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Abstract. In this paper we prove the strong unique continuation principle and the unique
continuation from sets of positive measure for solutions of a higher order fractional Laplace

equation in an open domain. Our proofs are based on the Caffarelli-Silvestre [10] extension

method combined with an Almgren type monotonicity formula. The corresponding extended
problem is formulated as a system of two second order equations with singular or degenerate

weights in a half-space, for which asymptotics estimates are derived by a blow-up analysis.

1. Introduction and main results

We study the following higher order fractional Laplace equation

(1) (−∆)su = 0 in Ω,

where 1 < s < 2, Ω ⊂ RN is an open domain with N > 2s, and the fractional Laplacian (−∆)s of
a function u defined over the whole RN is defined by means of the Fourier transform:

̂(−∆)su(ξ) = |ξ|2sû(ξ) .

Here by Fourier transform in RN we mean

û(ξ) = Fu(ξ) :=
1

(2π)N/2

∫
RN

e−ix·ξu(x) dx .

In the sequel we will explain in more details what we mean by a weak solution of (1). Our main
purpose is to prove the validity of unique continuation principles for solutions to (1).

Unique continuation properties and qualitative local behavior of solutions to fractional elliptic
problems are a subject which was widely studied in the last years. In [15], the authors study a
semilinear fractional elliptic problem containing a singular potential of Hardy type, a perturbation
potential with a lower order singularity and a nonlinearity that is at most critical with respect
to a suitable Sobolev exponent. In that paper the fractional differential operator is (−∆)s with
power 0 < s < 1; see also [16] for analogous results for relativistic Schrödinger operators. Unique
continuation for fractional Laplacians with power s ∈ (0, 1) was also investigated in [32] in presence
of rough potentials and in [47] for fractional operators with variable coefficients.

Other results concerning qualitative properties of solutions of equations with the fractional
Laplace operator (−∆)s can be found in [8, 23, 24, 41]. For more details on basic results on the
fractional Laplace operator see [1, 6, 10, 12, 13]. Operators given by fractional powers of the Lapla-
cian arise in the description of phenomena where long-term interactions and anomalous diffusion
occur, see [27]. This happens in several fields of application, such as continuum mechanics, fluid
mechanics, phase transition phenomena, population dynamics, financial mathematics, control the-
ory, and game theory, see [9, 44]. Furthermore, fractional Laplace operators appear in Probability
as infinitesimal generators of stable Lévy processes, see [50].

Up to our knowledge, unique continuation properties for higher order fractional elliptic equations
were first studied in the paper [46]. Here the author states a strong unique continuation property
for the Laplace equation (1) for any noninteger s > 0.

More precisely, in [46, Corollary 5.5] it is stated that the solutions to (1) vanishing of infinite
order at a point are necessarily null in Ω. In [46] the proof of this result is not written in details;
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it is just observed that, following the classical argument by Garofalo and Lin [21], the bound-
edness of the Almgren frequency function for solutions of some extended problem, together with
the Caffarelli-Silvestre type extension result given in [46], suffices to provide the strong unique
continuation property. However, we think that the boundedness of the frequency function proved
in [46] only shows the validity of a unique continuation principle for the extended function U (see
(4)) and not for the solution u of equation (1); indeed, it is nontrivial to exclude that u vanishes
of infinite order at a point when U does not.

It is easy to show the existence of functions defined in the half space RN+1
+ that do not vanish

of infinite order at a point (x0, 0) ∈ RN ×{0} but whose restrictions to RN vanish of infinite order
at the point x0 ∈ RN . A similar situation can be observed in Figure 1.

Figure 1.

It is our purpose to show that such a pathological situation cannot occur when dealing with
solutions of (1); this seems far from being straightforward.

A first goal of the present paper is to give a complete proof of [46, Corollary 5.5] excluding such
an occurrence by means of a blow-up analysis and a complete classification of local asymptotics of
solutions for the extended problem. Nevertheless, we acknowledge the fundamental role of paper
[46] since part of our approach to the unique continuation principle takes inspiration from the
Caffarelli-Silvestre procedure [10] and the Almgren monotonicity formula performed by [46] in the
higher order setting.

We point out that, among the all possible noninteger higher order powers of −∆, in the present
paper we only consider the case 1 < s < 2 just for technical reasons and in order to avoid excessive
complications in the proofs. Indeed, as observed in [46], the case of non-integer s > 2 leads to
a degenerate elliptic equation of order 2(m + 1) with m < s < m + 1 and consequently to an
equivalent system of m+ 1 second order equations. An extension to all noninteger higher powers
is then possible but requires the further technical effort to handle systems of more components,
which are expected to create difficulties in the classification of blow-up profiles (see Theorem 5.7)
as well as in exposition. Such extension is a matter of future studies.

The problem of unique continuation for higher order fractional Laplacians was also studied by I.
Seo in [36, 37, 38] in presence of potentials in Morrey spaces; more precisely, in [36, 37, 38] Seo uses
Carleman inequalities to prove a weak unique continuation result, i.e. vanishing of solutions which
are zero on an open set; we recall that the strong unique continuation property instead requires
the weaker assumption of infinite vanishing order at a point.

The major contribution of the present paper goes beyond bridging monotonicity formula for
the extended problem and unique continuation for the original nonlocal equation, since our local
analysis provides sharp results on the asymptotic behavior of solutions for the above mentioned
extended problem, see (4), (6) below. Moreover our analysis allows us to prove a second version
of the unique continuation principle which has, as an assumption, vanishing of solutions of (1) on
sets of positive measure.
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As already mentioned above, our approach is based on the Caffarelli-Silvestre procedure [10]
and on an Almgren type monotonicity formula. But differently from [46], we combine the Almgren
formula with a blow-up procedure with the purpose of proving asymptotic formulas for solutions
of the extended problem. And it is by mean of this asymptotic formula that we are able to prove
the validity of the two versions of the unique continuation principle.

As pointed out quoting the papers by I. Seo, other approaches in the proofs of unique con-
tinuation results are possible; in the present paper we chose a procedure which combines the
biharmonic extension method with the Almgren type monotonicity formula, which allows proving
a strong quantitative result, i.e. an asymptotic local analysis of solutions, which has the unique
continuation principles as its consequence. Since the Almgren frequency function, defined as the
ratio of local energy over mass near a point, has intrinsically a local nature, the possibility of
realizing our nonlocal operator as a local one through the extension procedure plays a crucial role
in the monotonicity approach.

Up to now, we succeeded in applying our method only to the fractional Laplace equation but
we believe that similar results can be obtained in a more general setting by adding to equation
(1) linear terms with singular potentials and subcritical nonlinearities, see Open Problem 1.3 for
a more detailed explanation. A first step towards this goal is achieved in [19], where we prove the
validity of an asymptotic formula and of unique continuation principles for problem

(−∆)3/2u = h(x)u

in open domains of RN . The special case s = 3
2 represents the “middle case” between the classical

Laplace operator −∆ and the bilaplacian (−∆)2 and produces a significant simplification when
dealing with the Caffarelli-Silvestre extension, see (4) for more details.

Before stating the main results of the paper we introduce a suitable notion of weak solutions to
(1). We define Ds,2(RN ) as the completion of the space C∞c (RN ) of C∞ real compact supported
functions, with respect to the scalar product

(u, v)Ds,2(RN ) :=

∫
RN
|ξ|2s û(ξ)v̂(ξ) dξ .

We define a solution of (1) as a function u ∈ Ds,2(RN ) satisfying

(2) (u, ϕ)Ds,2(RN ) = 0 for any ϕ ∈ C∞c (Ω) .

For a motivation of this definition see [12], where a detailed treatise on fractional Sobolev spaces
and on (−∆)s in the case 0 < s < 1 is provided. See also [15, (7)] for the definition of solution of
a nonlinear problem with (−∆)s in the case 0 < s < 1.

The first main result of the paper is the following strong unique continuation principle.

Theorem 1.1. Assume that 1 < s < 2 and N > 2s. Let u ∈ Ds,2(RN ) be a solution of (1).
Let us also assume that (−∆)su ∈ (Ds−1,2(RN ))?, where (Ds−1,2(RN ))? denotes the dual space

of Ds−1,2(RN ), in the sense that the linear functional ϕ 7→
∫
RN |ξ|

2sû(ξ)ϕ̂(ξ) dξ, ϕ ∈ C∞c (RN ),

is continuous with respect to the norm induced by Ds−1,2(RN ). If there exists x0 ∈ Ω such that
u(x) = O(|x− x0|k) as x→ x0 for any k ∈ N, then u ≡ 0 in Ω.

We observe that the assumption (−∆)su ∈ (Ds−1,2(RN ))∗ is needed to prove that the trace of
the weighted Laplacian of the extended function coincides, up to a multiplicative constant, with
the Laplacian of u; the key of the proof of the unique continuation result then relies in showing
that it can not occur that u vanishes of infinite order and its Laplacian does not, exploiting the
blow-up analysis and the asymptotic estimates for the extended problem obtained in Theorem 1.6.

Now we state a second version of unique continuation principle where the condition on vanishing
of infinite order around a point assumed in Theorem 1.1 is replaced by vanishing on a set of positive
measure.

Theorem 1.2. Assume that 1 < s < 2 and N > 2s. Let u ∈ Ds,2(RN ) be a solution of (1). Let
us also assume that (−∆)su ∈ (Ds−1,2(RN ))? in the sense explained in the statement of Theorem
1.1. If there exists a measurable set E ⊂ Ω of positive measure such that u ≡ 0 on E, then u ≡ 0
in Ω.
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As we mentioned before the statement of the main results, we believe that it should be interesting
to extend the monotonicity approach to unique continuation to solutions of more general elliptic
fractional equations. We leave this question as an open problem.

Open Problem 1.3. Let u ∈ Ds,2(RN ) be a weak solution of

(3) (−∆)su = h(x)u+ f(x, u) in Ω,

with h and f satisfying

h ∈W 1,∞
loc (Ω \ {0}) , |h(x)|+ |x · ∇h(x)| 6 Ch|x|−2(s−1)+ε for a.e. x ∈ Ω,

and

f ∈ C1(Ω× R), |f(x, σ)| 6 Cf |σ|p−1 for a.e. x ∈ Ω and σ ∈ R,
where 2 < p < 2∗(N, s− 1) := 2N

N−2(s−1) . Develop a monotonicity formula for solutions to problem

3 and derive from that the validity of the two versions of unique continuation principle contained
in Theorems 1.1-1.2 for solutions of (3).

The presence of a inhomogeneous right hand side in equation (3) would produce a coupling
Neumann term in the system-type formulation of the extended problem (6), which makes the
proof of a monotonicity formula more delicate because of the presence in the derivative of the
frequency function N (87) of a term of the form

−r
∫
∂B′r

(hu+ f(x, u))v dS′ + 2

∫
B′r

(hu+ f(x, u))x · ∇xv dx.

For s = 3/2, in [19] this term was estimated in terms of boundary integrals (see [19, Lemma 2.12]);
however, such estimates seem to be quite more delicate to be derived for s ∈ (1, 2) \ {3/2}, due
to difficulties in handling the singular/degenerate weight appearing in the extension problem (see
(4)). �

We mention that a progress in the study of unique continuation for higher order fractional
equations with potentials was made, after the completion of the preprint version of the present
paper, in the recent manuscript [33]; in particular in [33] strong unique continuation for equations
of type (3) with f ≡ 0 and Ω = RN was established via Carleman inequalities.

Now, we explain in more details what we mean by the previously mentioned extended problem
and we state which kind of asymptotic estimate we will prove on its solutions. Let u ∈ Ds,2(RN )
be a solution of (1) in the sense given in (2) and let U ∈ Db be the unique weak solution of the
problem

(4)


∆2
bU = 0 in RN+1

+ ,

U(·, 0) = u(·) in RN ,

limt→0+ tbUt(·, t) ≡ 0 in RN ,

where b = 3 − 2s ∈ (−1, 1), Db is the functional space introduced in Section 3, and ∆b is the
operator defined at the beginning of Section 2.

For any function u ∈ Ds,2(RN ), with u not necessarily a solution of (1), we say that U ∈ Db is
a weak solution of (4) if

(5)


∫
RN+1

+

tb∆bU∆bϕdz = 0 for any ϕ ∈ Db with Tr(ϕ) = 0 ,

Tr(U) = u ,

where Tr : Db → Ds,2(RN ) is the trace map defined in Proposition 3.3. In Section 3 we prove the
following existence and uniqueness result for solutions of (4):

Proposition 1.4. For any u ∈ Ds,2(RN ) problem (4) admits a unique weak solution U ∈ Db in
the sense of (5).

Now, let x0 ∈ Ω and let R > 0 be such that B′2R(x0) ⊂ Ω where, according with (8), B′2R(x0)
denotes the open ball in RN of radius 2R centered at x0. Then, if u ∈ Ds,2(RN ) is a solution of
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(1), putting V := ∆bU , the couple (U, V ) ∈ H1(B+
R(x0); tb) × H1(B+

R(x0); tb) weakly solves the
system

(6)


∆bU = V in B+

R(x0) ,

∆bV = 0 in B+
R(x0) ,

limt→0+ tbUt(·, 0) = 0 in B′R(x0) ,

limt→0+ tbVt(·, 0) = 0 in B′R(x0) ,

see (8) and the successive part of Section 2 for the definition of the weighted Sobolev space
H1(B+

R(x0); tb). This means that the couple (U, V ) satisfies∫
B+
R(x0)

tb∇U∇ϕdz = −
∫
B+
R(x0)

tbV ϕdz and

∫
B+
R(x0)

tb∇V∇ϕdz = 0

for any ϕ ∈ H1
0 (Σ+

R(x0); tb) with H1
0 (Σ+

R(x0); tb) as in Section 2.
In order to state our result on the local behavior of solutions of (6), we introduce the following

eigenvalue problem:

(7)


−divSN+ (θbN+1∇SN+ Ψ) = µ θbN+1Ψ in SN+ ,

lim
θN+1→0+

θbN+1∇SN+ Ψ · eN+1 = 0 on ∂SN+ ,

where eN+1 = (0, . . . , 0, 1) ∈ RN+1, SN+ = {(θ1, . . . , θN+1) ∈ SN : θN+1 > 0} and SN is the

N -dimensional unit sphere in RN+1.
By classical spectral theory the eigenvalue problem (7) admits a diverging sequence of real eigen-

values with finite multiplicity. We denote these distinct eigenvalues by µn and their multiplicity by
Mn with n ∈ N∪{0}. Moreover, for any n > 0 let {Yn,m}m=1,...,Mn

be a L2(SN+ ; θbN+1)-orthonormal
basis of the eigenspace of µn.

Combining the blow-up analysis performed in [15] with the regularity results proved in [40] for
degenerate/singular problems arising from the Caffarelli-Silvestre extension, we can easily prove
that the eigenvalues of problem (7) are in fact

µn = n2 + n(N + b− 1), n ∈ N.

Remark 1.5. We observe that the eigenfunctions of problem (7) cannot vanish identically on

∂SN+ ; indeed, if an eigenfunction Ψ vanishes on ∂SN+ , then the function W (z) := |z|σ
+
` Ψ(z/|z|)

(with σ+
` = −N+b−1

2 +
√
µ` + (N + b− 1)2/4 = `) would be a weak solution to the equation

div(tb∇W ) = 0 in RN+1
+ satisfying both Dirichlet and weighted Neumann homogeneous boundary

conditions; then its trivial extension to the entire space RN+1 would violate the unique continuation
principle for elliptic equations with Muckenhoupt weights proved in [43] (see also [21], [39, Corollary
3.3], and [32, Proposition 2.2]).

We now state the main result on solutions to system (6).

Theorem 1.6. Assume that 1 < s < 2, N > 2s and let b = 3−2s ∈ (−1, 1). For some x0 ∈ RN let
(U, V ) ∈ H1(B+

R(x0); tb)×H1(B+
R(x0); tb) be a nontrivial weak solution of (6). Then there exists

δ1 ∈ N, a linear combination Ψ1 6≡ 0 of eigenfunctions of (7), possibly corresponding to different
eigenvalues, and α ∈ (0, 1) such that

λ−δ1U(z0 + λ(z − z0))→ |z − z0|δ1Ψ1

(
z−z0
|z−z0|

)
in H1(B+

1 (x0); tb) and in C1,α
loc (B+

1 (x0)) as λ → 0+ where we put z0 = (x0, 0) ∈ RN+1. Further-
more, if V 6≡ 0, there exists δ2 ∈ N, a linear combination Ψ2 6≡ 0 of eigenfunctions of (7), possibly
corresponding to different eigenvalues, and α ∈ (0, 1) such that

λ−δ2V (z0 + λ(z − z0))→ |z − z0|δ2Ψ2

(
z−z0
|z−z0|

)
in H1(B+

1 (x0); tb) and in C1,α
loc (B+

1 (x0)).
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We observe that Theorem 1.6 implies a unique continuation principle from boundary points for
solutions to (6); we refer to [2, 3, 18, 26, 42] for unique continuation from the boundary established
via the Almgren monotonicity formula. Concerning unique continuation for systems of elliptic
equations, we mention the recent papers [28] and [35].

Remark 1.7. We observe that Theorem 1.6 in general does not provide a sharp asymptotic
formula around x0 ∈ Ω for solutions to the original problem (1) when u and U are as in (4), even
if u is the restriction to B′R(x0) of U . This because we cannot exclude that the function Ψ1 in
Theorem 1.6 vanishes identically on ∂SN ; what we can say is that this event cannot occur if Ψ1

is an eigenfunction of (7) as explained in Remark 1.5. For this reason the unique continuation
principles stated in Theorems 1.1–1.2 are not a direct consequence of Theorem 1.6 and additional
arguments have to be employed in their proofs in order to exploit the asymptotic estimates of
Theorem 1.6.

Remark 1.8. In the asymptotic profiles of Theorem 1.6, the appearence of eigenfunctions asso-
ciated to possibly different eigenvalues basically originates from the fact that a homogeneous har-
monic function of degree k multiplied by |z|2 gives a homogeneous bi-harmonic function of degree
k+2. An easy example can be constructed by taking, in the case s = 3/2, U(z) = |z|2U1(z)+U2(z),
where U1, respectively U2, is a harmonic function, homogeneous of degrees k ∈ N, respectively
k+ 2, even with respect to the hyperspace {t = 0}. The couple (U, V ), with V = 2(N + 2k+ 1)U1,
solves system (6) and λ−k−2U(λθ) = ψ1(θ) + ψ2(θ), where ψ1 = U1

∣∣
SN+

is an eigenfunctions of (7)

associated to µk and ψ2 = U2|SN+ is an eigenfunctions of (7) associated to µk+2.

Remark 1.9. The fact that a solution U to (6) asimptotically behaves as a homogeneous function
of integer order leads to the natural conjecture that it is analytic with also its trace u solving
(1). This is obviously true for s = 3/2 by standard regularity theory but it does not seem to
be known in the degenerate/singular case s 6= 3/2. Of course an analyticity result for u would
directly imply the unique continuation property proved in Theorem 1.1, so an alternative way to
prove Theorem 1.1 could be given by the study of analyticity of solutions, e.g. by an iteration
of our uniform asymptotic analysis. Our main reason for choosing the monotonicity approach to
unique continuation relies in the possibility of obtaining a more detailed quantitative asymptotic
statement and in our interest in developing a strategy of proof which could be applied to more
general equations in future studies.

We observe that the proof of Theorem 1.6 presents substantial additional difficulties with respect
to the lower order case s ∈ (0, 1) treated in [15], since the corresponding Dirichlet-to-Neumann
local problem is a fourth order equation (see (4)) which is equivalent to the second order system (6)
with singular/degenerate weights and Neumann boundary conditions. In particular, several steps
in our procedure, such as regularity and blow-up analysis, turn out to be more delicate for systems
than for the single equation arising from the Caffarelli-Silvestre extension in the lower order case
s ∈ (0, 1).

We conclude this section by explaining how the rest of the paper is structured. Section 2
is devoted to some preliminary results and notations which will be used in the proofs of the
main statements. In Section 3 we introduce a Caffarelli-Silvestre type extension for functions
u ∈ Ds,2(RN ) and we provide an alternative formulation for problem (1). In Section 4 we introduce
an Almgren-type function and we prove a related monotonicity formula. In Section 5 we perform
a blow-up procedure and we prove asymptotic estimates for the extended functions introduced in
Section 3. Section 6 contains the proofs of the main results of the paper. Finally, Section 7 is
an appendix devoted to weighted Sobolev spaces and related inequalities, Hölder regularity for
solutions of a class of second order elliptic equations and systems with variable coefficients, and
some properties of first kind Bessel functions.

2. Preliminaries and notations

Notations. We list below some notations used throughout the paper.

• RN+1
+ = {z = (z1, . . . , zN+1) ∈ RN+1 : zN+1 > 0}.

• SN = {z ∈ RN+1 : |z| = 1} denotes the unit N -dimensional sphere in RN+1.

