frequently hierarchically structured, both in the perceptual and
execution domains. Secondly, human perception is an active process driven by
current task requirements and context. This is particularly important when
the perceptual input is complex (e.g. human motion) and the agent has to op-
erate under embodiment constraints. Thirdly, learning is at the heart of action
perception mechanisms, underlying the agent’s ability to add new behaviours
to its repertoire. Based on these factors, we review multiple instantiations of a
hierarchically-organised biologically-inspired framework for embodied action
perception, demonstrating its flexibility in addressing the rich computational
contexts of action perception and learning in robotic platforms.

1.1 Introduction

When a boxer is facing an adversary, its action perception system operates
under hard embodiment constraints. It should not only recognise the adver-
sary’s movements, but also to select appropriate response actions based on
its prediction of the opponent’s goals. To react in time, predicting only im-
mediate movements is insufficient. The boxer needs to infer longer sequences
of adversarial actions and the underlying intentions (e.g. moving the fight to
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the corner), and perform strategic movements to unveil the opponent’s inten-
tions while hiding its own. This example illustrates the human capabilities
to actively perceive others’ actions, to predict their intentions at different
levels of abstraction and to learn from the observation of others’ activities.
Our research is interested in equipping robots with robust action perception
capabilities to allow them to participate in rich social interactions.

This chapter reports on several experiments on robotic platforms investi-
gating the essential factors to achieve robust action perception performance.
We will argue that these factors include 1) the use of hierarchical knowledge
representation and processing architectures; 2) the use of active perceptual
systems, where sensors actively seek for the required data to process; 3) the
prediction of the sensory consequences of the most probable actions; 4) the
reuse of action execution knowledge for action perception.

The remaining of this section reports on the computational principles un-
derlying these factors along with relevant neuroscience research that supports
their role in the human action perception system.

Hierarchical action representations have long been adopted in AI and
robotics [66] both at the planning and execution stages for coping with large
search spaces and long term decisions that characterise real-world conditions.
Different hierarchical frameworks for planning have been proposed such as
options or angelic semantics [64]. Such frameworks share the presence of a
relationship connecting each element in a higher or more abstract level to
many elements of the lower levels. However, in each framework the semantics
of the relationship can be different, for example the execution of one abstract
element can represent a selective, parallel, sequential or order-independent
execution of the connected lower level elements.

Hierarchical representations also present advantages for learning and adap-
tation [34]. They may allow for more efficient inference and learning with
fewer samples by exploiting partial reuse [68]. At the sensory level, hierarchi-
cal processing is extremely helpful in integrating cues from several levels of
abstraction while avoiding an expensive centralised computation (the “local
administration advantage”[11]). Such systems have compact representations
and exhibit good generalisation between objects with similar parts [19]. In
biology, the hierarchical structure of the nervous system has been seen as a
general principle that enables animals to behave efficiently in complex envi-
ronments [63]. Evidence of a hierarchical nervous architecture is present in
many vertebrates [36, 32] and invertebrates [47]. An extensive review on the
evidence of a hierarchical organisation of action representation in the human
brain, including goals (short-term) and intentions (long-term) is available in
[28].

Active perception directs sensors and selects data to process using addi-
tional sources of information, such as task knowledge, and predictions based
on previous inputs [1, 2, 3] . By selecting only the relevant input for the
current task, active perception permits parsimonious use of the sensory and
computational resources [42]. Active perception can also facilitate more effi-
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cient exploration of the environment [57] and enhance the system robustness
to conditions in which relevant information is hidden when observed with
passive sensors [51, 65]. Apart from reducing the computational costs, active
perception can, in some cases, facilitate learning [52]. The active and top-
down components of human perception have been confirmed by behavioural
[53, 49, 67], imaging [5] and recording [8] evidence.

Prediction of the sensory consequences of actions enables a system
to recognise actions in unseen contexts by utilising learned causal relation-
ships between actions and their sensory consequences. Predictive approaches
have been extensively studied in machine learning to exploit the capability
of generative models to use both unlabelled and labelled data [7]. Generative
models enable learning of hierarchical representations of the task structure
using fewer samples since each layer of abstraction captures domain structure
information that is exploited by the other levels [35]. Internal generation of
expected results enhances perception with a more robust management of noise
and missing observations (sensory substitution). By enabling incremental and
anticipative recognition of actions, it extends the decision time available to
produce effective behavioural responses. The existence of internal representa-
tions, prediction mechanisms and simulation machinery in the brain has been
one of the most discussed subjects in the cognitive science literature. Recent
studies [29, 33, 40, 56] collectively show that the presence of low level repre-
sentations and simulation mechanisms strongly coupled with perception and
motor control, is the foundation for building higher level processes and rep-
resentations. This hypothesis is supported by modern imaging and recording
evidences [4, 6, 58].

The reuse of action execution knowledge for action perception
allows the observing agent to recognise others’ actions based on the agent’s
own control experience of embodied task execution and vice versa. Evidence
of shared mechanisms between execution and recognition has been demon-
strated in recent neuroscience studies, such as the different activation of brain
areas due to different level of motor proficiency in the observed action [9], and
improved performance in recognition shown by subjects with higher motor
proficiency [55]. The integration of shared mechanisms and internal gener-
ation of expected results leads to what is known as the “simulation theory
of action perception” [23]. According to the simulation theory, the observer
recognises an action by comparing it with its internal simulations. Simulations
are generated from the perspective of the performer and produced through
the motor systems of the observer. By using its own motor system, the ob-
server can directly have access to a goal-based representations detached from
raw observations. In neuroscience, the discovery of mirror-neurons - motor
neurons active during both execution and perception - in primates [22] and
humans [37, 20, 26, 43] provides support to the simulation theory of action
understanding [10, 13, 61].

