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Abstract

The purpose of this work is to provide a way to improve stability and conver-

gence rate of a price adjustment mechanism that converges to a Walrasian equi-

librium. We focus on a discrete tâtonnement based on a two-agent, two-good

exchange economy, and we introduce memory, assuming that the auctioneer ad-

justs prices not only using the current excess demand, but also making use of

the past excess demand functions. In particular, we study the effect of comput-

ing a weighted average of the current and the previous excess demands (finite

two level memory) and of all the previous excess demands (infinite memory).

We show that suitable weights’ distributions have a stabilizing effect, so that

the resulting price adjustment process converge toward the competitive equilib-

rium in a wider range of situations than the process without memory. Finally,

we investigate the convergence speed toward the equilibrium of the proposed

mechanisms. In particular, we show that using infinite memory with fading

weights approaches the competitive equilibrium faster than with a distribution

of quasi-uniform weights.
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1. Introduction

Over the past decades, a considerable number of studies concerned tâtonnement

processes. The classical papers by Arrow and Hurwicz [1], Arrow and Hahn

[2], and Negishi [3] proved that the tâtonnement process in continuous time

converges to the unique equilibrium price under global gross substitutability.

However, if such assumption is removed, the continuous tâtonnement process

does not necessarily converge. Smale in [4], Saari and Simon in [5] and Saari in

[6] proposed alternative price adjustment mechanisms in order to recover con-

vergence, whose main drawbacks are that they “require a considerable informa-

tional requirement” ([5, p. 1097]) and guarantee the convergence of continuous

tâtonnement processes only. In fact, as noticed by Weddephol in [7, p. 551], the

discrete price adjustment is more troublesome than the continuous one, as “the

discrete time tâtonnement process need not converge to an equilibrium, even if

the economy satisfies conditions (gross substitutability for example) that guar-

antee a continuous time tâtonnement to converge.” As a result, in the last

twenty years several contributions have focused on understanding and studying

the instabilities arising in discrete tâtonnement processes. The papers by Saari

[6], Day and Pianigiani [8], Bala and Majumdar [9], Weddepohl [10], Tuinstra

[11], Mukherji [12] and Kaizoji [13, 14] provide several examples of discrete

tâtonnement processes that become unstable and exhibit chaos. In particular,

if the trajectories are unstable (either periodic or chaotic) prices do not converge

toward equilibrium values and, consequently, transactions cannot take place. It

is worth noticing that, even if parameters are such that stability conditions are

satisfied and the trajectories converge, the time required to approach equilib-

rium can become very long when we are close to the instability threshold.

Since, “without an argument establishing the existence of a price adjust-

ment process that converges to Walrasian equilibrium, Walrasian states, even

if they exist and are optimal, lose both descriptive and normative relevance”

[15, p. 209-210] the above portrayed scenarios started several research efforts
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in the direction both of finding conditions under which the tâtonnement pro-

cess converges and of proposing modified price adjustment mechanisms that

recover convergence. As an example, we can mention the contributions of Bala,

Majumdar and Mitra [16] and of Saari [17], who studied convergence to equilib-

rium in discrete tâtonnement process. Among the techniques trying to recover

equilibrium stability, Weddepohl [18, 10] and Goeree et al. [19] proposed to

introduce bounds to price variation, and this allowed the price dynamic to con-

verge or, at least, to be restricted to a neighborhood of the equilibrium price.

Conversely, Fujimoto [20] proposed a way to stabilize nonlinear difference equa-

tions by introducing a sufficiently long time-lag and showed its effectiveness

for the stabilization of Scarf’s Examples proposed by Scarf in [21]. Bala and

Kiefer [22] proposed a generalization of the families of mechanisms studied by

Saari in [6] (an improved version of Newton iterations), Kumar and Shubik [23]

tested the effectiveness of two alternative price mechanisms, respectively based

on a proportional-integral-derivative (PID) controller and on a Cournot-Shubik

mechanism. Several other contributions can be found in the book by Bryant

[15].

However, most of the above mentioned mechanisms have unsatisfactory as-

pects. The most mathematically refined mechanisms, as for example those pro-

posed in [4, 6, 5], as remarked by Saari himself in [5], necessarily require a very

large informational endowment (in practice all the gradients of almost all the

excess demands of each iterations of the adjustment process), which is unrealis-

tic from the economic point of view. Other stabilization techniques (for example

those studied in [18, 10, 19]) are definitely more realistic, but allow stabilizing

of smaller class of economies and may be only able to limit price dynamics in a

neighborhood of the equilibrium.

Our contribution places in the research strand which investigates alternative

discrete price adjustment mechanisms that be able to recover the convergence

toward the equilibrium. In particular, we look for a mechanism that be

• effective, to allow recovering, at least locally, convergence toward equilib-
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rium for a sufficiently large class of excess demand functions;

• informationally undemanding, namely, in being effective it, should not

require a too excessive amount of informational endowment of the auc-

tioneer;

• efficient, to allow approaching the equilibrium, up to a desired precision,

as fast as possible.

We notice that the effectiveness requirement is implicit with respect to the

goal of obtaining a price adjustment that converges. The requirement about

the auctioneer endowment is economically essential, as the mathematical tools

exploited for example in [4, 5, 6, 23] can indeed lead to effective mechanisms,

which, however, are hardly justifiable from the economic point of view. Finally,

efficiency, even if seldom investigated in similar works, is essential to satisfy

performance criteria, as noticed by Kumar and Shubik in [23]. In fact, even in

a stable context, a too long adjustment process can prevent transactions from

taking place in practice.

