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Abstract— Mathematical modeling of enzymatic reactions is
among the most known and celebrated results provided by
mathematicians to the biological field, and dates back to the
early twentieth century. From that point ahead many steps
have been done, and nowadays several results, achieved ad-
dressing the modeling problem from both the deterministic and
stochastic approaches, are available, paving the way to fruitful
applications in pharmacokinetics and pharmacodynamics. The
common denominator has been the search for analytical,
approximate or numerical solutions of the underlying systems,
since the intrinsic double time scale of enzymatic reactions
prevents the use of standard computational methods. In this
note, we exploit recent results allowing to write the solution
of an Ordinary Differential Equation (ODE) in terms of a
time-series expansion. Here we apply these results to the basic
enzymatic reaction scheme and prove its efficacy compared to
standard numerical tools. To this end, no approximations are
exploited, such as the popular Quasi Steady-State Approxima-
tion. Simulations are promising and underline the benefits when
standard methods seem to fail.

I. INTRODUCTION

This note investigates the basic enzymatic reaction
scheme, which refers to a substrate S that is transformed into
a product P by means of the catalytic action of an enzyme
E that, first, forms a complex C according to a reversible
binding/unbinding reaction and, then, releases the product
from the complex. Within this framework, we neglect random
fluctuations, thus assuming to have a number of molecules of
each species large enough to rely on Ordinary Differential
Equation (ODE) models describing average concentrations
that vary continuously [16]. This process is summarized in
the scheme

E + S
k1−→←−
k−1

C
k2−→ E + P (1)

According to standard mass action law, the ODE system
associated to (1) is readily written

ṡ = −k1es+ k−1c

ė = −k1es+ (k−1 + k2)c

ċ = k1es− (k−1 + k2)c

ṗ = k2c

(2)

where s, e, c, p denote the four species concentrations.
Because of the mass conservation laws involving the total
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concentration of substrate and enzyme (ST and ET , respec-
tively), the following constraints arise

e+ c = ET , s+ c+ p = ST , (3)

so that the ODE (2) simplifies with respect to the independent
species as {

ṡ = −k1(ET − c)s+ k−1c

ċ = k1(ET − c)s− (k−1 + k2)c
(4)

Such a basic chemical reaction network (1) works as a
model of any generic enzymatic reaction scheme. This fact
explains the huge interest to build up a predictive mathemat-
ical model, since enzymes are known to play an important
role in many and diverse cellular activities (like metabolism,
signal transduction and cell regulation), and their malfunction
may lead to the raise of serious diseases [7], [8]. Further
interest has recently gained from the practical applications
of enzymes as specific catalysts in drug development, food
processing and biofuel production [11].

Within this framework, the ODE model (2) has been a
matter of intense investigation, strongly related to the so-
called Quasi Steady-State Approximation (QSSA), originally
developed in the first years of the past century by Michaelis
and Menten in [12], and further rigorously derived in [3].
Indeed, according to biologically meaningful parameter as-
sessments, system (4) exhibits a double time scale with
consequent difficulties in achieving computationally efficient
solutions because of the stiffness of the ODE numerical
integration. This drawback arises also when dealing with the
stochastic numerical counterpart provided by the Stochastic
Simulation Algorithm, [9], [10]. The standard QSSA (and
its related modified versions) exploits time-scale separation
to project models of biochemical reactions onto lower-
dimensional slow manifolds, thus rapidly fluctuating species
are not simulated explicitly. Evidently, working hypotheses
are provided for the correct applicability of the QSSA (see,
e.g. [13], [2], [1]).

This note addresses the problem of finding the exact
solution of the original ODE system (4) without any ap-
proximating hypotheses. Indeed, our work is based on the
application of the quadratic immersion, a tool that allows
to embed a wide class of nonlinear systems onto an ex-
tended state space according to which the corresponding
extended state undergoes a homogeneous quadratic dynamics
[4]. Once the system is written in the quadratic form, the
analytical solution may be written as a time series expansion,
thus providing the exact solution according to a degree of



TABLE I
EXPONENTS OF MONOMIALS IN (6).

