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a statistical analysis of a stochastically perturbed version of the model, which high-20

lights fat tails and excess volatility in the returns distributions, as well as bubbles and21

crashes for stock prices, in agreement with the empirical literature.22

Keywords Animal spirits · Imitative process · Evolutionary selection · Financial23

markets · Bifurcations · Complex dynamics24

JEL Classification B52 · C62 · D84 · G0225

1 Introduction26

Stock price dynamics can exhibit very complex and erratic behaviors. The random-27

like dynamics can give rise to alternating periods with basically either inflating or28

falling prices (bubbles and crashes), with resulting distributions that significantly29

differ from normal. In trying to understand and explain such phenomena, psycho-30

logical aspects of agents’ behavior can not be neglected. In particular, a significant31

role is played by agents’ beliefs about the stock price fundamental value. In the tra-32

ditional descriptions of financial markets, it is assumed that such fundamental value33

is perfectly known.34

However, complete knowledge and, more generally, full rationality are to a large35

extent unrealistic hypotheses, being costly in terms of both informational and compu-36

tational skills. There is a wide literature concerning psychological aspects of taking37

decisions about uncertain events in which it is shown that agents more likely adopt38

intuitive rather than rational processes in their actions, relying on a small number of39

simple principles. Those principles allow them to reduce the huge task of prediction40

to simpler heuristic operations, which permit them to save time and resources (see41

e.g. Epstein 2003; Gilbert 2002; Tversky and Kahneman 1974; Wilson 2002). Such42

investigations about human decisional processes have been taken into account in sev-43

eral economically oriented frameworks, leading to modeling approaches based on the44

assumption of boundedly rational agents. Since the related economic literature is very45

vast, we limit ourselves to referring the reader to Hommes (2013) for some evidence46

of the boundedly rational behavior of human agents, also due to the complexity of47

the financial market structure,to the book edited by Dieci et al. in 2014 for a discus-48

sion on the modeling of financial markets, in particular as concerns nonlinearities and49

heterogeneous agents; to Kindleberger and Aliber (2005), and Barberis and Thaler50

(2003) for behavioral and empirical aspects. The thrust of these behavioral and eco-51

nomical investigations is that boundedly rational agents, not exclusively relying on52

complex, fully rational decisional mechanisms founded on the complete knowledge53

of the economic setting, drive the economy acting as “animal spirits” (Keynes 1936;54

Akerlof and Shiller 2009). Then, decisions are mostly a consequence of the agents’55

interactions among themselves and with the economic framework in which they are56

embedded.57

Concerning the representation of animal spirits in behavioral finance, a rele-58

vant contribution is represented by the paper by De Grauwe and Rovira Kaltwasser59

(2012), in which it is illustrated how optimistic and pessimistic belief biases on60
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the fundamental value can generate waves of optimism and pessimism that qual- 61

itatively resemble erratic price movements (see also De Grauwe and Macchiarelli 62

2015). Such beliefs are exogenously established, but agents, being either optimists 63

or pessimists, can switch their behavioral rule, which is selected under an evolution- 64

ary competition based on the observation of a simple economic variable, namely, 65

the relative profits realized by the two kinds of agents. In particular, the origin of 66

this approach to the representation of animal spirits can be found in De Grauwe 67

(2012), page 12, where the evolution of the probability that agents extrapolate a pos- 68

itive/negative output gap is interpreted in terms of the updating of the fractions of 69

optimistic/pessimistic agents (but it could be read in terms of the dynamics of opti- 70

mistic/pessimistic beliefs, as well). The emergence of waves of optimism/pessimism, 71

which portrays the animal spirits’ behavior, is driven by the endogenous fluctuations 72

of the share of optimists/pessimists under evolutionary pressure. In this framework, 73

optimism (respectively, pessimism) is then realized when there is a large fraction of 74

agents adopting the optimistic (respectively, pessimistic) heuristic. 75

In Naimzada and Pireddu (2015b) the authors adopt a different approach, more 76

related to Akerlof and Shiller (2009) and the concept of confidence therein. Accord- 77

ing to Akerlof and Shiller, all economic activities, such as investment, spending, 78

employment, production, etc., require a certain confidence level, which can then be 79

interpreted as an optimistic belief. A higher or lower confidence degree in their eco- 80

nomic actions makes agents’ beliefs become more optimistic or more pessimistic. 81

On this basis, in Naimzada and Pireddu (2015b) a financial market model is stud- 82

ied with heterogeneous speculators, i.e., optimistic and pessimistic fundamentalists, 83

who, respectively, overestimate and underestimate the true fundamental value due to 84

ambiguity1 in the stock market. This prevents them from relying on the true funda- 85

mental value in their speculations, even if they know it. In such paper it is assumed 86

that agents use in its place values determined, as a consequence of the interaction 87

among them, through an imitative mechanism. In this case, the behavioral rule of each 88

agent is exogenously assumed (no switching mechanism is considered therein), and 89

agents adapt their beliefs about the fundamental value within the assigned heuristic. 90

The imitative process can generate endogenous fluctuations in the beliefs, which can 91

be read as waves of optimism/pessimism. In this framework, optimism (respectively, 92

pessimism) is realized when beliefs are suitably large (respectively, small). 93

The contributions by De Grauwe and Rovira Kaltwasser (2012) and by Naimzada 94

and Pireddu (2015b) then provide two different ways (switching and imitation) to 95

portray the emergence of animal spirits in financial markets, through alternating 96

waves of optimism/pessimism. At this point, several questions arise, among which 97

we will focus on the following three issues: which mechanism, between imitation 98

and switching, is the most significant for the emergence of animal spirits? Is one of 99

the two mechanisms negligible with respect to the other? How can we measure the 100

1We stress that such a notion of ambiguity differs from the one employed in general equilibrium theory,
where agents, in making their choices in stochastic frameworks, are assumed to take into account different
probability laws describing the distribution of relevant random variables. See e.g. Dow and Werlang (1992)
and Ellsberg (1961).
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general sentiment when both beliefs and shares of optimists/pessimists contribute to101

the emergence of optimism/pessimism waves?102

The main goal of the present research consists in providing elements to answer103

the previous questions, trying to unify the two partial portraits depicted in the above104

mentioned papers. To the best of our knowledge, this is the first contribution in such105

unifying direction. On the basis of both the works by De Grauwe and Rovira Kalt-106

wasser (2012) and by Naimzada and Pireddu (2015b), we aim indeed to go beyond107

the partial descriptions of optimism/pessimism proposed in those papers, which focus108

on single aspects of the complex phenomenon of animal spirits, in order to furnish a109

joined characterization of what optimism/pessimism are, as well as to introduce some110

tools to analyze the resulting framework.111

More precisely, we take into account both endogenous belief biases and an112

endogenous switching rule between heuristics. This means that, due to the former113

mechanism, agents interact in order to form their beliefs about the fundamental value,114

using an imitative process the strength of which is regulated by a parameter μ, which115

we will call the imitation degree. On the other hand, as a consequence of the latter116

rule, the group sizes of optimists and pessimists are not fixed, being endogenously117

determined through an evolutionary selection mechanism, regulated by a parame-118

ter β which describes its intensity of choice. The model is completed by the stock119

price adjustment rule, consisting in a nonlinear, bounded mechanism that prevents120

negativity and divergence issues.121

In such a framework, agents both update their beliefs on the fundamental value122

according to the relative ability shown by optimists and pessimists, albeit remain-123

ing optimists and pessimists, and can switch to the other group of speculators if they124

performed better in terms of relative profits. Indeed, in the present model, differ-125

ently than in De Grauwe and Rovira Kaltwasser (2012) and Naimzada and Pireddu126

(2015b), the optimism/pessimism degree is regulated by the joint effect of the popula-127

tion shares and of the value of beliefs. In order to describe its evolution, we introduce128

a synthetic index IT (t), representing the mean of the agents’ beliefs, weighted with129

the corresponding shares and averaged on a suitable period T . In this way, we take130

into account the resulting effect of both (beliefs and shares) aspects, so that we can131

say that optimism (respectively, pessimism) corresponds to those periods for which132

IT (t) exceeds (respectively, lies below) the true fundamental value F . As we shall133

see, in our setting, waves of optimism and pessimism are better understood in terms134

of IT (t) than of either beliefs or shares alone.135

As concerns our results, we study, both analytically and through numerical simula-136

tions the stability of the unique steady state, its bifurcations, as well as the emergence137

of complex behaviors, with possible multistability phenomena, characterized by the138

presence of coexisting attractors. Several scenarios we find already arose in either De139

Grauwe and Rovira Kaltwasser (2012) or Naimzada and Pireddu (2015b) settings.140

For example, in the former work, two stability thresholds for the intensity of choice141

parameter were detected, corresponding, respectively, to a flip and a Neimark-Sacker142

bifurcation. On the other hand, before the flip bifurcation in that paper the system143

diverges and thus such bifurcation does not lead to complex behaviors, while in our144

framework, thanks to the presence of the bounded, nonlinear stock price adjustment145

mechanism, we do not face price divergence and the flip bifurcation is preceded146
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by periodic and possibly chaotic motions. In regard to the latter work, it is there 147

proven that the role of the imitation degree is ambiguous, meaning that the equilib- 148

rium can be stable only for intermediate values of μ, being instead unstable when μ 149

lies below or above suitable thresholds. However, the setting we analyze allows us to 150

show that such scenarios can be completely altered when the imitation and switching 151

mechanisms are simultaneously taken into account. We prove that the erratic price 152

behavior arising without the imitation mechanism is dampened and even stabilized 153

by the introduction of the imitative process. Similarly, dynamics that are unstable 154

when fixed fractions of optimists/pessimists are considered can be stabilized under a 155

switching mechanism regulated by a suitable evolutionary pressure. We stress that the 156

opposite situations can occur as well, with dynamics stable under just one between 157

the imitation and the switching mechanisms that become unstable when both are 158

taken into account. 159

Moreover, trying to deepen further the analysis of the emergence of waves of opti- 160

mism/pessimism, we show that we can have either large or small beliefs together 161

with either small or large fractions of pessimists, and that the occurrence of such 162

combinations is in general uniformly distributed. Once more this means that we can 163

not neglect any of the two mechanisms, since they jointly drive the behavior of the 164

stock price market. These results allow us to give an answer to our first two research 165

questions: to provide a whole description of animal spirits, both mechanisms should 166

be considered. 167

Finally, by means of the sentiment index IT (t), we are able to answer the third 168

question, showing that the emergence of optimism/pessimism waves can only be read 169

considering and weighting the combined effects of imitation and switching. We have 170

situations in which optimism is due to large beliefs, even if the share of pessimists 171

is large, and situations in which it is mostly determined by the fraction of agents 172

adopting an optimistic behavioral rule, even in the presence of small values of beliefs. 173

This is both true for the deterministic and the stochastically perturbed versions of our 174

model. In particular, we notice that the statistical analysis we perform highlights the 175

fact that the behavior of our model is in agreement with the stylized facts reported in 176

the empirical literature on financial markets (see e.g. Schmitt and Westerhoff 2014; 177

Westerhoff 2009, and the references therein). Indeed, we observe fat tails and excess 178

volatility in the returns distributions, as well as bubbles and crashes for stock prices. 179