We pursue the previous aims by studying the effect of memory introduction

in the tâtonnement process. To this end, we focus on a setting similar to that

considered by Mukherkji [24], who focused on a particular two-person, two-good

exchange economy, and we employ a price adjustment mechanism in which a

central auctioneer, who aggregates demand and supply and announces a new

price so as, to reduce the demand-supply differential, does not only consider

the current excess demand but he makes use of a weighted cumulative excess

demand, namely a weighted average of the present and past excess demand

functions. This means that prices vary with respect to a weighted cumulative

excess demand instead of the current excess demand.

We remark that the introduction of memory, which allow taking into account

the strategies previously expressed by the agents, is a stabilizing technique used

in several economic contexts, as for example in cobweb models by Hommes

[25, 26, 27], Bischi and Naimzada [28], Hommes et al. [29], or in evolutionary

selection in asset model with heterogeneous beliefs [30].
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In our contribution, we focus on two cases:

• the price adjustment mechanism is based on two (the current and the last)

excess demands (finite memory);

• the current and all the past excess demands are used (infinite memory).

The weights’ distribution is regulated by a memory ratio parameter, which

weighs the present and past excess demands. In particular, we will mainly focus

on the case of fading weights, i.e. the weights given to the latest excess demand

functions are more relevant than those given to the previous ones. The use of

weighted averages instead of a simple average is motivated by several consid-

erations. First of all, it seems reasonable that the auctioneer give more credit

to the most recent excess demands. Moreover, we show that improved stabil-

ity properties and/or convergence speed are obtained using weighted averages

instead of quasi-uniform averages.

We remark that the possibility to use finite length memory in order to ob-

tain a convergent price adjustment is explicitly contemplated in the theoretical

price mechanism studied [6]. Memory indeed represents just one of the possible

technique to obtain improved price mechanism. We investigate it because it

fulfills the three requirements we mentioned above. Firstly, we notice that the

approach we propose does not require an elevated informational requirement,

which is actually the same of the classical Walrasian tâtonnement. In fact, past

excess demands are known and available to the auctioneer, who is simply en-

dowed with a modest amount of supplementary computational capabilities, in

order to compute a weighted average of (some or all) the past excess demands.

Moreover, we provide a natural way to define weights so that, even if the num-

ber of used past excess demands indefinitely grow, the price adjustment can be

studied by means of a fixed, low dimensional system.

Moreover, we prove several results to show the effectiveness and efficiency

of the proposed mechanism, which concern the stability and convergence speed

improvement of the tâtonnement process obtained introducing the weighted
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memory. After noticing that the steady states of the price mechanism we pro-

pose coincide with the Walrasian equilibria, we study their local asymptotic

stability when the process without and with memory are considered, showing

that local asymptotic stability of equilibria in processes without memory implies

the stability of those with memory, if fading weights are used. Then, consider-

ing an equilibrium at which the excess demand function is decreasing, we prove

that

(i) if the equilibrium is unstable with respect to the price mechanism without

memory, the two level memory with suitable memory ratio parameter can

allow for recovering equilibrium stability for a limited set of situations,

which must be not too far from the stability threshold;

(ii) for suitable memory ratio parameters, the equilibrium is stable in the price

adjustment mechanism with infinite memory, even if it is unstable in both

processes with and without memory;

(iii) for both finite and infinite memory, when the equilibrium is stable, we find

the optimal memory ratio which provides the fastest convergence;

(iv) considering the optimal memory ratio, the tâtonnement processes with

(both finite and infinite) memory converge faster than those without mem-

ory and than those with infinite memory and quasi-uniform weights.

Finally, we compare the convergence speed of the processes with finite and

infinite memory.

The plan of the paper is the following: in Section 2, starting from the example

analyzed by Day and Pianigiani [8] and Mukherkji [24], we present the general

price mechanism without memory. In Section 3, we show how introducing finite

memory, under suitable hypothesis, can improve the stability of equilibria. In

Section 4, we propose and study the introduction of infinite length memory.

In Section 5 we study and compare the convergence speed of the introduced

models.
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2. Model without memory

The model studied by Day and Pianigiani in [8] and by Mukherji in [24] takes

into account a standard pure exchange economy consisting of two individuals

(A,B) and in two goods (x, y). In particular, Mukherji focuses on Cobb-Douglas

utility functions

uA(x, y) = xαy1−α, uB(x, y) = xβy1−β ,

tuned by two possibly different parameters α, β ∈ (0, 1), and he supposes that

agents A and B respectively have initial endowment allocations (x0, 0) and

(0, y0), where x0, y0 are both positive quantities. Considering good x, the re-

sulting excess demand function is

z(p) =
βy0

p
− (1− α)x0, (1)

in which p represents the price of x relative to y. Imposing z(p) = 0, we find

the unique equilibrium price p∗

p∗ =
βy0

(1− α)x0
. (2)

The goal of Mukherji was to investigate the evolution of prices when a discrete

adjustment process is considered rather than a continuous one, and he considers

the price adjustment process

p(t+ 1) = p(t) + γz(p(t)) = f(p(t)), (3)

where γ > 0 represent the constant and exogenous speed of adjustment and

z(p(t)) is the excess demand function. The steady state of iteration (3) coincides

with equilibrium (2), which turns out to be locally stable provided that

K < 2, (4)

where

K =
γ(x0(1 − α))2

βy0
(5)
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Figure 1: Bifurcation diagram for the model without memory.

is a synthetic parameter which depends on α, β, x0, y0, γ and characterizes the

price mechanism. When condition (4) is violated, a flip bifurcation occurs, as

shown in Figure 1 for α = 0.1, β = 0.1, x0 = 0.3, y0 = 0.2 on varying γ.