In the next section, we introduce HAMMER (Hierarchical Attentive Mul-
tiple Models for Execution and Recognition [15, 41]) as a prototype of hi-
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Fig. 1.1: The core of the HAMMER architecture consists of a distributed
network of inverse and forward models that compete to predictively explain
the ongoing demonstration

erarchical action recognition architectures which possess the aforementioned
characteristics.

1.2 Hierarchical Attentive Multiple Models for
Execution and Recognition (HAMMER)

The HAMMER architecture is a framework based on simulation theory, de-
signed to empower robots with capabilities to understand and imitate hu-
man actions based on the four factors described in the previous section. This
framework has been implemented in real-dynamics robot simulators [17, 14]
and real robotic platforms [15, 41, 18]. Open source versions of the archi-
tecture have been freely released [60] with support for the NAO and iCub
humanoids.

Fig. 1.1 shows the schematics of the HAMMER architecture. The basic
building block of HAMMER consists of an inverse-forward model pair. The
inverse model generates action commands from a set of input states aiming to
advance the robotic agent towards a goal. This goal can be implicitly or ex-
plicitly specified in the model. The forward model provides an estimate of the
upcoming states given the action commands and current state. Predictions of
upcoming states in execution mode can be used to overcome delays, to handle
input noise and as sensory substitution. When it is used to recognise actions,
such predictions from each model are compared against the demonstrator’s
actual states.
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For each inverse/forward model pair, the prediction of the demonstrator’s
next state is evaluated against the ground truth to provide an error signal.
The error signal accumulated over time is used to compute the confidence
value of the model pair, which is an indicator of how closely the demon-
strated action matches the model. During execution, the confidence value
is used to detect the actual context and/or hidden states. This enables the
switching from one model to another according to the confidence indicator of
the fittest model. The confidence signal can also be used as credit assignment
for module training [30, 31]. The architecture recognises actions of others by
comparing the observed movements with the different expected results pro-
duced by running its own motor models (”putting the observer in the shoes
of the demonstrator”) in parallel while inhibiting the models from sending
their generated commands to motor systems.

The HAMMER architecture incorporates a top-down allocation of sen-
sory and computational resources. For action-execution, HAMMER can rely
on the simple principle of “attention for action” and seek the information
required by the current task. On the other hand, action-recognition poses
new problems for the attention system since the observer does not know
in advance what the observed task is. HAMMER maps simulations to at-
tentional needs using the following principle: during the demonstration of
actions, the information requested by the attention system of the observer
are those needed to generate the internal simulated actions [16]. For example,
the inverse model for executing an arm movement will request the state of
the corresponding arm of the performer when it is used in perception mode.
This principle is compatible with the pre-motor theory of attention in hu-
mans which states that the preparation or simulation of action enhances the
perception of related stimuli [21].

Action imitation can be achieved by integrating recognition and execution
in HAMMER. The system starts in recognition mode, and when a model with
the highest confidence reaches a certain threshold, the command inhibition is
deactivated to allow the model to reproduce the observed action if required.
If no confidence value reaches the threshold within a time limit, a new motor
model is learned to represent the postural and posture-object configurations
of the observed action.

The HAMMER models can be connected in arbitrarily complex configu-
rations. Their overt execution does not need to be mutually exclusive, i.e.
models managing different joints[14] can be executed overtly in parallel. This
arrangement has been extended to hierarchical structure as shown in Fig. 1.2
[15]: primitive models are combined to form higher, more complex sequences,
with the eventual goal of achieving increasingly more abstract inverse models
[41].

Using the underlying principles in HAMMER, Demiris [17] derived a set
of testable predictions for the behaviour of biological systems. A key predic-
tion states that mirror neurons in monkeys would not fire (or fire less) when
the demonstrated movement was performed at speeds unattainable by the
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observer. Experiments subsequently reported in [24] showed that the ampli-
tude of the motor evoked potentials (MEP) induced by transcranial magnetic
stimulation (TMS) in humans observing a reaching-grasping action was mod-
ulated by the kinematics of the observed figure aperture.

Modelling human grasping action and its perception with HAMMER re-
produced several interesting neuroscience observations: a) the computational
grasping model reproduced some of the characteristics of human grasping
including [39] an overshoot in the grip aperture at approximately 70% of
the movement time[62]; b) the TMS-based results on the response of mirror
neurons to different action timings and coordination properties reported in
[25].

In the next section, we will present experiments demonstrating how the
hierarchical generative approach to action perception may be used to cope
with embodiment constraints in action perception.

1.3 Hierarchical action perception and abstraction

This section describes a HAMMER implementation [41] on a ActivMedia
Peoplebot, and how its hierarchical representation is used to cope with the
“correspondence problem” [50], the problem incurred by an imitator during
imitation of actions produced by a performer with different embodiment.

matches its own set of inverse models against what the
demonstrator is doing, and selects the most appropriate
inverse model that describes the action.