The remainder of the paper is organized as follows. In Section 2 we introduce the 180

model. In Section 3 we perform the corresponding stability analysis. In Section 4 we 181

illustrate the role of the main parameters on the stability of the system and we present 182

the bifurcation analysis. In Section 5 we interpret the observed dynamics from an 183

economic viewpoint. In Section 6 we add stochastic shocks to the model and perform 184

a statistical analysis. In Section 7 we discuss the results and propose some possible 185

extensions. Proofs are collected in the Appendix. 186

2 The model 187

We introduce and analyze an evolutive financial market model with heterogeneous 188

agents, governed by three crucial aspects: the behavioral rules of speculators, the 189
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mechanism of price formation (see Hommes 2013) and the switching mechanism190

between behavioral rules. More precisely, we will deal with two groups of fundamen-191

talists (i.e., agents who, deeming that stock prices will return to their fundamental192

value F , buy stocks in undervalued markets and sell stocks in overvalued markets),193

whose behavior is captured by the dynamic motions of the corresponding beliefs194

about the fundamental value. In particular, we will consider optimists, who overes-195

timate the true fundamental value, and pessimists, who instead underestimate it. We196

assume that the fundamentalists’ decisional mechanism consists in forming time-197

varying beliefs about the fundamental value, as a result of an imitative process; due198

to the ambiguity in the financial market generated by the uncertainty about the future199

stock price, agents do not rely on the true fundamental value, although they know200

it. Considering F just as a reference value, they take into account the relative abil-201

ity shown by optimists and pessimists in guessing the realized stock price P(t) in202

the previous period and, still remaining optimists or pessimists, update their beliefs203

on the fundamental value proportionally to such criterion. The imitative updating204

mechanism of beliefs we assume is then described by

Q1

205

X(t + 1) = f
eμ(Y (t)−P(t))2

eμ(X(t)−P(t))2 + eμ(Y (t)−P(t))2 + F
eμ(X(t)−P(t))2

eμ(X(t)−P (t))2 + eμ(Y (t)−P(t))2

Y (t + 1) = F
eμ(Y (t)−P(t))2

eμ(X(t)−P(t))2 + eμ(Y (t)−P(t))2 + f
eμ(X(t)−P(t))2

eμ(X(t)−P (t))2 + eμ(Y (t)−P(t))2

(1)

where X(t) (respectively, Y (t)) represents the belief on the fundamental value of pes-206

simists (respectively, optimists), who always underestimate (overestimate) the true207

fundamental value F , i.e., X(t) < F < Y(t). Moreover, f ∈ (0, F ) (respectively,208

f ∈ (F, +∞)) is a lower (upper) bound for pessimists’ (optimists’) beliefs and209

μ ≥ 0 is a parameter measuring the intensity of the imitative process, i.e., how deeply210

agents are influenced by others’ choices in updating their own beliefs. In particu-211

lar, through (1) we express that both pessimistic and optimistic agents proportionally212

imitate those who have been more able in guessing the realized stock price.213

More precisely, by construction, X(t) and Y (t) are obtained as weighted averages214

in which the weights vary in (0, 1), taking into account the relative distances between215

P(t) and the realized values for X(t) ∈ (f , F ) and Y (t) ∈ (F, f ). If |X(t)−P(t)| =216

|Y (t)−P(t)| we have X(t+1) = (f +F)/2 and Y (t+1) = (F +f )/2, i.e., X(t+1)217

and Y (t + 1) lie at the middle point of the intervals in which they can, respectively,218

vary. If instead |X(t) − P(t)| < |Y (t) − P(t)|, i.e., pessimists performed better than219

optimists in guessing the realized stock price, then X(t + 1) will be closer to f than220

to F and Y (t + 1) will be closer to F than to f , that is, both X(t + 1) and Y (t + 1)221

will be closer to the lowest possible value they can assume. The opposite conclusions222

hold in case |X(t) − P(t)| > |Y (t) − P(t)|.223

We stress that, as in Naimzada and Pireddu (2015b), our updating mechanism224

bears resemblance to the so-called “Proportional Imitation Rules” in Schlag (1998).225
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However, differently from Naimzada and Pireddu (2015b), the updating of beliefs 226

is no more grounded on the relative profits realized by the two kinds of agents, but 227

rather on their relative ability in guessing the realized stock price, similarly to the rule 228

used for the switching mechanism in Naimzada and Ricchiuti (2008, 2009), based on 229

the squared errors between the perceived fundamental values and prices. 230

We notice that, when μ = 0, then X(t +1) ≡ 1
2 (f +F) and Y (t +1) ≡ 1

2 (F +f ) 231

and thus there is no imitation. When instead μ → +∞, then if (X(t) − P(t))2 < 232

(Y (t) − P(t))2, i.e., the squared error between the belief on the fundamental value 233

and the stock price is lower for pessimists than for optimists, then X(t +1) → f and 234

Y (t + 1) → F , that is, both variables tend towards their lowest possible value, while 235

if (X(t) − P(t))2 > (Y(t) − P(t))2, then X(t + 1) → F and Y (t + 1) → f . 236

Mechanism (1), which encompasses the effects of the imitative interaction among 237

agents, does not establish a competition between optimistic and pessimistic behav- 238

ioral rules, as Eq. 1 only affects the value of the beliefs of pessimists and optimists, 239

but not the kind of decisional rule adopted by each speculator. The evolutionary com- 240

petition between optimism and pessimism is instead described by an endogenous 241

switching mechanism, allowing agents to switch to the other group of speculators, if 242

they performed better in terms of relative profits. In particular, the population shares 243

evolve according to the discrete choice model in Brock and Hommes (1997), used 244

also in De Grauwe and Rovira Kaltwasser (2012). We assume a normalized popula- 245

tion of size one, and we introduce ω(t) ∈ (0, 1), which represents the fraction of the 246

population composed by pessimists at time t , so that total excess demand reads as 247

D(t) = ω(t)(X(t) − P(t)) + (1 − ω(t))(Y (t) − P(t))

= ω(t)X(t) + (1 − ω(t))Y (t) − P(t). (2)

Indeed, fundamentalists’ demand depends on the difference between the (beliefs 248

on the) fundamental value and the stock price. We observe that orders placed by 249

pessimistic and optimistic fundamentalists, which may be positive (meaning buy) or 250

negative (meaning sell) according to the relative positions of the stock price with 251

respect to the beliefs on the fundamental value (see also Fig. 5), are weighted with 252

their corresponding shares. 253

Introducing the profits πX(t + 1) and πY (t + 1) for the two kinds of speculators, 254

the expression of which is given by 255

πi(t + 1) = (P (t + 1) − P(t))(i(t) − P(t)), i ∈ {X, Y }, (3)

we have the following formulation for the switching mechanism 256

ω(t + 1) = eβπX(t+1)

eβπX(t+1) + eβπY (t+1)
= 1

1 + e−β(πX(t+1)−πY (t+1))
. (4)

Notice that the right-hand side of Eq. 4, which describes the relative profits of 257

traders of type X (i.e., pessimists), coincides with the share in the next period of 258

agents of type X in the discrete choice model (see Anderson et al. 1992; Brock and 259

Hommes 1997). In particular, the positive parameter β represents the intensity of 260

choice. In the limit β → 0 there is no switching and both the population shares 261
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coincide with 1/2; when instead β → +∞, the whole population moves towards262

optimism or pessimism, according to which option is more profitable.263

The last aspect we need to specify in our model is the price adjustment mech-264

anism. After gathering all the orders and computing excess demand, as usual the265

market maker sets the stock price for the next period. The majority of the existing lit-266

erature on behavioral financial markets (for surveys, we refer the interested reader to267

Hommes 2006 and Chiarella et al. 2009) deals with a linear price adjustment mecha-268

nism. This means that the ratio between the price variation and the excess demand is269

constant and in turns this implies that, for instance, if the latter assumes large values270

in absolute value, the price variation will be large. Hence, such a mechanism easily271

leads to negativity issues and divergence of the dynamics because of an overreac-272

tion:2 indeed, considering too large starting values for the stock price, the iterates273

may quickly limit towards minus infinity. In order to avoid overreaction phenomena274

and an excessive volatility in the stock market, central authorities often impose price275

limits. Recalling France et al. (1994), the aim of price limits is to “reduce the prob-276

ability of an overreaction to news. By not allowing prices to move beyond a certain277

point, they discourage mob psychology and force prices to adjust slowly”. For further278

discussions about price limits see Harris (1998) and Kyle (1988).279

In agreement with such perspective, in the present work we assume the market280

maker is forced by a central authority to be more cautious in adjusting the stock price281

when excess demand is large, i.e., when the system is far from its equilibria, while he282

has more freedom when excess demand is small, that is, when the system is close to283

an equilibrium. This kind of diversified behavior may be represented by a nonlinear284

function only, which has also to be increasing and to pass through the origin.285

In particular, our price variation limiter mechanism is described by a sigmoidal286

adjustment rule that determines a bounded price variation in every time period, thanks287

to the presence of two asymptotes that limit the dynamics, the formulation of which288

is given by289

P(t + 1) − P(t) = a2

(
a1 + a2

a1e−γD(t) + a2
− 1

)
, (5)

where D(t) is the excess demand defined in Eq. 2, γ is a positive parameter influ-290

encing the reactivity r of price variation with respect to changes in excess demand291

and a1, a2 are positive parameters limiting price variation and conditioning r . We292

notice that, in the literature, bounded price variation mechanisms are often obtained293

by considering piecewise linear maps (see for instance Weddepohl 1995). We rather294

chose to deal with the sigmoidal function in Eq. 5 because it is differentiable and thus295

simplifies the mathematical treatment of the model.296

2Starting with the crucial paper by De Bondt and Thaler (1985), a well-grounded empirical literature
has arisen to show the presence of overreaction phenomena in financial markets. We recall that, as said
in France et al. (1994), page 19, overreaction is “defined as a movement in price that overshoots the
equilibrium value and then subsequently returns to its true value”. Subsequently, some authors have given
further foundations to overreaction events through the formulation and analysis of mathematical models.
See, for instance, the works by Barberis et al. (1998), by Hong and Stein (1999) and by Veronesi (1999).
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The reactivity r of price variation with respect to changes in excess demand, i.e., 297

the derivative of the right-hand side of Eq. 5 with respect to D(t), computed in 298

correspondence to a generic value of excess demand reads then as 299

r(D(t)) = γ a1a2(a1 + a2)

(a1e−γD(t) + a2)2 eγD(t)
.