In Sections 3 and 4 we will investigate the effect of replacing in (3) the

current excess demand with a suitably weighted average of current and past

excess demands. To this end, we consider a general excess demand which, at

any equilibrium price p∗, is locally downward sloping

z′(p∗) < 0. (6)

Also in this more general setting, local stability can be studied in terms of the

synthetic positive parameter

K = −γz′(p∗) > 0, (7)

which is actually a straightforward generalization of (5). We remark that, when

(6) is satisfied, the steady states of (3) are stable under condition (4). Con-

versely, when z′(p∗) > 0, equilibrium p∗ is always unstable for (3). However, in

this case, the approaches we will describe in the following Sections are ineffec-
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tive and are not able to provide equilibrium stability. Finally, all the results we

are going to focus on concern local asymptotic stability.

3. Short memory model

In this section we assume that, in order to adjust the price, the market-

maker tries to learn from the last excess demand, using two excess demands

z(p(t)), z(p(t− 1)) for the determination of p(t+1). The goal is to investigate if

the excess demand at time t− 1, suitably weighted with respect to that at time

t, can be used to provide a modified price mechanism in which the equilibrium

price has improved stability properties with respect to (3). We remark that the

introduction of finite length memory was studied by Fujimoto in [20], in which,

however memory is introduced using a weighted average of the past prices and

not of excess demands, as in our case.

3.1. Model construction

Assuming that the auctioneer use a linear convex combination of the excess

demands z(p(t)) and z(p(t− 1)), we obtain

p(t+ 1) = p(t) + γ ((1 − ρ)z(p(t)) + ρz(p(t− 1)) = fρ(p(t), p(t− 1)), (8)

where ρ ∈ [0, 1] is a short memory ratio that “weighs” the amount of memory

we use for the determination of p(t + 1). When ρ = 0, no memory is involved

in (8) and so f0(p) = f(p) and we recover (3). Conversely, if ρ = 1 we only

use the excess demand at time t − 1 to compute p(t + 1). We are particularly

interested in studying (8) for ρ ∈ (0, 1/2], when the current excess demand has

more influence than the previous one on p(t + 1), even if (8) makes sense for

ρ > 1/2 too. We remark that, when ρ > 0, two initial values of p are needed to

start the process described in (8).

To study the price adjustment mechanism (8), we notice that it can be recast

into a two-dimensional system introducing an auxiliary variable q(t) for price
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p(t− 1), obtaining

T2(p, q) =











p(t+ 1) = p(t) + γ ((1− ρ)z(p(t)) + ρz(q(t)) ,

q(t+ 1) = p(t).

(9)

3.2. Dynamical analysis

Firstly, we notice that the steady states of (9) are exactly the prices for which

the excess demand vanishes. In fact, if z(p∗) = 0, then, setting p(t − 1) = p∗

in (9), we have p(t + 1) = p(t) = p∗. Conversely, if p∗ is a steady state for (9),

from p(t+ 1) = p(t) = q(t) = p∗ we have z(p∗) = 0.

Now we investigate the local stability of the steady states of (9).

Proposition 1. Let p∗ be a steady state of (9) at which (6) is valid. Then p∗

is locally asymptotically stable provided that

0 < K <
2

1− 2ρ
when ρ ≤ 1/4,

0 < K <
1

ρ
when ρ > 1/4.

(10)

where K is defined by (7).

Proof. To study the stability of (9), we compute the Jacobian matrix of T2(p, q)

J(p, q) =

(

1 + γ(1− ρ)z′(p) γρz′(q)
1 0

)

.

We recall that a steady state (p∗, p∗) is stable provided that










1− Tr(J(p∗, p∗)) + det(J(p∗, p∗)) > 0,

1 + Tr(J(p∗, p∗)) + det(J(p∗, p∗)) > 0,

1− det(J(p∗, p∗)) > 0.

(11)

Since

J(p∗, p∗) =

(

1−K(1− ρ) −Kρ
1 0

)

, (12)

the first condition of (11) reduces toK > 0, which, recalling (7), is automatically
satisfied. The second condition reduces to (2ρ − 1)K + 2 > 0, which, for ρ ∈
[0, 1/2), requires

K <
2

1− 2ρ
, (13)

while the third condition of (11) requires 1 − ρK > 0, which is indeed true for
ρ = 0 and requires

K <
1

ρ
(14)
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for ρ > 0. Noticing that for ρ ∈ (0, 1/4)

2

1− 2ρ
<

1

ρ
,

we can conclude.

We notice that (10) provides the stability region with respect to a given

value of ρ. Now we reformulate (10) in order to understand for which values of

γz′(p∗) we can find a set of stabilizing memory ratios.

Corollary 1. Under the hypotheses of Proposition 1, we have that a steady
state p∗ is stable

for all ρ ∈ [0, 1] if 0 < K < 1

for ρ ∈ [0, 1/K) if 1 ≤ K < 2

for ρ ∈ (1/2− 1/K, 1/K) if 2 ≤ K < 4.

If K ≥ 4, no memory ratio ρ can be found in order to have a stable equilibrium.

The previous result, which can be easily proved using (10), says that, if

−γz′(p∗) < 4, we can always find a non-empty interval of values of ρ for which

the equilibrium is stable. In what follows, we will use S2 to indicate the set of

(ρ,−γz′(p∗)) which satisfies the conditions of Proposition 1. Stability region S2

is reported in Figure 2. As we can see, for ρ = 0 we retrieve the stability region

provided by (3), while for ρ ∈ (0, 1/2), we have that model (9) is stable for a

larger interval of values −γz′(p∗). If ρ ∈ (0, 1/2), the current excess demand

z(p(t)) has a greater relevance with respect to the previous one z(p(t − 1)).

Finally, we notice that the stability region is maximal when ρ = 1/4, for which

the curves described by (14) and (13) intersect in −γz′(p∗) = 4.

Conversely, increasing memory ratio above ρ = 1/2, the stability region

reduces, becoming 0 < K < 1 when ρ = 1. The previous results seem to point

out that the introduction of memory has a positive stabilizing effect, provided

that the coefficients favor the nearest excess demands in time. However, the

equilibrium is still unstable if −γz′(p∗) ≥ 4.