• SN+ = {(θ1, . . . , θN+1) ∈ SN : θN+1 > 0} = SN ∩ RN+1
+ .
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• dS denotes the surface element in boundary integrals.
• dz = dx dt, z = (x, t) ∈ RN × R, denotes the (N + 1)-dimensional volume element.
• ∆bU = ∆U + b

tUt for any function U = U(x, t) with x ∈ RN and t ∈ R, where ∆U denotes

the classical Laplacian in RN+1 and Ut the partial derivative with respect to t.
• For any open set U and k ∈ N, Ck(U) denotes the space of k times continuously differ-

entiable functions on U ; Ck(U) is the space of functions u in Ck(U) such that x 7→ Dαu
admits a continuous extension to U for every multi-index α with length less or equal to k.

The main purpose of this section is to prove a regularity result for the boundary value problem
(27). We observe that such a regularity result is needed to make the Almgren quotient (87)
well-defined and seems to be taken for granted in [46] although not at all trivial. To prove the
needed regularity we introduce two auxiliary problems, namely the eigenvalue problem (10) and
the Poisson type equation (22).

For any x0 ∈ RN , t0 ∈ R and R > 0 we define

BR(x0, t0) := {(x, t) ∈ RN+1 : |x− x0|2 + |t− t0|2 < R2} ,(8)

B+
R(x0) := {(x, t) ∈ BR(x0, 0) : t > 0} , B−R (x0) := {(x, t) ∈ BR(x0, 0) : t < 0} ,

B′R(x0) := {x ∈ RN : |x− x0| < R} ,

S+
R (x0) := {(x, t) ∈ ∂BR(x0, 0) : t > 0} , S−R (x0) := {(x, t) ∈ ∂BR(x0, 0) : t < 0} ,

Σ+
R(x0) := B+

R(x0) ∪ (B′R(x0)× {0}) , Σ−R(x0) := B−R (x0) ∪ (B′R(x0)× {0}) ,

QR(x0) := B′R(x0)× (−R,R) ,

Q+
R(x0) := B′R(x0)× (0, R) , Q−R(x0) := B′R(x0)× (−R, 0) ,

Γ+
R(x0) := B′R(x0)× [0, R) , Γ−R(x0) := B′R(x0)× (−R, 0] .

Given b ∈ (−1, 1), for any x0 ∈ RN and R > 0 we define the weighted Sobolev space H1(B+
R(x0); tb)

of functions U ∈ L2(B+
R(x0); tb) such that ∇U ∈ L2(B+

R(x0); tb), endowed with the norm

‖U‖H1(B+
R(x0);tb) :=

(∫
B+
R(x0)

tb|∇U(x, t)|2dx dt+

∫
B+
R(x0)

tb(U(x, t))2dx dt

)1/2

.

We also define the space H1
0 (Σ+

R(x0); tb) as the closure in H1(B+
R(x0); tb) of C∞c (Σ+

R(x0)).

In a completely similar way, we can introduce the Hilbert space H1(Q+
R(x0); tb) and its subspace

H1
0 (Γ+

R(x0); tb) defined as the closure in H1(Q+
R(x0); tb) of C∞c (Γ+

R(x0)).

We observe that thanks to (145) the spaces H1
0 (Σ+

R(x0); tb) and H1
0 (Γ+

R(x0); tb) may be endowed
with the equivalent norms

‖U‖H1
0 (Σ+

R(x0);tb) :=

(∫
B+
R(x0)

tb|∇U |2dx dt

) 1
2

, ‖U‖H1
0 (Γ+

R(x0);tb) :=

(∫
Q+
R(x0)

tb|∇U |2dx dt

) 1
2

.

For any x0 ∈ Ω let

(9) R = R(x0) > 0 be such that B′2R(x0) ⊂ Ω.

Here and in the sequel Ω ⊂ RN is an open domain.
Let us consider the eigenvalue problem

(10)


−∆bU = λU in Q+

2R(x0) ,

U = 0 on [∂B′2R(x0)× (0, 2R)] ∪ [B′2R(x0)× {2R}] ,

lim
t→0+

tbUt(·, t) ≡ 0 on B′2R(x0),

in a weak sense, i.e.

(11)

∫
Q+

2R(x0)

tb∇U∇ϕdx dt = λ

∫
Q+

2R(x0)

tbUϕdx dt, for all ϕ ∈ H1
0 (Γ+

R(x0); tb).
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In the following proposition we construct a complete orthonormal system for L2(Q+
2R(x0); tb) con-

sisting of eigenfunctions of (10).

Proposition 2.1. Let b ∈ (−1, 1), x0 ∈ Ω and let R > 0 be as in (9). Define

(12) en,m(x, t) := γm t
αJ−α

(
j−α,m

2R t
)
en(x) for any n,m ∈ N \ {0}

and

(13) λn,m := µn +
j2−α,m
4R2 , for any n,m ∈ N \ {0}

where α := 1−b
2 , J−α is the first kind Bessel function with index −α,

0 < j−α,1 < j−α,2 < · · · < j−α,m < · · ·

are the zeros of J−α, γm :=
{∫ 2R

0
t
[
J−α

( j−α,m
2R t

)]2
dt
}−1/2

, {en}n>1 denotes a complete system,

orthonormal in L2(B′2R(x0)), of eigenfunctions of −∆ in B′2R(x0) with homogeneous Dirichlet
boundary conditions and µ1 < µ2 6 . . . 6 µn 6 . . . the corresponding eigenvalues.

Then for any n,m ∈ N \ {0}, en,m is an eigenfunction of (10) with corresponding eigen-
value λn,m. Moreover the set {en,m : n,m ∈ N \ {0}} is a complete orthonormal system for
L2(Q+

2R(x0); tb).

Proof. We look for nontrivial solutions of (10) in the form

U(x, t) =

+∞∑
n=1

An(t)en(x) .

By (11) it follows that An must satisfy

(14) t2A′′n(t) + btA′n(t) + (λ− µn)t2An(t) = 0, lim
t→0+

tbA′n(t) = 0, An(2R) = 0.

Using well known properties of Bessel functions, see [4], it is easy to prove that nontrivial solutions
of (14) exist if and only if λ− µn > 0; in this case An is necessarily given by

(15) An(t) = cnt
αJ−α(

√
λ− µnt)

with λ satisfying J−α(2
√
λ− µnR) = 0 whenever cn 6= 0. Then λ necessarily satisfies

(16) λ = µn +
j2−α,m
4R2 , for some n,m ∈ N, n,m > 1.

This proves that the eigenvalues of −∆b are the numbers which admit the representation (16).
For any number λ > 0 we denote by S(λ) the possibly empty set defined by

S(λ) := {(n,m) ∈ (N \ {0})2 : (16) holds true} .

For any λ > 0, the set S(λ) is finite since limn→+∞ µn = +∞ and limm→+∞ j−α,m = +∞. Hence,
if λ is an eigenvalue, then the corresponding eigenfunctions U are of the form

U(x, t) =
∑

(n,m)∈S(λ)

cn,m t
αJ−α

(
j−α,m

2R t
)
en(x) .

For any (n,m) ∈ (N \ {0})2, we define en,m as in (12). We note that ‖en,m‖L2(Q+
2R(x0);tb) = 1.

Moreover we have orthogonality in L2(Q+
2R(x0); tb) of two distinct eigenfunctions en1,m1

, en2,m2
,

as one can easily deduce from [4, Equation (4.14.2)].
Finally, completeness of the orthonormal system {en,m : n,m ∈ N \ {0}} in L2(Q+

2R(x0); tb)
follows from compactness of the embedding stated in Proposition 7.1) and the theory of compact
self-adjoint operators. �

In the next proposition we prove some estimates on the eigenfunctions of (10).
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Proposition 2.2. Suppose that all the assumptions of Proposition 2.1 hold true. Then for any

n,m ∈ N \ {0} and k > 0, en,m ∈ Ck
(
Q+

2R(x0)
)

and, letting δ = [N/4] + [(k + 1)/2] + 1, with [·]
denoting the integer part of a number, we have

(17) ‖en,m‖Ck
(
Q+

2R(x0)
) =


O
(
λ
k
2 +δ+ 1

4
n,m

)
if α ∈

[
1
2 , 1
)
,

O
(
λ
k−α+1

2 +δ
n,m

)
if α ∈

(
0, 1

2

)
,

as |(n,m)| =
√
n2 +m2 → +∞ .

Moreover we also have that

(18) lim
t→0+

∂ten,m(·, t) = 0

uniformly in B′2R(x0).

Proof. From classical elliptic estimates (see [5, Chapter V]) and Sobolev embeddings we have that,
for any k ∈ N, there exists a constant C(N,R, k) depending only on N,R and k such that

(19) ‖en‖Ck(B′2R(x0)) 6 C(N,R, k)µδn

with δ as in the statement of the lemma.

In order to obtain a similar estimate for the function γm t
αJ−α

(
j−α,m

2R t
)

we first observe that

γm =

[(
2R

j−α,m

)2 ∫ j−α,m

0

t(J−α(t))2dt

]−1/2

6

[
4R2

∫ j−α,1

0

t(J−α(t))2dt

]−1/2

j−α,m .(20)

By (162) and (164) in Subsection 7.3 and direct computation one may check that

(21)

∥∥∥∥ dkdtk
(
tαJ−α

(
j−α,m

2R
t

))∥∥∥∥
L∞(0,2R)

6

(
j−α,m

2R

)−α+k

C(α, k)[1 + (j−α,m)α−1/2]

for any k ∈ N, where C(α, k) is a positive constant depending only on α and k. Using (20) and
(21) we can then prove that, for any k ∈ N,∥∥∥∥ dkdtk (γm tαJ−α ( j−α,m2R t

))∥∥∥∥
L∞(0,2R)

=

O((j−α,m)k+1/2) if α ∈
(

1
2 , 1
)
,

O((j−α,m)k−α+1) if α ∈
(
0, 1

2

]
,

as m→ +∞,

which, together with (12), (13) and (19), implies (17), thus proving the first part.
Finally, from the series expansion of first kind Bessel functions, see [4, Section 4.5], we infer

that limt→0+(tαJ−α(t))′ = 0 which, together with (12), implies limt→0+ ∂ten,m(·, t) = 0 uniformly
in B′2R(x0). This completes the proof of the proposition. �

Given a function ψ ∈ C∞c
(
Q+

2R(x0)
)
, consider the following Poisson equation

(22)


−∆bϕ = ψ in Q+

2R(x0) ,

ϕ = 0 on [∂B′2R(x0)× (0, 2R)] ∪ [B′2R(x0)× {2R}] ,

lim
t→0+

tbϕt(·, t) = 0 on B′2R(x0)× {0} .

We prove below the existence of a smooth solution to (22).

Proposition 2.3. Let b ∈ (−1, 1), x0 ∈ Ω and let R > 0 be as in (9). Then for any ψ ∈
C∞c

(
Q+

2R(x0)
)
, (22) admits a unique solution ϕ ∈ C∞

(
Q+

2R(x0)
)

. Moreover ϕ satisfies

lim
t→0+

ϕt(·, t) = 0

uniformly in B′2R(x0).

Proof. The datum ψ can be written in the form

ψ(x, t) =

+∞∑
n,m=1

cn,m en,m(x, t) .
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Then the solution ϕ of (22) is formally given by

ϕ(x, t) =

+∞∑
n,m=1

cn,m
λn,m

en,m(x, t) .

We observe that by integration by parts and the fact that en,m is an eigenfunction of −∆b corre-
sponding to the eigenvalue λn,m, we have

cn,m =

∫
Q+

2R(x0)

tbψen,m dx dt =
1

λn,m

∫
Q+

2R(x0)

−tbψ∆ben,m dx dt

=
1

λn,m

∫
Q+

2R(x0)

−tb∆bψ en,m dx dt .

Iterating this procedure, we deduce that, for any ` ∈ N,

cn,m =
1

λ`n,m

∫
Q+

2R(x0)

tb(−∆b)
`ψ en,m dx dt =:

1

λ`n,m
dn,m,` .(23)

Since ψ ∈ C∞c (Q+
2R(x0)) then (−∆b)

`ψ ∈ C∞c (Q+
2R(x0)) and hence (−∆b)

`ψ ∈ L2(Q+
2R(x0); tb).

This yields
∑+∞
n,m=1 d

2
n,m,` < +∞ and, in turn, lim|(n,m)|→+∞ dn,m,` = 0. This, combined with

(23), shows that for any ` ∈ N

(24) cn,m = o(λ−`n,m) as |(n,m)| → +∞ .

By (17) and (24), we obtain as |(n,m)| → +∞

(25)

∥∥∥∥ cn,mλn,m
en,m

∥∥∥∥
Ck
(
Q+

2R(x0)
) =

O(cn,m λ
k
2 +δ− 3

4
n,m ) = o(λ

k
2 +δ− 3

4−`
n,m ) if α ∈

(
1
2 , 1
)
,

O(cn,m λ
k−α−1

2 +δ
n,m ) = o(λ

k−α−1
2 +δ−`

n,m ) if α ∈
(
0, 1

2

]
.

We put L := `− k
2 − δ + 3

4 if α ∈
(

1
2 , 1
)

and L := `− k−α−1
2 − δ if α ∈

(
0, 1

2

]
. We may fix ` large

enough such that L > N in both cases.
By (13), (165) and Weyl’s Law for the asymptotic behavior of eigenvalues of −∆ with Dirichlet

boundary conditions (see [31, 34]), we infer that there exists a constant C > 0 such that

λn,m > C(n
2
N +m2) > C(n

2
N +m

2
N ) > C(n2 +m2)

1
N for any n,m > 1 .

Combining this with (25) we obtain∥∥∥∥ cn,mλn,m
en,m

∥∥∥∥
Ck
(
Q+

2R(x0)
) = o

(
(n2 +m2)−

L
N

)
as |(n,m)| → +∞ .

Since L > N , this proves that

+∞∑
n,m=1

∥∥∥∥ cn,mλn,m
en,m

∥∥∥∥
Ck
(
Q+

2R(x0)
) < +∞

for any k ∈ N thus showing that ϕ ∈ C∞
(
Q+

2R(x0)
)

.

Finally, by (18) we also have

(26) lim
t→0+

ϕt(·, t) = 0 uniformly in B′2R(x0) .

This completes the proof of the proposition. �

We are ready to prove the main result of this section.

Proposition 2.4. Let Ω ⊂ RN be open. Let s ∈ (1, 2) and b = 3 − 2s. Let g ∈ (Ds−1,2(RN ))?,

f ∈ L2
loc(RN+1

+ ; tb) and let V ∈ L2(RN+1
+ ; tb) be a distributional solution of the problem

(27)

div(tb∇V ) = tbf in RN+1
+ ,

lim
t→0+

tbVt(·, t) = g in Ω,
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namely ∫
RN+1

+

V div(tb∇ϕ) dx dt =

∫
RN+1

+

tbfϕ dx dt for any ϕ ∈ C∞c (RN+1
+ )

and ∫
RN+1

+

V div(tb∇ϕ) dx dt =

∫
RN+1

+

tbfϕ dx dt+ (Ds−1,2(RN ))?

〈
g, ϕ(x, 0)

〉
Ds−1,2(RN )

(28)

for any ϕ ∈ C∞c
(
RN+1

+

)
such that supp(ϕ(·, 0)) ⊂ Ω and lim

t→0+
ϕt(·, t) ≡ 0 in RN .

Then V ∈ H1(Q+
R(x0); tb) for any x0 ∈ Ω and R > 0 satisfying (9) and moreover there exists a

positive constant C depending only on N, b, x0, R such that

(29) ‖V ‖H1(Q+
R(x0);tb) 6 C

(
‖f‖L2(Q+

2R(x0);tb) + ‖g‖(Ds−1,2(RN ))? + ‖V ‖L2(RN+1
+ ;tb)

)
.

Proof. Let x0 ∈ Ω and let R > 0 be as in (9). Let η0 ∈ C∞([0,∞)) be such that 0 6 η0 6 1
in [0,∞), η0 ≡ 1 in [0, R] and η0 ≡ 0 in [2R,∞). We now define η : RN+1 → R as η(x, t) :=

η0(|x− x0|)η0(t) for any (x, t) ∈ RN+1
+ and W (x, t) := η(x, t)V (x, t) for any (x, t) ∈ RN+1

+ .

By (28) and the fact that lim
t→0+

(ηϕ)t(·, t) ≡ 0 in RN for any function ϕ ∈ C∞c
(
RN+1

+

)
satisfying

supp(ϕ(·, 0)) ⊂ Ω and lim
t→0+

ϕt(·, t) ≡ 0 in Ω, it turns out that

(30)

∫
RN+1

+

W div(tb∇ϕ) dx dt =

∫
RN+1

+

tbfηϕ dx dt+ (Ds−1,2(RN ))?

〈
g, η(x, 0)ϕ(x, 0)

〉
Ds−1,2(RN )

−
∫
RN+1

+

V
[
div(tb∇η)ϕ+ 2tb∇η∇ϕ

]
dx dt,

where we exploited the identity η div(tb∇ϕ) = div(tb∇(ηϕ))− 2tb∇η∇ϕ− div(tb∇η)ϕ.
From this we can deduce that W is a solution of the problem

W ∈ L2(Q+
2R(x0); tb),∫

Q+
2R(x0)

W div(tb∇ϕ) dx dt =

∫
Q+

2R(x0)

tbfηϕ dx dt

+ (Ds−1,2(RN ))?

〈
g, η(x, 0)ϕ(x, 0)

〉
Ds−1,2(RN )

−
∫
Q+

2R(x0)

V
[
div(tb∇η)ϕ+ 2tb∇η∇ϕ

]
dx dt

for any ϕ ∈ C∞(Q+
2R(x0)) such that ϕ ≡ 0 on ∂Q2R(x0) ∩ RN+1

+

and lim
t→0+

ϕt(·, 0) ≡ 0 in B′2R(x0),

(31)

where the duality product has to be interpreted as applied to a trivial extension of ηϕ.
We divide the remaining part of the proof into three steps.
Step 1. We prove that given V, g as in the statement and η as above, there exists a unique

solution of (31).
Suppose that W1,W2 are two of these functions and denote by W their difference. Then we

have that W ∈ L2(Q+
2R(x0); tb) and it satisfies

(32)

∫
Q+

2R(x0)

W div(tb∇ϕ) dx dt = 0

for any ϕ ∈ C∞(Q+
2R(x0)) with ϕ ≡ 0 on ∂Q2R(x0) ∩ RN+1

+ and lim
t→0+

ϕt(·, t) ≡ 0 in B′2R(x0).

Let ψ ∈ C∞c (Q+
2R(x0)) and let ϕ be the unique solution of (22). We have shown that such a

function ϕ belongs to C∞(Q+
2R(x0)). This together with (26) implies that ϕ is an admissible test

function in (32). This yields∫
Q+

2R(x0)

tbWψ dxdt = −
∫
Q+

2R(x0)

W div(tb∇ϕ) dx dt = 0

for any ψ ∈ C∞c (Q+
2R(x0)). This shows that W ≡ 0 in Q+

2R(x0) and completes the proof of Step 1.
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Step 2. In this step we prove that, for V, g as in the statement of the proposition and η as
above, there exists a unique function Z ∈ H1

0 (Γ+
2R(x0); tb) such that

(33)

∫
Q+

2R(x0)

tb∇Z∇ϕdx dt = −
∫
Q+

2R(x0)

tbfηϕ dx dt

− (Ds−1,2(RN ))?

〈
g, η(x, 0)ϕ(x, 0)

〉
Ds−1,2(RN )

+

∫
Q+

2R(x0)

V
[
div(tb∇η)ϕ+ 2tb∇η∇ϕ

]
dx dt

for any ϕ ∈ H1
0 (Γ+

2R(x0); tb). We recall that there exists a well-defined continuous trace embedding

from D1,2(RN+1
+ ; tb) into Ds−1,2(RN ), see (149). We observe that for any ϕ ∈ H1

0 (Γ+
2R(x0); tb) the

function ηϕ, once it is trivially extended outside Q+
2R(x0), belongs to D1,2(RN+1

+ ; tb). We denote

the trace of ηϕ simply by η(·, 0)ϕ(·, 0) ∈ Ds−1,2(RN ). We have∣∣∣∣ (Ds−1,2(RN ))?