In particular, when D(t) = 0, i.e., in correspondence to a null excess demand, we 300

simply obtain 301

r(0) = γ̃ = γ a1a2

a1 + a2
. (6)

In this manner, γ̃ may be interpreted as the market maker price adjustment reac- 302

tivity when the excess demand vanishes, taking into account the combined effect of 303

γ, a1 and a2. We stress that a1 and a2 play the role of horizontal asymptotes to the 304

price variation. Indeed, as concerns price impact, that is, the impact of excess demand 305

on price variation, we have that, with the choice in Eq. 5, P(t + 1) − P(t) is increas- 306

ing in D(t) and vanishes when D(t) = 0 ; moreover, price variation P(t + 1)−P(t) 307

is bounded from below by −a2 (obtained when D(t) → −∞) and from above by 308

a1 (obtained when D(t) → +∞). Hence, the price variations in Eq. 5 are grad- 309

ual, and the presence of the two horizontal asymptotes prevents the dynamics of the 310

stock price from diverging and helps avoide negativity issues. In particular, increas- 311

ing (decreasing) such parameters we obtain an increase (decrease) in the possible 312

price variations. Notice that γ influences the market maker price adjustment reactiv- 313

ity, without modifying the value of the asymptotes. We finally observe that, in the 314

majority of the literature on the topic, it is assumed that the behavior of the market 315

maker is symmetric with respect to variations in excess demand that have opposite 316

signs but coincide in absolute value. Since in the present work we allow a1 and a2 317

to be possibly different, we can deal with more general settings in which the market 318

maker can react in a different manner to a positive or to a negative excess demand. 319

We recall that nonlinear adjustment mechanisms determining a bounded price 320

variation and similar to the one on the right-hand side of Eq. 5 have been already 321

considered in Chiarella et al. (2009), Naimzada and Pireddu (2015b, c), Naimzada 322

and Ricchiuti (2014), Tuinstra (2002) and Zhu et al. (2009). 323

The model we are going to study is obtained collecting (1), (4) and (5). 324

Actually, in order to simplify our analysis, since the most significant form of het- 325

erogeneity in the model is represented by the different attitudes of agents towards the 326

reference value, from now on we shall assume that f and f lay at the same distance 327

� from F , i.e., that f = F − � and f = F + �. In this manner, � ≥ 0 may be 328

used as bifurcation parameter in our analytical and numerical results about local sta- 329

bility. Indeed, in Sections 3 and 4 we will take μ, β and � as bifurcation parameters. 330

We remark that we checked through simulations that the dynamics we will show in 331

Sections 3 and 4 are not significantly affected by the presence of symmetric bounds 332

for the beliefs with respect to F . In both the symmetric and asymmetric frameworks, 333

the only relevant aspect seems to be the distance between optimistic and pessimistic 334

beliefs, which is already represented by parameter � in a suitably general way in the 335

symmetric setting. 336
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Exploiting the notation just introduced and observing that the weight coefficients337

in Eq. 1 sum up to 1, following Eq. 4 we may write our model as338

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X(t + 1) = F − �
(

1
1+eμ((X(t)−P(t))2−(Y (t)−P(t))2)

)
Y (t + 1) = F + �

(
1

1+e−μ((X(t)−P(t))2−(Y (t)−P(t))2)

)
P(t + 1) = P(t) + a2

(
a1+a2

a1e
−γ (ω(t)(X(t)−P(t))+(1−ω(t))(Y (t)−P(t)))+a2

− 1
)

ω(t + 1) = 1
1+e−β(πX(t+1)−πY (t+1))

(7)

As concerns the meaning of �, it describes the degree of ambiguity in the financial339

market, which prevents agents from relying on the true fundamental value F in their340

speculations, even if they know it. We stress that � gives also a measure of the hetero-341

geneity degree among agents and thus of the bias in their beliefs. Namely, it is defined342

as the maximum possible distance of optimists’ and pessimists’ beliefs from the true343

fundamental value F . In particular, for � = 0 we have no ambiguity in the stock mar-344

ket and thus agents’ heterogeneity disappears from the model. Indeed, when � = 0345

the first two equations in System (7) simply become X(t+1) = Y (t+1) ≡ F , and the346

dynamics are generated just by the stock price equation and by the switching mecha-347

nism. Moreover, we remark that, when setting μ = 0, it holds that X(t +1) = F − �
2348

and Y (t + 1) = F + �
2 . Hence, in this case there is no imitation in the updating of349

the beliefs on the fundamental value, which indeed are fixed. Thus, when μ = 0, we350

enter the framework in De Grauwe and Rovira Kaltwasser (2012) with bias a = �
2 ,351

except for the presence of our nonlinear price adjustment mechanism that replaces352

the linear price equation in De Grauwe and Rovira Kaltwasser (2012). When instead353

μ �= 0, the beliefs X and Y about the fundamental value are no more fixed and we354

generalize the constant belief setting in De Grauwe and Rovira Kaltwasser (2012),355

with the only exception being our nonlinear price equation. Finally, if β = 0 we fall356

within a particular case of Naimzada and Pireddu (2015b), in which ω is fixed and357

equal to 0.5.358

As remarked by De Grauwe and Rovira Kaltwasser (2012), the presence of “ani-359

mal spirits” affects reality, possibly leading to waves of optimism and pessimism. In360

this work, in which the beliefs of agents are exogenously determined and constant in361

time, waves of optimism and pessimism are identified with the alternation of small362

and large values of the share ω(t) of pessimists, while in the paper by Naimzada and363

Pireddu (2015b), in which ω is a fixed, exogenous parameter, waves of optimism and364

pessimism correspond to beliefs oscillations. On the other hand, in System (7) we365

can not disentangle the effects of the share ω(t) of pessimists from the role played366

by the value of beliefs. An optimistic behavior can be encompassed by values of367

X(t) and Y (t) sufficiently close to F and F + �, respectively, even when ω(t) is368

large, as well as by a large share of optimists even if beliefs are small. To take into369

account such double nature of optimism/pessimism, it is appropriate to introduce a370

“sentiment index” that reflects the joint effects of ω(t) and X(t). The simplest way371

to define it is to consider an average of optimists and pessimists beliefs weighted372

by their corresponding fractions, namely, I1(t) = ω(t)X(t) + (1 − ω(t))Y (t). We373
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stress that I1(t) is completely consistent with both the De Grauwe and Rovira Kalt- 374

wasser (2012) and Naimzada and Pireddu (2015b) settings. In fact, in the former 375

setting, since X(t) = F − �/2 and Y (t) = F + �/2, for all t , we have that 376

I1(t) = F + �(1 − 2ω)/2, which reflects the fact that optimism/pessimism is deter- 377

mined by the prevailing share of agents, i.e., by whether ω < 1/2 or ω > 1/2, 378

respectively. Conversely, in the latter setting, we have that ω is constant in time, and 379

hence I1(t) changes only with respect to variations of X(t) and Y (t). 380

Notice that I1(t) portrays the instantaneous sentiment at time t . On the other hand, 381

in order to describe the temporal evolution of the waves of optimism and pessimism, 382

it is sometimes crucial to consider several consecutive periods. Moreover, it may 383

happen that the persistence of I1(t) > F over time is occasionally interrupted by 384

some t̃ for which I1(t̃) < F , or vice versa. This becomes particularly significant 385

when stochastic shocks are introduced in System (7) (see Section 6), since they can 386

temporarily affect the value of I1(t) in a determinant way. 387

To take into account the previous issues and to be able to neglect insignificant 388

discording behaviors in isolated periods, we generalize I1(t) by introducing the 389

following optimism/pessimism persistence index 390

IT (t) =
t∑

j=t−T +1

ω(j)X(j) + (1 − ω(j))Y (j)

T
, (8)

which is a moving average of I1(t) over the T ≥ 1 time steps preceding t . We 391

stress that T is an exogenous parameter reflecting at which scale we are looking 392

at the optimistic/pessimistic behavior of agents. A small value of T is suitable to 393

describe short-period sentiments, while large values of T allow us to neglect tempo- 394

rary effects and to describe better long-term persistence of optimism/pessimism. In 395

such a perspective, IT (t) permits to consider the combined role played by beliefs and 396

shares of pessimists/optimists, avoiding attaching too much relevance to small and 397

isolated deviations in the trend behavior. To the best of our knowledge, no similar 398

joint indexes have been introduced in the literature on financial markets. In fact, it 399

bears a resemblance to the long-period optimism index considered in Naimzada and 400

Pireddu (2015a), defined however, just as an average of the shares over several periods. 401

We remark that, from the ranges of variation of ω(t), X(t) and Y (t), it follows 402

that IT (t) ∈ (F − �, F + �). We can then say that “optimism” is realized over 403

periods of size T when IT (t) > F , as well as that “pessimism” is prevalent when 404

IT (t) < F . The interpretation of the sentiment index in Eq. 8 and the influence of 405

T on it depend on whether we are considering the completely deterministic model 406

(7) or we are taking into account stochastic perturbations. As already mentioned, the 407

index has particular relevance when non-deterministic shocks are encompassed, as it 408

will become evident in Section 6. Nonetheless, the standard behavior is that, since 409

IT is a moving average of I1(t) over T periods, raising T has a smoothing effect 410

on non constant time series, leading IT (t) to be in general closer and closer to F as 411

T increases. Moreover, raising T produces a lagging effect on IT (t), which indeed 412

displays a delay with respect to I1(t). 413

We start our analysis by studying the steady states of Eq. 7. 414
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Proposition 1 System (7) has a unique steady state in415

(X∗, Y ∗, P ∗, ω∗) =
(

F − �

2
, F + �

2
, F,

1

2

)
.

Hence, the steady state values for X and Y are symmetric with respect to F and416

they lie at the middle points of the intervals in which they may respectively vary.417

In particular, when � = 0 we find X∗ = Y ∗ = P ∗ = F , as in the classical418

framework without belief biases and imitation, with identical agents which use F as419

fundamental value. As we shall see in Section 3, in this case the system inherits the420

stability/instability of the price adjustment mechanism. We remark that, at the equi-421

librium, index IT (t) coincides coincides with the fundamental value F and describes422

a neutral situation, where neither optimism nor pessimism prevails.423

In the next result, we show that Eq. 7 is actually “equivalent”, in a sense to be424

better specified, to a three-dimensional dynamical system we are going to analyze in425

Section 3.426

Proposition 2 The variables X and Y in Eq. 7 satisfy the following condition:427

Y (t) = X(t) + �, for all t ≥ 1.428

The above result means that, for all initial conditions X(0) < F < Y(0), after just429

one time period the trajectory of Y (t) converges on the trajectory of X(t) + � and430

since then they coincide. Hence, Proposition 1 may be rephrased by saying that, for431

t ≥ 1, the dynamical system associated to Eq. 7 is equivalent to that associated to the432

three-dimensional map433

G = (G1, G2, G3) : (f , F ) × (0, +∞) × (0, 1) → R
3,

434

(X(t), P (t), ω(t)) 	→ (G1(X(t), P (t), ω(t)), G2(X(t), P (t), ω(t)), G3(X(t), P (t), ω(t))),

435

defined as:436 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t + 1) = G1(X(t), P (t), ω(t))

= F − �
(

1
1+eμ((X(t)−P(t))2−(X(t)+�−P(t))2)

)
P(t + 1) = G2(X(t), P (t), ω(t))

= P(t) + a2

(
a1+a2

a1e
−γ (ω(t)(X(t)−P(t))+(1−ω(t))(X(t)+�−P(t)))+a2

− 1
)

ω(t + 1) = G3(X(t), P (t), ω(t))

= 1

1+e
−βa2�

(
a1+a2

a1e−γ (ω(t)(X(t)−P(t))+(1−ω(t))(X(t)+�−P(t)))+a2
−1

)

(9)

in the sense that the two systems generate the same trajectories for X(t), P (t) and437

ω(t).438

We will deal with G both to derive analytically in Section 3 the stability conditions439

for our model using the method in Farebrother (1973), and in the numerical simula-440

tions in Sections 4–6, where we will specify the initial conditions for X(t), P (t) and441