We want to draw the attention on the fact that the stability region provided

by Proposition 1 is not symmetric with respect to ρ = 1/2, as it is maximized
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Figure 2: The gray area represents the region S2 in which system (9) is stable.

for ρ = 1/4 and not for the uniform weight distribution. We remark that, as a

result of this, giving more relevance to z(p(t−1)) with respect to z(p(t)) actually

reduces the stability region. In the existing literature about iteration processes,

(for a detailed survey we refer to the book by Berinde [31]), the most effective

distributions of weights are the uniform ones (e.g. for the Mann iterations).

However, we remark that, differently than in short memory model (9), in most

of the stabilization techniques proposed in [31], a succession of infinite weights

is involved and that weights directly affect the state variable, and not a function

of it. Conversely, an example of short memory is proposed by Fujimoto in [20],

who studies

p(t+ 1) = ap(t) + bp(t− 1) + cp(t− 2) + γz(p(t)).

We remark that, as shown in [20], the previous approach is only effective for

a system of dimension greater than 2. The author shows that the previous

iterative method converges if a particular non-uniform combination of weights

a, b, c is used. We do not further investigate the connection between finite

memory and uniform weights’ distribution, which we aim to address in future
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Figure 3: Bifurcation diagram on varying the memory ratio ρ for the model with short memory.

researches.

3.3. Numerical investigations

We present some computational results focusing on the example studied by

Mukherji in [24], so we consider the excess demand (1).

Firstly, we investigate what happens when conditions of Proposition 1 are

violated. We use the same parameters of the simulation reported in Section 2

and we focus on γ = 0.75, for which, as reported in Figure 1, the equilibrium is

unstable, as we have K = 2.6973. For more details about chaotic behaviors of

discrete dynamical systems, we refer to the book by Elaydi [32] .

If K > 2, when ρ = 1/2 − 1/K the third condition of (11) is violated and

a flip bifurcation occurs, as in the original model of Mukherji when K = 2.

Conversely, if K > 2, when ρ = 1/K the second condition of (11) is violated

and a Neimark-Sacker bifurcation occurs. The bifurcation diagram obtained on

varying ρ is reported in Figure 3. Therefore, we have different chaotic behaviors

depending on ρ,K. For decreasingly smaller values of ρ < 1/2−1/K, the prices

predicted by (9) first start oscillating between two or more values, then, after a
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Figure 4: Attractors for model (9) when ρ < 1/4 for increasingly large values of ρ. Circle
represents the steady state (2)

cascade of flip bifurcations, converge to a chaotic attractor, as shown in Figure

4. Conversely, increasing ρ above 1/K, prices follow a quasi-periodic evolution

and converge toward a closed attracting curve, as shown in Figure 5.

All the previous proofs and simulations show that two level memory al-

lows stabilizing the process only for a limited amount of economies. Moreover,

decreasing weights behave better than uniform weights. This suggests to inves-

tigate the case in which all the previous excess demands are taken into account,

but with fading weights.

4. Infinite memory model

In Section 3 we proved that introducing memory can help to improve equi-

librium stability, provided that the latest excess demand z(p(t)) has a greater

influence than the previous one z(p(t−1)). It is predictable that, increasing the
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Figure 5: Attractors for model (9) when ρ > 1/4 for increasingly large values of ρ. Circle
represents the steady state (2)

number of considered past excess demands, stability can be further improved.

In particular, may we always obtain stable price adjustments if we take into

account, in a suitable way, all the previous excess demands?

If, at each time t > 0, the auctioneer takes into account all the known excess

demands to decide p(t+ 1), the resulting process can be represented by means

of the recurrence relation

p(t+ 1) = p(t) + γ

t
∑

k=0

a
(t)
t−kz(p(t− k))

= p(t) + γ
(

a
(t)
t z(p(t)) + a

(t)
t−1z(p(t− 1)) + · · ·+ a

(t)
1 z(p(1)) + a

(t)
0 z(p(0))

)

,

(15)

in which {a(t)k }k=0,...,t are nonnegative weights, normalized so that

t
∑

k=0

a
(t)
t−k = 1.
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Equation (15) says that, at each time t, the auctioneer adjusts the price on the

base of a weighted average of the excess demands z(p(0)), . . . , z(p(t−1)), z(p(t)),

to which we will refer as weighted cumulative excess demand. In particular, when

the process starts (t = 0), the auctioneer only knows the initial excess demand

z(p(0)), whose weight is indeed a
(0)
0 = 1. Then, when t = 1, he uses both

z(p(1)) and z(p(0)) to decide the new price p(2), using two weights satisfying

a
(1)
0 + a

(1)
1 = 1. We notice that, at each time t, the weights can be collected in a

vector (a
(t)
k )k=0,...,t of length t+1 and that a

(t)
n is the weight given to the excess

demand z(p(n)) at time t.

We notice that the model is more and more complicated as memory becomes

increasingly long, as recurrence (15) is actually a dynamical system of increasing

dimension, and that, at least in principle, any distribution of weights could be

used.

Among the possible sequence of weights’ vectors, we focus on a particular

family, regulated by a parameter σ > 0 and consisting of exponentially decreasing

weights, similar to that used in [28] for a nonlinear quadratic model with learn-

ing. Firstly, we introduce the sequence of unnormalized weights (ωt
k)k=0,...,t.

At any fixed time step t ≥ 0, we set the weight of the current excess demand

z(p(t)) to 1 (ω
(t)
t = 1). Then, we set the remaining t weights so that the ratios

between any consecutive weights ω
(t)
k and ω

(t)
k+1 are identical to the same infinite

memory ratio σ ∈ [0, 1), namely

ω
(t)
k

ω
(t)
k+1

= σ, ∀k = 0, . . . , t, ∀t.