3.3 Imitation

Imitation is an episode of “Recognition” followed by an
episode of “Execution”. In this case, the two fundamen-
tal modes are linked, in that inverse models marked for
execution are selected as being those that were recog-
nised during recognition.

4. Implementing the Framework

4.1 State Representation and Generation

The system state is represented as a vector of values,
updated every iteration and globally available to every
component in the framework. It can be divided into
two specific sections; proprioceptive states, and extero-
ceptive states. When operating in Execution mode, the
necessary proprioceptive information required for deter-
mining the proprioceptive state is readily available, but
when in Recognition mode, the proprioceptive state of
the demonstrator must be inferred and used in place of
the proprioceptive state of the imitator. This is the ba-
sis upon which the same inverse models can be used for
both performing actions and recognising them.

Exteroceptive states are values derived from the rela-
tion of the active agent to objects in its environment.
In Execution mode, the agent is the imitator, and the
states are determined through direct processing of what-
ever sensory information is appropriate. However, in
Recognition mode, the imitator must derive these states
from the point-of-view of the demonstrator as it performs
the action to be imitated; this means that the imitator
“imagines” himself to be in the place of the demonstra-
tor and computes the exteroceptive states from that per-
spective. This is implemented as a “perspective” trans-
form, a stage in the state generation process, which
uses standard vector manipulations and knowledge of
the demonstrator’s spatial location to transform spatial
states to a coordinate frame that is centric to the demon-
strator, but which are used by the imitator when inter-
nally executing its inverse models.

4.2 Implementation of Inverse Models

Inverse models are implemented as graphs. To create a
hierarchical arrangement graphs are handled recursively,
with a graph node being either itself a graph, or at its
most fundamental level a primitive (Mataric et al., 1998,
Bentivegna and Atkeson, 2002), constructed as a simple
motor program. Nodes can be arranged in series or in
parallel to achieve complex behaviours. An example of
graph structure showing a complex behaviour composed
of a sequence of primitives is Figure 2.

Associated with each inverse model is a goal state,
which is a single instance of the imitator’s state vec-
tor, and which represents the point at which the inverse
model can consider itself to be complete in terms of ex-
ecution of its motor program. A graph will execute each
of its constituent nodes in turn, until the node indicates
it is complete, at which point the node will have its
confidence reset and the graph continues execution at
the subsequent node. In Section 5 below, this execution
process is extended to introduce an abstraction mecha-
nism, which allows a graph to execute its nodes in a less
rigid and pre-determined manner to that described here.
The mechanism allows the graph to selectively disregard
unimportant nodes, and instead concentrate on nodes
relevant to a demonstration in progress.

Pick up object

Move gripper to object Close gripper Move gripper away from table

Place object

Move gripper to table Open gripper Move gripper away from table

A

B

Figure 2: Arrangement of primitives in a graphed inverse

models: (A) “Pick up object” (B) “Place object”

4.3 Implementation of Forward Models

In this framework it is assumed that primitive in-
verse models are tightly coupled with associated for-
ward models specific to their function. Higher-level in-
verse models do not have higher-level forward models
associated with them; instead, in Recognition mode,
if the framework encounters a primitive during execu-
tion of a graph, it will execute the resultant motor
command on the primitive’s associated forward model.
The forward models for the primitives were hand-coded
based on experiment, according to the process used in
(Demiris and Johnson, 2003).

4.4 Calculation of Confidences

When the imitation framework is operating in Recogni-
tion mode, it is continually updating the confidence level
of each inverse model, so as to determine which inverse
model best matches with the demonstration in progress.
Depending on how well the inverse model matches, its
confidence level is adjusted by a reward or penalty factor.
In this framework, constant reward and penalty factors
are used for every inverse model in the system. There
is no comparison threshold value, meaning that the pre-
dicted state from the internal forward model must match

Fig. 1.2: Example arrangements of primitive inverse models into more com-
plex inverse models: (A) Pick up object (B) Place object.

In this implementation, two kinds of models were used:

• Primitive models constructed as a simple motor program (the inverse
model) tightly coupled with a hand-coded forward model;
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• Higher level models implemented as graphs: to create a hierarchy, graphs
are handled recursively with a graph node being either a graph itself or
a primitive (e.g. Fig. 1.2. Models connected serially are executed in serial
manner, and those connected in parallel are executed in parallel.

A goal state is associated with each inverse model. During execution, a
graph will execute each of its constituent nodes in turn until completion.
At this point, the node will reset its confidence and the graph will continue
execution of the subsequent node. For recognition, the sequential execution
constraint is relaxed. Inverse models at all levels of the hierarchy are ex-
ecuted in parallel regardless of the recognition stage. At each step, every
model signals its performance to all of his parent-models by propagating its
confidence value. Each high-level model computes its confidence based on
(and normalised against) the first model in the child model sequence whose
confidence value has reached a certain threshold.

In these experiments, the Peoplebot had to learn to recognise and transport
objects between two tables following a human demonstration of this task, with
the two agents, human and Peoplebot having very different embodiments.
State information was extracted using visual markers. The states consisted
of the positions of the hand, tables and objects, the relative distances among
them, their derivatives, and a boolean flag indicating “object in gripper”.
The high-level abstract inverse model was constructed by learning primitive
inverse models from human demonstration. 23 primitive inverse models were
available to the architecture, while 20 repeated demonstrations performed
at natural speeds and trajectories were conducted in the experiment [41].
Note that not all actions in Fig. 1.3 are absolutely necessary for the human
demonstrator to achieve the final goal. Moreover for the robot, it is not easy
to perceive some of them.

