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Abstract—This paper presents an enhanced hybrid Software-
Defined Networking (SDN) layer-2 switch whose behavior is
specified by the Programming Protocol-independent Packet Pro-
cessors (P4) language. Its SDN capabilities are enabled by using
P4Runtime as control plane protocol to specify the forwarding
rules used by its programmable data plane. Additionally, the
device is also able to exploit P4 registers for an autonomous
self-definition of its forwarding capabilities, with the goal of
avoiding an overload of the SDN control plane. Its performance
is better than other P4 proposals based on non-standard externs
and similar to other platform-dependent implementations.

Index Terms—P4, ARP-Path Protocol, P4 Registers, Forward-
ing Tables, Autonomous Path Selection

I. INTRODUCTION

INCE the SDN architecture emerged [1], network pro-
S grammability is in continuous evolution. The SDN
paradigm started by defining how to program an independent
control plane, used to communicate with the data plane by
using the OpenFlow protocol. However, nowadays the focus
has broaden to also make the data plane programmable. This
fact has led to the definition of the P4 language [2], which
enables a highly-programmable processing and manipulation
of data plane packet headers by following some rules as
installed by the SDN control plane through P4-Runtime, which
is the natural replacement of OpenFlow in P4-enabled devices.

To ensure interoperability, these advancements have been
often coupled with the design of hybrid SDN solutions [3].
A hybrid SDN switch is a device that is capable of both
working as demanded by the SDN control plane and of taking
autonomous decisions without requiring any interaction with it
(like legacy devices). This is very useful if the control plane is
only interested in managing premium services (due to priority
level agreements or security reasons), but does not care/have
resources to manage them all. Work in [4] shows that hybrid
SDN switches, capable of autonomously applying self-learning
forwarding rules if control plane rules do not match, alleviate
the load at the control plane (since exchanged packets and
processing needs are reduced).

Recently, a hybrid SDN switch solution leveraging the P4
language has been proposed [5]. Unfortunately, such work uses
non-standard extensions of P4 that cripple the portability of
the code and prevent its wide adoption and deployment when
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heterogeneous P4 targets have to execute the P4 program. To
overcome this limitation, this article focuses on the use of
P4 registers, which are standard data structures present in P4
specifications, to define and implement hybrid SDN switches.
Such data structures are used to store state information, with
the aforementioned goal of enabling autonomous forwarding
in the data plane without the intervention of a control plane.
Unlike previous works [5], our proposal uses standard P4-
supported data structures, having the advantage of being fully
portable and executable by any P4 target, and achieving the
same level of offloading of the control plane tasks as other
hybrid SDN devices [4]. Moreover, it makes the deployment
in networks with heterogeneous P4 devices easier.

The paper is organised as follows. First, we examine the
related work in Section II. Secondly, we describe our design
and implementation and its evaluation in Sections III and IV.
Finally, the conclusions of the work are in Section V.

II. RELATED WORK

The SDN [1] paradigm proposes moving the network in-
telligence from the network devices to a logically centralised
control plane that controls and orchestrates the underlying net-
work. However, the SDN architecture requires a high control
message overhead [6] and scalability issues could arise [7],
[8]. Possible solutions range from running in parallel multiple
synchronised controller instances as in [9], to implement
controller offloading techniques such as delegating or reverting
back certain control plane tasks to the data plane [3]. The
latter can be accomplished by using hybrid SDN devices with
autonomous forwarding capabilities that can be enabled or
disabled by the control plane [4] and permits new cooperative
mechanisms between the control and data plane if all hybrid
SDN devices possess the same autonomous capabilities. This
is a cumbersome requirement and limitation unless it comes
coupled with data plane programmability features. Indeed,
there is an important effort around the P4 language [2], so
that it can be adopted as a standard language to program
data plane functionalities. Although it was originally designed
to support full-SDN architectures, it can also be used to
define hybrid P4 SDN devices, as done in [5]. However, such
work requires the usage of non-standard P4 externs, which
are platform-dependent data structures and functions that ask
for ad-hoc implementations depending on the P4 target in
use (e.g. Behavioral-Model version 2 (BMv2) devices [10] or
SUME NetFGPAs [11]). The use of non-standard P4 externs
is not uncommon [12] and comes from the impossibility of
modifying the P4 forwarding tables while processing packets
in the P4 pipeline, replacing the need of relying on the
SDN controller for the injection of new rules. Unfortunately,
being non-standard extensions of the language, a widespread
adoption of extern-based solutions is not achievable.
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Fig. 1. Layer-2 forwarding (high-level design)