ω(t) only, implicitly taking Y (0) = X(0) + � for simplicity.442
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Before presenting the analytical results on local stability, we give some intu- 443

ition about the effects, on the sentiment index in Eq. 8, of the potential dynamics 444

of ω(t) and X(t). Indeed, if trajectories converge toward the steady state, we have 445

IT (t) → ω∗X∗ + (1 − ω∗)Y ∗ = F for any value of T . When dynamics are peri- 446

odic with period n, index IT (t) follows a periodic trajectory with period n, too, as 447

long as T �= kn, k ∈ N, case in which Ikn(t) converges to the average of I1(t) on 448

a whole cycle of n time periods. If we have chaotic or quasi-periodic dynamics, it 449

is not possible to provide analytical results about the dynamics of IT (t). However, 450

we can report some qualitative facts for the quasi-periodic case; we shall numeri- 451

cally confirm these in Section 5. In general, index I1(t) inherits the quasi-periodic 452

dynamics of X(t) and ω(t), oscillating around F . If T moderately grows, such waves 453

still occur and IT (t) gets increasingly smoothed around F . We notice that, when 454

dynamics are quasi-periodic, time series of ω(t) and X(t) can exhibit some signif- 455

icant positive autocorrelation coefficients for suitable lags n > 1. In such cases, 456

the dynamics of In(t) are qualitatively different from those of ω(t) and X(t). This 457

is essentially a consequence of computing the average over whole “quasi-periods”, 458

which allows enhancing deviations of quasi-periodic time series from a periodic tra- 459

jectory. In such a case, we again observe waves of optimism/pessimism, which can 460

last for larger time intervals, even if each wave may consist of a significantly differ- 461

ent number of time periods. If T grows further, each time period has an increasingly 462

smaller influence on IT (t), and thus the quasi-periodic underlying dynamics of ω(t) 463

and X(t) have less and less impact on the qualitative dynamics of IT (t), which again 464

tend to exhibit a more irregular behavior than the quasi-periodic one. 465

3 Stability analysis 466

For our analytical results, we will deal with the three-dimensional framework in 467

Eq. 9. We observe that, similarly to what was done in Proposition 1 it is possible to 468

prove that Eq. 9 has a unique fixed point in (X∗, P ∗, ω∗) =
(
F − �

2 , F, 1
2

)
. In the 469

next proposition, we derive the local stability conditions for System (9) at the steady state. 470

Proposition 3 The steady state (X∗, P ∗, ω∗) is locally asymptotically stable for 471

System (9) provided that parameters fulfill the following conditions 472

(i′)
(

1 + βγ̃�2

4

) (
1 − μ�2

2

)
>

γ̃
2 ; 473

(ii′)
(

1 − βγ̃�2

4

) (
1 + βμ2γ̃ �6

16 + μ�2

2

(
1 + βγ̃�2

4

))
+ βμγ̃ 2�4

8 > 0 ; 474

(iii′) 6 + μ�2 >
βγ̃�2

4 (2 − μ�2), 475

where γ̃ is defined in Eq. 6. 476

In the previous conditions, we may easily put in evidence β, μ and, for μ = 0, 477

also �. The possible resulting scenarios are summarized in the following corollary. 478

We call a scenario destabilizing with respect to a parameter when the steady state is 479

stable below a certain threshold of that parameter and unstable above it. We say that 480
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a b c

Fig. 1 a: Stability region (in yellow) for F = 10, � = 1, a1 = 1.2, a2 = 1 and γ = 1. b: Bifurcation
diagram on varying β for μ = 1.65, corresponding to the horizontal line plotted in the stability diagram.
c: Bifurcation diagram on varying μ for β = 8.2, corresponding to the vertical line plotted in the stability
diagram

a scenario is mixed if the steady state is stable inside an interval of parameter values481

and unstable outside it. We say that a scenario is unconditionally unstable when the482

steady state is unstable for all the parameter values.483

Corollary 1 Let � �= 0, μ and γ̃ be fixed. Then, on varying β, we can have484

destabilizing, mixed and unconditionally unstable scenarios.485

Let � �= 0, β and γ̃ be fixed. Then, on varying μ, we can have destabilizing,486

mixed and unconditionally unstable scenarios.487

Let β �= 0, μ = 0 and γ̃ be fixed. Then, on varying �, we can have either a488

destabilizing or a mixed scenario.3489

We notice that, usually in the literature, an increase in the intensity of choice has490

just a destabilizing effect (see for instance Hommes 2013), while for us it may also491

be stabilizing (cf. Figs. 1, 2, 3), as long as its value is not excessively large. In fact,492

also in the framework in De Grauwe and Rovira Kaltwasser (2012), we obtain for493

μ = 0 except for the presence of the sigmoid function in our price adjustment mech-494

anism, two stability thresholds for the intensity of choice parameter were found,495

corresponding, respectively, to a flip and a Neimark-Sacker bifurcation. On the other496

hand, some numerical simulations we performed suggest that, in that paper, before497

the flip bifurcation, the system diverges and thus such a bifurcation would not lead to498

complex behaviors: as we shall see in Section 4, in our framework, the flip bifurca-499

tion is instead preceded by periodic and possibly chaotic motions. It is immediately500

understood that the divergence issue encountered in De Grauwe and Rovira Kalt-501

wasser (2012) is due to the linearity of the price adjustment mechanism, while our502

sigmoidal nonlinearity helps in avoiding negative or diverging dynamics. Also, in503

3We only provide sufficient conditions for the occurrence of each scenario. We remark that we may indeed
obtain the same scenario for other parameter configurations. Moreover, we notice that some of the stability
intervals we shall derive below may in principle be empty for any parameter configuration. We will provide
numerical examples in Section 4 to show that there exist parameter settings for which such intervals are
nonempty and the corresponding scenarios do actually occur.
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a b c

Fig. 2 a: Stability region (in yellow) for F = 3, � = 1, a1 = 1.7, a2 = 1 and γ = 7. b: Bifurcation
diagram on varying β for μ = 0.55, corresponding to the horizontal line plotted in the stability diagram.
c: Bifurcation diagram on varying μ for β = 2, corresponding to the vertical line plotted in the stability
diagram

Chiarella et al. (2006), two stability thresholds for a different parameter (i.e, the pop- 504

ulation weighted reaction coefficient of the fundamentalists) were detected. However, 505

as recalled in De Grauwe and Rovira Kaltwasser (2012), in Chiarella et al. (2006) 506

the authors, in the numerical simulations, focused their attention on the case in which 507

stability of the steady state is lost through a Neimark-Sacker bifurcation. 508

According to Corollary 1, increasing the imitation degree μ or the heterogeneity 509

level � may have a stabilizing effect (see Figs. 1–4), so that the roles of μ and � are 510

not univocally determined, depending on the value of the other parameters. We recall 511

that we found a similar result for μ and � in Naimzada and Pireddu (2015b), where 512

we detected a double stability threshold for the parameter governing the intensity of 513

the imitative process, based in that paper on the past relative profits realized by opti- 514

mists and pessimists, as well as for the heterogeneity level parameter. We, however, 515

stress that, except for that contribution, to the best of our knowledge no other works 516

in the related literature show the ambiguous effect of such parameters. 517

We notice that, as μ → +∞, the resulting dynamics are unstable. In such case, 518

it is easy to understand why beliefs (and consequently shares) do not settle on either 519

a b c

Fig. 3 a: Stability region (in yellow) for F = 3, � = 1, a1 = 10.2, a2 = 6 and γ = 1. b: Bifurcation
diagram on varying β for μ = 0.5, corresponding to the horizontal line plotted in the stability diagram.
c: Bifurcation diagram on varying μ for β = 2, corresponding to the vertical line plotted in the stability
diagram. In both (b) and (c), black diagrams are obtained for initial conditions X(0) = 2.6, P (0) =
3.0001, ω(0) = 0.5, while red diagrams for initial conditions X(0) = 2.6, P (0) = 4, ω(0) = 0.5



AUTHOR'S PROOF! JrnlID 191 ArtID 506 Proof#1 - 17/05/2017

UNCORRECTED
PROOF

F. Cavalli et al.

a b c

Fig. 4 Stability regions (in yellow) for F = 3, β = 1, a1 = 5.1, a2 = 3 in (a) and F = 3, β = 1, a1 =
10.2, a2 = 6 in (b). c: Bifurcation diagram on varying � for μ = 0.2, corresponding to the horizontal
line plotted in the stability diagram in (b). The black diagram is obtained for initial conditions X(0) =
2.6, P (0) = 3.0001, ω(0) = 0.5, while the red diagram for initial conditions X(0) = 2.6, P (0) =
4, ω(0) = 0.5

the upper or lower values of their ranges. In this respect, it is worth noticing that both520

imitation and switching mechanisms are affected by and affect price dynamics, and521

that the, possibly erratic, price trajectory must be taken into account. In fact, price522

dynamics have a qualitatively opposite effect on beliefs and shares dynamics; if the523

price is large, it is more likely that the best performance in guessing the price will524

be that of optimists, which means that beliefs will get close to their upper bound.525

On the other hand, if, at time t , the price is large, it is more likely, since prices are526

erratic when μ → ∞, that at time t + 1 the stock price will be small, inducing an527

increase in the share of pessimists. In the next time period, price changes again, so528

that a persistence of the previous optimistic beliefs/pessimistic shares configuration529

is not likely, and it is probable that they change to a pessimistic beliefs/optimistic530

shares configuration. The overall dynamics of (for example) pessimistic beliefs then531

result into an alternating behavior between values that are close to F and F − �/2,532

with corresponding suitably (depending on β) small and large shares of pessimists.533

As concerns the role of γ̃ , it is easy to prove that it has just a destabilizing effect,534

both when the dynamics are generated by the price adjustment mechanism only, i.e.,535

for � = 0, or in the limit case μ = β = 0, as well as when all parameters are536

different from zero. This is confirmed by the increasing complexity of the dynamics537

when passing from γ̃ = 1.88 in Fig. 1 to γ̃ = 3.77 in Fig. 3, and finally to γ̃ = 4.41 in538

Fig. 2.539

In particular, the isolated price adjustment mechanism is stable at P ∗ = F if γ̃ < 2540

and at γ̃ = 2 a flip bifurcation occurs. Thanks to its nonlinearity, the price dynamics541

stay bounded even when the isolated price adjustment mechanism is unstable (see, for542

instance, Fig. 4), differently from De Grauwe and Rovira Kaltwasser (2012), where543

the latter provides diverging trajectories.544

Due to the destabilizing effect of γ̃ even on the isolated price adjustment mech-545

anism, we may explain the presence of two thresholds for stability with respect to546

μ and β as follows. When γ̃ is large enough, the isolated price adjustment mecha-547

nism is unstable and small positive values for μ and β allow the transmission of such548

turbulence to the imitative process and thus to the dynamics of the beliefs on the549
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fundamental value, as well as to the switching mechanism. When μ and β increase 550

further, looking at the last equation in Eq. 7, we observe that intermediate values for 551

β dampen large profits and this makes the population shares stabilize on the mean 552

value they may assume, i.e., on their steady state values; similarly, looking at the 553

first two equations in Eq. 7, we notice that intermediate values for μ dampen the role 554

played by the difference between the squared errors between the beliefs on the fun- 555

damental value and prices, making the beliefs in the next period for both pessimists 556

and optimists stabilize on the mean value they may assume, i.e., on their steady state 557

values. On the other hand, when β and μ are too large, they become destabilizing. 558