The confidence evolution plot of recognition with the abstraction mecha-
nism (Figure 1.4.A), shows how the high-level inverse model recognises the
other inverse models as being salient and incorporates them to achieve the
highest confidence overall. Figure 1.4.B shows the high-level inverse model
failing to achieve high confidence; without the abstraction mechanism, the
motor pattern of the high-level inverse model is so fundamentally different to
that performed by the demonstrator, that it fails to match.

The reported experiments (full details in [41]) show that an agent endowed
with hierarchical action representations with abstraction capabilities can un-
derstand and imitate a composite action and its final goal even if it cannot
directly execute it or does not know each single composing action. Moreover
the actions which are recognised and can be executed may not contributed
by themselves to the achievement of the goal, or may also miss some pre-
condition to be executable. With a hierarchical representation the agent can
use the recognised actions as clues for the rehearsal of a higher level action
which will put the recognised lower level actions in the proper context for
execution.



8 Dimitri Ognibene, Yan Wu, Kyuhwa Lee, and Yiannis Demiris

Figure 4: The robot’s view of the scene. The arrows indicate

the variance in hand paths used by the demonstrator.

measure of how well it is matching up over time. This
measure is then sent as a signal indicating performance
to any higher-level inverse models of which the inverse
model is a component; this is shown in Figure 3(B). The
full process is described below:

1. A high-level inverse model attempts to execute a
component inverse model. The component inverse
model signals an indication of how well it believes it
is matching up to the current demonstration.

2. If the signal from the component inverse model of
step 1 is indicating that it is performing badly, then
the high-level inverse model checks the inverse models
that it is expecting to be activated in the future, and
chooses the closest component inverse model that is
performing well, if any.

3. The high-level inverse model continues execution
from the component inverse model found in step 2.

The process described above is performed continually
during execution of the inverse models.

6. Experiments

The abstraction mechanism was implemented on a robot
with the imitation framework, and experiments were per-
formed to compare the performance of the framework
when using abstraction for recognition and when not us-
ing abstraction for recognition. The demonstrated ac-
tion that the robot had to recognise and imitate was
that of moving an object from one table to another. The
action was performed by a human demonstrator.

The robot used was an ActivMedia Peoplebot (named
“Cassandra”,) and the software was written in C++ for
the robot’s on-board computer, an 800MHz Pentium III.
To simplify the visual extraction and segmentation of
required environmental features, coloured patches were
used to demark the tables, the manipulable object, and
during recognition, the hand of the human demonstra-
tor. The ActivMedia Colour Tracker (ACTS) was used
to achieve the colour segmentation. State information
given by ACTS was the x and y centroid of the colour

patch, and the area. Further states generated using this
information were the distance between the gripper and
the object, the gripper and the tables, and the first
derivative of these. The state for the demonstrator’s
hand holding the object was generated by correlating the
relative position of the hand and object, with the areas
of both. With the hand and the object close together,
and the object partially occluded, it was said that the
demonstrator was holding the object. A further check,
that the velocities of the hand and object were the same,
proved to be unnecessary in these experiments.

Cassandra is equipped with a Canon VCC4 pan-tilt-
zoom (PTZ) camera, two degrees of freedom gripper,
and sonar and infra-red sensors. In these experiments,
the camera was used as the main tracking and range-
finding sensor. The sonar and infra-red sensors were not
used. All processing was done on-board, in real-time. On
Cassandra’s 800MHz Pentium III one full iteration of the
imitation framework mainloop executes in 0.1 seconds.

Cassandra was programmed with 23 primitive inverse
models , and a high-level inverse model was constructed
to give the robot the ability to move an object from one
table to another. This high-level inverse model was com-
posed of 12 primitives executing in sequence (see Fig-
ure 5).

Robot
1

2

3, 4 5

6, 7

8

9, 10

11

12

1. Gripper open
2. Move to object
3. Gripper close
4. Switch from object to table 1
5. Move object away from table 1
6. Rotate to table 2 
7. Switch from table 1 to table 2
8. Move object to table 2
9. Gripper open

10. Switch from table 2 to object
11. Move away from object
12. Rotate to centre

Table 1 Table 2

Demonstrator

Figure 5: The sequence of primitive inverse models that com-

pose the high-level inverse model for making the robot move

an object from one table to another. The demonstrator can

be mobile, but is generally positioned behind the object and

the tables to allow the robot an unobstructed view of the

scene.

In Recognition mode, the motor system is inhibited
from receiving motor commands, and so the attention
mechanism only functions in Execution mode.

6.1 Experimental method

The robot was positioned facing two tables, upon one of
which was placed an object that was readily manipula-

Fig. 1.3: The sequence of primitive inverse models that constitute the abstract
inverse model for moving an object from one table to another

1.4 Acquiring Hierarchical representations for
integrated social and autonomous learning

The previous section demonstrated how hierarchically organised inverse and
forward models were able to observe and imitate a sequence of actions. A
fundamental question underlying this research is where do these models come
from? In the following sections we will describe how these hierarchies can
be learned, starting from learning primitive forward and inverse models, to
learning action descriptions using stochastic context free grammars.