This paper shows how hybrid SDN devices implemented in
fully-portable P4 code can be designed, by using P4 standard
registers as temporary-indexed data structures [13], [14] to
store the forwarding information obtained by the P4 data
plane while processing packets, without the intervention of the
control plane. Hence, the use of P4 standard registers is the
key for enabling P4 code portability, since it makes it possible
to overcome the main limitation of non-standard P4 externs.

III. PORTABLE P4 DESIGN OF A HYBRID SDN SWITCH

In this section we present our proposed solution. The P4
registers are used to store the data structures needed for
an autonomous forwarding of data plane packets (i.e., an
autonomous forwarding table); these structures would be later
populated by the distributed forwarding protocol. Without
any loss of generality, we choose to implement ARP-Path
Protocol (ARP-Path) [15], [5], as autonomous forwarding
protocol, for comparison purposes. Moreover, the centralised
SDN capabilities remain intact since the control plane can
still operate the devices by using P4-Runtime [16] to configure
SDN rules on regular P4 match-action tables. These rules take
precedence over data-plane ones by architectural design.

A. Architectural design

As mentioned above, the proposed architectural design gives
higher priority to control plane rules. This is shown in Fig. 1,
which describes how incoming packets are handled. Upon a
packet arrival, first, the device looks for any valid P4-Runtime
rule. If a rule exists, which means that a P4 match-action table
hit occurs, and the egress port is valid, the forwarding strategy
applies the action associated with the rule to the ingress packet.
Only if no valid egress port is available, the strategy looks at a
P4 register array to find an egress port to forward the packet.
In the case that a rule exists and the egress port is valid, the
device forwards the packet to the egress port indicated in the
matched P4 register. If neither the P4 match-action table nor
the P4 register array contain a valid rule to apply, a miss action
is required: unless an optional recovery mechanism exists, the
miss action should drop the packet.

The key element for packet handling is how to define and
manage the data structures to support the matching entries and
their actions in P4 registers. But, before that, it is necessary to
define how to populate them with data-plane derived forward-
ing information by using ARP-Path, so a minimal background
on ARP-Path protocol is provided in the following section.

B. Background on ARP-Path protocol

ARP-Path [15] is a layer-2 protocol for Ethernet-bridged
networks. It relies on the Address Resolution Protocol (ARP)
packet exchange to discover and set up low-latency paths.
ARP-Path works in two phases: the exploration phase, which
relies on the ARP Request packet broadcast to discover low-
latency paths to the source node (in fact the paths discovered
form a sink tree rooted at the source node and spanning
to every other node in the network), and the confirmation
phase, which relies on the ARP Reply packet to set up
the path between the pair of source and destination nodes
(i.e., it confirms the tree branch from source to destination
node, which was previously discovered during the exploration
phase). The protocol works as follows: every node receiving
an ARP Request packet associates the corresponding source
Media Access Control (MAC) address with the input port
where it was received and stores this information in a timed
Blocking Table (BT). Other copies (late copies) of the same
Request are simply discarded (based on the information on
the BT) to prevent loops. Eventually, at least one copy of
the Request packet reaches every other node in the network,
including the forwarding node serving the requested end point,
which replies with the corresponding ARP Reply packet. Now,
every node receiving a Reply packet copies the corresponding
entry of the BT to another table, called Learning Table (LT), by
also including in LT a second entry that associates the source
MAC address of the Reply packet with its corresponding
arrival port, thus setting the path to both source and destination
MAC addresses in the considered node. Afterwards, it simply
forwards the Reply packet to the destination MAC address.
Moreover, LT entries are refreshed whenever a unicast frame
is forwarded, to prevent their aging. To simplify the protocol
implementation, both BT and LT tables can be merged into
a single table using shorter timeouts for blocking entries and
longer timeouts for learning entries.