〈
g, η(x, 0)ϕ(x, 0)

〉
Ds−1,2(RN )

∣∣∣∣ 6 ‖g‖(Ds−1,2(RN ))?‖η(·, 0)ϕ(·, 0)‖Ds−1,2(RN )(34)

6 const ‖g‖(Ds−1,2(RN ))?‖ηϕ‖D1,2(RN+1
+ ;tb)

6 const ‖g‖(Ds−1,2(RN ))?‖ϕ‖H1
0 (Γ+

2R(x0);tb)

for some const > 0 depending only on N,R, b and η.
On the other hand, from the fact that ηt(·, 0) ≡ 0 in Ω and by (145), we deduce that∣∣∣∣∣

∫
Q+

2R(x0)

V div(tb∇η)ϕdx dt

∣∣∣∣∣ 6 (b‖ηt/t‖L∞(RN+1
+ ) + ‖∆η‖L∞(RN+1

+ )

)∫
Q+

2R(x0)

tb|V | |ϕ| dx dt(35)

6
(
b‖ηt/t‖L∞(RN+1

+ ) + ‖∆η‖L∞(RN+1
+ )

)
‖V ‖L2(Q+

2R(x0);tb)
4
√

2R
N+b−1 ‖ϕ‖H1

0 (Γ+
2R(x0);tb)

and ∣∣∣∣∣
∫
Q+

2R(x0)

tbfηϕ dx dt

∣∣∣∣∣ 6 4
√

2R
N+b−1 ‖f‖L2(Q+

2R(x0);tb) ‖ϕ‖H1
0 (Γ+

2R(x0);tb)(36)

for any ϕ ∈ H1
0 (Γ+

2R(x0); tb).
Finally we have∣∣∣∣∣

∫
Q+

2R(x0)

V tb∇η∇ϕdx dt

∣∣∣∣∣ 6 ‖∇η‖L∞(RN+1
+ )‖V ‖L2(Q+

2R(x0);tb) ‖ϕ‖H1
0 (Γ+

2R(x0);tb) .(37)

From (34)-(37) and the Lax-Milgram Theorem we deduce that (33) admits a unique solution
Z ∈ H1

0 (Γ+
2R(x0); tb). An integration by parts yields∫

B′2R(x0)×(ε,2R)

tb∇Z∇ϕdx dt = −
∫
B′2R(x0)

εbZ(x, ε)ϕt(x, ε) dx−
∫
B′2R(x0)×(ε,2R)

Z div(tb∇ϕ) dx dt

for any ϕ ∈ C∞(Q+
2R(x0)) ∩H1

0 (Γ+
2R(x0); tb) satisfying limt→0+ ϕt(·, t) = 0 uniformly in B′2R(x0).

Passing to the limit as ε→ 0+ we obtain

(38)

∫
Q+

2R(x0)

tb∇Z∇ϕdx dt = −
∫
Q+

2R(x0)

Z div(tb∇ϕ) dx dt .

Actually, one has to prove first (38) for smooth functions Z and then, by a density argument, for
all functions in H1

0 (Γ+
2R(x0); tb). Combining (33) and (38) we obtain∫

Q+
2R(x0)

Z div(tb∇ϕ) dx dt =

∫
Q+

2R(x0)

tbfηϕ dx dt(39)

+ (Ds−1,2(RN ))?

〈
g, η(x, 0)ϕ(x, 0)

〉
Ds−1,2(RN )

−
∫
Q+

2R(x0)

V
[
div(tb∇η)ϕ+ 2tb∇η∇ϕ

]
dx dt

for any ϕ ∈ C∞(Q+
2R(x0))∩H1

0 (Γ+
2R(x0); tb) with lim

t→0+
ϕt(·, t) ≡ 0 in B′2R(x0). From this we deduce

that Z is a solution of (31).
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Step 3. We conclude the proof of the proposition. We have shown that (31) admits a unique
solution, hence Z coincides in Q+

2R(x0) with the function W = ηV defined at the beginning of

the proof. In particular ηV ∈ H1(Q+
2R(x0); tb) and, in turn, V ∈ H1(Q+

R(x0); tb) being η ≡ 1 in

Q+
R(x0). The proof of (29) follows from the estimates of Step 2 and standard application of the

continuous dependence from the data in Lax-Milgram Theorem. �

3. An alternative formulation of problem (1)

Inspired by [10] and [46], we introduce an alternative formulation for problem (1). For any
1 < s < 2 as in (1) we define b := 3− 2s ∈ (−1, 1). Next we define Db as the completion of

(40) T =
{
U ∈ C∞c (RN+1

+ ) : Ut ≡ 0 on RN × {0}
}

with respect to the norm

‖U‖Db =

(∫
RN+1

+

tb|∆bU(x, t)|2 dx dt
)1/2

.

Under the assumption N > 2s, the validity of the Hardy-type inequality provided by Proposition
7.2 makes the abstract completion defined above isomorphic to a concrete functions space.

Let now u ∈ Ds,2(RN ) be a solution of (1) in the sense given in (2) and let U ∈ Db be the
unique solution of (4).

The existence of a solution for problem (4) is essentially contained in [46]. For completeness,
we provide here a rigorous formulation for (4) and we prove the existence and uniqueness of its
solutions, thus giving a proof of Proposition 1.4.

In order to do that, we need to show that the trace map Tr : Db → Ds,2(RN ) is well defined and
continuous, so that the first boundary condition in (4) can be interpreted in the sense of traces.
The construction of this trace operator is one of the main goals of this section.

The second boundary condition in (4) is a forced condition coming from the functional space Db
and has the following meaning: any function U ∈ Db is the limit with respect to the norm ‖ · ‖Db
of a sequence {Un} of smooth functions satisfying limt→0+ tb(Un)t(·, t) ≡ 0 in RN . In other words,
the boundary condition limt→0+ tbUt(·, 0) ≡ 0 on RN is equivalent to the validity of the following
integration by parts formula

(41)

∫
RN+1

+

tbψ∆bU dxdt = −
∫
RN+1

+

tb∇U∇ψ dx dt, for any ψ ∈ C∞c (RN+1
+ ).

As mentioned above our main purpose now is to construct the trace map Tr : Db → Ds,2(RN ).
We define the weighted Sobolev space V (0,∞; tb) as the completion of

(42) {ϕ ∈ C∞c ([0,∞)) : ϕ′(0) = 0}
with respect to the norm

(43) ‖ϕ‖V (0,∞;tb) =

(∫ ∞
0

tb
[
|∆b,tϕ|2 + |ϕ′|2 + |ϕ|2

]
dt

)1/2
where ∆b,tϕ = ϕ′′ + b

tϕ
′.

Lemma 3.1. Let V (0,∞; tb) be the space defined in (42)–(43). Then the following facts hold true:

(i) V (0,∞; tb) ⊂ C1([0,∞));

(ii) ϕ′′, ϕ
′

t ∈ L
2(0,∞; tb) and ϕ′(0) = 0 for any ϕ ∈ V (0,∞; tb);

(iii) for any ϕ ∈ V (0,∞; tb) there exists a constant C > 0 independent of t but possibly depen-
dent on ϕ such that

(44) |ϕ(t)| 6 C(1 + t
3−b

2 ) for any t > 0 .

Proof. We divide the proof of the lemma into several steps.
Step 1. By integration by parts, combined with some easy computations, one can prove that,

for any ϕ as in (42),

(45)

∫ ∞
0

tb
[
(∆b,tϕ)2 + (ϕ′)2 + ϕ2

]
dt =

∫ ∞
0

tb
[
|ϕ′′(t)|2 + bt−2|ϕ′(t)|2 + |ϕ′(t)|2 + |ϕ(t)|2

]
dt.
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Step 2. We prove that for any ϕ as in (42) we have

(46)
(b− 1)2

4

∫ ∞
0

tb−2|ϕ′(t)|2dt 6
∫ ∞

0

tb|ϕ′′(t)|2dt .

Indeed, integration by parts yields

0 6
∫ ∞

0

(
t
b
2ϕ′′(t) +

b− 1

2
t
b
2−1ϕ′(t)

)2

dt

=

∫ ∞
0

tb|ϕ′′(t)|2dt+
(b− 1)2

4

∫ ∞
0

tb−2|ϕ′(t)|2dt+ (b− 1)

∫ ∞
0

tb−1ϕ′(t)ϕ′′(t) dt

=

∫ ∞
0

tb|ϕ′′(t)|2dt− (b− 1)2

4

∫ ∞
0

tb−2|ϕ′(t)|2dt .

Step 3. We prove that the norm in (43) and the norm

ϕ 7→
(∫ ∞

0

tb
(
|ϕ′′(t)|2 + |ϕ′(t)|2 + |ϕ(t)|2

)
dt

)1/2

are equivalent on the space defined in (42).
If b ∈ [0, 1) the equivalence of the two norms follows by (45) and (46).
If b ∈ (−1, 0) one of the two estimate is trivial and for the other we proceed in this way:∫ ∞

0

tb
(
|ϕ′′(t)|2 + bt−2|ϕ′(t)|2

)
dt >

(
1 +

4b

(b− 1)2

)∫ ∞
0

tb|ϕ′′(t)|2dt =

(
b+ 1

b− 1

)2 ∫ ∞
0

tb|ϕ′′(t)|2dt

where the above inequality follows from (46) and the fact that b < 0.
Step 4. In this step we complete the proof of the lemma. From Step 2 and Step 3 and a density

argument we deduce that∫ ∞
0

tb|ϕ′′(t)|2dt 6 C‖ϕ‖2V (0,∞;tb) and

∫ ∞
0

tb−2|ϕ′(t)|2dt 6 C‖ϕ‖2V (0,∞;tb)

for any ϕ ∈ V (0,∞; tb), where C is a positive constant independent of ϕ. This proves the first two
assertions in (ii).

For any ϕ as in (42) and t > s > 0 we have, for some positive constant C independent of s,t
and ϕ,

|ϕ(t)− ϕ(s)| =
∣∣∣∣∫ t

s

τ
b
2−1ϕ′(τ)τ1− b2 dτ

∣∣∣∣ 6 (∫ t

s

τ b−2|ϕ′(τ)|2dτ
)1/2(∫ t

s

τ2−bdτ

)1/2

(47)

6 C‖ϕ‖V (0,∞;tb)

∣∣t3−b − s3−b∣∣1/2
where the last inequality follows from Step 2 and Step 3. By density we have that estimate (47)
actually holds for any ϕ ∈ V (0,∞; tb). This proves that any ϕ ∈ V (0,∞; tb) is continuous in
[0,+∞) being 3− b > 0. Moreover if we put s = 0 in (47) we obtain

(48)

∣∣∣∣ϕ(t)− ϕ(0)

t

∣∣∣∣ 6 C‖ϕ‖V (0,∞;tb)t
1−b

2 and |ϕ(t)| 6 |ϕ(0)|+ C‖ϕ‖V (0,∞;tb)t
3−b

2 .

Since b < 1, from the first estimate in (48) we deduce that ϕ is differentiable at 0 and ϕ′(0) = 0 so
that the proof of (ii) is complete. The second estimate in (48) gives (44) and proves (iii).

It remains to complete the proof of (i). For any ϕ as in (42) and t > s > 0 we have, for some
positive constant C independent of s,t and ϕ,

|ϕ′(t)− ϕ′(s)| =
∣∣∣∣∫ t

s

τ
b
2ϕ′′(τ)τ−

b
2 dτ

∣∣∣∣ 6 (∫ t

s

τ b|ϕ′′(τ)|2dτ
)1/2(∫ t

s

τ−bdτ

)1/2

(49)

6 C‖ϕ‖V (0,∞;tb)

∣∣t1−b − s1−b∣∣1/2
where the last inequality follows from Step 2 and Step 3. By density we have that estimate (49)
actually holds for any ϕ ∈ V (0,∞; tb). Since b < 1, we deduce that ϕ′ is continuous in [0,∞) and
this completes the proof of (i). �

Thanks to Lemma 3.1 we can now prove the existence of a classical solution of (4) when the
datum u is sufficiently smooth.
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Lemma 3.2. Let u ∈ C∞c (RN ). Then (4) admits a classical solution U ∈ C2(RN+1
+ ). Moreover

U ∈ Db and the following assertions hold true:

(i) there exists a constant Cb > 0 depending only on b such that

(50) ‖U‖Db = Cb‖u‖Ds,2(RN ) ;

(ii) for any V ∈ C∞c (RN+1
+ ) such that V (·, 0) ≡ u and Vt(·, 0) ≡ 0 in RN , we have

(51) ‖U‖Db 6 ‖V ‖Db .

Proof. Given a function u ∈ C∞c (RN ) we aim to solve problem (4) by using the Fourier transform.
Writing the equation ∆2

bU = 0 as ∆2
xU+2∆b,t∆xU+∆2

b,tU = 0 and applying the Fourier transform
with respect to the x variable to both sides of the equation, we formally obtain

(52) |ξ|4Û − 2|ξ|2∆b,tÛ + ∆2
b,tÛ = 0 .

Following [46], we look for a solution of (52) in the form Û(ξ, t) = û(ξ)φ(|ξ|t) with φ(0) = 1 and
φ′(0) = 0. From (52), φ has to be a solution of the equation

(53) ∆2
b,tφ− 2∆b,tφ+ φ = 0 .

We now divide the rest of the proof into several steps.
Step 1. In this step we prove the existence of a solution to equation (53) in V (0,∞; tb). We

introduce the functional J : V (0,∞; tb)→ R defined as

J(ϕ) =

∫ ∞
0

tb
[
(∆b,tϕ)

2
+ 2(ϕ′)2 + ϕ2

]
dt =

∫ ∞
0

tb(∆b,tϕ− ϕ)2dt .

We observe that the equality between the second and third term in the above formula follows from
the fact that

∫∞
0
tbϕ(∆b,tϕ) dt =

∫∞
0
ϕ(tbϕ′)′ dt = −

∫∞
0
tb(ϕ′)2 dt.

Thanks to Lemma 3.1, it is possible to consider the minimization problem

min{J(ϕ) : ϕ ∈ V (0,∞; tb), ϕ(0) = 1} .
Since the functional J is clearly coercive with respect to the norm of V (0,∞; tb), the minimization
problem admits a weak solution φ which solves equation (53) and satisfies the initial conditions
φ(0) = 1 and φ′(0) = 0. In particular we have

(54)

∫ ∞
0

tb[∆b,tφ(t)− φ(t)][∆b,tψ(t)− ψ(t)] dt = 0

for any ψ ∈ V (0,∞; tb) such that ψ(0) = ψ′(0) = 0.
Step 2. We prove that φ ∈ C2([0,∞)). If we put ζ(t) := ∆b,tφ(t)−φ(t) ∈ L2(0,∞; tb), by (54),

we see that ζ is a distributional solution of the equation

(55) ∆b,tζ − ζ = 0 in (0,∞) .

We claim that ζ ∈ C∞(0,∞) and it solves (55) in a classical sense.

Indeed, if we put F (t) :=
∫ t

1
sbζ(s) ds then F ∈ H1

loc(0,∞) being ζ ∈ L2(0,∞; tb) and moreover

F ′(t) = tbζ(t) in the sense of distributions.
Hence, by (55), (tbζ ′(t) − F (t))′ = 0 in the sense of distributions so that tbζ ′(t) = F (t) + c in

(0,∞). This implies ζ ′ ∈ H1
loc(0,∞) and in particular ζ ∈ H2

loc(0,∞). Now, with a bootstrap
procedure which makes use of (55), we conclude that ζ ∈ C∞(0,∞).

Now we claim that ζ ∈ C0([0,∞)). For any t > s > 0, by (55), we have∣∣tbζ ′(t)− sbζ ′(s)∣∣ =

∣∣∣∣∫ t

s

(τ bζ(τ))′dτ

∣∣∣∣ =

∣∣∣∣∫ t

s

τ b∆b,τζ(τ) dτ

∣∣∣∣(56)

6

(∫ t

s

τ b|∆τ,bζ(τ)|2dτ
)1/2(∫ t

s

τ bdτ

)1/2

= 1√
b+1

(∫ t

s

τ b|ζ(τ)|2dτ
)1/2 ∣∣tb+1 − sb+1

∣∣1/2
6 1√

b+1
‖ζ‖L2(0,∞;tb)

∣∣tb+1 − sb+1
∣∣1/2 .

Since b > −1, choosing t = 1 in (56) and letting s → 0+, we infer that sbζ ′(s) = O(1) as s → 0+

and, in turn, ζ ′(s) = O(s−b) as s→ 0+. This proves that ζ ′ is integrable in a right neighborhood
of 0 and hence ζ is continuous at 0, thus proving the claim.
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Next, we can proceed by completing the proof of Step 2. By

(57) (tbφ′(t))′ = tb[φ(t) + ζ(t)]

we deduce that φ ∈ C∞(0,∞). Moreover, integrating (57), for any 0 < s < t, we obtain

(58) tbφ′(t)− sbφ′(s) =

∫ t

s

τ b[φ(τ) + ζ(τ)] dτ .

By Lemma 3.1 (i), the continuity of ζ and the fact that b > −1, it follows

lim
s→0+

sbφ′(s) = tbφ′(t)−
∫ t

0

τ b[φ(τ) + ζ(τ)] dτ ∈ R .

This means that there exists L ∈ R such that limt→0+ tbφ′(t) = L. We observe that L = 0 since
otherwise we would have

tb
(φ′(t))2

t2
∼ L2t−b−2 as t→ 0+

and hence tb (φ′(t))2

t2 6∈ L1(0, R) for any R > 0, in contradiction with Lemma 3.1 (ii).
Therefore, letting s→ 0+ in (58), we infer that

(59) φ′(t) = t−b
∫ t

0

τ b[φ(τ) + ζ(τ)] dτ

and, in turn, by de L’Hôpital rule, we obtain

lim
t→0+

φ′(t)

t
= lim
t→0+

∫ t
0
τ b[φ(τ) + ζ(τ)] dτ

tb+1
=
φ(0) + ζ(0)

b+ 1
.

Finally, by (57), we have that

lim
t→0+

φ′′(t) = lim
t→0+

(
−bφ

′(t)

t
+ φ(t) + ζ(t)

)
=

1

b+ 1
[φ(0) + ζ(0)] .

This completes the proof of Step 2.

Step 3. We show that the function U , defined in such a way that Û(ξ, t) = û(ξ)φ(|ξ|t) with φ

as in Step 1, satisfies U ∈ C2(RN+1
+ ), Ut(·, 0) ≡ 0 in RN and it solves (4) in a classical sense.

First, we observe that, by Lemma 3.1 (iii) and (56), φ, ζ ′ and, in turn also ζ, have at most
a polynomial growth at +∞. Hence, by (59) also φ′ has at most a polynomial growth at +∞.
Finally, from the equation ∆b,tφ = φ+ ζ, we also deduce that φ′′ has at most a polynomial growth
at +∞.

Therefore, since φ ∈ C2([0,∞)) and û ∈ S(RN ), with S(RN ) the space of rapidly decreasing
C∞(RN ) functions, by the Dominated Convergence Theorem, one can deduce that the map t 7→
û(ξ)φ(|ξ|t) belongs to the space of vector valued functions C2([0,∞);L2

C(RN ; (1 + |ξ|2)γ)) for any
γ > 0. Here L2

C(RN ; (1+ |ξ|2)γ) denotes the weighted complex L2-space. This proves that the map
t 7→ U(x, t) belongs to the space C2([0,∞);Hγ(RN )) for any γ > 0. From this we deduce that

U ∈ C2(RN+1
+ ). Since

Ut(x, t) =
1

(2π)N/2

∫
RN

eiξ·x û(ξ) |ξ|φ′(|ξ|t) dξ

and φ′(0) = 0 it follows that Ut(x, 0) = 0 for any x ∈ RN . By construction, we also have that U is
a classical solution of (4).

Step 4. We prove that ∆bU ∈ L2(RN+1
+ ; tb) and

(60)

∫
RN+1

+

tb|∆bU(x, t)|2dx dt = J(φ)

∫
RN
|ξ|2s|û(ξ)|2dξ .

By direct computation we see that

|∆b,tÛ(ξ, t)− |ξ|2Û(ξ, t)|2 = |ξ|4|û(ξ)|2[∆b,tφ(|ξ|t)− φ(|ξ|t)]2 .
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After integration, a change of variable with respect to t and Fubini-Tonelli Theorem, we obtain∫
RN+1

+

tb|∆b,tÛ(ξ, t)− |ξ|2Û(ξ, t)|2dξdt =

∫
RN+1

+

|ξ|3−b|û(ξ)|2tb[∆b,tφ(t)− φ(t)]2dξdt(61)

= J(φ)

∫
RN
|ξ|2s|û(ξ)|2dξ .

Since û ∈ S(RN ), the last integral is finite and hence, by Fubini-Tonelli Theorem, for almost every

t ∈ (0,∞) the map ξ 7→ ∆b,tÛ(ξ, t)−|ξ|2Û(ξ, t) = ∆̂bU(ξ, t) belongs to the complex space L2
C(RN ).

Hence by Plancherel Theorem also the map x 7→ ∆bU(x, t) belongs to L2(RN ) for almost every
t ∈ (0,∞). Moreover∫

RN
|∆bU(x, t)|2dx =

∫
RN
|∆b,tÛ(ξ, t)− |ξ|2Û(ξ, t)|2dξ for almost every t ∈ (0,∞) .