1.4.1 Learning primitive models through motor
babbling

First we are faced with the problem of how to learn the models at the lowest
part of a hierarchy, i.e. primitive inverse and forward models. We have de-
veloped a system that learns primitive forward and inverse models through
motor babbling [12], a learning method that associates randomly executed
motor commands and their effects on environment [27]. The system learns a
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Figure 6: Graphs of confidence over time for four inverse models, when in Recognition mode. The series shown dashed, is

the high-level inverse model for moving an object between two tables, as set out in Figure 5. The other three inverse models

shown are numbered as in Figure 5. Graph (A) shows the confidences of these inverse models when recognised with the

abstraction mechanism. The high-level inverse model, represented by series 1, incorporates the other inverse models as being

salient features of the demonstration, achieves the highest confidence overall, and thus is successfully recognised. Graph (B)

shows the confidences of the inverse models when recognition is performed without the abstraction mechanism. The high-level

inverse model fails to incorporate the other inverse models as being salient features, achieves a low overall confidence, and

thus is not recognised.

ble by both the robot and the human demonstrator. The
initial robot-table distance was sufficient for the robot’s
camera to view the entire scene, including the table, ob-
ject, and the hand of the demonstrator as she moved to
pick up and place the object. In these experiments the
distance was 140 cm. The demonstrator was unfamiliar
with the operational details of the imitation framework,
and was instructed when to initiate the demonstration
and to demonstrate different hand paths (Figure 4). The
demonstrator was not instructed to increase or decrease
the speed of demonstration. The ACTS colour tracker
could not handle occlusion on the visual input, and so the
demonstrator was positioned behind the object and the
tables, although she was allowed to move freely through-
out the experiment.

The experiment was repeated twenty times. The
demonstrator performed ten demonstrations of moving
the object from one table to the other, while the robot at-
tempted to recognise using the abstraction mechanism,
and ten demonstrations while the robot attempted to
recognise without using the abstraction mechanism. If
the robot recognised the demonstrated action success-
fully, then it would perform the action itself, completing
the cycle of imitation.

7. Results

Figure 6 shows typical graphs of confidence for in-
verse models, during recognition of a human-performed
demonstration of moving an object from one table to an-
other, when using the abstraction mechanism and when

not using the abstraction mechanism. Series 1 is the
high-level inverse model for allowing the robot to move
an object from one table to another. The three other in-
verse models shown in the graphs are those most salient
to the overall demonstration: “Move to object” (series
4); “Move object to table 2” (series 3); and “Move away
from object” (series 2). Figure 6(A), recognition with
the abstraction mechanism, shows how the high-level in-
verse model recognises the other inverse models as being
salient and incorporates them to achieve the highest con-
fidence overall. Figure 6(B) shows the high-level inverse
model failing to achieve high confidence; without the ab-
straction mechanism, the motor pattern of the high-level
inverse model is so fundamentally different to that per-
formed by the demonstrator, that it fails to match. A
comparison of the confidence levels is presented in Ta-
ble 1.

Abstraction No abstraction
Mean 2296.4 1015.1
Maximum 3857 1359
Minimum 1602 608
Range 2255 751

Table 1: Confidence levels upon completion of demonstra-

tions, for the high-level inverse model “move object between

tables”, when recognising with and without the abstraction

mechanism. Results shown were calculated from the ten ex-

periments performed for each category.

Fig. 1.4: Graphs of confidence over time for four inverse models in recog-
nition mode. The dashed series is the high-level inverse model for moving
an object between two tables. The other three inverse models are numbered
as in Figure 1.3. Graph (A) shows the confidences of these inverse models
recognised using the abstraction mechanism. The high-level inverse model,
represented by series 1, incorporates the other inverse models as salient fea-
tures of the demonstration, achieves the highest overall confidence and thus
is successfully recognised. Graph (B) shows the confidences of the inverse
models when recognition is performed without the abstraction mechanism.
The high-level inverse model fails to incorporate the other inverse models,
achieves a low overall confidence, and thus is not recognised.

Figure 5: An ActivMedia PeopleBot.

Open gripper

Stop gripper

0.05 0.4

Close gripper

0.30.05

Figure 6: Markov model of gripper babbling. The values on
the arcs represent the transition probabilities of going from
one state to the next; self transitions are not shown.

tions of the moving grippers in the scene: figure 7 shows the
two grippers being located and tracked. The tracking sys-
tem worked well in this situation: black objects are automat-
ically being tracked even against the black background of the
robot’s base.

The vision system provided the random variables for the
states S[t] and observations O[t] in the Bayesian network
for the forward model. In this situation the two objects, the
grippers, were automatically added to the Bayesian network.
Each gripper was represented as a discrete node for the state,
and a set of continuous nodes for the observation, both of
which were represented as a Gaussian distribution. The set
of possible observations, O[t], was the velocity, VEL[t], the
position, POS[t], or size, SIZE[t] of the tracked objects. The
basic template for the structure of the forward models to be
learnt is shown by the Bayesian network in figure 8.

Even though the forward model of the robot’s gripper was
relatively simple, this example highlighted how much the
robot needed to learn: all the parameters and two important
properties of the structure needed to be learnt. Firstly, it is
not known how long the delay is between the motor com-
mand being issued and the gripper changing state. This is
shown in figure 8 as the multiple possible motor commands
connected to each state; only the four previous commands
are shown to keep the diagram simple. Secondly, it was not
known which observation from the vision system is the best

Figure 7: The tracking system working on the grippers. The
system has correctly identified two moving objects, which are
identified as grouped primitives shown with the same colour.