This means that, at each time step t, the weights can be collected in the unnor-

malized vector ω(t) = (ω
(t)
k )k=0,1,...,t ∈ R

t+1 which results

ω(t) = (σt−k)k=0,1,...,t = (σt, σt−1, . . . , σ2, σ, 1). (16)

We remark that the weights, ordered from that related to the current excess

demand to that related to z(p(0)), form an exponentially decreasing sequence,

meaning that an exponentially decreasing relevance is given by the auctioneer
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to the past excess demands. We notice that the unnormalized vectors can be

organized in an infinite lower triangular matrix,

1

σ 1

σ2 σ 1

...
. . .

σt σt−1 · · · · · · 1

...
. . .

in which the n-th row collects the weights of time step n, the j-th column the

weights related to excess demand z(p(j)) (provided that j ≥ t) and the diagonal

elements collect the weights of the current excess demand. In particular, focus-

ing on the columns of the previous matrix, the relevance given to a particular

demand excess decreases exponentially and vanishes as t increases.

To normalize ω(t) when t > 0, we simply need to divide its elements by

W (t) =

t
∑

k=0

σt−k =
1− σk+1

1− σ
(17)

which represents the unnormalized cumulative weight at time t.

Going back to equation (15), an exponentially fading weights’ distribution

is realized by choosing

a
(t)
k =

ω
(t)
k

W (t)
. (18)

In the following proposition, we show that exponentially fading weights allow

rewriting (15) into an equivalent three dimensional system. To do this, we use

the unnormalized cumulative weights defined by (17) and the weighted cumu-

lative excess demand variable

Z(t) =
1

W (t)

t
∑

k=0

ω
(t)
k z(p(k)). (19)

Proposition 2. Consider a price adjustment mechanism in which, at time t,
each excess demand z(p(s)) for s = 0, . . . , t is taken into account using normal-
ized weights

ω
(t)
k

∑t
k=0 ω

(t)
k

, (20)
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where ω
(t)
k are defined by (16). Then, equation (15) is equivalent to the following

three-dimensional dynamical system

T∞(p, Z,W ) =















p(t+ 1) = p(t) + γZ(t), (21a)

Z(t+ 1) =
σW (t)Z(t) + z(p(t) + γZ(t))

1 + σW (t)
, (21b)

W (t+ 1) = 1 + σW (t). (21c)

provided that we set W (0) = 1 and Z(0) = z(p(0)), where z(p(0)) is the given
initial excess demand.

Proof. Equation (21c) can be obtained by evaluating (17) at t+1 and noticing
that

W (t+ 1) =

t+1
∑

k=0

σt+1−k = 1 +

t
∑

k=0

σt+1−k = 1 + σW (t). (22)

The price adjustment mechanism can be achieved from (15) and (18), obtaining

p(t+ 1) = p(t) + γ

t
∑

k=0

ω
(t)
k

W (t)
z(p(k))

= p(t) + γ

t
∑

k=0

σt−k

W (t)
z(p(k)).

(23)

Recalling (16), the weighted cumulative excess demand function (19) can be
rewritten as

Z(t) =
1

W (t)

t
∑

k=0

σt−kz(p(k)), (24)

which allows rewriting (23) in terms of the new variable Z(t), obtaining

p(t+ 1) = p(t) + γZ(t). (25)

Writing (24) at time t+ 1 we have

Z(t+ 1) =
1

W (t+ 1)

t+1
∑

k=0

σt+1−kz(p(k))

=
1

W (t+ 1)

[

z(p(t+ 1)) +
t

∑

k=0

σt+1−kz(p(k))

]

=
1

W (t+ 1)

[

z(p(t+ 1)) + σ

t
∑

k=0

σt−kz(p(k))

]

.

(26)

Finally, substituting (22), (25) and (24) into (26), we have the evolution equation
for the cumulative excess demand function

Z(t+ 1) =
σW (t)Z(t) + z(p(t) + γZ(t))

1 + σW (t)
. (27)
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The infinite memory model is then the three-dimensional system made by (22),
(25) and (27).

Thanks to the choice of exponentially fading weights, Proposition 2 allows

us to state that we only need one more variable than in the short memory model

to describe and study the evolution of p. Moreover, process (21) needs only one

price value to start.

First of all we notice that System (21) is formally defined also for σ = 0,

but in this case, since ω
(t)
t = 1 and ω

(t)
s = 0 for s < t, we find again (3). For

small values of σ, we have that σt−s decreases rapidly as s is far from t, and in

this case only a few excess demands are significantly taken into account for the

determination of p(t+1). In this case, the infinite memory model can be seen as

an approximation of a particular short memory model with suitable finite mem-

ory. On the contrary, when σ ≈ 1, several z(p(t−s)) have substantial influence,

as they have similar weights. When σ → 1, we have that the weights tend to

the uniform distribution ωt
k = 1/(t+ 1). System (21) can not be considered for

σ = 1, which would give rise to a uniform weights’ distribution. However, if σ is

sufficiently close to 1, a suitable finite set of weights related to the most recent

excess demands are very close to an uniform average. In this sense, system (21)

can provide a suitable approximation of a uniform weights’ distribution, which

we will call quasi-uniform.

4.1. Dynamical analysis

Steady states of system (21) are characterized by the following proposition.

Proposition 3. Steady states of system (21) are characterized by

p∗, Z∗ = 0, W ∗ =
1

1− σ
. (28)

where p∗ are such that z(p∗) = 0.