Indeed, large values for μ represent a high degree of nervousness in the imitation 559

mechanism, leading to erratic fluctuations in the beliefs on the fundamental value; 560

large values for β play a similar role in the switching mechanism. 561

We also notice that, when γ̃ is sufficiently large, the left and right stability thresh- 562

old values for μ and β get inverted and thus no values of such parameters can stabilize 563

the system. 564

Since the analytical study of the role of � was possible only for μ = 0, we 565

postpone the description and explanation of the effects of � at the end of Section 4, 566

after having presented the numerical investigations. 567

4 Bifurcation analysis 568

We now perform a numerical investigation of the local stability of the steady state, 569

focusing in particular on the role of the imitation degree μ, the intensity of choice 570

β and the level of ambiguity in the market �. Moreover, concerning global analysis, 571

we give evidence of the occurrence of multistability phenomena characterized by 572

the presence of different coexisting attractors. For simplicity, we just focus on the 573

behavior of the stock price variable. 574

In the following two-dimensional stability diagrams we plot, for feasible parame- 575

ter values and as long as they are real, with red color the stability threshold curves, 576

obtained using for β, μ the upper and lower bounds derived along the proof of Corol- 577

lary 1. In particular, when we numerically checked that the points belonging to a 578

stability threshold curve correspond to parameter sets for which two eigenvalues of 579

the Jacobian matrix in Eq. 13 are complex and lie on the unit circle, we used a 580

dashed red curve. In this case, we then have that a Neimark-Sacker bifurcation occurs 581

when a dashed red curve is crossed on varying a parameter. Conversely, when the 582

points belonging to a stability threshold curve correspond to parameter sets for which 583

exactly one eigenvalue of the Jacobian matrix (13) is equal to −1, we used a solid 584

red line. In this case, a flip bifurcation occurs when the solid red curve is crossed on 585

varying a parameter. 586

To efficiently investigate through simulations the effects of the three parameters, 587

we study stability in the (β, μ)- and (�, μ)-planes. In the following simulations, we 588

consider different possible settings with respect to F, a1, a2 and γ . We stress that we 589

chose not to present an analysis in the (β, �)-plane because the numerical investiga- 590

tions we performed highlighted the presence of dynamics and scenarios qualitatively 591

similar to those in Sections 4.1 and 4.2. 592
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4.1 Stability in (β, μ)-plane593

For the first simulation, we set F = 10 and � = 1, so that the steady state is594

(X∗, P ∗, ω∗) = (9.5, 10, 0.5), and we investigate stability for β ∈ (0, 15] and μ ∈595

[0, 2]. The two-dimensional stability region obtained for a1 = 1.2, a2 = 1 and γ = 1596

is reported in Fig. 1a. The yellow region shows parameter values corresponding to597

locally stable steady states, while red curves represents stability thresholds.598

Looking at Fig. 1a, we notice that, in the destabilizing scenario with respect to599

β, stability is lost through a Neimark-Sacker bifurcation, while in the mixed one, a600

period-halving bifurcation is then followed by a Neimark-Sacker one. Conversely, in601

the destabilizing scenario with respect to μ, stability is lost through a flip bifurcation,602

while in the mixed one, a Neimark-Sacker bifurcation is followed by a period-603

doubling one. We performed several simulations for different parameter settings that604

confirm that the previous behaviors are general. In Fig. 1b we focus on what happens605

on varying β, which corresponds to considering horizontal sections of the stability606

diagram of Fig. 1. For μ = 0, we are in the framework considered in De Grauwe and607

Rovira Kaltwasser (2012), except for the presence of the sigmoidal adjustment mech-608

anism for the stock price, and we find the same destabilizing role for the intensity609

of choice. A similar behavior with respect to β persists for sufficiently small val-610

ues of the imitation degree μ. However, differently from that context, in which only611

the destabilizing role of β is illustrated, if we increase μ enough we have that inter-612

mediate values for β, neither too small nor too large, reduce the complexity of the613

system, until a complete stabilization of the dynamics, as shown by the bifurcation614

diagram for μ = 1.65 with respect to β in Fig. 1b. In this case, we find that the left615

stability threshold, at which a flip bifurcation occurs, corresponds to β� = 4.0958,616

while the right one, at which we have a Neimark-Sacker bifurcation, corresponds to617

βr1 = 8.3975. Actually, also in De Grauwe and Rovira Kaltwasser (2012) a dou-618

ble stability threshold for β was found, but in that case just on the left of the flip619

bifurcation the system diverges and thus no interesting dynamics can be detected.620

As argued in Section 3, an increasing value for the intensity of the imitative pro-621

cess or for the intensity of choice has usually just a destabilizing effect, while for622

us it may also be stabilizing. This happens because, when β is positive but close to623

0, through the switching mechanism the instability of the price adjustment equation624

gets transmitted to the population dynamics, which inherit the periodic cycle of the625

isolated price mechanism. Increasing values for β intensify the oscillations due to a626

larger reactivity to higher profits, but, when β is sufficiently large, positive and nega-627

tive excess demands for the two groups of agents balance out in the aggregate excess628

demand and such compensation causes smaller price oscillations, which in turn make629

the profit differential decrease and this leads to smaller variations in the popula-630

tion shares. When β increases further, agents become, however, very reactive in the631

switching mechanism, and quasi-periodic dynamics emerge. Finally, as μ increases,632

the stability interval with respect to β shrinks until it becomes empty. For such values633

of μ, the dynamics are unconditionally unstable for any β.634

Similarly, if we look at the dynamical behavior on varying μ, we notice that, for635

small values of β, increasing the imitation degree is destabilizing, as we can see636

looking at vertical sections of the stability diagram in Fig. 1a. In this case, instability637
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occurs through a flip bifurcation. As β increases, stability can only be guaranteed 638

for intermediate values of μ and we have a mixed scenario, with a Neimark-Sacker 639

(resp. flip) bifurcation for sufficiently small (resp. large) values of μ. For instance, 640

for β = 8.2 we find μ2 = 0.7660 and μr = 1.7425. Increasing further β leads to 641

unconditionally unstable dynamics with respect to μ. 642

We notice that for the previous parameter setting the flip bifurcation only led to a 643

period-two cycle. More complex evolutions of the period-doubling bifurcation lead- 644

ing to chaotic dynamics are possible considering different parameter configurations, 645

as in the situation reported in Fig. 2. In this case, we set F = 3 and � = 1, so 646

that the steady state is (X∗, P ∗, ω∗) = (2.5, 3, 0.5). The stability region in Fig. 2a 647

is obtained for a1 = 1.7, a2 = 1 and γ = 7, for the same initial datum used for the 648

previous simulation in Fig. 1. In this case, we notice that, if the beliefs about funda- 649

mentals are completely exogenous, i.e. for μ = 0, the dynamics are unconditionally 650

unstable with respect to β, but a moderate increase in the imitation degree allows for 651

a stabilization of the dynamics for intermediate values of β, as, for example, shown 652

in the bifurcation diagram reported in Fig. 2b for μ = 0.55. A further increase in 653

μ makes the equilibrium again unconditionally unstable. Similar considerations are 654

valid also with respect to β, for which, with exogenously fixed fractions of optimists 655

and pessimists (β = 0), the dynamics are unconditionally unstable. A mixed scenario 656

is instead obtained for intermediate values of the intensity of choice, as reported in 657

Fig. 2c. This means that intermediate values for both μ and β allow for the stabiliza- 658

tion of frameworks in which equilibrium is initially unstable. In both Fig. 2b and c, 659

the flip bifurcation gives rise to a complete cascade of period doublings leading to 660

chaotic dynamics. Finally, we notice that the stability region reported in Fig. 2 is a 661

subset of that reported in Fig. 1. This is a consequence of the increase in the reactiv- 662

ity at the equilibrium γ̃ , which passes from γ̃ = 1.88 in the former parameter setting 663

to γ̃ = 4.41 in the latter. This confirms the destabilizing role of γ̃ . 664

All bifurcation diagrams reported in Figs. 1 and 2 are independent of the initial 665

datum, as we computationally checked that any initial condition provides conver- 666

gence toward the same attractors. On the other hand, this is no longer true if we 667

increase the values of a1 and a2. In Fig. 3a we keep F = 3 and � = 1, as for 668

simulation in Fig. 2, and we report the stability region corresponding to the choice 669

of a1 = 10.2, a2 = 6 and γ = 1. We notice that, for this parameter setting, 670

the destabilizing scenario with respect to β no longer occurs. We also report two 671

bifurcation diagrams, with respect to β (in Fig. 3b) and μ (in Fig. 3c), obtained 672

for initial conditions X(0) = 2.6, P (0) = 3.0001, ω(0) = 0.5 (black diagrams) 673

and X(0) = 2.6, P (0) = 4, ω(0) = 0.5 (red diagrams). We notice that, for the 674

bifurcation diagram with respect to β, the stability thresholds of the steady state are 675

β� = 1.6078 and βr = 2.1294, while for the bifurcation diagram with respect to μ, 676

the stability thresholds of the steady state are μ1 = 0.4219 and μr = 0.6923. 677

In the bifurcation diagrams in Fig. 3b and c we can observe the coexistence of 678

the fixed point and of invariant curves with an external periodic or chaotic attrac- 679

tor in either two or more pieces, and the trajectories visit the internal or the external 680

attractor according to the chosen initial condition. We remark that computational 681

investigations we performed showed that the external attractor exists for all the 682

parameter values considered in the stability diagram in Fig. 3a, while the internal 683
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attractor is present only for some parameter values. We stress that the diverging tra-684

jectories that would follow or precede the flip bifurcation in the case of a linear price685

adjustment mechanism (see De Grauwe and Rovira Kaltwasser 2012) in the present686

model are limited by the asymptotes a1 and −a2, setting the trajectories on the exter-687

nal attractor. We also notice the presence of “bubbles” (see Hommes 1991, 1994) for688

μ ≈ 0.65 in Fig. 3c.689

4.2 Stability in (�, μ)-plane690

We now investigate the dynamics arising for the parameter configurations used in the691

simulations in Figs. 1 and 3 when setting β = 1 and F = 3 and taking � and μ as692

bifurcation parameters. We omit reporting the analysis in (�, μ)-plane of the simu-693

lation in Fig. 2, as it provides very similar results to those obtained in Section 4.1. We694

notice that we presented � as the maximum possible degree of optimism and pes-695

simism, but it may also be seen as the degree of ambiguity in the financial market,696

because, when it vanishes, agents use the true fundamental value in their speculations697

(see System (7)). We shall use this alternative point of view in the interpretation of698

the results at the end of the present subsection. We also recall that, in Corollary 1,699

we analytically studied stability with respect to � only for μ = 0. Hence, when μ is700

different from zero we shall rely on numerical simulations.701

In Fig. 4a and b we report the stability regions for a1 = 5.1, a2 = 3, and702

a1 = 10.2, a2 = 6, respectively, which correspond to the parameter settings used for703

the simulations in Figs. 1 and 3. We notice that, for a1 = 5.1, a2 = 3, we find for �704

as bifurcation parameter just the destabilizing scenario, while for μ we observe the705

destabilizing, mixed and unconditionally unstable scenarios, as predicted by Corol-706

lary 1. We stress that it can be checked that the solid curve, which represents in707