Figure 8: The template Bayesian network for the gripper for-
ward model. The vision system has supplied the information
that two objects can be interacted with: the two grippers. The
robot still has to learn what the delay, d, is from action to ef-
fect and which of the observations the change of state of each
object represents, a translation or a change in velocity, and
all the parameters that specify the Bayesian network.

one to use as part of the forward model: the velocity, posi-
tion or size. The task of the structure learning algorithm here
is therefore to maximise the log-likelihood of the data given
the model, which in this case is log (P (M, O | G)), where M
is the set of motor commands over the experiment, O the set
of corresponding observations and G is the directed acyclic
graph representing the structure of the model, together with
the parameters of the model. This value is calculated as part
of the parameter learning process, as a particular model is
trained to the data.

For each model, the parameters of the Bayesian network
were learnt using the expectation maximisation (EM) algo-
rithm, with the inference stage being performed with the
junction-tree algorithm [Pearl, 1988]. In this experiment,
the search space is small enough for the robot to consider
each possible candidate structure simultaneously. If the pre-
vious 20 motor commands are considered and 6 possible
combinations of observation variables (VEL[t], POS[t] and
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Fig. 1.5: The Bayesian network for the ActivMedia Peoplebot’s gripper for-
ward model. The robot has to learn the mappings (indicated by question
marks) between sequences of motor commands (top row) and resulting states
of the gripper (perceived through a camera, bottom row), despite the inherent
sensory delays of real-robotic systems.
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forward model implemented with a Bayesian network [54] as shown in Fig.
1.5 without prior knowledge of its motor system or the external environment.
The forward model represents a probability distribution of the states of the
robot and other objects in the environment after d time-steps from the previ-
ous motor commands. The network structure is learned online by performing
a search through the set of possible structures (with different delays in mo-
tor commands and different observation nodes for each possible object) and
choosing the one which maximises the log-likelihood of the observed experi-
ment results. Expectation maximisation (EM) is used with the inference stage
performed with the junction-tree algorithm [54]. Moving objects in the scene
are automatically detected and tracked by clustering the low-level image fea-
tures of the visual input [48]. An inverse model is derived by the forward
model by exploiting the Bayesian representation (see Fig. 1.6).

Figure 9: How the log-likelihoods of the Bayesian networks
using VEL[t] as the observation node evolve over the course
of a typical experiment. The maximum log-likelihood is for
the Bayesian network with a motor delay of 11 time steps, or
550 ms

SIZE[t], for each gripper), the search space contains 120 pos-
sible models. Figure 9 shows how the log-likelihoods for the
Bayesian networks with varying motor delays and the veloc-
ity observation change over time. As the figure shows, the
motor delay which maximise the log-likelihood, d, was 11
time-steps, which is about 550 ms. Following the search, the
learnt forward model for the grippers is shown in figure 10.
The motor command was learnt to be M[t-11], and the best
observation was learnt to be the velocity of the grippers. This
was correct since the motor commands do control the grip-
pers’ velocities.

M[t-11]

S1[t] S2[t]

VEL1[t] VEL2[t]

Figure 10: The learnt forward model of the grippers.

5 Using the Bayesian network as a forward model
Once the Bayesian network in figure 10 has been learnt, it
can be used as a forward model to give a prediction of the
consequences of the motor command. For the forward mod-
els of the grippers, the predicted output is the velocity of the
grippers, calculated from the conditional probability distri-
bution: P(VEL[t]|M[t-4]=m). Because the observations here
are modelled as Gaussians, the most likely values will be the
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Figure 11: Evaluating the predictive abilities of a learnt for-
ward model. The predicted gripper movements (dashed) are
close to the actual ones (solid). The differences are princi-
pally because the variation in gripper velocities for each of
the three motor commands are modelled as noise in the for-
ward model.

Figure 12: Using the learnt Bayesian network as an inverse
model. Evidence is supplied to the observations or the state,
and the task is to infer the probability distribution of motor
commands.

means of the observations, VEL1[t] and VEL2[t]. The in-
ference algorithm used to calculate this marginal distribution
was the junction-tree algorithm [Pearl, 1988]. To evaluate the
quality of the learnt forward model the grippers were babbled
in a similar way as before, using a different Markov model.
Figure 11 shows how the most likely predicted observation
compares with the actual observation. Only the x-coordinate
predictions are plotted because the grippers’ movements are
predominantly in this plane. The prediction is shown to be
very accurate.

The learnt Bayesian network can also be used as an in-
verse model by calculating the most likely motor command
given the current velocity observation for each time-step, as
shown in figure 12. One use of this inverse model is for imi-
tation: by replacing the robot’s observations of its own move-
ment with its observations of a human’s hand movements in
the inverse model, the robot is able to reproduce the motor
commands that would be most likely to recreate that human
movement in its own gripper system. The same principle is
used by Demiris to switch from imitation to recognition, al-
beit in a multiple paired inverse and forward model system
[Demiris, 2002]. Figure 13 shows the results of the imitation
experiment: the robot is able to imitate a simple hand wav-
ing motion. The human’s hand movements are tracked and
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Fig. 1.6: Using the learnt Bayesian network as an inverse model. Evidence
is supplied to the observations or the state, and the task is to infer the
probability distribution of motor commands.

The learned HAMMER inverse-forward model enables the robot to imitate
simple human hand movements by replacing the robot’s observations of its
own movements by those of a human demonstrator shown in Fig. 1.7.