Multiplying this identity by tb, integrating in (0,∞) with respect to the variable t and applying

Fubini-Tonelli Theorem we deduce that ∆bU ∈ L2(RN+1
+ ; tb). Moreover (60) follows by exploiting

(61).
Step 5. We prove that U ∈ Db.
We have to prove that U can be approximated with functions in T with respect to the norm

‖ · ‖Db . Here T is the space defined in (40).
Combining Plancherel Theorem with the fact that û ∈ S(RN ) and φ ∈ V (0,∞; tb) one can verify

that U ∈ L2(RN+1
+ ; tb) and ∇U ∈ L2(RN+1

+ ; tb). Therefore since U ∈ C2(RN+1
+ ) we also have that

(62)
U

|x|2 + t2
∈ L2(RN+1

+ ; tb) and
|∇U |√
|x|2 + t2

∈ L2(RN+1
+ ; tb) .

Define Un(x, t) = η
(
|x|
n

)
η
(
t
n

)
U(x, t) where η ∈ C∞([0,∞)), η ≡ 1 in [0, 1] and η ≡ 0 in [2,∞).

We prove that

(63)

∫
RN+1

+

tb|∆b(Un − U)|2dx dt→ 0 as n→ +∞ .

By direct computation one sees that

∆bUn(x, t) = η
(
t
n

)
Θ
(
x
n

)
∆bU(x, t) + η

(
t
n

) [
1
n2 ∆xΘ

(
x
n

)
U(x, t) + 2

n∇xΘ
(
x
n

)
∇xU(x, t)

]
(64)

+ Θ
(
x
n

) [
1
n2 η
′′ ( t

n

)
U(x, t) + 2

nη
′ ( t
n

)
Ut(x, t) + b

t
1
nη
′ ( t
n

)
U(x, t)

]
where we put Θ(x) = η(|x|). Then, we observe that there exists a positive constant C independent
of x, t and n, such that

tb
∣∣η ( tn)Θ

(
x
n

)
∆bU(x, t)

∣∣2 6 tb |∆bU(x, t)|2 , tb

n4

∣∣η ( tn)∆xΘ
(
x
n

)
U(x, t)

∣∣2 6 Ctb U2(z)
|z|4 ,(65)

4tb

n2

∣∣η ( tn)∇xΘ
(
x
n

)
∇xU(x, t)

∣∣2 6 Ctb |∇U(z)|2
|z|2 , tb

n4

∣∣Θ ( xn) η′′ ( tn)U(x, t)
∣∣2 6 Ctb U2(z)

|z|4 ,

4tb

n2

∣∣Θ ( xn) η′ ( tn)Ut(x, t)∣∣2 6 Ctb |∇U(z)|2
|z|2 , b2tb

n4

∣∣∣Θ ( xn) η′(t/n)
t/n U(x, t)

∣∣∣2 6 Ctb U2(z)
|z|4 ,

since |z| 6
√

8n for any z ∈ supp
(
η
(
t
n

)
Θ
(
x
n

))
where we put z = (x, t) ∈ RN+1.

By (62), (64), (65) and the Dominated Convergence Theorem, (63) follows.

This shows that for any ε > 0 there exists a function V ∈ C2
c (RN+1

+ ) such that∫
RN+1

+

tb|∆b(U − V )|2dx dt < ε .

By Step 3 and the truncation argument introduced above, we deduce that we can choose V in such
a way that Vt(·, 0) ≡ 0 in RN .

A mollification argument allows us to approximate, with respect to the norm ‖·‖Db , the function
V found above, with a C∞ compactly supported function W satisfying Wt(·, 0) ≡ 0 in RN . Indeed,
one can introduce a sequence of mollifiers {ρn} and still denote by V the even extension with respect
to the variable t to the whole RN+1. This extension satisfies V ∈ C2

c (RN+1) since Vt(x, 0) = 0 for
any x ∈ RN . We choose the functions ρn even with respect to the t variable. Then one can verify
that the functions Wn := ρn ∗ V ∈ C∞c (RN+1) are even with respect to t and the functions ∂tWn
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are odd with respect to t; in particular ∂tWn(·, 0) ≡ 0 in RN . Exploiting the fact that for any
n ∈ N, ∂tWn is odd with respect to t, one can show that |∂tWn(x, t)| 6 C|t| for any (x, t) ∈ RN+1

and n ∈ N where C is a constant independent of (x, t) ∈ RN+1 and n ∈ N.
Combining this estimate with the fact that V ∈ C2

c (RN+1), by the Dominated Convergence
Theorem we obtain

∫
RN+1 |t|b |∆b(Wn − V )|2dx dt → 0 as n → +∞. We have just shown that

U ∈ Db.
Step 6. In this step we complete the proof of the lemma. The proof of (i) follows from (60)

once we put Cb :=
√
J(φ).

It remains to prove (ii). Let Φ ∈ C∞c (RN+1
+ ) such that Φ(x, 0) = Φt(x, 0) = 0 for any x ∈ RN .

Recalling that ∆̂bU(ξ, t) = |ξ|2û(ξ)[∆b,tφ(|ξ|t) − φ(|ξ|t)], by Plancherel Theorem, Fubini-Tonelli
Theorem and a change of variable, we have∫

RN+1
+

tb∆bU(x, t)∆bΦ(x, t) dx dt(66)

=

∫
RN

(∫ ∞
0

tb|ξ|2 û(ξ) [∆b,tφ(|ξ|t)− φ(|ξ|t)]
[
∆b,tΦ̂(ξ, t)− |ξ|2Φ̂(ξ, t)

]
dt

)
dξ

=

∫
RN

(∫ ∞
0

tb|ξ|1−b û(ξ) [∆b,tφ(t)− φ(t)]

[
∆b,tΦ̂

(
ξ, t
|ξ|

)
− |ξ|2Φ̂

(
ξ, t
|ξ|

)]
dt

)
dξ

=

∫
RN
|ξ|3−b û(ξ)

(∫ ∞
0

tb[∆b,tφ(t)− φ(t)]

[
∆b,t

(
Φ̂
(
ξ, t
|ξ|

))
− Φ̂

(
ξ, t
|ξ|

)]
dt

)
dξ = 0

where the last identity follows from the fact that, for any ξ 6= 0, the real part and the imaginary

part of the map t 7→ Φ̂
(
ξ, t
|ξ|

)
are admissible test functions in (54) since they belong to C∞c ([0,∞))

and they vanish at t = 0 together with their first derivatives. By a density argument combined
with the regularization procedure shown in Step 5, one can show that (66) actually holds for any

Φ ∈ C2(RN+1
+ ) such that

∆bΦ ∈ L2(RN+1
+ ; tb) ,

|∇Φ|√
|x|2 + t2

∈ L2(RN+1
+ ; tb) ,(67)

Φ

|x|2 + t2
∈ L2(RN+1

+ ; tb) , Φ(·, 0) ≡ Φt(·, 0) ≡ 0 in RN .

Let V be as in the statement of the lemma and put Φ := V −U is such a way that Φ ∈ C2(RN+1
+ )

and it satisfies (67). By (66) we then have

‖V ‖2Db = ‖Φ‖2Db + 2

∫
RN+1

+

tb∆bU∆bΦ dx dt+ ‖U‖2Db = ‖Φ‖2Db + ‖U‖2Db > ‖U‖
2
Db .

This completes the proof of the lemma. �

Thanks to Lemma 3.2, in the next proposition we construct a trace map Tr : Db → Ds,2(RN ).

Proposition 3.3. Let s ∈ (1, 2) and let b = 3−2s ∈ (−1, 1). Then there exists a linear continuous

map Tr : Db → Ds,2(RN ) such that Tr(V ) = V|RN×{0} for any V ∈ C∞c (RN+1
+ ).

Proof. Let V ∈ C∞c (RN+1
+ ) be such that Vt(·, 0) ≡ 0 in RN and put u = V|RN×{0} ∈ C∞c (RN ). By

Lemma 3.2, we deduce that there exists U ∈ C2(RN+1
+ ) ∩ Db such that

(68) U|RN×{0} = u , ‖U‖Db = Cb‖u‖Ds,2(RN ) , ‖U‖Db 6 ‖V ‖Db .

Therefore, if we put Tr(V ) := u we have ‖Tr(V )‖Ds,2(RN ) 6 C
−1
b ‖V ‖Db . The conclusion follows by

completion. �

We can now proceed with the proof of Proposition 1.4.

Proof of Proposition 1.4. Let u ∈ Ds,2(RN ). Let {un} ⊂ C∞c (RN ) be such that un → u in
Ds,2(RN ) and let {Un} ⊂ Db be the corresponding sequence of solutions of (4) whose existence is
shown in Lemma 3.2. By (50) we deduce that {Un} is a Cauchy sequence in Db and hence there
exists a function U ∈ Db such that Un → U in Db. In particular, by Proposition 3.3 we have that
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Tr(U) = u and moreover U solves (5) being Un weak solutions of (4) corresponding to un for any
n. This proves the existence of a solution of (4).

In order to prove uniqueness of solutions to (4) it is sufficient to consider (5) with u ≡ 0 and
to prove that it admits only the trivial solution. Being Tr(U) = 0, U becomes an admissible test
function so that, choosing ϕ = U in (5), it follows immediately that U ≡ 0. �

Let u be a solution of (1) and let U ∈ Db be the corresponding solution to (4). From Lemma 3.2
it follows that C2

b ‖u‖2Ds,2(RN ) = ‖U‖2Db . Moreover by the proof of Proposition 3.3, for all ϕ ∈ Db
satisfying Tr (ϕ) = u, we have that

(69) C2
b ‖Tr (ϕ)‖2Ds,2(RN ) = ‖U‖2Db 6 ‖ϕ‖

2
Db ,

which is equivalent to say that U ∈ Db is a solution to the minimum problem

min
ϕ∈Db,Tr (ϕ)=u

{
‖ϕ‖2Db − C

2
b ‖Tr (ϕ)‖2Ds,2(RN )

}
.

Therefore we have

(70) (U,ψ)Db = 0 for any ψ ∈ Db such that Tr (ψ) = 0 .

Now, for any ϕ ∈ Db we denote by Φ ∈ Db the solution of (4) corresponding to Tr (ϕ). By (68) we
have that

‖U + Φ‖2Db = C2
b ‖u+ Tr (ϕ)‖2Ds,2(RN ) and ‖U − Φ‖2Db = C2

b ‖u− Tr (ϕ)‖2Ds,2(RN )

and taking the difference we obtain

(71) (U,Φ)Db = C2
b (u,Tr (ϕ))Ds,2(RN ) .

Since Tr (ϕ− Φ) = 0, combining (70) and (71) we obtain

(72) (U,ϕ)Db = (U,Φ)Db = C2
b (u,Tr (ϕ))Ds,2(RN ) for any ϕ ∈ Db.

Hence u ∈ Ds,2(RN ) solves (2) if and only if the corresponding function U ∈ Db solving (4) is a
solution to

(73) (U,ϕ)Db = 0 for all ϕ ∈ Db s.t. supp (Tr (ϕ)) ⊂ Ω .

4. An Almgren type monotonicity formula

Let us assume that U ∈ Db is a solution to (73). Let us set

(74) V := ∆bU ∈ L2(RN+1
+ ; tb),

i.e., in view of (41) and Proposition 7.2,

(75)

∫
RN+1

+

tbV ϕdz = −
∫
RN+1

+

tb∇U∇ϕdz , for any ϕ ∈ C∞c (RN+1
+ ).

Furthermore (73) yields

(76)

∫
RN+1

+

V div(tb∇ϕ) dz = 0

for any ϕ ∈ C∞c
(
RN+1

+

)
such that supp(ϕ(·, 0)) ⊂ Ω and lim

t→0+
ϕt(·, t) ≡ 0 in RN . Proposition 2.4

then ensures that

(77) V ∈ H1(Q+
R(x0); tb) for any x0 ∈ Ω and R > 0 satisfying B′2R(x0) ⊂ Ω.

Up to translation it is not restrictive to suppose that x0 = 0 ∈ Ω. Then we fix a radius R > 0
satisfying (77). For simplicity, the center x0 of the sets introduced in (8) will be omitted whenever
x0 = 0.

By (76)-(77) we obtain

(78)

∫
B+
R

tb∇V∇ϕdz = 0

for any ϕ ∈ C∞c (Σ+
R(0)) such that ϕt(·, 0) ≡ 0 in B′R.
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Actually (78) still holds true for any ϕ ∈ C∞c (Σ+
R(0)) not necessarily satisfying ϕt(·, 0) ≡ 0 in

B′R. Indeed, for any ϕ ∈ C∞c (Σ+
R(0)), one can test (78) with ϕk(x, t) = ϕ(x, t) − ϕt(x, 0) t η(kt),

k ∈ N, where η ∈ C∞c (R), 0 6 η 6 1, η(t) = 1 for any t ∈ [−1, 1] and η(t) = 0 for any
t ∈ (−∞,−2] ∪ [2,+∞), and pass to the limit as k → +∞.

By density we may conclude that∫
B+
R

tb∇V∇ϕdz = 0 for any ϕ ∈ H1
0 (Σ+

R; tb) .

Hence, the couple (U, V ) ∈ Db × L2(RN+1
+ ; tb) is a weak solution to the system (6) in the sense

that (75) and (76) hold together with the forced boundary condition (41). Thanks to Proposition
7.2 and (77), we may define the functions

(79) D(r) = r−N−b+1

[∫
B+
r

tb
(
|∇U |2 + |∇V |2 + UV

)
dz

]
and

(80) H(r) = r−N−b
∫
S+
r

tb(U2 + V 2) dS .

We observe that the function H = H(r) is well defined for every r > 0 such that B′2r ⊂ Ω since
the trace operator

TrSr : H1(B+
r ; tb)→ L2(S+

r ; tb)

is well-defined and continuous being b ∈ (−1, 1), see [15, Subsection 2.2].
We now prove a Pohozaev-type identity for system (6).

Lemma 4.1. Let U and V be as in (73) and (74). Then for a.e. r > 0 such that B′2r ⊂ Ω we
have ∫

B+
r

tb
(
|∇U |2 + |∇V |2 + UV

)
dz =

∫
S+
r

tb
(
∂U

∂ν
U +

∂V

∂ν
V

)
dS(81)

and

−N + b− 1

2

∫
B+
r

tb
(
|∇U |2 + |∇V |2

)
dz +

∫
B+
r

tbV (z · ∇U) dz(82)

+
r

2

∫
S+
r

tb
(
|∇U |2 + |∇V |2

)
dS = r

∫
S+
r

tb

(∣∣∣∣∂U∂ν
∣∣∣∣2 +

∣∣∣∣∂V∂ν
∣∣∣∣2
)
dS .

Proof. The proof of this lemma can be obtained proceeding exactly as in the proof of Theorem
3.7 in [15]. Hence here we omit the details and we show only the main steps. Let us consider first
identity (82). Let r be as in the statement of the lemma. Similarly to [15], for any δ > 0 we define
the set

Oδ := B+
r ∩ {(x, t) : t > δ} .

By (6) and exploiting [15, (51)] by replacing their 1− 2s with our b = 3− 2s, we obtain

N + b− 1

2

∫
Oδ

tb|∇U |2dz −
∫
Oδ

tbV (z · ∇U) dz = −1

2
δb+1

∫
B′√

r2−δ2

|∇U(x, δ)|2dx(83)

+ δb+1

∫
B′√

r2−δ2

|Ut(x, δ)|2dx+ δb
∫
B′√

r2−δ2

(x · ∇xU(x, δ))Ut(x, δ) dx

+
r

2

∫
S+
r ∩{t>δ}

tb|∇U |2dS − r
∫
S+
r ∩{t>δ}

tb
∣∣∣∣∂U∂ν

∣∣∣∣2 dS.
Now, arguing as in [15], on can show that there exists a sequence δn ↓ 0 such that

(84) δb+1
n

∫
B′√

r2−δ2n

|∇U(x, δn)|2dx→ 0 , δb+1
n

∫
B′√

r2−δ2n

|Ut(x, δn)|2dx→ 0 ,
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as n→ +∞. The local regularity estimates of Propositions 7.8 and 7.9 imply that U, V ∈ C0,α(B
+

r ),

∇xU,∇xV ∈ C0,α(B
+

r ) and tbUt, t
bVt ∈ C0,α(B

+

r ) for some α ∈ (0, 1). These regularity estimates
combined with the Dominated Convergence Theorem imply that

(85) lim
δ→0+

δb
∫
B′√

r2−δ2

(x · ∇xU(x, δ))Ut(x, δ) dx = 0 .

Next, by (84) and (85), one can pass to the limit in (83) with δ = δn as n→ +∞; summing such
limit equality with its analogue for the function V (which can be derived with a similar argument),
we obtain (82).

In order to prove (81) it is sufficient to test the equations in (6) with U and V respectively. �

Lemma 4.2. Let U and V be as in (73) and (74) and let D = D(r) and H = H(r) be the
functions defined in (79) and (80). Suppose that (U, V ) 6≡ (0, 0). Then there exists r0 > 0 such
that H(r) > 0 for any r ∈ (0, r0).

Proof. Suppose by contradiction that for any r0 > 0 there exists r ∈ (0, r0) such that H(r) = 0.
This means that U and V vanish on S+

r . In particular, by (145) and (81), we have

0 =

∫
B+
r

tb(|∇U |2 + |∇V |2 + UV ) dz >

(
1− 2r2

(N + b− 1)2

)∫
B+
r

tb(|∇U |2 + |∇V |2) dz .(86)

If r0 is sufficiently small and r ∈ (0, r0), the parenthesis appearing in the right hand side of (86)
becomes positive. This, in turn, implies

∫
B+
r
tb(|∇U |2 + |∇V |2) dz = 0 which, combined with (145),

implies U ≡ 0 and V ≡ 0 in B+
r . Since U and V are weak solutions of the equations ∆bU = V and

∆bV = 0 in RN+1
+ , by classical unique continuation principles for elliptic operators with smooth

coefficients (see [49]), we deduce that U and V vanish in RN+1 thus contradicting the assumption
(U, V ) 6≡ 0. �

The statement of Lemma 4.2 allows us to define the Almgren type function N : (0, r0)→ R as

(87) N (r) =
D(r)

H(r)
for any r ∈ (0, r0) .

Lemma 4.3. Let U and V be as in (73) and (74) and let R be as in (77). Let D, H, N be the
functions defined in (79), (80) and (87) respectively. Then there exists r̃ ∈ (0, r0) such that

D(r) >
r−N−b+1

2

∫
B+
r

tb(|∇U |2 + |∇V |2) dz − r2

N + b− 1
H(r)(88)

for any r ∈ (0, r̃). In particular we have that

(89) N (r) > − r2

N + b− 1
.

Moreover, there exist two positive constants C1, C2 independent of r such that D(r) +C2H(r) > 0
for any r ∈ (0, r̃) and

(90)

∫
B+
r

tb(U2 + V 2) dz 6 C1r
N+b+1[D(r) + C2H(r)] for any r ∈ (0, r̃) .

Proof. By Young inequality and (145), we have∣∣∣∣∫
B+
r

tbUV dz

∣∣∣∣ 6 1

2

∫
B+
r

tb(U2 + V 2) dz(91)

6
2r2

(N + b− 1)2

[∫
B+
r

tb(|∇U |2 + |∇V |2) dz +
N + b− 1

2r

∫
S+
r

tb(U2 + V 2) dS

]
from which we obtain∫

B+
r

tb(|∇U |2 + |∇V |2 + UV ) dz

>

(
1− 2r2

(N + b− 1)2

)∫
B+
r

tb(|∇U |2 + |∇V |2) dz − r

N + b− 1

∫
S+
r

tb(U2 + V 2) dS
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for any r ∈ (0, r0). The proof of (88) and (89) then follows from the definitions of D, H and N ,
choosing r̃ ∈ (0, r0) sufficiently small. Combining (91) and (88) we also obtain (90). �

In order to prove the validity of an Almgren type monotonicity formula we need to compute the
derivative of N . In order to do that we first compute the derivatives of the functions D and H.

Lemma 4.4. Let U and V be as in (73) and (74) and let R be as in (77). Let H = H(r) be the

function defined in (80). Then H ∈W 1,1
loc (0, R) and moreover we have

(92) H ′(r) = 2r−N−b
∫
S+
r

tb
(
U
∂U

∂ν
+ V

∂V

∂ν

)
dS in a distributional sense and a.e. r ∈ (0, R) ,

and

(93) H ′(r) =
2

r
D(r) in a distributional sense and a.e. r ∈ (0, R) .

Proof. See the proof of [15, Lemma 3.8]. �

Lemma 4.5. Let U and V be as in (73) and (74) and let R be as in (77). Let D = D(r) be the

function defined in (79). Then D ∈W 1,1
loc (0, R) and moreover we have

D′(r) =
2

rN+b−1

∫
S+
r

tb

(∣∣∣∣∂U∂ν
∣∣∣∣2 +

∣∣∣∣∂V∂ν
∣∣∣∣2
)
dS +

1

rN+b−1

∫
S+
r

tbUV dS(94)

− 2

rN+b

∫
B+
r

tbV (z · ∇U) dz − N + b− 1

rN+b

∫
B+
r

tbUV dz

in a distributional sense and a.e. r ∈ (0, R).