Fig. 4 the Neimark-Sacker stability threshold, is actually asymptotic to the vertical708

axis � = 0, so that even for arbitrarily small positive values of � we do not have an709

unconditionally stable scenario with respect to μ (which is excluded by Corollary 1)710

but instead a destabilizing scenario. For a1 = 10.2, a2 = 6, we find again for μ as711

bifurcation parameter all possible scenarios, while for � we observe just the mixed712

and unconditionally unstable scenarios. We stress that, for both a1 = 5.1, a2 = 3713

and a1 = 10.2, a2 = 6, increasing μ has an ambiguous effect on the stability inter-714

val with respect to �, as the latter initially grows and then starts shrinking, eventually715

becoming empty for a1 = 10.2, a2 = 6 and μ large enough. We also notice that716

increasing the value of � keeps fixed or raises the lower stability bound on μ, while717

for a1 = 5.1, a2 = 3, the upper bound on μ can either increase or decrease.718

The bifurcation diagram in Fig. 4 is computed for the same pair of initial data719

used for the bifurcation diagrams reported in Fig. 3b and c. We again observe the720

coexistence of the fixed point first and of invariant curves with an external periodic or721

chaotic attractor. We notice that, when a1 = 10.2, a2 = 6, the external attractor exists722

for all the considered values of μ and �, being periodic or chaotic according to the723

value of such parameters, while the internal attractor is present only for intermediate724

values of � and for not too large values of μ.725

Concluding, we briefly summarize the most significant dynamical results shown726

by the simulations of Sections 4.1 and 4.2. If we look at the stability regions reported727
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in Figs. 1a, 3a, 4a and b and we focus on the role of μ, for the considered parameter 728

configurations, we found that, when the system for μ = 0, that is, in the context ana- 729

lyzed by De Grauwe and Rovira Kaltwasser (2012), is stable, a moderate increase in 730

the imitation degree preserves the system stability, which is instead destroyed by a 731

further, excessive increase in μ. Similarly, it is possible to show that, when the sys- 732

tem for μ = 0 displays periodic or quasi-periodic dynamics, a stabilization can be 733

obtained for intermediate values of μ, neither too small, nor too large, even when 734

dynamics are unconditionally unstable for μ = 0 (see Figs. 1c, 2c, and 3c). On the 735

other hand, when for μ = 0 the system displays chaotic attractors, it seems that a 736

complete stabilization cannot be achieved through an increase in the imitation degree. 737

Figure 3b shows that, by increasing the value of β, it is instead possible to reach a 738

complete stabilization of the dynamics, even when for β = 0 the system displays 739

a chaotic behavior. Focusing now on the role of �, Fig. 4b shows that, for null or 740

moderate values of the imitation degree, an intermediate level of ambiguity in the 741

stock market may lead to a stabilization of the dynamics. This, at first sight, coun- 742

terintuitive result may be explained as follows. If the level of ambiguity starts rising, 743

agents no longer trust one another and thus they are discouraged from operating in 744

the financial sector. The reduced amount of speculations causes in turn a reduction in 745

the stock price volatility, stabilizing the dynamics. Such positive effect is, however, 746

destroyed both by an excessive imitation degree, which makes agents too reactive to 747

others’ choices, and by a too high ambiguity level, which let orbits converge toward a 748

periodic or chaotic attractor, rather than toward a fixed point. All the numerical sim- 749

ulations performed along the section confirm then the ambiguous role for our three 750

main parameters, i.e., β, μ and �, captured also by the double stability thresholds 751

analytically found in the proof of Corollary 1. 752

5 Economic interpretation of the results 753

In the present section, we will try to explain the rules governing the dynamics of the 754

main variables of the model and to investigate the occurrence of waves of optimism 755

and pessimism. More precisely, examining time series of beliefs, prices and shares 756

of optimists/pessimists, we will point out the effects of simultaneously considering 757

both the imitative process and the endogenous switching mechanism. Moreover, we 758

will qualitatively compare the resulting dynamics obtained with model (7) with the 759

significantly different dynamics that would have been obtained either with constant, 760

exogenous beliefs (similarly to the De Grauwe and Rovira Kaltwasser 2012 setting) 761

or with constant, exogenous shares of pessimists (similarly to the Naimzada and 762

Pireddu 2015b setting). 763

First of all, we observe that the expression for the excess demand in Eq. 2 at time 764

t becomes 765

D(t) = ω(t)(X(t)−P(t))+(1−ω(t))(Y (t)−P(t)) = −ω(t)�+Y (t)−P(t), (10)

which means that D(t) depends on term −ω(t)�, determined by the fraction of pes- 766

simists and not directly depending on the dynamics of beliefs, and on Y (t) − P(t), 767

which is affected by the endogenous nature of the beliefs on the fundamental 768
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value. It is easy to see that belief values increase from t to t + 1 provided that769

(X(t)−P(t))2 − (Y (t)−P(t))2 > (X(t −1)−P(t −1))2 − (Y (t −1)−P(t −1))2,770

namely, if the relative performance of optimists improves from t − 1 to t . We stress771

that an increase in X(t) is more significant when the imitation degree μ is large.772

Moreover, from Eq. 5, the sign of D(t) has direct influence on the value of P(t + 1),773

and the value of P(t + 1) − P(t) determines the fraction of pessimists (and hence of774

optimists) as, recalling (3), the profit differential between optimists and pessimists is775

given by776

πY (t + 1) − πX(t + 1) = (P (t + 1) − P(t))(Y (t) − X(t)). (11)

Hence, from the previous considerations, it is apparent the joint effect of the imi-777

tation degree (and in general of an endogenous belief formation mechanism) and of778

the intensity of choice, which both affect and determine dynamics. Making a com-779

parison with the framework in De Grauwe and Rovira Kaltwasser (2012) (i.e., the780

present model with μ = 0), the sign of Y (t) − P(t) depends there on the relative781

position of the stock price value with respect to the constant belief F +�/2. If μ �= 0782

and thus Y (t) is no more constant, we can instead have situations in which prices are783

large but, being Y (t) large as well, the excess demand is positive. Similarly, in the784

framework in Naimzada and Pireddu (2015b), only Y (t) − P(t), which is constantly785

shifted by the exogenous value of −ω�, has a significant effect on D(t).786

In order to illustrate the previous aspects in more detail, we focus on a particular787

situation, obtained for the same parameters used for the bifurcation diagram in Fig. 1b788

and for β = 20.7, for which the resulting dynamics are quasi-periodic. We set the789

initial conditions to X(0) = 1.3, P (0) = 2.1, ω(0) = 0.2. and we consider 500 time790

periods after a transient of 1000 time periods. A portion of the corresponding time791

series of X(t), Y (t), P (t), ω(t) and D(t) is reported in Fig. 5, where t represents792

the time period after the initial transient. We stress that the following considerations,793

even if concerning a particular parameter choice, are valid in general when unstable794

quasi-periodic dynamics arise, as we thoroughly checked by means of numerical795

experiments.796

First we notice that all the possible combinations of either large or small values of797

beliefs together with either large or small shares of pessimists are possible. We report798

Fig. 5 Time series for X(t) in blue, Y(t) in red, P(t) in green, with respect to the scale reported on the
left vertical axis. Times series for ω(t) in black and D(t) in pink, with respect to the scale reported on the
right vertical axis. The parameter setting is the same used for the simulation reported in Fig. 1
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some examples of the occurrence of each situation in Table 1, from which we also 799

notice that each case occurs with a very similar frequency, so that they all represent 800

significant scenarios for System (7). Indeed, within the framework analyzed by De 801

Grauwe and Rovira Kaltwasser (2012), since Y (t) = F + �/2, we can only distin- 802

guish between two cases (ω(t) ≶ 0.5). Similarly, the model considered in Naimzada 803

and Pireddu (2015b), depending on the exogenous share ω, can only provide two 804

cases at a time (i.e., X(t) ≶ F − �/2). 805

To explain the dynamics of stock prices, shares and beliefs, we focus our attention 806

on the instant of timet = t0 = 184 in Fig. 5. In this case, the share of pes- 807

simists ω(t0) ≈ 0.99 is much larger than that of optimists and we have P(t0) ≈ 808

9.57, Y (t0) ≈ 10.72. In our situation, since Y (t) is significantly larger than P(t), the 809

resulting excess demand D(t0) = 0.16 is positive and hence we find thatP(t0 + 1) is 810

larger than P(t0). This also induces a relevant, due to the large value of β, decrease 811

inthe pessimists’ share (ω(t0 + 1) < ω(t0)). Moreover, since at t = t0 the difference 812

between squarederrors of pessimists and optimists is smaller than that at time t0 − 1, 813

both X(t0 + 1) and Y (t0 + 1) decrease with respect to X(t0) and Y (t0), in agree- 814

ment with the considerations above about the independence of thevalues of beliefs 815

and shares. 816

We notice that, in the De Grauwe and Rovira Kaltwasser (2012) setting, at the 817

same instant of time t = t0, we would observe a slightly negative excess demand 818

D(t0) ≈ −0.06, since the beliefs Y (t0) = F +�/2 = 10.5 of optimists would not be 819

sufficiently larger than price, with a consequent decrease in price, contrary to our findings. 820

We also observe that the dynamics obtained leaving the remaining parameters 821

and the initial data unchanged, but setting, respectively, β = 0 and μ = 0 (which 822

correspond to the frameworks considered by De Grauwe and Rovira Kaltwasser 2012 823

and by Naimzada and Pireddu 2015b), are very different. As we can see from Fig. 6, 824

setting β = 0 we obtain a dynamical behavior consisting in a period-2 cycle (in 825

(a)), while the quasi-periodic trajectory (in (b)) arising when μ = 0 is qualitatively 826

different from that reported in Fig. 5. 827

With respect to both settings, the dynamics reported in Fig. 5 are much more 828

interesting and complex. Westress that, from the considerations and the bifurcation 829

Table 1 Values of X(t), ω(t) and I1(t) for some time periods t , for which all the possible combinations
of large/small beliefs and large/small shares of pessimists realize

t1.1
t1.2

t1.3Case t X(t) ω(t) I1(t) %

t1.4X(t) < F − �/2, ω(t) < 0.5 164 9.15 0.27 9.87 25.4%

t1.5181 9.27 0.001 10.27

t1.6X(t) < F − �/2, ω(t) > 0.5 171 9.20 0.93 9.27 26.6%

t1.7X(t) > F − �/2, ω(t) < 0.5 166 9.74 0.003 10.74 24.2%

t1.8X(t) > F − �/2, ω(t) > 0.5 169 9.52 0.99 9.52 23.8%

t1.9182 9.84 0.60 10.24

In the last column, we report the percentage of occurrence of each case during all the simulation. The
parameter setting is the same used for the simulation reported in Fig. 1, and time periods belong to the
interval reported in Fig. 5

t1.10
t1.11
t1.12

Marina
Evidenziato

Marina
Nota
Please insert a space between "time" and "t"
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a b