1.4.2 Learning action sequences by demonstration

Having learned the primitive inverse and forward models, imitation can be
used to learn sequences of these models in order to complete more com-
plex tasks. An early study [15] used two ActiveMedia Peoplebots facing each
other. One robot executed a sequence of actions while the other observed and
learned this sequence of actions. The observer initially is equipped with basic
action primitives to control its gripper (open, close, rise and lower) but does
not possess any high level action model. A typical experiment consisted of
the robot demonstrator executing a random sequence of basic action prim-
itives, with the imitator robot observing, storing the observed sequence of
inverse models in working memory and subsequently replicating. These early
experiments demonstrated how sequence learning can occur, but attempted
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recognised using the vision system, which is able to correctly
track the two hands. The observations are used as evidence
for the Bayesian network already learnt by the robot. This
network is then used as an inverse model to predict the most
likely motor commands that would produce this observation.
These motor commands are sent to the robot’s motor system
enabling it to perform the action that best replicates the ob-
served movement.
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Figure 13: Imitation using a single inverse model. The top im-
ages are corresponding frames from the demonstration (left)
and imitating (right) sequences. The graphs show the tra-
jectory of the demonstrating hands, and the corresponding
imitating trajectory of the grippers.

6 Conclusion

Forward models relate a robot’s motor commands to their ef-
fect on its motor system and the robot’s environment. The
system presented here allows a robot to autonomously learn
forward models of its motor system, using feedback from its
vision system, by babbling with its motor commands. By
representing the forward model with a Bayesian network, the
uncertainty in its prediction can also be represented. An ex-
periment was implemented showing how a robot can learn a
forward model of its gripper system. The forward model was
subsequently used to allow the robot to imitate a simple ‘wav-
ing hand’ gesture of a human. This imitation occurred with-
out any prior information having to be supplied by a human:
the robot learns how to control its motor system, then uses
this information to imitate a human gesture. Future work will
involve extending the system to learn forward models with
more degrees of freedom and interaction with objects.
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Fig. 1.7: Imitation using a single inverse model. The top images are cor-
responding frames from the demonstration (left) and imitating (right) se-
quences. The graphs show the trajectory of the demonstrating hands, and
the corresponding imitating trajectory of the grippers.

no further processing in the models in working memory other than simply
storage. For the purposes of this chapter, an interesting aspect is how low
level sequences can be generalised to new situations and how we can infer
action hierarchies from these observations, in order to utilise their benefits
as advocated in this chapter. In order to do so, we first turn our attention to
how observations can lead to generalizable primitives; the benefit of the next
algorithm (OSILA) is that it can generalise from a single demonstration, but
it lacks certain types of expressiveness (for example, it cannot readily learn to
represent recursion). The final section will describe an algorithm that enables
the learning of more expressive abstract representations involving probabilis-
tic grammars.
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1.4.3 Learning generalisable action templates from
single observation

Humans can learn new tasks from a single demonstration; an one-shot imita-
tion learning algorithm (OSILA) was proposed in [69] to tackle the problem of
learning (through a single observation) action primitives that can be adapted
to new contexts. It stores observed actions as human-readable movement tem-
plates and re-adapts them according to the constraints of the new contexts.
OSILA (figure 1.9) conjectures a spatial relationship between the template
and the applied environment. Inference is used to locate relevant invariant
landmarks or invariant control points (ICPs) in both contexts. Subsequently,
it uses a minimum distortion function based on Thin Plate Splines (TPS)
warping to define a mapping between the two spaces. This allows the defini-
tion of a set of candidate waypoints in the applied space extracted from the
observed action. The adaptation mechanism is based on the use of a warping
energy measure that reduces the deformation of the performed action with
different environmental structures.

Fig. 1.8: Adapting a OSILA-learned template of an inverse model to a new
context.

An inverse model in OSILA reproduces the action using the visual state
information of the new context and adapting the previously-observed action
template, setting a threshold for tolerable warping energy when matching
available hypotheses (templates). This way the algorithm has a principled
way for selecting when to learn new primitives or use combinations of the
already learnt primitives. Experiments conducted in [69] show that the tra-
jectories stably generated by OSILA resemble the paths produced by humans
under similar circumstances. Experimental scenarios using the icub humanoid
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robot included the game of tic-tac-toe (figure ??), where the robot learned
(through one-shot demonstration) different templates of movements (for ex-
ample making an O in one position of the board, that it could subsequently
generalise to other positions of the board).

Fig. 1.9: Using OSILA to adapt learned templates to new board positions
using the icub humanoid in a tic-tac-toe game.

1.4.4 Learning action hierarchies using probabilistic
grammars

The previously described learning mechanisms does not explicitly tackle the
problem of learning a hierarchical structure which is particularly important
both for generalisation and for keeping resource requirements bounded. They
also do not explicitly focus on the advantages of hierarchical representations
to boost noise robustness when perceiving complex and long action sequences.