Proof. The proof can be easily obtained by replacing (82) into

D′(r) = r−N−b[(1−N − b)I(r) + rI ′(r)] ,

where I(r) =
∫
B+
r
tb
(
|∇U |2 + |∇V |2 + UV

)
dz. �

Lemma 4.6. Let U and V be as in (73) and (74) and let R be as in (77). Let N = N (r) and r0

be as in (87). Then N ∈W 1,1
loc (0, r0) and moreover we have

N ′(r) = ν1(r) + ν2(r)(95)

in a distributional sense and for a.e. r ∈ (0, r0), where

ν1(r) =
2r
[ (∫

S+
r
tb
(∣∣∂U

∂ν

∣∣2 +
∣∣∂V
∂ν

∣∣2) dS)(∫
S+
r
tb(U2 + V 2) dS

)
−
(∫

S+
r
tb
(
U ∂U
∂ν + V ∂V

∂ν

)
dS
)2 ]

(∫
S+
r
tb(U2 + V 2) dS

)2

and

ν2(r) =
r
∫
S+
r
tbUV dS − 2

∫
B+
r
tbV (z · ∇U) dz − (N + b− 1)

∫
B+
r
tbUV dz∫

S+
r
tb(U2 + V 2) dS

.(96)

Proof. The proof follows immediately from (92), (93) and (94). �

In the next result we obtain an estimate on the ν2 component of the function N ′.

Lemma 4.7. Under the same assumptions of Lemma 4.6 we have that

(97) γ := lim
r→0+

N (r)

exists, it is finite and moreover γ > 0.
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Proof. Let ν1 and ν2 be the functions introduced in Lemma 4.6. By (88), (90) and (91), for any
r ∈ (0, r̃), with r̃ as in Lemma 4.3, we have

|ν2(r)| 6 r

2
+
r
∫
B+
r
tbV 2dz + r

∫
B+
r
tb|∇U |2dz + (N + b− 1)

∣∣∣∫B+
r
tbUV dz

∣∣∣∫
S+
r
tb(U2 + V 2) dS

(98)

6
r

2
+
C̃1r

N+bD(r) + C̃2r
N+b+1H(r)

rN+bH(r)
= C̃1N (r) + C̃3r

for some suitable constants C̃1, C̃2, C̃2 > 0 independent of r.
Therefore, since by Cauchy-Schwarz inequality we have that ν1 > 0, we obtain that

(99) N ′(r) > −C̃1N (r)− C̃3r

which yields

(100) N (r) 6 e−C̃1r

[
eC̃1r̃N (r̃) + C̃3

∫ r̃

r

ρeC̃1ρdρ

]
6 C̃4 for any r ∈ (0, r̃) .

This, combined with (98), yields boundedness of ν2 in (0, r̃).
This means that N ′(r) = ν1(r) + ν2(r) is the sum of a nonnegative function and of a bounded

function so that

γ := lim
r→0+

N (r) = N (r̃)−
∫ r̃

0

ν2(ρ) dρ− lim
r→0+

∫ r̃

r

ν1(ρ) dρ

exists. Finally, by (89) and (100) we conclude that γ is finite and nonnegative. �

A first consequence of the previous monotonicity argument is the following estimate of the
function H.

Lemma 4.8. Letting γ be as in Lemma 4.7, we have that

(101) H(r) = O(r2γ) as r → 0+.

Furthermore, for any σ > 0 there exist K(σ) > 0 and rσ ∈ (0, r0) depending on σ such that

(102) H(r) > K(σ) r2γ+σ for all r ∈ (0, rσ) .

Proof. The proof is quite standard once we have proved (97), see the proof of [15, Lemma 3.16]
for the details. �

5. A blow-up procedure

In order to exploit the monotonicity formula obtained in Section 4 and to obtain asymptotic
estimates on solutions to (6), we proceed with a blow-up argument. The blow-up analysis for a
system with our type of coupling presents several new difficulties compared to the case of one
single equation treated in [15]. In the first instance we are able to guarantee only that at least
one of the components of the limit profile is nontrivial. Furthermore, the type of coupling in the
system leads to a representation of the Fourier coefficients in the expansion (117) characterized
by the coexistence in the same term of different homogeneity orders, see (119); this phenomenon
is responsible for the possible appearance in the limit profiles of eigenfunctions associated with
different eigenvalues, as in the example exhibited in Remark 1.8. In particular, it can occur that
the first component, rescaled with the homogeneity identified by the limit of the Almgren function,
tends to zero, so that it is necessary to identify its asymptotic rate by analyzing in details its
expansion togheter with that of its weighted Laplacian, distinguishing several cases according to
vanishing or non-vanishing of some sets of coefficients, as done in detail in the proof of Theorem
5.7.

Lemma 5.1. Let (U, V ) ∈ H1(B+
R ; tb)×H1(B+

R ; tb) be a nontrivial solution to (6) in the sense of
(75)–(76) and (41). Let N be the function defined in (87) and let γ be as in Lemma 4.7. Then the
following statements hold true:

(i) there exists ` ∈ N such that γ = `;
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(ii) for any sequence λn ↓ 0 there exists a subsequence {λnk}k∈N and 2M` real constants

β`,m, β
′
`,m, m = 1, . . . ,M`, such that

∑M`

m=1

[
(β`,m)2 + (β′`,m)2

]
= 1 and

U(λnkz)√
H(λnk)

→ |z|γ
M∑̀
m=1

β`,mY`,m

(
z

|z|

)
,

V (λnkz)√
H(λnk)

→ |z|γ
M∑̀
m=1

β′`,mY`,m

(
z

|z|

)
weakly in H1(B+

1 ; tb) and strongly in H1(B+
r ; tb) for any r ∈ (0, 1), with Y`,m as in Section 1

(see the definition of Y`,m below (7)).

Proof. Let us define the following scaled functions

(103) Uλ(z) :=
U(λz)√
H(λ)

, Vλ(z) :=
V (λz)√
H(λ)

,

which satisfy

∆bUλ = λ2Vλ and

∫
S+

1

tb(U2
λ + V 2

λ ) dS = 1 .

Using a change of variable, (88) and Lemma 4.7, one sees that∫
B+

1

tb(|∇Uλ|2 + |∇Vλ|2) dz 6 2N (λ) +
2λ2

N + b− 1
= O(1) as λ→ 0+,

which combined with (145) yields that

{Uλ}λ∈(0,λ̃) and {Vλ}λ∈(0,λ̃) are bounded in H1(B+
1 ; tb)

for some λ̃ small enough. Hence, for any sequence λn ↓ 0, there exists a subsequence λnk ↓ 0 and

two functions Ũ , Ṽ ∈ H1(B+
1 ; tb) such that Uλnk ⇀ Ũ , Vλnk ⇀ Ṽ weakly in H1(B+

1 ; tb).

By compactness of the trace map H1(B+
1 ; tb) ↪→ L2(S+

1 ; tb), see [15, Section 2.2], we obtain

(104)

∫
S+

1

tb(Ũ2 + Ṽ 2) dS = 1 ,

which implies that (Ũ , Ṽ ) 6≡ (0, 0). We observe that the couple (Uλ, Vλ) weakly solves
∆bUλ = λ2Vλ in B+

1 ,

∆bVλ = 0 in B+
1 ,

limt→0+ tb∂tUλ = limt→0+ tb∂tVλ = 0 on B′1 .

This means that∫
B+

1

tb∇Uλ∇ϕdz = −λ2

∫
B+

1

tbVλϕdz and

∫
B+

1

tb∇Vλ∇ϕdz = 0 ,

for any ϕ ∈ H1
0 (Σ+

1 ; tb) with H1
0 (Σ+

1 ; tb) = H1
0 (Σ+

1 (0); tb) as in Section 2.

From the weak convergences Uλnk ⇀ Ũ , Vλnk ⇀ Ṽ in H1(B+
1 ; tb), we deduce that∫

B+
1

tb∇Ũ∇ϕdz = 0 , and

∫
B+

1

tb∇Ṽ∇ϕdz = 0 , for any ϕ ∈ H1
0 (Σ+

1 ; tb) ,

which means that the couple (Ũ , Ṽ ) weakly solves

(105)


∆bŨ = 0 in B+

1 ,

∆bṼ = 0 in B+
1 ,

limt→0+ tb∂tŨ = limt→0+ tb∂tṼ = 0 on B′1 .

By Propositions 7.8-7.9 we have that, for any r ∈ (0, 1),

{∇xUλ}λ∈(0,λ̃) , {∇xVλ}λ∈(0,λ̃) , {tb∂tUλ}λ∈(0,λ̃) , {tb∂tVλ}λ∈(0,λ̃)

are bounded in C0,β(B
+

r ) for some β ∈ (0, 1); hence by the Ascoli-Arzelà Theorem we deduce that

these families of functions are uniformly convergent in B
+

r up to subsequences. In particular, we

have that Uλnk → Ũ and Vλnk → Ṽ strongly in H1(B+
r ; tb) for any r ∈ (0, 1).
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Now, for any k ∈ N and r ∈ (0, 1) we define the functions

Dk(r) := r−N−b+1

∫
B+
r

tb
(
|∇Uλnk |

2 + |∇Vλnk |
2 + λ2

nk
UλnkVλnk

)
dz ,

Hk(r) := r−N−b
∫
S+
r

tb
(
U2
λnk

+ V 2
λnk

)
dS .

We observe that

(106) Nk(r) :=
Dk(r)

Hk(r)
=
D(λnkr)

H(λnkr)
= N (λnkr) for any r ∈ (0, 1) .

Next, if we define

D̃(r) := r−N−b+1

∫
B+
r

tb
(
|∇Ũ |2 + |∇Ṽ |2

)
dz ,

H̃(r) := r−N−b
∫
S+
r

tb
(
Ũ2 + Ṽ 2

)
dS ,

the strong convergences Uλnk → Ũ and Vλnk → Ṽ in H1(B+
r ; tb) yield

(107) Dk(r)→ D̃(r) and Hk(r)→ H̃(r) for any r ∈ (0, 1) .

We claim that H̃(r) > 0 for any r ∈ (0, 1). Indeed, if there exists r̄ ∈ (0, 1) such that H̃(r̄) = 0
then by (105) and integration by parts we would have

0 =

∫
B+
r̄

div(tb∇Ũ)Ũ dz = −
∫
B+
r̄

tb|∇Ũ |2dz .(108)

Since Ũ ∈ H1
0 (Σ+

r̄ ; tb), combining (108) with (145), we conclude that Ũ ≡ 0 in B+
r̄ and, by the

classical unique continuation principle for uniformly elliptic operators with regular coefficients, we

conclude that Ũ ≡ 0 in B+
1 . With the same argument we also deduce that Ṽ ≡ 0 in B+

1 . We have

shown that (Ũ , Ṽ ) ≡ (0, 0) in B+
1 thus contradicting (104).

The validity of the preceding claim allows to define the function Ñ (r) := D̃(r)

H̃(r)
for any r ∈ (0, 1).

By (106), (107) and Lemma 4.7, we infer

(109) Ñ (r) = lim
k→∞

Nk(r) = lim
k→+∞

N (λnkr) = γ .

This shows that Ñ is constant in (0, 1) so that Ñ ′(r) = 0 for any r ∈ (0, 1). Therefore, adapting

Lemma 4.6 to the couple (Ũ , Ṽ ), we infer that∫
S+
r

tb

∣∣∣∣∣∂Ũ∂ν
∣∣∣∣∣
2

+

∣∣∣∣∣∂Ṽ∂ν
∣∣∣∣∣
2
 dS ·

∫
S+
r

tb(Ũ2 + Ṽ 2) dS −

[∫
S+
r

tb

(
Ũ
∂Ũ

∂ν
+ Ṽ

∂Ṽ

∂ν

)
dS

]2
= 0

for any r ∈ (0, 1). This represents an equality in the Cauchy-Schwarz inequality in the Hilbert

space L2(S+
r ; tb) × L2(S+

r ; tb) thus showing that (Ũ , Ṽ ) and
(
∂Ũ
∂ν ,

∂Ṽ
∂ν

)
are parallel vectors in

L2(S+
r ; tb)×L2(S+

r ; tb). Hence, there exists a function η = η(r) defined for any r ∈ (0, 1) such that(
∂Ũ
∂ν (rθ), ∂Ṽ∂ν (rθ)

)
= η(r)(Ũ(rθ), Ũ(rθ)) for any r ∈ (0, 1) and θ ∈ SN+ . By integration we obtain

Ũ(rθ) = e
∫ r
1
η(s)dsŨ(θ) = ϕ(r)Ψ1(θ), r ∈ (0, 1), θ ∈ SN+ ,(110)

Ṽ (rθ) = e
∫ r
1
η(s)dsṼ (θ) = ϕ(r)Ψ2(θ), r ∈ (0, 1), θ ∈ SN+ ,(111)

where ϕ(r) = e
∫ r
1
η(s)ds and Ψ1 = Ũ

∣∣
SN+

, Ψ2(θ) = Ṽ
∣∣
SN+

. From (105), (110) and (111), it follows

that

(112)


r−N

(
rN+bϕ′(r)

)′
θbN+1Ψ1(θ) + rb−2ϕ(r)divSN+ (θbN+1∇SN+ Ψ1(θ)) = 0 in SN+ ,

lim
θN+1→0+

θbN+1∇SN+ Ψ1(θ) · eN+1 = 0 ,
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and

(113)


r−N

(
rN+bϕ′(r)

)′
θbN+1Ψ2(θ) + rb−2ϕ(r)divSN+ (θbN+1∇SN+ Ψ2(θ)) = 0 in SN+ ,

lim
θN+1→0+

θbN+1∇SN+ Ψ2(θ) · eN+1 = 0 .

Taking r fixed, we deduce that Ψ1,Ψ2 are either zero or eigenfunctions of (7) associated to the

same eigenvalue. Therefore there exist ` ∈ N, {β`,m, β′`,m}
M`
m=1 ⊂ R such that

−divSN+ (θbN+1∇SN+ Ψ1) = µ`θ
b
N+1Ψ1 in SN+ ,

lim
θN+1→0+

θbN+1∇SN+ Ψ1(θ) · eN+1 = 0 ,


−divSN+ (θbN+1∇SN+ Ψ2) = µ`θ

b
N+1Ψ2 in SN+ ,

lim
θN+1→0+

θbN+1∇SN+ Ψ2(θ) · eN+1 = 0 ,

and

Ψ1 =

M∑̀
m=1

β`,mY`,m, Ψ2 =

M∑̀
m=1

β′`,mY`,m.

In view of (104) we have that
∫
SN+
θbN+1(Ψ2

1 + Ψ2
2) dS = 1 and hence

M∑̀
m=1

[(β`,m)2 + (β′`,m)2] = 1.

Since Ψ1 and Ψ2 are not both identically zero, from (112) and (113) it follows that ϕ(r) solves the
equation

ϕ′′(r) +
N + b

r
ϕ′(r)− µ`

r2
ϕ(r) = 0

and hence ϕ(r) = c1r
σ+
` + c2r

σ−` for some c1, c2 ∈ R where

σ+
` = −N+b−1

2 +

√(
N+b−1

2

)2
+ µ` = `,(114)

σ−` = −N+b−1
2 −

√(
N+b−1

2

)2
+ µ` = −`− (N + b− 1).

Since either |z|σ
−
` Ψ1( z

|z| ) /∈ H
1(B+

1 ; tb) or |z|σ
−
` Ψ2( z

|z| ) /∈ H
1(B+

1 ; tb) as one can deduce by (151),

(we recall that (Ψ1,Ψ2) 6≡ (0, 0)), we have that c2 = 0 and ϕ(r) = c1r
σ+
` . Moreover, from ϕ(1) = 1

we deduce that c1 = 1. Therefore

(115) Ũ(rθ) = rσ
+
` Ψ1(θ), Ṽ (rθ) = rσ

+
` Ψ2(θ), for all r ∈ (0, 1) and θ ∈ SN+ .

From (115) and the fact that∫
SN+
θbN+1(Ψ2

1 + Ψ2
2) dS = 1 and

∫
SN+
θbN+1(|∇SN+ Ψ1|2 + |∇SN+ Ψ2|2) dS = µ`

we infer

D̃(r) = σ+
` r

2σ+
` and H̃(r) = r2σ+

` .

By (109) we then have γ = Ñ (r) = D̃(r)

H̃(r)
= σ+

` = `. The proof of the lemma is thereby complete. �

Lemma 5.2. Suppose that all the assumptions of Lemma 5.1 hold true. Then the limit

lim
r→0+

r−2γH(r)

exists and it is finite.
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Proof. Thanks to Lemma 4.8, it is sufficient to show that the limit exists.
By (93) and Lemma 4.7 we have

d

dr

H(r)

r2γ
= 2r−2γ−1H(r)[N (r)− γ] = 2r−2γ−1H(r)

∫ r

0

N ′(ρ) dρ .(116)

Since N is bounded in a right neighborhood of 0, by (99) we deduce that N ′ is bounded from
below in a right neighborhood of 0. Hence there exist a constant C > 0 and a nonnegative function
ω ∈ L1

loc(0, r0) such that N ′(r) = −C + ω(r) for any r ∈ (0, r0).
Therefore, integrating (116) in (r, r0), we obtain

H(r0)

r2γ
0

− H(r)

r2γ
=

∫ r0

r

2ρ−2γ−1H(ρ)

(∫ ρ

0

ω(τ) dτ

)
dρ− 2C

∫ r0

r

ρ−2γH(ρ) dρ .

Since ω > 0 then limr→0+

∫ r0
r

2ρ−2γ−1H(ρ)
(∫ ρ

0
ω(τ) dτ

)
dρ exists. Moreover we also have that

limr→0+

∫ r0
r
ρ−2γH(ρ) dρ =

∫ r0
0
ρ−2γH(ρ) dρ exists and it is finite being ρ−2γH(ρ) ∈ L1(0, r0)

thanks to (101). This completes the proof of the lemma. �

Let us expand U and V as

(117) U(z) = U(λθ) =

∞∑
k=0

Mk∑
m=1

ϕk,m(λ)Yk,m(θ), V (z) = V (λθ) =

∞∑
k=0

Mk∑
m=1

ϕ̃k,m(λ)Yk,m(θ)

where λ = |z| ∈ (0, r0), θ = z/|z| ∈ SN+ , and

(118) ϕk,m(λ) =

∫
SN+
θbN+1U(λ θ)Yk,m(θ) dS(θ), ϕ̃k,m(λ) =

∫
SN+
θbN+1V (λ θ)Yk,m(θ) dS(θ).

Lemma 5.3. Suppose that all the assumptions of Lemma 5.1 hold true. Let ϕ`,m and ϕ̃`,m,
m = 1, . . . ,M`, be as in (118). Then for any 1 6 m 6M` we have

ϕ`,m(λ) = c`,m1 λ` +
d`,m1

K(N,b,`) λ
`+2 and ϕ̃`,m(λ) = d`,m1 λ`,(119)

where K(N, b, `) := (`+ 2)(`+ 1) + (N + b)(`+ 2)− µ`,

d`,m1 =R−
∫̀
SN+
θbN+1V (Rθ)Y`,m(θ) dS(θ) , c`,m1 =R−

∫̀
SN+
θbN+1U(Rθ)Y`,m(θ) dS(θ)− d`,m1

K(N,b,`) R
2.

Furthermore ϕk,m ≡ ϕ̃k,m ≡ 0 for any 1 6 k < ` and 1 6 m 6Mk.

Proof. From the Parseval identity it follows that

(120) H(λ) =

∞∑
k=0

Mk∑
m=1

(
ϕ2
k,m(λ) + ϕ̃2

k,m(λ)
)
, for any 0 < λ 6 R.

By (6) we have that for any m = 1, . . . ,M`

(121)

ϕ
′′
`,m(λ) + N+b

λ ϕ′`,m(λ)− µ`
λ2 ϕ`,m(λ) = ϕ̃`,m(λ) ,

ϕ̃′′`,m(λ) + N+b
λ ϕ̃′`,m(λ)− µ`

λ2 ϕ̃`,m(λ) = 0 .

By direct calculation we obtain

ϕ̃`,m(λ) = d`,m1 λσ
+
` + d`,m2 λσ

−
`

for some constants d`,m1 , d`,m2 where σ+
` and σ−` are defined in (114).

Now, by (120), (101) and the fact that γ = σ+
` = `, we infer d`,m2 = 0 so that ϕ̃`,m(λ) = d`,m1 λ`.