Fig. 6 Time series for X(t) in blue, Y(t) in red, P(t) in green, with respect to the scale reported on the
left vertical axis. Times series for ω(t) in black and D(t) in pink, with respect to the scale reported on the
right vertical axis. The considered parameter setting is similar to that used for the simulation reported in
Fig. 1 with, respectively, the exception in (a) of μ = 0 (no imitation) and in (b) of β = 0 (no switching
mechanism)

diagrams reported in Section 4, we actually have that the converse is possible, too,830

with complex dynamics for either β = 0 or μ = 0 which become stable when both831

endogenous mechanisms of switching and imitation are introduced. This once more832

emphasizes that considering just one of the two mechanisms only provides a partial833

description of the dynamics.834

Now we turn our attention to the occurrence and alternation of optimistic and pes-835

simistic scenarios. From the previous observations, also recalling the results reported836

in Table 1, the study of their occurrence must rely on the joint effect of both beliefs837

and shares of pessimists/optimists.838

In Fig. 7 we show the time series of the instantaneous sentiment index I1(t) and of839

its moving average I4(t) over periods [t − 3, t]. As arguable from Table 1, X(t) and840

ω(t) provide a conflicting indication about the optimistic/pessimistic overall senti-841

ment of the market in about the 50% of cases. However, for example, at the sign of842

the values of I1(t) corresponding to the pairs of times t = 164, 180 and t = 169, 182843

reported in Table 1, we realize that such situations do not always result in a predom-844

inant behavior of either beliefs or shares. From a qualitative point of view, sentiment845

index I1(t) portrays the quasi-periodicity of the dynamics that gives rise to alternation846

of waves of optimism (e.g., 165 ≤ t ≤ 167) and pessimism (e.g., 168 ≤ t ≤ 172),847

each of which lasts for several periods.848

If we consider T > 1, we can instead investigate the persistence of opti-849

mism/pessimism over time. In this case, especially if we deal with relatively small850

values of T , the deterministic quasi-periodic nature of dynamics is significant. If we851

take 1 < T < 8, the results provided by IT (t) are qualitatively similar to those of852

I1(t), as we can notice looking at the behavior of I4(t) reported in Fig. 7. The remark-853

able difference is that I4(t), being a moving average of I1(t), provides lagged and854

smoothed values with respect to I1(t), but still shows alternating waves of optimism855
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Fig. 7 Time series of sentiment indexes I1(t) (in blue) and I4(t) (in orange) related to the time series
reported in Fig. 5

and pessimism. The situation changes for T = 8. From Fig. 5 it is evident the pat- 856

tern of each variable, which qualitatively repeats itself after eight time periods. This 857

is quantified by a significant autocorrelation coefficient r8 = 0.6602. In Fig. 8 we 858

report the time series of I8(t), from which it is evident that the quasi-periodic trend of 859

values is canceled by the moving average, and former small deviations from period- 860

icity become now significant. In this case, the oscillating nature of the time series of 861

I1(t) is destroyed by the moving average, and the waves of optimism and pessimism 862

last for longer periods. For instance, from t = 171 to t = 185 we have fifteen consec- 863

utive periods in which pessimism dominates (both I8(t) and I15(t) are smaller than 864

F ) followed by a lower number of consecutive periods in which optimism prevails. 865

As T increases, the qualitative features of the scenario reported in Fig. 8 become 866

more and more independent of the particular choice of T , and the short period quasi- 867

periodic dynamical behavior disappears, as is noticeable observing the behavior of 868

I15(t) in Fig. 8. The predominant smoothing effect of the averaging allows to por- 869

tray the trend behavior of large periods [t − T + 1, t], with the common feature of 870

alternating waves of optimism and pessimism qualitatively similar to those reported 871

in Fig. 8. 872

Fig. 8 Time series of sentiment indexes I8(t) (in blue) and I15(t) (in orange) related to the time series
reported in Fig. 5
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6 Adding stochastic shocks873

Following the approach in De Grauwe and Rovira Kaltwasser (2012), we intro-874

duce a stochastic term into the dynamical system in (9) by assuming that the true875

fundamental value follows the random walk876

F(t + 1) = F(t) + ε(t + 1), (12)

where ε(t) is a normally distributed random variable with standard deviation σ > 0,877

which can be interpreted as a news arrival process. The resulting stochastic model is878

then obtained replacing F with F(t) in System (9), to which equation (12) has to be879

added.880

Our goal consists in checking whether the resulting stochastically perturbed sys-881

tem is able to reproduce several features of financial markets, such as bubbles and882

crashes for stock prices and fat tails and excess volatility in the distributions of883

returns, which are defined by884

R(t + 1) = 100(log(P (t + 1)) − log(P (t))).

For a survey on stylized facts of financial markets, we refer the interested reader to885

Westerhoff (2009) and the references therein.886

Throughout this section, we consider the parameter setting used for the simulation887

reported in Section 5 with the addition of the stochastic perturbation in Eq. 12 with888

σ = 0.1 and we compare IT (t) with the average true fundamental value FT (t) =889

F(t)/T computed over the same amount of periods.890

As we can see from Fig. 9, considering I15(t) in this more realistic situation with891

noise, we have that the waves of optimism (when the orange line is above the blue892

one) and pessimism (when the orange line is below the blue one) are definitely more893

evident and last for more periods than in Fig. 8. We remark that the behavior of I1(t),894

we do not report for the sake of brevity, is qualitatively similar to that of Fig. 7.895

Now we investigate the statistical behavior of the model. We performed 5000 sim-896

ulations, in each of which we used a different random sequence of values of the897

Fig. 9 Time series of I15(t) (in orange) for the same parameter configuration considered in Section 5,
adding now a stochastic shock to F . The blue line represents the average true fundamental value computed
over 15 periods
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Fig. 10 Time series of stock
price P(t), displaying bubbles
and crashes

0 500 1000 1500
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36

38

stochastic variable σ . For every simulation, we collected 10000 values for R(t), after 898

a transient of 1500 time periods. We note that the plots in Figs. 9 and 10 refer to 899

the last 1500 time periods, in which t is shifted leftwards by 10000 to improve read- 900

ability. The returns distributions we found are characterized by strong non-normality, 901

with a large mean kurtosis (≈ 5.32) and volatility (≈ 1.02), as we can also infer from 902

the plots of the simulations reported in Figs. 10 and 11. 903

In more detail, in Fig. 10 we report a typical plot for time series of stock price 904

P(t), which shows the very erratic price movements with both bubbles and crashes. 905

We remark that the qualitative behavior of beliefs is similar to that of P(t) reported 906

in Fig. 10, while time series of ω(t) look like those reported in Fig. 5 for the 907

deterministic simulation. 908

In Fig. 11a and b, we report the histogram of returns distribution and its Q-Q test 909

plot,while the corresponding time series of returns are reported in Fig. 11c. We recall 910

that Q-Q plot (Quantile-Quantile) plots the quantiles of one distribution against those 911

of the normal, contrasting the two cumulative distribution functions. If the variable 912

under analysis is normally distributed, then its plot lies on the 45-degree line, which 913

corresponds to the normal distribution. Moreover, if the considered variable is not 914

normally distributed and its left (right) tail lies below (above) the 45-degree line, then 915

its distribution is fat-tailed. The opposite situation, with left (right) tail laying above 916

(below) the 45-degree line, corresponds to a thin-tailed distribution. The Q-Q plot in 917

Fig. 11b confirms that the distribution of returns is leptokurtic. 918

a b c

Fig. 11 a: Histogram of R(t). b: Q-Q test plot of returns, in which it is evident that R(t) has a non-normal
distribution. c: Corresponding time series of returns R(t)
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The presence of fat tails implies that, in our model, there are large returns, cor-919

responding to strong movements in prices, and thus more volatility in the financial920

market than is compatible with a normal distribution.921

We remark that, similarly to the returns, also variables X(t), P (t) and ω(t) display922

distributions that significantly deviate from normality.923

We also stress that we checked through simulations that the previous results are924

qualitatively the same on varying the parameter setting, provided that we consider925

quasi-periodic dynamics, and for values of σ in the interval [0.07, 0.5].926

All the findings above confirm that the stochastically perturbed version of our927

model is able to reproduce qualitatively several stylized facts about distributions of928

prices and returns in financial markets.929

7 Conclusions and possible extensions930

In the present paper, we proposed a financial market model with optimistic and pes-931

simistic fundamentalists, which form their beliefs about the fundamental value on the932

basis of an updating mechanism grounded on the relative agents ability in guessing933

the realized stock price. We assumed a bounded nonlinear adjustment mechanism in934

the stock price formation in order to avoid divergence and negativity issues. Finally,935

we allowed agents to switch from being optimists to pessimists, and vice versa, on936

the basis of the realized profits. The framework we dealt with generalizes the model937

considered in De Grauwe and Rovira Kaltwasser (2012) and permitted us to study938

the effect on the dynamics of an endogenous belief formation mechanism (as wished939

for in the same De Grauwe and Rovira Kaltwasser 2012), as well as to analyze a940

more refined cognitive process of the agents, together with its consequences on the941

emergence of waves of optimism and pessimism.942

The analytical and numerical investigation of the stability of the equilibrium high-943

lighted that stability is affected by the three main model parameters (i.e., the imitation944

degree in the updating of the beliefs on the fundamental value, the maximum pos-945

sible level of optimism and pessimism, and the intensity of choice in the switching946

mechanism) in an ambiguous way, so that each parameter has, despite the usual desta-947

bilizing effect, a stabilizing role, as well. To the best of our knowledge, no other948

works in the related literature show the ambiguous effect of the imitation degree or949

the heterogeneity level parameters, with the sole exception of Naimzada and Pireddu950

(2015b).951

We performed a bifurcation analysis using the three main model parameters, which952

also highlighted the emergence of complex behaviors, with possible multistability953

phenomena, characterized by the presence of coexisting attractors.954

We explained the rules governing the dynamics of the model variables, and we955

showed that, in the present model, the emergence of waves of optimism and pes-956

simism can not be attributed to the behavior of a single variable, but it can only957

be understood studying the combined effect of beliefs and shares of behavioral958

rules. With regard to this, we introduced an index to estimate the degree of opti-959

mism/pessimism over a suitable interval of time steps, and we showed the alternation960
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of sequences of consecutive time periods all characterized by either optimistic or 961

pessimistic behavior. 962

Finally, we added a stochastic noise to the deterministic framework and showed 963

through a statistical analysis that the behavior of our model is in agreement with the 964

stylized facts observed in the empirical literature on financial markets. 965

Our next research activity aims to extend the model in various directions. A pos- 966

sible generalization may concern, similarly to Brock and Hommes (1998) and De 967

Grauwe and Rovira Kaltwasser (2012), the introduction in our model of a group of 968

unbiased fundamentalists (or contrarians) and a group of unbiased chartists (or trend 969

followers), whose degrees of optimism and pessimism are null, and who use the true 970

fundamental value in their speculations, in order to investigate the effects of such fur- 971

ther groups of agents on the dynamics of the system. The goal is to check whether, as 972

in De Grauwe and Rovira Kaltwasser (2012), the former group has a stabilizing role, 973

i.e., its presence makes the stability region become larger, while the latter group is 974

destabilizing. Another development of the present work might consist in transform- 975

ing the optimism/pessimism persistence index into a variable on which agents base 976

their decisions, in addition to considering price and profit dynamics, so that such 977

index would not play anymore just a descriptive role, but it would rather be directly 978

taken into account by speculators in making their choices. 979
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Appendix 987

Proof of Proposition 1 The expression of the steady state for the population shares 988

follows by noticing that, in equilibrium, P(t +1) = P(t) and thus, by Eq. 3, we have 989