C. Design of ARP-Path using P4 registers

This section presents the ARP-Path-based P4 implementa-
tion of the autonomous forwarding capabilities of the pro-
posed layer-2 switch. The switch’s data plane implements the
ARP-Path forwarding logic by using two different arrays of P4
registers, the port register array and the time register array,
to save the state of the protocol. Together, they play the role
of the BT and LT tables mentioned above. The port register
array saves the ingress port from ingress frames by taking
the source MAC address as register index, to later forward
ingress packets according to their destination MAC address.
The time register array saves timestamps instead, indicating
the expiration times of the port register array entries. Both
arrays jointly work as a unique table since they use the same
index (see Fig. 2) for register population.

[P I[P [P, [ e e]Portregisters

[ [t [t [ * «|Time registers

Fig. 2. Time and port P4 register arrays
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Fig. 3. ARP-Path frame processing using P4 registers

Figure 3 shows the flowchart that summarises the proposed
design. The process starts when a frame arrives at a hybrid
SDN device with no match on an egress port after applying
the existing P4 matching rules. First, the node applies an
identity hash function on the source and destination MAC
addresses to calculate the Hash Source Media Access Control
(HSMAC) and the Hash Destination Media Access Control
(HDMAC) values. Such hash function is based on the modulo
operation, which makes it possible to set the output size of the
hash function equal to the size of the port and time registers,
so that all the register’s cells can be indexed. The HSMAC
and HDMAC values are used as search indexes within the
P4 register arrays (see Fig. 2). Then, the switch applies the
ARP-Path protocol logic based on the type of received frames.

The left-hand side of the chart shows the processing if a
broadcast or multicast frame is received. The strategy looks
for the corresponding HSMAC on the port register array: if a
valid entry is found and it points to the frame incoming port,
the frame is simply broadcast/multicast and the corresponding
timestamp, in the time register array, is updated. Otherwise,
if the port register array entry points to a different port than
the incoming port, the frame is discarded to prevent loops.
When no valid entry for HSMAC is found on the port register,
the switch associates the HSMAC with the incoming port and
stores this information in both register arrays, then it simply
broadcasts/multicasts the frame.

The right-hand side of the chart shows the processing of
a unicast frame. First, the HSMAC is processed. In the case
that the frame is an ARP Reply and there is no valid entry
for HSMAC in the port register, the switch creates a new
entry associating the HSMAC to the corresponding arrival
port in both registers. If a valid entry already exists, it simply
updates the corresponding time register. Then, the HDMAC
is processed in a similar way as the HSMAC. If a valid
entry exists in the port register, the switch forwards the frame
through the corresponding egress port and updates the timeout.
Otherwise, the frame is discarded.

IV. EVALUATION

Following the same scheme as in [5], we evaluated ARP-
Path-based forwarding proposal based on P4 registers (ARP-
P4-Reg) and shown in Section III-C, in terms of throughput
and Flow Completion Time (FCT), which are the traditional
metrics in data center networks requiring efficient layer-2
forwarding capabilities. We provide a performance comparison
of ARP-P4-Reg, the implementation proposed in [5] and
based on P4 externs (ARP-P4-Ext), an ad-hoc non-P4 hybrid
SDN device [4] (ARP-AdHoc) and a traditional SDN device
running a Equal-Cost Multi-Path (ECMP) routing policy. Both
P4-based solutions, i.e., ARP-P4-Reg and ARP-P4-Ext, are
evaluated using BMv2 software devices [10] with P4 support.

A. Experimental Setup

The testbed is composed of 4 Intel(R) Core(TM) i7 servers
running Mininet [17] as emulation platform. To carry out our
evaluation, we adopt the same scenario as in [5]: a Spine-Leaf
topology [18] made of 4 spines and 4 leaves with 20 servers
per leaf switch, for a total of 80 servers. The traffic flows are
generated from a random traffic matrix where the source and
destination of each flow must be on different leaf nodes. Flow
sizes are defined from two cumulative distributions functions
(CDFs), i.e., Data Mining [19] and Web Search [20], both
obtained from real data center traces. Finally, we set the flow
Inter Arrival Time (IAT) to reach an average offered network
load of 10%, 20%, and 40% with respect to the full capacity
of links (10Mbps due to testbed constraints). Each experiment
runs for 1800s (a warmup time of 800s is considered) and is
repeated 10 times to compute 95% confidence intervals.