In particular, (121) and direct calculation yield

ϕ`,m(λ) = c`,m1 λσ
+
` + c`,m2 λσ

−
` +

d`,m1

(σ+
` +2)(σ+

` +1)+(N+b)(σ+
` +2)−µ`

λσ
+
` +2

for some constants c`,m1 , c`,m2 . Exploiting again (120), (101) and the fact that γ = σ+
` = ` we

deduce that c`,m2 = 0. The proof of the first part of the lemma now easily follows. In order to
prove the second part of the lemma one can proceed exactly as above replacing ` with k in (121)
and solving the corresponding equation. The conclusion now follows from (120) and (101). �
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Remark 5.4. We observe that the representation formula (119) actually holds for ϕk,m and ϕ̃k,m
also for k 6= `; in this case to prove that dk,m2 = ck,m2 = 0 we can use the fact that U, V ∈ H1(B+

R ; tb).

Lemma 5.5. Suppose that all the assumptions of Lemma 5.1 hold true. Then we have

(122) lim
r→0+

r−2γH(r) > 0 .

Proof. By Lemma 5.2 we know that the limit in (122) exists and it is nonnegative and finite.
Suppose by contradiction that limλ→0+ λ−2γH(λ) = 0. Then by (120) we deduce that for any
1 6 m 6M`, with ` as in Lemma 5.1,

lim
λ→0+

λ−γϕ`,m(λ) = 0 and lim
λ→0+

λ−γϕ̃`,m(λ) = 0 .

We recall that by Lemma 5.1 we have γ = σ+
` and hence by Lemma 5.3 we infer c`,m1 = d`,m1 = 0

so that

(123) ϕ`,m(λ) = ϕ̃`,m(λ) = 0 for any λ ∈ (0, R) and 1 6 m 6M` .

From Lemma 5.1, for every sequence λn → 0+, there exist a subsequence {λnk}k∈N and 2M` real
constants β`,m, β

′
`,m, m = 1, 2, . . . ,M`, such that

(124)

M∑̀
m=1

((β`,m)2 + (β′`,m)2) = 1

and

Uλnk → |z|
`
M∑̀
m=1

β`,mY`,m

( z
|z|

)
, Vλnk → |z|

`
M∑̀
m=1

β′`,mY`,m

( z
|z|

)
, as k → +∞,

weakly in H1(B+
1 ; tb) and hence strongly in L2(S+

1 ; tb), where Uλ, Vλ have been defined in (103).
Combining this with (123), it follows that, for any m = 1, 2, . . . ,M`,

β`,m = lim
k→+∞

(Uλnk , Y`,m)L2(SN+ ;θbN+1) = lim
k→+∞

ϕ`,m(λnk)√
H(λnk)

= 0 ,

β′`,m = lim
k→+∞

(Vλnk , Y`,m)L2(SN+ ;θbN+1) = lim
k→+∞

ϕ̃`,m(λnk)√
H(λnk)

= 0 ,

thus contradicting (124). �

Then we prove the following lemma.

Lemma 5.6. Let (U, V ) ∈ H1(B+
R ; tb) × H1(B+

R ; tb) be a weak solution to system (6) such that
(U, V ) 6= (0, 0). Then there exists ` ∈ N such that

λ−`U(λz)→ |z|`
M∑̀
m=1

α`,mY`,m

( z
|z|

)
, λ−`V (λz)→ |z|`

M∑̀
m=1

α′`,mY`,m

( z
|z|

)
,

strongly in H1(B+
1 ; tb) as λ→ 0+, where

α`,m = R−`
∫
SN+
θbN+1U(Rθ)Y`,m(θ) dS(θ)− R2−`

K(N,b,`)

∫
SN+
θbN+1V (Rθ)Y`,m(θ) dS(θ) ,(125)

α′`,m = R−`
∫
SN+
θbN+1V (Rθ)Y`,m(θ) dS(θ)

with K(N, b, `) as in Lemma 5.3 and

(126)

M∑̀
m=1

((α`,m)2 + (α′`,m)2) 6= 0 .

Moreover for any 1 6 m 6M` we have

(127) ϕ`,m(λ) = α`,mλ
` +

α′`,m
K(N, b, `)

λ`+2 , ϕ̃`,m(λ) = α′`,mλ
` .
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Proof. From Lemma 5.1 and (122) there exist ` ∈ N such that, for every sequence λn → 0+,
there exist a subsequence {λnk}k∈N and 2M` real constants α`,m, α

′
`,m, m = 1, 2, . . . ,M`, such that∑M`

m=1((α`,m)2 + (α′`,m)2) 6= 0 and

(128) λ−`nkU(λnkz)→ |z|`
M∑̀
m=1

α`,mY`,m

( z
|z|

)
, λ−`nkV (λnkz)→ |z|`

M∑̀
m=1

α′`,mY`,m

( z
|z|

)
,

strongly in H1(B+
r ; tb) for all r ∈ (0, 1), and then, by homogeneity, strongly in H1(B+

1 ; tb).
By (118), (128) and Lemma 5.3 we deduce that

α`,m = lim
k→∞

λ−`nk

∫
SN+
θbN+1U(λnk θ)Y`,m(θ) dS(θ)

= lim
k→∞

λ−`nkϕ`,m(λnk) = c`,m1

= R−`
∫
SN+
θbN+1U(Rθ)Y`,m(θ) dS(θ)− R2−`

K(N,b,`)

∫
SN+
θbN+1V (Rθ)Y`,m(θ) dS(θ)

and

α′`,m = lim
k→∞

λ−`nk

∫
SN+
θbN+1V (λnk θ)Y`,m(θ) dS(θ)

= lim
k→∞

λ−`nk ϕ̃`,m(λnk) = d`,m1 = R−`
∫
SN+
θbN+1V (Rθ)Y`,m(θ) dS(θ) .

We observe that the coefficients α`,m, α
′
`,m depend neither on the sequence {λn}n∈N nor on its

subsequence {λnk}k∈N. Hence the convergences in (128) hold as λ→ 0+ and the lemma is proved.�

We now state and prove the following theorem.

Theorem 5.7. Let (U, V ) ∈ H1(B+
R ; tb)×H1(B+

R ; tb) be a weak solution to system (6) such that
(U, V ) 6= (0, 0). Then there exists δ1 ∈ N and a linear combination Ψ1 6≡ 0 of eigenfunctions of
(7), possibly corresponding to different eigenvalues, such that

(129) λ−δ1 U(λz)→ |z|δ1 Ψ1

(
z
|z|

)
strongly in H1(B+

1 ; tb) as λ → 0+. Furthermore, if V 6≡ 0, there exists δ2 ∈ N and a linear
combination Ψ2 6≡ 0 of eigenfunctions of (7), possibly corresponding to different eigenvalues, such
that

(130) λ−δ2 V (λz)→ |z|δ2 Ψ2

(
z
|z|

)
strongly in H1(B+

1 ; tb) as λ→ 0+.

Proof. We treat separately the proofs of (129) and (130).

Proof of (129). Let ` be as in Lemma 5.6. If at least one of the numbers α`,1, . . . , α`,M`

introduced in Lemma 5.6 is different from zero then the proof of (129) follows immediately with
δ1 = ` and

Ψ1(θ) =

M∑̀
m=1

α`,mY`,m(θ) .

Suppose now that α`,1 = . . . = α`,M`
= 0. Let k = `+ 3 and let

Σ := {j ∈ {`+ 1, `+ 2} : αj,m 6= 0 for at least one m ∈ {1, . . . ,Mj}}

with Σ being possibly empty. Here αj,m is defined as in (125) replacing ` with j. When Σ 6= ∅ we
put J = min Σ.

We distinguish the two cases Σ 6= ∅ and Σ = ∅.
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The case Σ 6= ∅. We put

ω(z) := U(z)−
k−1∑
j=1

Mj∑
m=1

ϕj,m(|z|)Yj,m
(
z
|z|

)

= U(z)−
∑
j∈Σ

Mj∑
m=1

αj,m|z|j Yj,m
(
z
|z|

)
−
k−1∑
j=`

Mj∑
m=1

α′j,m
K(N, b, j)

|z|j+2 Yj,m

(
z
|z|

)
for any z ∈ B+

R , with K(N, b, j) := (j + 2)(j + 1) + (N + b)(j + 2)− µj . The last identity follows
from the second part of Lemma 5.3 and Remark 5.4.

It is not restrictive to assume that ω 6≡ 0, otherwise the conclusion is trivial. We observe that
ω is in the same position as the function U in Lemma 5.6 so that applying that result to ω we

deduce that there exists ˜̀> 0 such that

λ−
˜̀
ω(λz)→ |z|˜̀

M ˜̀∑
m=1

α̃m Y˜̀,m
(
z

|z|

)
, λ−

˜̀
∆bω(λz)→ |z|˜̀

M ˜̀∑
m=1

α̃′m Y˜̀,m
(
z

|z|

)
(131)

in H1(B+
1 ; tb) as λ→ 0+, where α̃m and α̃′m satisfy (125) and (126) in which the roles of U and V

in Lemma 5.6 are replaced by ω and ∆bω respectively.

We claim that ˜̀> k. We first observe that the Fourier coefficients ϕj,m, ϕ̃j,m corresponding to
ω are all zero for any 1 6 j 6 k− 1 and 1 6 m 6Mj . On the other hand, by (127) we deduce that
at least one of the functions ϕ˜̀,m, ϕ̃˜̀,m, 1 6 m 6M˜̀, corresponding to ω is not the null function.

This proves the validity of the claim.

Note that since ˜̀> k, by (125) and the orthogonality of {Yj,m}j>0,16m6Mj in L2(SN+ ; θbN+1),
we also deduce that α̃m = α˜̀,m and α̃′m = α′˜̀,m for any 1 6 m 6M˜̀.

By (131) and the fact that ˜̀ > k, λ−kω(λz) and λ−k∆bω(λz) remain uniformly bounded in
H1(B+

1 ; tb) as λ→ 0+.
We observe that from the definitions of ω, Σ and J we have j + 2 > ` + 2 = k − 1 > i for any

`+ 1 6 i, j 6 k − 1.
Therefore, if J < `+ 2 the proof of (129) then follows with δ1 = J and

Ψ1(θ) =

MJ∑
m=1

αJ,m YJ,m(θ) , θ ∈ SN+ .

Suppose now that J = `+ 2 = k − 1. In this case (129) follows with δ1 = k − 1 = `+ 2 and

Ψ1(θ) =

Mk−1∑
m=1

αk−1,m Yk−1,m(θ) +

M∑̀
m=1

α′`,m
K(N, b, `)

Y`,m(θ) , θ ∈ SN+ .

The case Σ = ∅. As in the previous case we define

ω(z) := U(z)−
k−1∑
j=1

Mj∑
m=1

ϕj,m(|z|)Yj,m
(
z
|z|

)
= U(z)−

k−1∑
j=`

Mj∑
m=1

α′j,m
K(N, b, j)

|z|j+2Yj,m

(
z
|z|

)
,

for any z ∈ B+
R , where the last identity follows from the second part of Lemma 5.3, Remark 5.4,

and the fact that Σ = ∅. Proceeding as in this case Σ 6= ∅ we find ˜̀> k such that (131) holds with
α̃m = α˜̀,m and α̃′m = α′˜̀,m for any 1 6 m 6 M˜̀. Again we have that λ−kω(λz) and λ−k∆bω(λz)

remain uniformly bounded in H1(B+
1 ; tb) as λ → 0+. Since k > ` + 2 and since α′`,m 6= 0 for at

least one 1 6 m 6M`, the (129) follows as well with δ1 = `+ 2 and

Ψ1(θ) =

M∑̀
m=1

α′`,m
K(N, b, `)

Y`,m(θ) , θ ∈ SN+ .
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Proof of (130). If at least one of the numbers α′`,1, . . . , α
′
`,M`

introduced in Lemma 5.6 is different

from zero then the proof of (130) follows immediately with δ2 = ` and

Ψ2(θ) =

M∑̀
m=1

α′`,mY`,m(θ) .

Suppose now that α′`,1 = . . . = α′`,M`
= 0. Let k > ` be the first integer for which at least one of

the numbers α′k,1, . . . , α
′
k,Mk

is different from zero (such k exists if V 6≡ 0 in view of (117), Lemma

5.3, and Remark 5.4) and put

ω(z) := U(z)−
k∑
j=1

Mj∑
m=1

ϕj,m(|z|)Yj,m
(
z
|z|

)

= U(z)−
k∑
j=`

Mj∑
m=1

αj,m|z|j Yj,m
(
z
|z|

)
−

Mk∑
m=1

α′k,m
K(N, b, k)

|z|k+2 Yk,m

(
z
|z|

)
for any z ∈ B+

R . The last identity follows from the second part of Lemma 5.3 and Remark 5.4.
Applying Lemma 5.6 to ω and proceeding as in the proof of (129), one can show that λ−kω(λz)→ 0
and λ−k∆bω(λz)→ 0 in H1(B+

1 ; tB) as λ→ 0+. The proof of (130) now follows with δ2 = k and

Ψ2(θ) =

Mk∑
m=1

α′k,m Yk,m(θ)

being ∆bω(z) = V (z)− |z|k
∑Mk

m=1 α
′
k,m Yk,m

(
z
|z|

)
. �

6. Proof of the main results

We start with the proof of Theorem 1.6 since the proofs of Theorems 1.1–1.2 are related to the
asymptotic estimates stated in Theorem 1.6.

6.1. Proof of Theorem 1.6. Up to translation it is not restrictive to assume that x0 = 0. The
proof now follows from Theorem 5.7 and the regularity estimates of Proposition 7.9.

Once we have proved Theorem 1.6, we can proceed with the proofs of Theorems 1.1–1.2.

6.2. Proof of Theorem 1.1. Let u be as in the statement of the theorem and let U ∈ Db be
the corresponding solution of (4). According with Section 4 we also put V = ∆bU . Following the
argument introduced at the beginning of Section 4, by assuming up to translation that x0 = 0, we
see that the couple (U, V ) ∈ H1(B+

R ; tb)×H1(B+
R ; tb) is a solution of (6) with R as in (77). Since

(−∆)su ∈ (Ds−1,2(RN ))?, by (149) we deduce that the map

W 7→ (Ds−1,2(RN ))? 〈(−∆)su,Tr(W )〉Ds−1,2(RN ) , W ∈ D1,2(RN+1
+ ; tb)

belongs to (D1,2(RN+1
+ ; tb))?.

Then, by classical minimization methods, we have that the minimum

min
W∈D1,2(RN+1

+ ;tb)

[
1

2

∫
RN+1

+

tb|∇W |2 dz + C2
b (Ds−1,2(RN ))? 〈(−∆)su,Tr(W )〉Ds−1,2(RN )

]

is attained by some Ṽ ∈ D1,2(RN+1
+ ; tb) weakly solving

−
∫
RN+1

+

tb∇Ṽ∇Φ dz = C2
b (Ds−1,2(RN ))? 〈(−∆)su,Tr(Φ)〉Ds−1,2(RN )(132)

for any Φ ∈ D1,2(RN+1; tb). In particular we have

−
∫
RN+1

+

tb∇Ṽ∇Φ dz = C2
b

∫
RN
|ξ|2sû T̂r(Φ) dξ for any Φ ∈ C∞c (RN+1

+ ) .(133)
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Combining (133) and (72) we obtain

−
∫
RN+1

+

tb∇Ṽ∇Φ dz = C2
b (u,Tr(Φ))Ds,2(RN )(134)

= (U,Φ)Db =

∫
RN+1

+

tb∆bU∆bΦ dz =

∫
RN+1

+

tbV∆bΦ dz for any Φ ∈ T

with T as in (40).
Since u ∈ Ds,2(RN ) and (−∆)su ∈ (Ds−1,2(RN ))?, with a mollification argument, it is possible

to construct an approximating sequence of functions {un} ⊂ Ds,2(RN ) such that un → u in
Ds,2(RN ), (−∆)sun ∈ C∞(RN ), (−∆)sun → (−∆)su weakly in (Ds−1,2(RN ))?.

Then we can construct the corresponding functions Un, Vn and Ṽn. First we observe that Un → U

in Db and in particular Vn → V in L2(RN+1
+ ; tb). Moreover Ṽn ⇀ Ṽ weakly in D1,2(RN+1; tb).

Now we observe that for the functions Vn we have∫
RN+1

+

tbVn ∆bΦ dz = C2
b (un,Tr(Φ))Ds,2(RN ) = C2

b

∫
RN

(−∆)sun Tr(Φ) dx for any Φ ∈ T ,(135)

and hence, since (−∆)sun ∈ (Ds−1,2(RN ))?, by Proposition 2.4 one can show that, for any r > 0,
Vn ∈ H1(Q+

r ; tb).
Combining (135) with (73) we obtain∫

RN+1
+

tb(Vn − V ) ∆bΦ dz = C2
b (Ds−1,2(RN ))? 〈(−∆)sun − (−∆)su,Tr(Φ)〉Ds−1,2(RN )

for any Φ ∈ T such that supp(Φ(·, 0)) ⊂ Ω. Hence, by (29) we deduce that Vn ⇀ V weakly in
H1(Q+

R; tb) and by Lemma 7.3 we also have

(136) Tr(Vn) ⇀ Tr(V ) weakly in L2∗(N,s−1)(B′R) .

The fact that Vn ∈ H1(Q+
r ; tb) implies∫

RN+1
+

tbVn ∆bΦ dz = −
∫
RN+1

+

tb∇Vn∇Φ dz for any Φ ∈ T

and by (134) applied to Vn and Ṽn we obtain

(137)

∫
RN+1

+

tb∇(Vn − Ṽn)∇Φ dz = 0 for any Φ ∈ T .

Actually we can prove that (137) still holds true for any Φ ∈ C∞c (RN+1
+ ) not necessarily satisfying

Φt(·, 0) ≡ 0 in RN × {0}, arguing as we did for (78). If we define

W̃n(x, t) =

Vn(x, t)− Ṽn(x, t) if t > 0 ,

Vn(x,−t)− Ṽn(x,−t) if t < 0 ,

by (137) we obtain

(138)

∫
RN+1

|t|b∇W̃n∇Φ dz = 0

for any Φ ∈ C∞c (RN+1). Choosing a suitable sequence of test functions in (138) and passing to
the limit, it is possible to prove that for any x0 ∈ RN and r > 0∫

∂Br(x0,0)

|t|b ∂W̃n

∂ν
dS = 0 .

From this identity, proceeding similarly to the proof of the mean value theorem for harmonic
functions (see [22, Theorem 2.1]) and taking into account the Hölder regularity results stated in
Proposition 7.4, one can prove that

W̃n(x0, 0) =
1

ωN,b rN+b+1

∫
Br(x0,0)

|t|b W̃n dz for any x0 ∈ RN and r > 0



HIGHER ORDER FRACTIONAL LAPLACE EQUATION 33

where ωN,b = (N + b+ 1)−1
∫
∂B1(0,0)

|t|b dS, see also [48, Lemma A.1] and [39, Lemma 2.6]. Hence

we have

|W̃n(x0, 0)| 6 2

ωN,b rN+b+1

(∫
B+
r (x0)

|t|b|Vn| dz +

∫
B+
r (x0)

|t|b|Ṽn| dz

)

6
2

ωN,b rN+b+1

[
r
N+b+1

2

(
|B′1|
b+1

)1
2 ‖Vn‖L2(RN+1

+ ;tb)+r
(N+b+1)(2∗∗(b)−1)

2∗∗(b)

(
|B′1|
b+1

) 2∗∗(b)−1
2∗∗(b) ‖Ṽn‖L2∗∗(b)(RN+1

+ ;tb)

]
.

Letting r → +∞, we have that the right hand side of the previous inequality tends to zero, from

which we deduce that W̃n ≡ 0 on RN ×{0} and in particular that Vn ≡ Ṽn on RN ×{0}. But from

the fact that Ṽn ⇀ Ṽ weakly in D1,2(RN+1
+ ; tb) and (150) we have that Tr(Ṽn) ⇀ Tr(Ṽ ) weakly in

L2∗(N,s−1)(RN ). Combining this with (136) we deduce that Tr(V ) = Tr(Ṽ ) on B′R.

Letting ṽ := Tr(Ṽ ), by [6, 10] and (133) we deduce that there exists a positive constant κN,b
depending only on N and b such that

−(ṽ, ϕ)Ds−1,2(RN ) = κN,b(u, ϕ)Ds,2(RN ) for any ϕ ∈ C∞c (RN )

which means that ̂̃v(ξ) = −κN,b|ξ|2 û(ξ) in RN and hence ṽ = κN,b∆u in RN .
Finally we have that Tr(V ) = ṽ = κN,b∆u in B′R. In the rest of the proof we denote by v the

trace of V on B′R.
Let us assume, by contradiction, that u 6≡ 0. Then the couple (U, V ) 6= (0, 0) is a weak solution

to (6) in H1(B+
R ; tb)×H1(B+

R ; tb) for some R > 0.
From Lemma 5.6 and the fact that any eigenfunction of (7) cannot vanish on ∂SN+ , as observed

in Remark 1.5, it follows that either u or v (which are the traces of U and V respectively) vanish
of some order γ > 0 at 0. Since by assumption, u satisfies

(139) u(x) = O(|x|k) as x→ 0 for any k ∈ N ,

we have that necessarily V vanishes of order γ, i.e. there exists Ψ : SN+ → R, eigenfunction of (7),
such that

λ−γV (λz)→ |z|γΨ
( z
|z|

)
as λ→ 0 strongly in H1(B+

1 ; tb) .