Proof. If in (21) we set (p(s), Z(s),W (s)) = (p∗, Z∗,W ∗) for s = t, t+1, by the
first equation we have Z∗ = 0 and the third equation gives W ∗ = 1/(1 − σ).
Substituting Z∗ into the second equation, we obtain z(p∗) = 0.
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We underline that the price component of a steady state of (21) is a Wal-

rasian equilibrium (z(p∗) = 0) and that the cumulative excess demand Z∗ is

null too.

To study the stability of steady states, we make use of the conditions for a

three-dimensional discrete dynamical system obtained in [33]







































1− | det(J)| > 0,

1−M(J) + tr(J)(det(J))− (det(J))2 > 0,

1 +M(J)− tr(J)− det(J) > 0,

1 +M(J) + tr(J) + det(J) > 0,

(29)

where M is the sum of the three principal minors of the Jacobian matrix J .

We remark that also in this case we need to assume hypothesis (6) and that

stability can be expressed in terms of (7).

Proposition 4. Let p∗ be a steady state of (9) in which (6) is valid. Then p∗

is locally asymptotically stable provided that

K <
2(σ + 1)

1− σ
. (30)

Proof. The Jacobian matrix of System (21) is

J(p, Z,W ) =












1 γ 0

z′(p+ γZ)

Wσ + 1

γz′(p+ Zγ) +Wσ

Wσ + 1

σZ − σz(p+ Zγ))

(Wσ + 1)2

0 0 σ













which, evaluated at (28), gives

Jf = J(p∗, 0, 1/(1− σ)) =









1 γ 0
K(σ − 1)

γ
(K + 1)σ −K 0

0 0 σ









. (31)

Since det(Jf ) = σ2, the first condition of (29) is satisfied, as σ ∈ [0, 1). The
second condition of (29) is equivalent to (σ − 1)2(1 − σ2 + Kσ) > 0 and it is
verified since σ ∈ [0, 1). The third condition is equivalent to K(σ − 1)2 > 0,
which is true thanks the hypothesis on the parameters and σ < 1. The last
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Figure 6: The gray area represents the region S∞ in which system (21) is stable.

condition of (29) is equivalent to (K + 2)σ2 + 4σ − K + 2 > 0 and can be
simplified as

2(σ + 1) +K(σ − 1) > 0,

which gives (30).

The stability region given by the previous Proposition, which will be indi-

cated in the following with S∞, is shown in Figure 6. The main consequence

of (30) is that for any economy and reaction parameter γ, we can always find

an interval of values for σ so that the price adjustment mechanism is stable. In

fact, we can rewrite Proposition 4 as

Corollary 2. For any given K > 0, we have that an equilibrium p∗ is locally
asymptotically stable

for all σ ∈ [0, 1) if K < 2,

for σ ∈ ((K − 2)/(K + 2), 1) if K ≥ 2.

Hence, the mechanism we introduced in this section, in which we take into

account all the available weighed excess demand, is able to produce a stable

price adjustment mechanism for any excess demand function that satisfies (6).
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Figure 7: Bifurcation diagram for the model with infinite memory.

4.2. Numerical investigations

In this Section, we investigate the behavior of (21) when stability condition

is violated. Again, we consider the example studied in Section 2. As we can see

in Figure 7, when σ = (K−2)/(K+2) a cascade of period doubling bifurcations

starts, leading to chaos. Only the leftmost part of the bifurcation diagram is

similar to that reported in Figure 3, since in the present case, as σ increases,

we always have convergence. For small memory ratios, the chaotic behavior of

(21) is similar to that of (8) and as shown by the chaotic/periodic attractors

reported in Figure 8. We remark that since W converges to 1/(1−σ), the curves

of Figure 8 lie on a plane W = const.

5. Convergence speed

In the previous sections we showed that the introduction of memory allows

stabilizing the model and increasing the stability region of K up to 4, using

short memory, or to +∞ with infinite memory. However, as well as stability,

it is important that a price mechanism, when convergent, be able to approach

the equilibrium prices as fast as possible, involving the minimum number of
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Figure 8: Attractors for model (21) when σ < (K−2)/(K +2). Circle represents steady state
(28)

iterations, in order to allow transactions. How can we evaluate the convergence

speed of an iterative map? According to the literature about fixed point iter-

ations (see for example [34]), for a one-dimensional map x(t + 1) = f(x(t)) we

can define the asymptotic convergence factor

C = |f ′(xf )|, (32)

where xf is the (stable) fixed point of the iteration map, while for multidimen-

sional maps ~x(t+ 1) = g(~x(t)), it is defined by

C = ρ(J(~xf )), (33)

where ρ(J) = maxi{|λi|} is the spectral radius of the Jacobian matrix J of map

g, being λi the eigenvalues of J .

We notice that, thanks to the stability of xf , we have C < 1. Moreover,

C 6= 0 represents the (asymptotic) reduction factor of the absolute error at each
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iteration. For example, in the one dimensional case, we have

|e(t+ 1)| < C|e(t)|,

where e(t) = x(t)− xf . We remark that when C 6= 0, the convergence is linear,

while for C = 0 we have a superlinear convergence. Moreover, the convergence

to the steady state is faster as C gets smaller.

In the following sections we want to compute and compare C for (3), (9)

and (21). In particular, since for both (9) and (21) we have that an equilibrium

is stable for a range of memory ratios (ρ or σ), we will investigate for which

memory ratio we obtain the smallest asymptotic convergence factor. We will

refer to this value as the optimal memory ratio, which gives the corresponding

optimal convergence factor. The proofs of the following Propositions can be

found in Appendix. Again, we can express the results in terms of K, under

condition (6) on the excess demand function at the equilibrium.

5.1. Asymptotic convergence rates

Model without memory

For the original model of Mukherji (3), we have the following result.