We have studied these issues [46] using a generative approach to learn
by observation task representations in the form of Stochastic Context Free
Grammars (SCFG). SCFG-based representations allow to express complex
hierarchies of actions in a compact and efficient manner. During recognition,
they take into account the uncertainties of actions common in real-world set-
tings in a probabilistic manner which makes this framework highly scalable.
SCFGs are also capable of recognising arbitrary lengths of action sequences
composed of finite set of action symbols using recursive expressions. SCFGs
essentially extend the Context-Free Grammars (CFG) framework [59] by as-
sociating a probability to each production rule, which enables all parse trees
to be assigned with probability values based on the production rules used.
In [46], the terminal symbols of the grammar are generated by primitive ac-
tion detectors,while non-terminal symbols can be thought of as sequences of
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primitive actions. In an example scenario, “take out all the objects in a bag
and give them to a human”, the robot must repeatedly perform high-level
actions such as “take out objects” and “give them to a human”, which are
composed of lower-level actions such as “locate”,“approach”,“grasp”,“move”
and “release”. Researchers have argued that understanding everyday human
behaviour requires this representational power [59, 38] and the recognition
using a direct pattern-matching approach against all possible behaviours is
not a computationally efficient approach.As described below, the HAMMER-
like SCFG restrains the set of candidate behaviours through the use of higher
level grammatical production rules and predicts future observations using the
available information online.

Using SCFGs to recognise an action involves selecting a parse tree (that is
a hierarchical structure using the connections represented in the grammar)
that best explains the observation, i.e. the parsed action sequence with the
highest probability. In [45], it was applied in a real-world scenario where an
icub humanoid robot uses task-independent action templates in the form of
SCFGs to recognise human behaviours .

The algorithm proposed in [46] exploits the confidence values computed by
the primitive action detectors during both learning and recognition to deal
with ambiguities inherent in perception. During parsing, the algorithm com-
putes probability distributions of the possible parse trees based on (noisy)
symbols observed so far, and updates the distribution after each new input.
The probability distribution over the parse tree permits to derive the expec-
tation of the future inputs in a compact way.

During learning, the algorithm starts with a naive grammar containing
all input sequences. It then builds grammar hypotheses using “Substitute”
and “Merge” operators to find the grammar with the minimum description
length [44] that maximises the posterior probability. The algorithm actively
searches for frequently occurring sub-sequences of actions to infer the hierar-
chical structure which allows more compact and generalised representations
while offering robustness to observations containing errors. Thus, erroneous
sequences are assigned lower probability values than frequently occurring se-
quences. Furthermore, the confidence values of the primitive action detectors
are considered to emphasise symbols with less ambiguity. The Substitute op-
erator replaces a partial sequence of symbols in the right-hand side of the rule
and groups them into a new symbol, thus building a structural hierarchy. The
Merge operator is applied on two symbols in such a way that both symbols
are replaced with a single symbol. This process turns the current represen-
tation into a more generalised, compact representation. Both operators are
applied until the grammar with the minimum description length is found.

The algorithm was tested on artificial data sets and on real videos of hu-
mans solving the tower of Hanoi game (figure 1.10. In the artificial data set,
the tested data was generated by a grammar model (ancbn) with various
levels of noise by substituting and inserting terminal symbols in the input
strings with a random symbol. Each symbol was also assigned with varying



1 Hierarchies for embodied action perception 15

confidence values. As compared to other state-of-the-art algorithms, the al-
gorithm proved to be able to produce grammars that were more compact
and more robust to noise and execution errors. In the real-world experiment,
videos of humans solving the Towers of Hanoi puzzle were used as input (fig-
ure 1.10). The primitive action detectors were designed using HMMs that
can recognise different actions of moving a disk between two poles. In this
experiment, the algorithm showed to be able to acquire good representation
of the task despite the fact that the observations contained several errors.

Fig. 1.10: Observing and learning new hierarchical behaviours in the Towers
of Hanoi game, using stochastic context free grammars.

These results show an interesting aspect of hierarchical action representa-
tions that is advantageous for learning by observation: learned hierarchical
structures can effectively deal with observation ambiguities. Moreover, the
experiments demonstrate that the chosen hierarchical approach is able to
learn a generalised task representation that is able to recognise unforeseen,
more complex actions with the same task type, e.g. playing the Towers of
Hanoi puzzle with a larger number of disks than those demonstrated.

1.5 Conclusions

In this chapter, we argued for the computational benefits of hierarchies for
embodied action perception. We presented the HAMMER architecture that
we use as a framework to empower our robots with capabilities to understand,
learn from and imitate human action.

The experiments reported in this chapter described the essential roles
played by hierarchical representations implemented in/with HAMMER in
action perception and social learning. We argued that:

• hierarchical representations allow internal representations of a task to
match external demonstrations of the task when performed by others,
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even when the embodiment characteristics of the demonstrator and the
imitator are different. In general, hierarchical representations allow the
demonstrated and predicted information to be compared at the appropri-
ate of level of abstraction, providing flexibility and robustness to execution
variability.

• hierarchical representations can be learned through a combination of low-
level inverse/forward model learning using techniques such as motor bab-
bling and low-level imitation, while more abstract hierarchical representa-
tions can be constructed using more grammatical tools such as stochastic
context free grammars.

While the reported experiments demonstrated several successful applica-
tions of HAMMER in human robot interactions, natural social interactions
pose far more complex challenges. Action perception and imitation capabili-
ties are crucial for enabling robots to behave in unstructured social environ-
ment and for natural interactions in dynamic contexts. In these contexts, the
information is far richer and more complex; and the set of behaviours that the
robot will need to recognise and discriminate will be far more wide-ranging.
The role played by hierarchical representations will grow in importance as
our robots increasingly tackle more challenging social interaction scenarios.
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