In particular by (151) we also have

λ−γv(λx)→ |x|γΨ
( x
|x|
, 0
)

as λ→ 0 strongly in L2∗(N,s−1)(B′1) .

Let us denote

vλ(x) = λ−γv(λx) and ũλ(x) = λ−2−γu(λx),

so that

(140) vλ → |x|γΨ
( x
|x|
, 0
)

as λ→ 0 strongly in L2∗(N,s−1)(B′1)

and

κN,b∆ũλ = vλ in B′R/λ.

For every ϕ ∈ C∞c (B′1) we have that, for λ small enough,

(141) − κN,b
∫
RN

ũλ(−∆ϕ) dx = −κN,b
∫
RN

ϕ(−∆ũλ) dx =

∫
RN

ϕvλ dx.

From one hand, assumption (139) implies that

lim
λ→0+

∫
RN

ũλ(−∆ϕ) dx = 0

whereas convergence (140) yields

lim
λ→0+

∫
RN

ϕvλ dx =

∫
RN
|x|γΨ

( x
|x|
, 0
)
ϕ(x) dx.

Hence passing to the limit in (141) we obtain that∫
RN
|x|γΨ

( x
|x|
, 0
)
ϕ(x) dx = 0 for every ϕ ∈ C∞c (B′1),
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thus contradicting the fact that |x|γΨ
(
x
|x| , 0

)
6≡ 0.

6.3. Proof of Theorem 1.2. Let us assume by contradiction, that u 6≡ 0 in Ω and u(x) = 0 a.e.
in a measurable set E ⊂ Ω of positive measure.

Let U and V be defined as in the proof of Theorem 1.1. As we explained in the proof of Theorem
1.1, for any x ∈ Ω we have that (U, V ) ∈ H1(B+

R(x); tb)×H1(B+
R(x); tB) for any R > 0 as in (77).

Hence, by Lebesgue’s density Theorem (i.e. almost every point of E is a density point of
E), there exists a point y0 ∈ E and R > 0 such that B′2R(y0) ⊂ Ω, |B′R(y0) ∩ E|N > 0 and
(U, V ) ∈ H1(B+

R(y0); tb)×H1(B+
R(y0); tb) where |·|N denotes the N -dimensional Lebesgue measure.

With choice of y0 and R > 0, proceeding as in the proof of Theorem 1.1, we deduce that v = κN,b∆u
in B′R(y0) with v = Tr(V ).

Since κN,b∆u = v and by Lemma 7.3 v ∈ L2∗(N,s−1)(B′R(y0)), by classical regularity theory
we have that u ∈ H2

loc(B′R(y0)). Since u(x) = 0 for any x ∈ E, we have that ∇u(x) = 0 for a.e.

x ∈ E ∩ B′R(y0) and hence, since ∂u
∂xi
∈ H1

loc(B′R(y0)) for every i, ∆u = 0 a.e. in E ∩ B′R(y0). In

particular u(x) = v(x) = 0 for a.e. x ∈ E′ := E ∩B′R(y0).
Let x0 be a density point of E′. Hence, for all ε > 0 there exists r0 = r0(ε) ∈ (0, 1) such that,

for all r ∈ (0, r0),

(142)
|(RN \ E′) ∩B′r(x0)|N

|B′r(x0)|N
< ε .

Lemma 5.6 implies that there exist γ > 0, Ψ1,Ψ2 : SN+ → R solving (7) such that either Ψ1 6≡ 0 or

Ψ2 6≡ 0 (and hence Ψ1 6≡ 0 or Ψ2 6≡ 0 on ∂SN+ respectively as observed in Remark 1.5), and

(143) λ−γu(x0 + λ(x− x0))→ |x− x0|γΨ1

( x− x0

|x− x0|
, 0
)

and

(144) λ−γv(x0 + λ(x− x0))→ |x− x0|γΨ2

( x− x0

|x− x0|
, 0
)

as λ→ 0 strongly in L2∗(N,s−1)(B′1(x0)).
Since u ≡ v ≡ 0 a.e. in E′, by (142) we have∫
B′r(x0)

u2(x) dx =

∫
(RN\E′)∩B′r(x0)

u2(x) dx

6

(∫
(RN\E′)∩B′r(x0)

|u(x)|2
∗(N,s−1)dx

) 2
2∗(N,s−1)

|(RN \ E′) ∩B′r(x0)|
2∗(N,s−1)−2

2∗(N,s−1)

N

< ε
2∗(N,s−1)−2

2∗(N,s−1) |B′r(x0)|
2∗(N,s−1)−2

2∗(N,s−1)

N

(∫
(RN\E′)∩B′r(x0)

|u(x)|2
∗(N,s−1)dx

) 2
2∗(N,s−1)

and similarly∫
B′r(x0)

v2(x) dx < ε
2∗(N,s−1)−2

2∗(N,s−1) |B′r(x0)|
2∗(N,s−1)−2

2∗(N,s−1)

N

(∫
(RN\E′)∩B′r(x0)

|v(x)|2
∗(N,s−1)dx

) 2
2∗(N,s−1)

for all r ∈ (0, r0). Then, letting ur(x) := r−γu(x0 + r(x− x0)) and vr(x) := r−γv(x0 + r(x− x0)),∫
B′1(x0)

|ur(x)|2dx <
(ωN−1

N

) 2∗(N,s−1)−2
2∗(N,s−1) ε

2∗(N,s−1)−2
2∗(N,s−1)

(∫
B′1(x0)

|ur(x)|2
∗(N,s−1)dx

) 2
2∗(N,s−1)

,

∫
B′1(x0)

|ur(x)|2dx <
(ωN−1

N

) 2∗(N,s−1)−2
2∗(N,s−1) ε

2∗(N,s−1)−2
2∗(N,s−1)

(∫
B′1(x0)

|ur(x)|2
∗(N,s−1)dx

) 2
2∗(N,s−1)

,
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for all r ∈ (0, r0), where ωN−1 =
∫
SN−1 1 dS′. Letting r → 0+, from (143) and (144) we have that∫

B′1(x0)

|x− x0|2γΨ2
i

(
x−x0

|x−x0| , 0
)
dx

6
(ωN−1

N

) 2∗(N,s−1)−2
2∗(N,s−1) ε

2∗(N,s−1)−2
2∗(N,s−1)

(∫
B′1(x0)

|x−x0|γ·2
∗(N,s−1)

∣∣∣Ψi

(
x−x0

|x−x0| , 0
)∣∣∣2∗(N,s−1)

dx

) 2
2∗(N,s−1)

for i = 1, 2 which yields a contradiction as ε→ 0+, since either Ψ1 6≡ 0 or Ψ2 6≡ 0 on ∂SN+ .

7. Appendix

7.1. Inequalities involving weighted Sobolev spaces. Throughout this section, we will as-
sume that s ∈ (1, 2), N > 2s and b = 3 − 2s ∈ (−1, 1). For simplicity, the center x0 of the sets
introduced in (8) will be omitted whenever x0 = 0.

Next we state the following Hardy-Sobolev inequality taken from [15, Lemma 2.4]. For any
R > 0 and U ∈ H1(B+

R ; tb) we have(
N + b− 1

2

)2 ∫
B+
R

tb
U2

|z|2
dz 6

∫
B+
R

tb|∇U |2dz +
N + b− 1

2R

∫
S+
R

tbU2dS.

In particular, for any x0 ∈ RN and U ∈ H1(B+
R(x0); tb), we have(

N + b− 1

2R

)2 ∫
B+
R(x0)

tbU2 dz 6
∫
B+
R(x0)

tb|∇U |2dz +
N + b− 1

2R

∫
S+
R(x0)

tbU2dS.(145)

Now we state a Sobolev inequality involving a suitable critical Sobolev exponent. Let

2∗∗(b) =


2(N+b+1)
N+b−1 if 0 < b < 1 ,

2(N+1)
N−1 if − 1 < b 6 0 .

By [29, Theorem 19.10] we have

(146) S(N, b)

(∫
B+

1

tb|U |2
∗∗(b)dz

) 2
2∗∗(b)

6
∫
B+

1

tb|∇U |2dz+

∫
B+

1

tbU2dz for any U ∈ H1(B+
1 ; tb),

for some constant S(N, b) depending only on N and b. The corresponding inequality in the half
ball B+

R(x0) can be obtained by (146) after scaling and translation.

Next we show that the embedding H1
0 (Γ+

R(x0); tb) ⊂ L2(Q+
R(x0); tb) is compact.

Proposition 7.1. Let x0 ∈ RN , b ∈ (−1, 1) and R > 0. Then the embedding

H1
0 (Γ+

R(x0); tb) ⊂ L2(Q+
R(x0); tb)

is compact.

Proof. Let us define the function d : Q+
3R(x0)→ [0,∞) where

d(z) := dist(z, ∂Q+
3R(x0)) for any z ∈ Q+

3R(x0) .

We immediately see that if z = (x, t) ∈ Q+
R(x0) then d(x, t) = t. Let {Un} ⊂ H1

0 (Γ+
R(x0); tb) be a

sequence bounded in H1
0 (Γ+

R(x0); tb). For any n let us still denote by Un the trivial extension to

Q+
3R(x0) so that Un ∈ H1

0 (Γ+
3R(x0); tb). We observe that∫

Q+
3R(x0)

(d(z))b |∇Un|2dz =

∫
Q+
R(x0)

(d(z))b |∇Un|2dz =

∫
Q+
R(x0)

tb |∇Un|2dz,∫
Q+

3R(x0)

(d(z))b U2
n dz =

∫
Q+
R(x0)

(d(z))b U2
n dz =

∫
Q+
R(x0)

tbU2
n dz,

thus showing that {Un} is bounded in the weighted Sobolev space W 1,2(Q+
3R(x0); db, db) where we

used the notation of [29, Theorem 19.7]. By the same theorem in [29] we deduce that {Un} is,
up to subsequences, strongly convergent in L2(Q+

3R(x0); db). But the functions Un are supported

in Q+
R(x0) so that {Un} is strongly convergent in L2(Q+

R(x0); tb). This completes the proof of the
proposition. �
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Now we state a Hardy-Rellich type inequality for functions in Db.

Proposition 7.2. For every U ∈ Db, we have that U
|z|2 ∈ L

2(RN+1
+ ; tb) and ∇U|z| ∈ L

2(RN+1
+ ; tb).

Furthermore

(147) (N − 2s)2

∫
RN+1

+

tb
U2

|z|4
dz + 2(N − 2s)

∫
RN+1

+

tb
|∇U |2

|z|2
dz 6

∫
RN+1

+

tb|∆bU |2 dz

for every U ∈ Db.

Proof. By definition of Db, it is enough to prove inequality (147) for every U ∈ C∞c (RN+1
+ ) such

that Ut ≡ 0 on RN × {0}. Arguing as in [30], we have that, for every ε > 0 and λ ∈ R,

0 6

∥∥∥∥tb/2 z|z|∆bU + λtb/2U
z

|z|3

∥∥∥∥2

L2(RN+1
+ \Bε,RN+1)

=

∫
RN+1

+ \Bε
tb|∆bU |2 dz + λ2

∫
RN+1

+ \Bε
tb
U2(z)

|z|4
dz + 2λ

∫
RN+1

+ \Bε
tb
U∆bU

|z|2
dz,

where z = (x, t) and Bε = {z ∈ RN+1 : |z| < ε}. Integration by parts yields∫
RN+1

+ \Bε
tb
U∆bU

|z|2
dz =

∫
RN+1

+ \Bε

U

|z|2
div(tb∇U) dz

= −
∫
{x∈RN :|x|>ε}

U(x, 0)

|x|2
(

lim
t→0+

tbUt(x, t)
)
dx−

∫
RN+1

+ ∩∂Bε
tb
U

|z|2
∇U(z) · z

|z|
dS

−
∫
RN+1

+ \Bε
tb∇U · ∇

(
U

|z|2

)
dz

= 0 +O(εb+N−2)−
∫
RN+1

+ \Bε
tb
|∇U |2

|z|2
dz +

∫
RN+1

+ \Bε
tb
∇(U2) · z
|z|4

dz

and ∫
RN+1

+ \Bε
tb
∇(U2) · z
|z|4

dz = −
∫
RN+1

+ ∩∂Bε
tb
U2

|z|3
dS −

∫
RN+1

+ \Bε
U2 div

(
tb

z

|z|4

)
dz

= O(εb+N−3)− (N + b− 3)

∫
RN+1

+ \Bε
tb
U2(z)

|z|4
dz.

Combining the previous estimates we obtain that

0 6
∫
RN+1

+ \Bε
tb|∆bU |2 dz + λ2

∫
RN+1

+ \Bε
tb
U2(z)

|z|4
dz

− 2λ

∫
RN+1

+ \Bε
tb
|∇U |2

|z|2
dz − 2λ(N − 2s)

∫
RN+1

+ \Bε
tb
U2(z)

|z|4
dz +O(εN−2s).

Choosing λ = N − 2s and letting ε→ 0+ we obtain that

(N − 2s)2

∫
RN+1

+

tb
U2(z)

|z|4
dz + 2(N − 2s)

∫
RN+1

+

tb
|∇U |2

|z|2
dz 6

∫
RN+1

+

tb|∆bU |2 dz

thus completing the proof. �

If N > 2γ, the Sobolev embedding implies that there exists a positive constant S(N, γ) depend-
ing only on N and γ, such that

(148) S(N, γ)‖u‖2L2∗(N,γ)(RN ) 6 ‖u‖
2
Dγ,2(RN ) for any u ∈ Dγ,2(RN )

where 2∗(N, γ) = 2N/(N − 2γ), see e.g. [11].

According with [6], we define D1,2(RN+1
+ ; tb) as the completion of the space C∞c (RN+1

+ ) with
respect to the norm

‖U‖D1,2(RN+1
+ ;tb) :=

(∫
RN+1

+

tb|∇U |2dz

)1/2

.
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Arguing as in [6], we have that there exists a constant Kb depending only on b ∈ (−1, 1) such that

(149) Kb‖Tr (U)‖Ds−1,2(RN ) 6 ‖U‖D1,2(RN+1
+ ;tb) for any U ∈ D1,2(RN+1

+ ; tb) .

Combining this with (148), we infer

(150) S(N, s− 1)K2
b ‖Tr (U)‖2L2∗(N,s−1)(RN ) 6 ‖U‖

2
D1,2(RN+1

+ ;tb)
for any U ∈ D1,2(RN+1

+ ; tb) .

Lemma 7.3. For any r > 0 and any U ∈ H1(B+
r ; tb) we have

(151) S̃(N, b)

(∫
B′r

|u|2
∗(N,s−1)dx

) 2
2∗(N,s−1)

6
∫
B+
r

tb|∇U |2dz +
N + b− 1

2r

∫
S+
r

tbU2dS

where u = Tr (U) and S̃(N, b) is a positive constant depending only on N and b.

Proof. See the proof of [15, Lemma 2.6]. �

7.2. Hölder regularity of solutions. This subsection is devoted to some results about Hölder
regularity of solutions to systems of weighted elliptic equations in divergence form. Throughout
this subsection, we will assume that s ∈ (1, 2), N > 2s and b = 3− 2s ∈ (−1, 1). As in Subsection
7.1 the center x0 ∈ RN of the sets introduced in (8) will be omitted whenever x0 = 0.

We start with the following proposition which is a restatement, adapted to our setting, of some
regularity results contained in [16], see also [23].

Proposition 7.4. (Propositions 3-4 in [16]) Let A,B ∈ Lq1(B′1) for some q1 > N
1−b and let

D ∈ Lq2(B+
1 ; tb) for some q2 >

N+b+1
2 . Let W ∈ H1(B+

1 ; tb) be a weak solution of

(152)

{
−div(tb∇W ) = tbD(z) in B+

1 ,

− limt→0+ tbWt = A(x)W +B(x) on B′1 .

Then the following statements hold true:

(i) W ∈ C0,α(B+
1/2) and in addition

‖W‖
C0,α(B+

1/2
)
6 C

(
‖W‖L2(B+

1 ;tb) + ‖B‖Lq1 (B′1) + ‖D‖Lq2 (B+
1 ;tb)

)
for some C > 0 and α ∈ (0, 1) depending only on N, b and ‖A‖Lq1 (B′1);

(ii) if in addition to the previous assumptions we also suppose that A,B ∈ W 1,∞(B′1) and

D,∇xD ∈ L∞(B+
1 ) then we also have ∇xW ∈ C0,α(B+

1/2) and

‖W‖
C0,α(B+

1/2
)

+ ‖∇xW‖C0,α(B+
1/2

)

6 C
(
‖W‖L2(B+

1 ;tb) + ‖A‖W 1,∞(B′1) + ‖B‖W 1,∞(B′1) + ‖D‖L∞(B+
1 ) + ‖∇xD‖L∞(B+

1 )

)
for some C > 0 and α ∈ (0, 1) depending only on N, b and ‖A‖L∞(B′1).

In order to obtain a Hölder estimate for the t-derivative of a solution of (152) we need to adapt
to our context some results from [8, 16, 15].

Proposition 7.5. Let tbDt ∈ L∞(B+
1 ) and let W ∈ H1(B+

1 ; tb) be a weak solution of (152) with

A ≡ 0 and B ≡ 0. Then tbWt ∈ C0,α(B+
1/4) and

‖tbWt‖C0,α(B+
1/4

)
6 C

(
‖W‖H1(B+

1 ;tb) + ‖tbDt‖L∞(B+
1 )

)
for some C > 0 and α ∈ (0, 1) depending only on N and b.

Proof. Since W is a weak solution of the problem{
−div(tb∇W ) = tbD(z) in B+

1 ,

limt→0+ tbWt = 0 on B′1 ,
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it is clear that the even reflection of W with respect to t, which we denote by W̃ , belongs to
H1(B1; |t|b) and it is a weak solution of

−div(|t|b∇W̃ ) = |t|bD̃(z) in B1 ,

where we denote by D̃ the even reflection of D. In other words

(153)

∫
B1

|t|b∇W̃∇ϕdz =

∫
B1

|t|bD̃(z)ϕdz for any ϕ ∈ H1
0 (B1; |t|b) .

Let now ψ be a function in C∞c (B1) such that ψt(x, 0) = 0 for any x ∈ B′1. Then the function
ϕ(x, t) = |t|−bψt(x, t) belongs to H1(B1; |t|b). Since supp(ϕ) ⊂ B1 then ϕ ∈ H1

0 (B1; |t|b) as one
can deduce from [25, Theorem 2.5] and a standard truncation argument.

With this particular choice of ϕ in (153) we obtain∫
B1

D̃(z)ψt(z) dz =

∫
B1

∇W̃∇(ψt) dz −
∫
B1

b

t
W̃tψt dz = −

∫
B1

W̃ (∆ψ)t dz −
∫
B1

b

t
W̃tψt dz

=

∫
B1

W̃t

(
∆ψ − b

t
ψt

)
dz =

∫
B1

|t|bW̃t div(|t|−b∇ψ) dz .

This proves that the function Ψ(x, t) := |t|bW̃t(x, t) ∈ L2(B1; |t|−b) satisfies

(154) −
∫
B1

Ψ div(|t|−b∇ψ) dz =

∫
B1

D̃t(z)ψ dz

for any ψ ∈ C∞c (B1) such that ψt(x, 0) = 0 for all x ∈ B′1.

By Proposition 2.4 we deduce that Ψ ∈ H1(B1/2; |t|−b) being |t|bD̃t ∈ L2(B1; |t|−b).
In particular, by (154) we have that

(155)

∫
B1/2

|t|−b∇Ψ∇ψ dz =

∫
B1/2

D̃t(z)ψ dz

for any ψ ∈ C∞c (B1/2) such that ψt(x, 0) = 0 for all x ∈ B′1/2.

In order to remove the condition ψt(·, 0) ≡ 0 on B′1/2, it is enough to test (155) with

ψk(x, t) = ψ(x, t)− ψt(x, 0) t η(kt) , k ∈ N , for any ψ ∈ C∞c (B1/2) ,

where η ∈ C∞c (R), 0 6 η 6 1, η(t) = 0 for any t ∈ (−∞,−2] ∪ [2,+∞) and η(t) = 1 for any
t ∈ [−1, 1], and to pass to the limit as k → +∞.

In other words, we have shown that Ψ ∈ H1(B1/2; |t|−b) is a weak solution in the usual sense of
the equation

−div(|t|−b∇Ψ) = D̃t(z) in B1/2 .