πX = πY = 0 at the steady state, so that ω∗ = 1
2 . Moreover, from the stock price 990

equation we find P ∗ = ω∗X∗ + (1 − ω∗)Y ∗ = X∗+Y ∗
2 , so that X∗ = F − �

2 and 991

Y ∗ = F + �
2 . Inserting such expressions in P ∗, we get P ∗ = F , as desired. 992

Proof of Proposition 2 Since from Eq. 7 it follows that 993

F = X(t + 1) + �

1 + eμ((X(t)−P(t))2−(Y (t)−P (t))2)

= Y (t + 1) − �

1 + e−μ((X(t)−P(t))2−(Y (t)−P (t))2))
,
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then we find994

Y (t + 1) = X(t + 1) + �

(
1

1 + eμ((X(t)−P(t))2−(Y (t)−P(t))2)
+ 1

1 + e−μ((X(t)−P(t))2−(Y (t)−P(t))2))

)

= X(t + 1) + �,

as desired.995

Proof of Proposition 3 To prove (i′) − (iii′), we use the conditions in Farebrother996

(1973).997

To such aim, we need to compute the Jacobian matrix for G in correspondence to998

(X∗, P ∗, ω∗), which reads as999 ⎡
⎢⎢⎣

−μ�2

2
μ�2

2 0

γ̃ 1 − γ̃ −γ̃ �

−βγ̃�
4

βγ̃�
4

βγ̃�2

4

⎤
⎥⎥⎦ . (13)

The Farebrother conditions are the following:1000

(i) 1 − C1 + C2 − C3 > 0;1001

(ii) 1 − C2 + C1C3 − (C3)
2 > 0;1002

(iii) 3 − C2 > 0;1003

(iv) 1 + C1 + C2 + C3 > 0,1004

where Ci, i ∈ {1, 2, 3}, are the coefficients of the characteristic polynomial1005

λ3 + C1λ
2 + C2λ + C3 = 0.

In our framework, we have:1006

C1 = μ�2

2
+ γ̃ − 1 − βγ̃�2

4
, C2 = −μ�2

2

(
1 + βγ̃�2

4

)
+ βγ̃�2

4
, C3 = μβγ̃�4

8
,

and thus simple computations allow to notice that conditions (i) − (iii) above read,1007

respectively, as (i′) − (iii′), while (iv) reduces to γ̃ > 0, which is indeed true.1008

Proof of Corollary 1 Firstly, we keep � �= 0, μ and γ̃ fixed and we solve conditions1009

(i′) − (iii′) with respect to β.1010

If 2 − μ�2 ≤ 0, we have that condition (i′) is not satisfied by any β > 0, which1011

means that we are in the unconditionally unstable scenario.1012

Let us now consider 2 − μ�2 > 0. Condition (i′) is then equivalent to1013

β > β� = 4

γ̃ �2

(
γ̃

2 − μ�2
− 1

)
. (14)

From (iii′) we have1014

β < βr2 = 4

γ̃ �2
· 6 + μ�2

2 − μ�2
. (15)

Finally, we notice that we can rearrange condition (ii′) as k1β
2 + k2β + k3 > 01015

with k1 = −�8γ̃ 2μ2 − 2�6γ̃ 2μ, k2 = 4�6γ̃ μ2 + 8�4γ̃ 2μ − 16�2γ̃ and k3 =1016

32μ�2 + 64.1017
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If μ > 0, then k1 < 0 < k3, and thus condition (ii′) is fulfilled by 1018

βr0 < β < βr1 , (16)

with βr0 < 0 < βr1 given by 1019

βr0 = 2

μγ̃�4
· μ2�4 + 2μγ̃�2 − 4 − √

ξ

2 + μ�2
, βr1 = 2

μγ̃�4
· μ2�4 + 2μγ̃�2 − 4 + √

ξ

2 + μ�2
,

where 1020

ξ = μ4�8 + 4μ2γ̃ 2�4 + 16 + 4μ3γ̃ �6 − 16μγ̃�2 + 8μ3�6 + 24μ2�4 + 32μ�2.

Combining Eqs. 14–16 and recalling that β > 0, we find that system (i′) − (iii′) 1021

is equivalent to 1022

max{β�, 0} < β < min{βr1 , βr2}. (17)

In particular, if β� ≤ 0, i.e., if γ̃ ≤ 2 − μ�2, and min{βr1 , βr2} > 0, we have 1023

the destabilizing scenario, while when 0 < β� < min{βr1 , βr2} the mixed scenario 1024

occurs; in all other cases we have the unconditionally unstable scenario. 1025

If, instead, μ = 0, then k1 = 0 and it is easy to see that conditions (i′) − (iii′) are 1026

equivalent to max{β�, 0} < β < βr1 , with β� = 4
γ̃ �2

(
γ̃
2 − 1

)
and βr1 = 4

γ̃ �2 . Then, 1027

in this case we have a destabilizing scenario (β� ≤ 0 < βr1 ) if and only if γ̃ ∈ (0, 2], 1028

while a mixed scenario (0 < β� < βr1 ) occurs if and only if γ̃ ∈ (2, 4). 1029

Now we keep � �= 0, β and γ̃ fixed and we solve conditions (i′) − (iii′) with 1030

respect to μ. Solving (i′) we find 1031

μ < μr = 2

�2
· βγ̃�2 + 4 − 2γ̃

βγ̃�2 + 4
, (18)

while (iii′) provides 1032

μ > μ� = 2

�2
· βγ̃�2 − 12

βγ̃�2 + 4
. (19)

Condition (ii′) can be rewritten as 1033

q1μ
2 + q2μ + q3 > 0, (20)

where q1 = �6βγ̃ (4 − βγ̃�2), q2 = −2�2(�4β2γ̃ 2 − 4�2βγ̃ 2 − 16) and q3 = 1034

16(4 − βγ̃�2). 1035

First we notice that, if q1 = 0, i.e., if β = 4/(γ̃�2), then also q3 = 0 and thus 1036

(20) is satisfied for all μ > 0 if and only if �4β2γ̃ 2 = �4
(
4/(γ̃�2)

)2
γ̃ 2 = 16 < 1037

4�2βγ̃ 2+16 = 32, which is indeed true. We stress that if μ = 0 = q1, then condition 1038

(ii′) is again never fulfilled and thus we do not have stability for μ = 0 if q1 = 0. 1039

Hence, when q1 = 0 conditions (i′)−(iii′) simply reduce to μ ∈ (μ�, μr)∩(0, +∞), 1040

and this provides the destabilizing scenario for μ� < 0 < μr , the mixed scenario for 1041

0 < μ� < μr , and the unconditionally unstable scenario for μr ≤ max{μ�, 0}. 1042

Let us now assume that q1 �= 0. If χ = q2
2 − 4q1q3 > 0, we can introduce the real 1043

numbers 1044

μ1 = β2γ̃ 2�4 − 16 − 4βγ̃ 2�2 − √
χ

βγ̃�4(4 − βγ̃�2)
,
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and1045

μ2 = β2γ̃ 2�4 − 16 − 4βγ̃ 2�2 + √
χ

βγ̃�4(4 − βγ̃�2)
,

where1046

χ = 256 + 16β2γ̃ 4�4 + β4γ̃ 4�8 + 128βγ̃ 2�2 + 96β2γ̃ 2�4

−8β3γ̃ 4�6 − 16β3γ̃ 3�6 − 256βγ̃�2.

We then have that Eq. 20 is solved by μ < μ1 ∪ μ > μ2 if q1 > 0 and by1047

μ1 < μ < μ2 if q1 < 0. Let us examine the former case. Since we have q1 > 01048

and q3 > 0, the sign of μ1/2 is the same of −q2. Since from q1 > 0 we have1049

β < 4/(γ̃�2), we obtain1050

β2γ̃ 2�4 − 16 − 4βγ̃ 2�2 <

(
4

�2γ̃

)2

γ̃ 2�4 − 16 − 4βγ̃ 2�2 = −4βγ̃ 2�2 < 0,

so that, in such case, we have q2 > 0 and thus μ1 < μ2 < 0 and Eq. 20 is fulfilled by1051

any μ ≥ 0. Combining this with Eqs. 18 and 19 we obtain μ ∈ (μ�, μr) ∩ [0, +∞),1052

which provides the destabilizing scenario if μ� < 0 < μr , the mixed scenario if1053

0 < μ� < μr and the unconditionally unstable scenario if μr ≤ max{μ�, 0}.1054

Conversely, if q1 < 0, combining μ1 < μ < μ2 with Eqs. 18 and 19 we have1055

μ ∈ (max {μ1, μ�} , min {μ2, μr }) ∩ [0, +∞), which can again give rise to either a1056

destabilizing, a mixed or an unconditionally unstable scenario.1057

If q2
2 − 4q1q3 < 0, we have that Eq. 20 is always fulfilled if 4 − βγ̃�2 > 0 and1058

never fulfilled when 4 − βγ̃�2 < 0. In the former case, recalling Eqs. 18 and 19,1059

we obtain μ ∈ (μ�, μr) ∩ [0, +∞), and thus we can have destabilizing, mixed and1060

unconditionally unstable scenarios. If instead 4 − βγ̃�2 < 0, conditions (i′) − (iii′)1061

can not be satisfied and we just find the unconditionally unstable scenario.1062

It can be easily seen that the remaining situation q2
2 − 4q1q3 = 0 can only provide1063

the previous scenarios.41064

Finally, the stability conditions with respect to � when μ = 0 and β �= 0 read as1065 √
2γ̃ − 4

γ̃ β
< � <

2√
γ̃ β

,

when γ̃ ≥ 2, and simply as 0 ≤ � < 2√
γ̃ β

, when γ̃ < 2. For γ̃ ≥ 2 we then find the1066

mixed scenario and for γ̃ < 2 the destabilizing scenario. The proof is complete.1067

References1068

Anderson S, de Palma A, Thisse J (1992) Discrete choice theory of product differentiation. The MIT Press,1069
Cambridge1070

Akerlof GA, Shiller RJ (2009) Animal spirits: how human psychology drives the economy and why it1071
matters for global capitalism. Princeton University Press, Princeton1072

4Actually, if μ1 = μ2 ∈ (max {μ�, 0} , μr ) we find two disjoint adjacent stability intervals. Such limit
case can however be encompassed in the mixed scenario.



AUTHOR'S PROOF! JrnlID 191 ArtID 506 Proof#1 - 17/05/2017

UNCORRECTED
PROOF

An evolutive financial market model with animal spirits

Barberis N, Shleifer A, Vishny R (1998) A model of investor sentiment. J Financ Econ 49:307–343 1073
Barberis N, Thaler R (2003) A survey of behavioral finance. In: Constantinides GM, Harris M, Stulz 1074

R (eds) Handbook of the economics of finance, 1st edn. Elsevier, Amsterdam, pp 1053–1128 1075
Brock WA, Hommes CH (1997) A rational route to randomness. Econometrica 65:1059–1095 1076
Brock WA, Hommes CH (1998) Heterogeneous beliefs and routes to chaos in a simple asset pricing model. 1077

J Econ Dyn Control 22:1235–1274 1078
Chiarella C, Dieci R, He X-Z (2009) Heterogeneity, market mechanisms, and asset price dynamics. In: 1079
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