Proposition 5. When an equilibrium point is stable for (3) (K < 2), the
asymptotic convergence factor C0 is

C0 = |1−K|. (34)

Short memory model

For the short memory model (9) we start computing the asymptotic conver-

gence factor on varying ρ. Let us introduce

∆2 = (1−K +Kρ)2 − 4Kρ,

and

ρ∗ = 1 +
1

K
− 2√

K
,

for which, when K ∈ (0, 4), we have

1

2
− 1

K
< ρ∗ <

1

K
. (35)

We have
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Proposition 6. The asymptotic convergence factor C2 for (9) is

C2(ρ,K) =



























1−K +Kρ+
√
∆2

2
if K ∈ (0, 1], 0 ≤ ρ ≤ ρ∗ (36a)

K − 1−Kρ+
√
∆2

2
if K ∈ (1, 4), 1

2 − 1
K

< ρ ≤ ρ∗(36b)
√

Kρ if K ∈ (0, 4), ρ∗ < ρ < 1
K
, (36c)

provided that ρ ∈ [0, 1].

We remark that function (36) is continuous, in particular for ρ = ρ∗. Now

we are able to find, for any given K ∈ (0, 4), the value of ρ which gives the

optimal convergence factor.

Proposition 7. For K ∈ [0, 4), the optimal memory ratio is given by

ρopt(K) = 1 +
1

K
− 2√

K
, (37)

to which corresponds the optimal asymptotic convergence factor

Copt
2 (K) = |1−

√
K|. (38)

Infinite memory model

For the infinite memory model (21), we start computing the asymptotic

convergence factor on varying σ. Let us introduce

∆∞ = (1− σ)[(K − 1)2 − σ(K + 1)2],

and

σ∗ =

(

K − 1

K + 1

)2

.

We notice that σ∗ ∈ S∞ since

K − 2

K + 2
< σ∗.

We have

Proposition 8. The asymptotic convergence factor C∞ for (21) is

C∞(σ,K) =























(σ + 1)−K(1− σ) +
√
∆∞

2
K ∈ (0, 1], 0 ≤ σ ≤ σ∗(39a)

K(1− σ)− (σ + 1) +
√
∆∞

2
K > 1, K−2

K+2 < σ ≤ σ∗,(39b)
√
σ K > 0, σ > σ∗ (39c)

provided that σ ∈ [0, 1).
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We remark that also function (39) is continuous, in particular for σ = σ∗.

As in the case of short memory, we can identify, for any given K > 0, the value

of σ to which the optimal convergence factor corresponds.

Proposition 9. For K > 0, the optimal memory ratio is given by

σopt(K) =

(

K − 1

K + 1

)2

(40)

to which corresponds the optimal asymptotic convergence factor

Copt
∞

(K) =

∣

∣

∣

∣

1− 2

1 +K

∣

∣

∣

∣

. (41)

In both (34), (38) and (41) the asymptotic convergence factor vanishes for

K = 1 and the convergence of the fixed point iteration is superlinear. In this

case (32) gives no information about the convergence speed and one should

investigate the convergence order of the fixed point iteration. But for K = 1,

both (9) and (21) achieve their optimal convergence factors (38) and (41) for

ρ = σ = 0, so they actually reduces to the model without memory. On the basis

of this, we do not investigate further the case K = 1.

5.2. Convergence speed comparison

The comparison of the asymptotic convergence factor of the model without

memory (34) and of the optimal convergence factors for the model with short

memory (38) and infinite memory (41) is made in the following Proposition.

We recall that convergence is faster when (32) is smaller.

Proposition 10. For all K ∈ (0, 2),K 6= 1, convergence is slower for the model
with no memory with respect to those with short and infinite memory. When
0 < K < 1, the model with short memory converges faster than that with infinite
memory, while for 1 < K < 4 the model with infinite memory is faster.

To prove the previous Proposition it is sufficient to compare C0, C
opt
2 and

Copt
∞

. We omit the details and we report in Figure the plots of 9 (34), (38) and

(41). Proposition 10 says that the introduction of a certain level of memory

always allows increasing the convergence speed with respect to the model with-

out memory. Moreover,if K is small, the short memory model is more efficient,

while the adjustment process based on infinite memory should be preferred for
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Figure 9: Comparison of the asymptotic convergence factors for all the models when 0 < K < 2
(left plot) and for the models with memory when 0 < K < 4 (right plot).
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Figure 10: Comparison of the asymptotic convergence factors for infinite memory process with
quasi-uniform and fading weights, which give faster convergence.

K > 1. Finally, if we consider quasi-uniform weights, we can see from Figure 10

that the price adjustment obtained with optimal memory ratio is always much

faster.

6. Concluding remarks

We proposed two alternative tâtonnement processes based on the introduc-

tion of memory to improve the stability and the convergence speed to the equi-

librium price of a two-agent, two-good exchange economy. Introducing short

memory, we proved that the stability of the price mechanism can be guaranteed

for a larger bounded set of conditions, for suitable choices of the memory ratio.

With infinite memory we was able to find a set of memory ratio values for which

the equilibrium is stable for all economies. Moreover, both strategies allowed to
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accelerate the convergence to the equilibrium with respect to the model with no

memory. We aim to extend this approach to more general economies and to in-

vestigate and compare different stabilization techniques. In particular, we want

to study price adjustment mechanisms obtained by replacing the true unknown

excess demand with a suitable approximation (for example by interpolating

some past excess demands). Moreover, we aim to deepen the understanding of

the results about the improved stability properties of the fading short memory

distribution with respect to the uniform memory distribution.
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Appendix A. Proofs

Proof of Proposition 5. We just need to notice that, from (3), we have f ′(p∗) =
1−K.