For ARP-P4-Reg, we set 327680 cells as size of each
port and time register array. Such size, in line with the
maximum possible as per specification of existing carrier-
grade programmable switches, is big enough to ensure a low
number of hash collisions in the considered scenario, thus
causing a negligible probability of forwarding errors.

B. Results

Figure 4(a) shows the result comparison between the con-
sidered strategies for different types of flows in terms of
throughput, while Fig. 4(b) shows the same comparison in
terms of FCT. The results shown on the left-hand side of each
figure correspond to the Web Search, while the ones on the
right-hand side to the Data Mining distribution. We can see
that the new design, based on P4 registers, clearly outperforms
ARP-P4-Ext. The use of standard mechanisms, more tested
and optimised, are behind the experienced improvements.
Moreover, the new proposal has smaller complexity than ARP-
P4-Ext due to the use of registers as autonomous forwarding
tables; also, the P4 extern handler of BMv2 introduces a
higher delay in packet handling than the standard P4 handler.
Related to the other implementations, the performance of
the new design is similar to ECMP or traditional ARP-Path
switches for elephant (big) and mouse (small) flows. However,
the performance on rabbit (middle-sized) flows decreases. As
already stated in [5], this is due to the way the BMv2 queue

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOTI 10.1109/LCOMM.2021.3049570, IEEE

Communications Letters

IEEE COMMUNICATIONS LETTERS

Web search Data mining

Web rch Data minin
10 10 250 leb searcl 250 ta 9
2 = 2
g 8 5 . 8 & i 200 200
§< 6 6 %%150 150
Sc
o 4 4 g
. g EEWO 100
i ; K 1 i [T
0 0 oL cfem nomm &
10 20 40 10 20 40 10 20 40 10 20 40
10 10 20 2
g 8 = s .
s - <& 515 15|
52 :
2 - SE10 10
EE 4 = 4 A5 e
3 2
g2 2 5 5
o 0 o rrmm ooflm O o
10 20 40 10 20 40 10 20 40 10 20 40
3 3
10 _ 10 _ 4X10 prabl
7 M M - M M M
g 8 = - 8 - — 53 3
2T 6 6 28
S sc2 2
S5 4 4 25
s
o T 1
£ 2 2
0 0 I
10 40 10 40 ° 10 2 40 10 2

20 20
Offered load (%) Offered load (%)

[ C”—JECMP 1 ARP-AdHoc [ ARP-P4-Ext M ARP-P4-Reg|

(a) Throughput

Fig. 4. Performance comparison on Spine-Leaf (4-4-20) topology

scheduler processes incoming frames, which does not guaran-
tee that incoming frames at different ports of the switch are
processed in order. This is a key issue for a correct execution
of ARP-Path, which discovers paths based on latency and thus
sees its performance reduced.

V. CONCLUSION

To the best of our knowledge, this paper presented the
first use case of P4 registers to store stateful information
and achieve autonomous forwarding in P4 pipelines of hy-
brid SDN devices. We used the P4 registers to implement
the forwarding tables needed by ARP-Path, a distributed
autonomous forwarding protocol, and make them coexist
with the standard P4 forwarding tables operating under the
SDN control plane command. By relying on standard P4
elements, we not only ensure the portability of the code to
any P4 target, but also improve performance with respect
to previous non-standard P4 implementations. However, the
forwarding information derived autonomously by the hybrid
SDN switches is still not readable by the centralised control
plane, since the current P4/P4-Runtime specifications do not
permit it. Hence, coexistence of both considered forwarding
mechanisms is achieved by prioritisation techniques instead of
implementing fully-cooperative mechanisms. To make fully-
cooperative mechanisms become a reality, either access to P4
match-action tables from the data plane and/or control plane
access to P4 registers should be granted in future revisions of
the P4 specifications.
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