Since by assumption tbDt ∈ L∞(B+
1 ) then |t|bD̃t ∈ L∞(B1) and hence D̃t/|t|−b ∈ Lp(B1/2; |t|−b)

for any 1 6 p < ∞. In particular D̃t/|t|−b ∈ Mσ(B1/2, |t|−b) for some σ > 0 (see Definition 2.4

and Remark 2.6 in [51]). Recalling that the weight |t|−b belongs to the Muckenhoupt class A2, by
Theorem 5.2 in [51] we deduce that Ψ ∈ C0,α(B1/4) for some α ∈ (0, 1) and there exists a constant
C > 0 such that

‖Ψ‖C0,α(B1/4) 6 C
(
‖Ψ‖L2(B1/2;|t|−b) + ‖ |t|bD̃t‖L∞(B1/2)

)
6 2C

(
‖W‖H1(B+

1 ;tb) + ‖tbDt‖L∞(B+
1 )

)
.

The proof of the theorem now follows from the definition of Ψ. �

In order to apply the last two propositions to system (6), we prove the following Brezis-Kato
type result for a system of two equations with a potential in the boundary conditions and forcing
terms both in the equation and in the boundary conditions.

Proposition 7.6. Let A,B ∈ L
N

2(s−1) (B′1). Suppose that U, V ∈ H1(B+
1 ; tb) weakly solve the

system

(156)


div(tb∇U) = tbV in B+

1 ,

div(tb∇V ) = 0 in B+
1 ,

limt→0+ tbUt = 0 on B′1 ,

− limt→0+ tbVt = A(x)U +B(x) on B′1 .
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Then U, V ∈ Lq(B+
1/2; tb), U(·, 0), V (·, 0) ∈ Lq(B′1/2) for any 1 6 q <∞ and moreover there exists

a constant K1 depending only on N, b, q, ‖A‖
L

N
2(s−1) (B′1)

and ‖B‖
L

N
2(s−1) (B′1)

such that

‖U‖Lq(B+
1/2

;tb) 6 K1

(
1 + ‖U‖L2∗∗(b)(B+

1 ;tb) + ‖V ‖L2∗∗(b)(B+
1 ;tb)

)
,

‖U(·, 0)‖Lq(B′
1/2

) 6 K1

(
1 + ‖U‖L2∗∗(b)(B+

1 ;tb) + ‖V ‖L2∗∗(b)(B+
1 ;tb)

)
,

‖V ‖Lq(B+
1/2

;tb) 6 K1

(
1 + ‖U‖L2∗∗(b)(B+

1 ;tb) + ‖V ‖L2∗∗(b)(B+
1 ;tb)

)
,

‖V (·, 0)‖Lq(B′
1/2

) 6 K1

(
1 + ‖U‖L2∗∗(b)(B+

1 ;tb) + ‖V ‖L2∗∗(b)(B+
1 ;tb)

)
.

Proof. The proof is quite standard and it is based on a Moser-Trudinger iteration scheme inspired
by the paper of Brezis-Kato [7].

If we combine (146) with (145) we obtain

(157) C(N, b)

(∫
B+

1

tb|W |2
∗∗(b)dz

)2/2∗∗(b)

6
∫
B+

1

tb|∇W |2dz for any W ∈ H1
0 (Σ+

1 ; tb) ,

where C(N, b) = S(N, b) ·
[
1 +

(
2

N+b−1

)2
]−1

.

Let 1
2 < rU < 1 and let ηU ∈ C∞c (RN+1

+ ) be a cut-off function such that supp(ηU ) ⊂ Σ+
1 and

ηU ≡ 1 in Σ+
rU . For any n ∈ N, set Un := min{|U |, n}, V n := min{|V |, n}. Put α0 = 2∗∗(b).

Testing the first equation in (156) with η2
U (Un)α0−2U and exploiting the respective boundary

condition, we obtain∫
B+

1

tb∇U∇
(
η2
U (Un)α0−2U

)
dz = −

∫
B+

1

tbV η2
U (Un)α0−2U dz .(158)

By direct computation (see the proof of Lemma 9.1 in [20] for more details), one can verify that if
we put C(q) = min{ 1

4 ,
4
q+4} for any q > 1, we have

C(α0)

∫
B+

1

tb
∣∣∣∇(ηU (Un)

α0−2
2 U

)∣∣∣2 dz
6
∫
B+

1

tb∇U∇
(
η2
U (Un)α0−2U

)
dz +

(
2 + C(α0)

α0 + 2

2

)∫
B+

1

tb(Un)α0−2|U |2|∇ηU |2dz .

Combing this with (158), using Young inequality and the fact that Un 6 |U |, we obtain

C(α0)

∫
B+

1

tb
∣∣∣∇(ηU (Un)

α0−2
2 U

)∣∣∣2 dz
6 −

∫
B+

1

tbV η2
U (Un)α0−2U dz +

(
2 + C(α0)

α0 + 2

2

)∫
B+

1

tb(Un)α0−2|U |2|∇ηU |2dz

6
1

α0

∫
B+

1

tbη2
U |V |α0dz +

α0 − 1

α0

∫
B+

1

tbη2
U (Un)

α0(α0−2)
α0−1 |U |

α0
α0−1 dz

+

(
2 + C(α0)

α0 + 2

2

)∫
B+

1

tb(Un)α0−2|U |2|∇ηU |2dz

6
1

α0

∫
B+

1

tbη2
U |V |α0dz +

α0 − 1

α0

∫
B+

1

tbη2
U (Un)α0−2|U |2dz

+

(
2 + C(α0)

α0 + 2

2

)∫
B+

1

tb(Un)α0−2|U |2|∇ηU |2dz .

Since U, V ∈ H1(B+
1 ; tb) ⊂ Lα0(B+

1 ; tb), letting n → +∞, by Fatou Lemma, we deduce that

∇
(
ηU |U |

α0−2
2 U

)
∈ L2(B+

1 ; tb). Moreover, since ηU |U |
α0−2

2 U ∈ L2(B+
1 ; tb), being U ∈ Lα0(B+

1 ; tb),

then ηU |U |
α0−2

2 U ∈ H1(B+
1 ; tb).
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In the rest of this proof, in order to simplify the notation, we will denote the critical exponent

2∗(N, s−1) = 2N
N−2s+2 by 2∗. By Lemma 7.3 and (157), we have that ηU |U |

α0−2
2 U ∈ L2∗∗(b)(B+

1 ; tb)

and ηU (·, 0)|U(·, 0)|
α0−2

2 U(·, 0) ∈ L2∗(B′1). This implies that

(159) U(·, 0) ∈ L
α0·2

∗
2 (B′rU ) and U ∈ L

α0·2
∗∗(b)
2 (B+

rU ; tb) .

Now, let 1
2 < rV < rU and let ηV ∈ C∞c (RN+1

+ ) be such that supp(ηV ) ⊂ Σ+
rU and ηV ≡ 1 in Σ+

rV .

Testing the second equation in (156) with η2
V (V n)β0−2V , being β0 = 2∗·α0

2(2∗−1) ∈ (2, 2∗∗(b)), and

exploiting the corresponding boundary condition, we obtain∫
B+

1

tb∇V∇
(
η2
V (V n)β0−2V

)
dz

=

∫
B′1

[A(x)U(x, 0) +B(x)] η2
V (x, 0)(V n(x, 0))β0−2V (x, 0) dx .

Proceeding as above we infer

C(β0)

∫
B+

1

tb
∣∣∣∇(ηV (V n)

β0−2
2 V

)∣∣∣2 dz
6
∫
B′1

[A(x)U(x, 0) +B(x)] η2
V (x, 0)(V n(x, 0))β0−2V (x, 0) dx

+
(

2 + C(β0)β0+2
2

)∫
B+

1

tb(V n)β0−2|V |2|∇ηV |2dz ,

(by Young inequality) 6 λ1−β0

β0

∫
B′1

η2
V (x, 0)|A(x)| |U(x, 0)|β0dx

+ λ(β0−1)
β0

∫
B′1

|A(x)|η2
V (x, 0)(V n(x, 0))

β0(β0−2)
β0−1 |V (x, 0)|

β0
β0−1 dx

+ λ1−β0

β0

∫
B′1

η2
V (x, 0)|B(x)| dx+ λ(β0−1)

β0

∫
B′1

|B(x)|η2
V (x, 0)(V n(x, 0))

β0(β0−2)
β0−1 |V (x, 0)|

β0
β0−1 dx

+
(

2 + C(β0)β0+2
2

)∫
B+

1

tb(V n)β0−2|V |2|∇ηV |2dz ,

(by Hölder inequality and the fact that V n 6 |V |)

6 λ1−β0

β0
‖A‖

L
N

2(s−1) (B′1)
|B′1|

2(s−1)[N−2(s−1)]
N[N+2(s−1)]

(∫
B′1

η2
V (x, 0)|U(x, 0)|β0(2∗−1)dx

) 1
2∗−1

+ λ(β0−1)
β0

∫
B′1

|A(x)|
(
ηV (x, 0)(V n(x, 0))

β0−2
2 |V (x, 0)|

)2

dx

+ λ1−β0

β0
‖B‖

L
N

2(s−1) (B′1)
|B′1|

N−2(s−1)
N + λ(β0−1)

β0

∫
B′1

|B(x)|
(
ηV (x, 0)(V n(x, 0))

β0−2
2 |V (x, 0)|

)2

dx

+
(

2 + C(β0)β0+2
2

)∫
B+

1

tb(V n)β0−2|V |2|∇ηV |2dz

6 λ1−β0

β0
‖A‖

L
N

2(s−1) (B′1)
|B′1|

2(s−1)[N−2(s−1)]
N[N+2(s−1)]

(∫
B′rU

|U(x, 0)|β0(2∗−1)dx

) 1
2∗−1

+ λ(β0−1)
β0

(
‖A‖

L
N

2(s−1) (B′1)
+ ‖B‖

L
N

2(s−1) (B′1)

)(∫
B′1

∣∣∣ηV (x, 0)(V n(x, 0))
β0−2

2 V (x, 0)
∣∣∣2∗dx) 2

2∗

+ λ1−β0

β0
‖B‖

L
N

2(s−1) (B′1)
|B′1|

N−2(s−1)
N +

(
2 + C(β0)β0+2

2

)∫
B+

1

tb(V n)β0−2|V |2|∇ηV |2dz ,
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and finally by (151)

6 λ1−β0

β0
‖A‖

L
N

2(s−1) (B′1)
|B′1|

2(s−1)[N−2(s−1)]
N[N+2(s−1)]

(∫
B′rU

|U(x, 0)|β0(2∗−1)dx

) 1
2∗−1

+ λ(β0−1)
β0

(
‖A‖

L
N

2(s−1) (B′1)
+ ‖B‖

L
N

2(s−1) (B′1)

)
S̃(N, b)−1

∫
B+

1

tb
∣∣∣∇(ηV (V n)

β0−2
2 V

)∣∣∣2 dz
+ λ1−β0

β0
‖B‖

L
N

2(s−1) (B′1)
|B′1|

N−2(s−1)
N +

(
2 + C(β0)

β0 + 2

2

)∫
B+

1

tb(V n)β0−2|V |2|∇ηV |2dz .

Choosing λ > 0 small enough, in such a way that the constant

K := C(β0)− λ(β0−1)
β0

(
‖A‖

L
N

2(s−1) (B′1)
+ ‖B‖

L
N

2(s−1) (B′1)

)
S̃(N, b)−1

becomes positive, we obtain

(160) K

∫
B+

1

tb
∣∣∣∇(ηV (V n)

β0−2
2 V

)∣∣∣2 dz
6 λ1−β0

β0
‖A‖

L
N

2(s−1) (B′1)
|B′1|

2(s−1)[N−2(s−1)]
N[N+2(s−1)]

(∫
B′rU

|U(x, 0)|β0(2∗−1)dx

) 1
2∗−1

+ λ1−β0

β0
‖B‖

L
N

2(s−1) (B′1)
|B′1|

N−2(s−1)
N +

(
2 + C(β0)β0+2

2

)∫
B+

1

tb(V n)β0−2|V |2|∇ηV |2dz .

We observe that by (159) and the definition of β0 we have that the integral in the right hand
side of (160) involving the function U is finite and so it is the one involving the function V since
V ∈ Lβ0(B+

1 ; tb) being β0 ∈ (2, 2∗∗(b)).

Passing to the limit as n→ +∞, by Fatou Lemma, we have that ∇
(
ηV |V |

β0−2
2 V

)
∈ L2(B+

1 ; tb)

and hence ηV |V |
β0−2

2 V ∈ H1(B+
1 ; tb). By (157) we then have V ∈ L

2∗∗(b)·β0
2 (B+

rV ; tb).
Now we want to iterate the procedures previously applied to the functions U and V to improve

their summability. To this purpose we define two sequences of radii in the following way:

ρ0 =
3

4
, r0 =

7

8
, ρk+1 :=

1

2

(
ρk +

1

2

)
, rk+1 :=

1

2
(ρk + ρk+1) for any k > 0 .

Then we define two sequences of exponents in the following way:

αk+1 := βk ·
2∗∗(b)

2
, βk+1 :=

2∗ · αk+1

2(2∗ − 1)
for any k > 0 .

We observe that

(161) αk+1 < αk ·
2∗∗(b)

2
and βk+1 < βk ·

2∗∗(b)

2
.

We apply inductively the two procedures to U and V respectively, replacing every time rU with
rk, rV with ρk, α0 with αk and β0 with βk.

If after a certain step we obtained that U(·, 0) ∈ L
αk·2

∗
2 (B′rk), U ∈ L

αk·2
∗∗(b)
2 (B+

rk
; tb) and

V ∈ L
βk·2

∗∗(b)
2 (B+

ρk
; tb), then at the beginning of the subsequent step, by (161), we have in particular

U ∈ Lαk+1(B+
rk

; tb) and V ∈ Lβk+1(B+
ρk

; tb). Applying the two procedures first to U and then to V ,

we obtain U(·, 0) ∈ L
αk+1·2

∗

2 (B′rk+1
), U ∈ L

αk+1·2
∗∗(b)

2 (B+
rk+1

; tb) and V ∈ L
βk+1·2

∗∗(b)
2 (B+

ρk+1
; tb).

It is easy to check that βk+1/βk = 2∗·2∗∗(b)
4(2∗−1) > 1 so that limk→+∞ αk = limk→+∞ βk = +∞.

Since rk > ρk >
1
2 for any k the proof of the lemma then follows. �

Remark 7.7. We observe that in Propositions 7.4, 7.5, 7.6 the equations are set in the half ball
in RN+1 of radius 1 and that the regularity or summability result is obtained in the half ball of
radius 1/2 or 1/4. The special choice of those radii was made only for simplicity of notation but it
easy to understand that completely similar results still hold true with the equations set in a half
ball of arbitrary radius R1 and with the conclusion on regularity or summability obtained on a
half ball of arbitrary radius R2 < R1. �
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We now state a Hölder regularity result for solutions of system (156).

Proposition 7.8. Let s ∈ (1, 2), b = 3 − 2s ∈ (−1, 1), A ∈ Lq̄(B′1), B ∈ Lq̄(B′1) for some

q̄ > N
2(s−1) . If U, V ∈ H1(B+

1 ; tb) weakly solve (156) then U, V ∈ C0,α(B
+

1/2) for some α ∈ (0, 1) and

moreover there exists a constant K2 depending only on N, b, ‖A‖Lq̄(B′1), ‖B‖Lq̄(B′1), ‖U‖L2∗∗(b)(B+
1 ;tb)

and ‖V ‖L2∗∗(b)(B+
1 ;tb) such that

‖U‖
C0,α(B

+
1/2)
6 K2 , ‖V ‖

C0,α(B
+
1/2)
6 K2 .

Proof. We first apply Proposition 7.6 to U and V and, taking into account Remark 7.7, we obtain
U, V ∈ Lq(B+

r ; tb) and U, V ∈ Lq(B′r) for any 1 6 q <∞ and r ∈ (1/2, 1). Then, by (156), by the
assumptions on A and B, by Proposition 7.4 (i) applied to U and V respectively and by Remark

7.7, we obtain U, V ∈ C0,α(B
+

1/2) for some α ∈ (0, 1). �

We are now ready to prove a Hölder regularity estimate for derivatives of solutions (U, V ) of
(156).

Proposition 7.9. Let s ∈ (1, 2), b = 3 − 2s ∈ (−1, 1), A,B ∈ W 1,q̄(B′1) for some q̄ > N
2(s−1) .

Then the following statements hold true:

(i) if U, V ∈ H1(B+
1 ; tb)∩C0,α(B

+

1 ), for some α ∈ (0, 1), weakly solve (156) then ∇xU,∇xV ∈
C0,β(B

+

1/2) for some β ∈ (0, α) and moreover there exists a constant K3 depending only

on N, b, ‖A‖W 1,q̄(B′1), ‖B‖W 1,q̄(B′1), ‖U‖C0,α(B
+
1 )

and ‖V ‖
C0,α(B

+
1 )

such that

‖∇xU‖C0,β(B
+
1/2)
6 K3 , ‖∇xV ‖C0,β(B

+
1/2)
6 K3 .

(ii) if we also assume A,B ∈ C0,α(B′1) for some α ∈ (0, 1) and if U, V ∈ H1(B+
1 ; tb)∩C0,α(B

+

1 )

weakly solve (156) in B+
1 then tbUt, t

bVt ∈ C0,β(B
+

1/2) for some β ∈ (0, α) and moreover

there exists a constant K4 depending only on N, b, ‖A‖C0,α(B′1), ‖B‖C0,α(B′1),
‖U‖

C0,α(B
+
1 )

and ‖V ‖
C0,α(B

+
1 )

such that

‖tbUt‖C0,β(B
+
1/2)
6 K4 , ‖tbVt‖C0,β(B

+
1/2)
6 K4 .

Proof. In order to prove (i) we proceed as in the proof of Lemma 3.3 in [15]. We define for any
ξ ∈ RN with |ξ| small enough the functions

Uξ(x, t) :=
U(x+ ξ, t)− U(x, t)

|ξ|
and V ξ(x, t) :=

V (x+ ξ, t)− V (x, t)

|ξ|
for any (x, t) ∈ B+

3/4. Then we have
div(tb∇Uξ) = tbV ξ in B+

3/4 ,

div(tb∇V ξ) = 0 in B+
3/4 ,

limt→0+ tbUξt = 0 on B′3/4 ,

− limt→0+ tbV ξt = A(x)Uξ +Bξ on B′3/4 ,

where

Bξ(x) :=
A(x+ ξ)−A(x)

|ξ|
U(x+ ξ, 0) +

B(x+ ξ)−B(x)

|ξ|
.

We observe that

‖Bξ‖Lq̄(B′
3/4

) 6 ‖A‖W 1,q̄(B′1) ‖U‖C0,α(B
+
1 )

+ ‖B‖W 1,q̄(B′1) .

Applying Proposition 7.8 to Uξ and V ξ and taking into account Remark 7.7, we infer that
‖Uξ‖

C0,β(B
+
1/2)

, ‖V ξ‖
C0,β(B

+
1/2)

are uniformly bounded with respect to ξ small for some β ∈ (0, α).

Passing to the limit as ξ → 0, by the Ascoli-Arzelà Theorem we deduce that∇xU,∇xV ∈ C0(B
+

1/2).

Finally, exploiting the uniform Hölder estimates for Uξ and V ξ, passing to the limit as ξ → 0, we

obtain the validity of the Hölder estimates for ∇xU and ∇xV on B
+

1/2. This completes the proof

of (i).
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It remains to prove (ii). We first observe that A(x)U(x, 0) +B(x) ∈ C0,α(B′1) and hence by [8,

Lemma 4.5], applied to the function V , we obtain tbVt ∈ C0,β(B
+

1/2) for some β ∈ (0, α). In turn,
applying Proposition 7.5 to the function U , we also obtain the Hölder continuity of the function

tbUt over B
+

1/2. This completes the proof of (ii). �

7.3. Properties of Bessel functions. We start by recalling an asymptotic estimate for first kind
Bessel functions as t→ +∞:

(162) Jν(t) = O(t−1/2) as t→ +∞ .

This property can be deduced from the asymptotic expansion [4, (4.8.5)]. In order to obtain a
similar estimate for derivatives of Jν we start from the following identity

(163) J ′ν(t) = −Jν+1(t) + νt−1Jν(t) ,

see for example [4, Section 4.6]. From this identity we immediately see that J ′ν(t) = O(t−1/2) ad
t→ +∞.

Using iteratively (163), we deduce that

(164)
dnJν
dtn

(t) = O(t−1/2) as t→ +∞ .

We conclude this subsection with an asymptotic estimate for the zeros of Jν as m→ +∞:

(165) jν,m ∼ πm as m→ +∞ .

For more details on (165), see [45, Page 506] and also [14, Eq. (1.5)].
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