Proof of Proposition 6. To estimate the spectral radius of (12), we need to com-
pute its eigenvalues. In what follows, we assume that (ρ,K) belongs to stability
region S2. The characteristic polynomial of (12) is

λ2 + (K(1− ρ)− 1)λ+Kρ, (A.1)

and, since for ρ ∈ [0, 1] we have ∆2 ≥ 0 provided that

ρ ≤ ρ∗ = 1 +
1

K
− 2√

K
, (A.2)

the zeros of (A.1) are the real values

λ+,− =
1−K +Kρ±

√
∆2

2
,

when (A.2) is valid, while are the couple of complex conjugate values

λ1,2 =
1−K +Kρ± i

√
−∆2

2
,

when (A.2) is violated.
We need to find the largest in modulus eigenvalue. When ∆2 < 0 we have

that

|λ1| = |λ2| =
1

2

√

(1−K(1− ρ))2 −∆2 =
√

Kρ,
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which, recalling (35), gives (36c).
When ∆2 ≥ 0, we need to distinguish between two cases. First we consider

K ∈ (0, 1]. Thanks to 1, we have (ρ,K) ∈ S2 if ρ ∈ [0, 1], so λ+ ≥ λ− ≥ 0. In
fact λ− ≥ 0, since we have 1 − K + Kρ ≥ 0 and 1 − K + Kρ ≥

√
∆2 is true

since it is equivalent to
Kρ ≥ 0. (A.3)

This allows obtaining (36a).
Conversely, when 1 < K < 4 we have λ− < λ+ < 0. In fact λ+ < 0, since

we have that 1−K +Kρ < 0 is true as we are considering ρ such that

ρ ≤ ρ⋆ = 1 + 1/K − 2/
√
K < (K − 1)/K

Moreover, −(1−K(1− ρ)) ≥
√
∆2 reduces again to (A.3). Hence ρ(J2) = |λ−|

and this gives (36b).

Proof of Proposition 7. We notice that for a fixed K, C2(ρ,K) is decreasing for
ρ < ρ∗. In fact, if K ∈ (0, 1), we consider (36a) and

∂ρC2(ρ,K) =
K
√
∆2 −K(K(1− ρ) + 1)

2
√
∆2

,

which is negative since

K
√

∆2 −K(K(1− ρ) + 1) < 0 ⇔ −4K3 < 0.

If K ∈ (1, 4), we have to consider (36a), so

∂ρC2(ρ,K) =
−K

√
∆2 −K(K(1− ρ) + 1)

2
√
∆2

which is negative.
Conversely, when ρ > ρ∗, C2(ρ,K) =

√
Kσ is indeed increasing. This allows

concluding that, for each K, the minimum is attained for ρ = ρ∗. Expression
(38) is a straightforward consequence of (37).

Proposition 8. We compute the eigenvalues of (31), considering (ρ,K) belonging
to stability region S∞. The characteristic polynomial of (31) is

−(λ− σ)
(

−λ2 + λ(1 −K + σ +Kσ)− σ
)

(A.4)

which always has solution λ1 = σ. Since for σ ∈ [0, 1] we have ∆∞ ≥ 0 provided
that

σ ≤ σ∗ =

(

K − 1

K + 1

)2

, (A.5)

the zeros of (A.4) are the real values

λ+,− =
1−K + σ(1 +K)±

√
∆∞

2
,
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when (A.5) is valid, while are the couple of complex conjugate values

λ2,3 =
1−K + σ(1 +K)±

√
∆∞

2
,

when (A.5) is violated.
We need to find the largest in modulus eigenvalue. When ∆∞ < 0 we have

that

σ < |λ1| = |λ2| =
1

2

√

(1−K + σ(1 +K))2 −∆2 =
√
σ,

which gives (39c).
When ∆∞ ≥ 0, we have to distinguish between two cases. First we consider

K ∈ (0, 1]. Thanks to Corollary 2, we have (σ,K) ∈ S∞ if σ ∈ [0, 1], so
λ+ ≥ λ− ≥ 0. In fact, λ− ≥ 0, since 1−K + σ(1 +K) ≥ 0, and

1−K + σ(1 − ρ) ≥
√

∆∞

is true since it is equivalent to
σ ≥ 0.

Since

λ+ − σ =
(1−K)(1− σ) +

√
∆∞

2
> 0,

we can conclude that ρ(J∞) = λ+ and we obtain (39a).
Conversely, when K > 1 we have λ− < λ+ < 0. In fact λ+ < 0 since we

have that 1−K + σ(1 +K) < 0 is true as we are considering σ such that

0 < σ ≤
(

K − 1

K + 1

)2

<
K − 1

K
.

Moreover, −(1−K + σ(1 +K)) <
√
∆ is again equivalent to σ > 0.

Finally, since

|λ−| − σ =
−(K + 3)σ +K − 1 +

√
∆∞

2
,

and since −(K + 3)σ +K − 1 > 0 for

σ ≤
(

K − 1

K + 1

)2

<
K − 1

K + 3
,

we have that |λ−| > σ and (39b) is valid.

Proposition 9. We notice that for a fixed K, C∞(σ,K) is decreasing for σ < σ∗.
In fact, if K ∈ (0, 1), we consider (39a) and

∂σC∞(σ,K) =
(K + 1)

√
∆∞ + σ(1 +K)2 −K2 − 1

2
√
∆∞

,
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is negative since σ(1 +K)2 −K2 − 1 < 0 as

σ ≤ σ∗ <
K2 + 1

(K + 1)2
,

and
(K + 1)

√

∆2 + σ(1 +K)2 −K2 − 1 < 0 ⇔ −4K2 < 0.

If K > 1, we have to consider (39b), so

∂σC∞(σ,K) =
−(K + 1)

√
∆∞ + σ(1 +K)2 −K2 − 1

2
√
∆∞

which is negative.
Conversely, when σ > σ∗, C∞(σ,K) =

√
σ is indeed increasing. This allows

concluding that, for each K, the minimum is attained for σ = σ∗. Expression
(41) is a straightforward consequence of (40).
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