Eq. 1 monomial 1 p11,1 = 1 p11,2 = 0

Eq. 1 monomial 2 p21,1 = 1 p21,2 = 1

Eq. 1 monomial 3 p31,1 = 0 p31,2 = 1

Eq. 2 monomial 1 p12,1 = 1 p12,2 = 0

Eq. 2 monomial 2 p22,1 = 1 p22,2 = 1

Eq. 2 monomial 3 p32,1 = 0 p32,2 = 1

accuracy which increases with the truncation order of the
series. The general theory related to the computation of the
coefficients of the time-series expansion has been developed
in [5], with the main theorem here reported for the ease of
the reader. Numerical simulations are promising, since they
show how the proposed approach allows to overcome critical
drawbacks that arise in attempting numerical solutions from
(4), both according to built-in numerical tools (like Matlab R©
ODE45 and ODE15s functions) and to a numerical Euler ad-
hoc implementation.

II. QUADRATIZATION OF THE ENZYMATIC REACTIONS
INTO A DRIVER-TYPE ODE

Consider the enzymatic reaction scheme and define x =
[s c]′ ∈ R2, so that the ODE model may be re-written as:{

ẋ1 = −k1ETx1 + k1x1x2 + k−1x2

ẋ2 = k1ETx1 − k1x1x2 − (k−1 + k2)x2
(5)

According to [4], [5] (which we refer readers to for details),
both dynamics described by (5) can be written as a sum of
monomials, i.e.:

ẋi =

νi∑
l=1

αi,lXi,l, Xi,l = x
pli,1
1 x

pli,2
2 , i = 1, 2 (6)

with ν1 = ν2 = 3,

α1,1 = −k1ET , α1,2 = k1, α1,3 = k−1,

α2,1 = k1ET , α2,2 = −k1, α2,3 = −(k−1 + k2)
(7)

and the exponents pli,j characterizing the j-th variable in l-th
monomial of the i-th equation reported in Table I.

By further defining vectors:

α1 = [α1,1 α1,2 α1,3]′, α2 = [α2,1 α2,2 α2,3]′

(8)
and

X1 = [X1,1 X1,2 X1,3]′ = [x1 x1x2 x2]′,
X2 = [X2,1 X2,2 X2,3]′ = X1,

(9)

then (6) is rewritten in the more compact form

ẋi = α′iXi i = 1, 2 (10)

According to [4], the ‘driver’ variables

Zi,l =
Xi,l

xi
, l = 1, . . . , νi (11)

TABLE II
πl
i,j COEFFICIENTS IN (13).

Eq. 1 monomial 1 π1
1,1 = 0 π1

1,2 = 0

Eq. 1 monomial 2 π2
1,1 = 0 π2

1,2 = 1

Eq. 1 monomial 3 π3
1,1 = −1 π3

1,2 = 1

Eq. 2 monomial 1 π1
2,1 = 1 π1

2,2 = −1

Eq. 2 monomial 2 π2
2,1 = 1 π2

2,2 = 0

Eq. 2 monomial 3 π3
2,1 = 0 π3

2,2 = 0

are defined for i = 1, 2, so that (6) is further rewritten as

ẋi = (α′iZi)xi (12)

with

Z1 = [1 x2 x−11 x2]′, Z2 = [x1x
−1
2 x1 1]′. (13)

By the exact quadratization theorem [4], the driver dynamics
is given by:

Żi,l =

2∑
j=1

πli,j(α
′
jZj)Zi,l i = 1, 2, l = 1, ..., νi,

that is:

Ż1,1 = 0

Ż1,2 = π2
1,2(α′2Z2)Z1,2

Ż1,3 = π3
1,1(α′1Z1)Z1,3 + π3

1,2(α′2Z2)Z1,3

Ż2,1 = π1
2,1(α′1Z1)Z2,1 + π1

2,2(α′2Z2)Z2,1

Ż2,2 = π2
2,1(α′1Z1)Z2,2

Ż2,3 = 0

(14)

with coefficients πli,j := pli,j−δi,j written in Table II, where
δi,j is the Kronecker delta, providing 1 if i = j and 0
elsewhere. By further expanding computations, we get:

Ż1,1 = 0

Ż1,2 = α2,1Z1,2Z2,1 + α2,2Z1,2Z2,2 + α2,3Z1,2Z2,3

Ż1,3 = −α1,1Z1,1Z1,3 − α1,2Z1,2Z1,3 − α1,3Z1,3Z1,3

+α2,1Z1,3Z2,1 + α2,2Z1,3Z2,2 + α2,3Z1,3Z2,3

Ż2,1 = α1,1Z1,1Z2,1 + α1,2Z1,2Z2,1 + α1,3Z1,3Z2,1

−α2,1Z2,1Z2,1 − α2,2Z2,1Z2,2 − α2,3Z2,1Z2,3

Ż2,2 = α1,1Z1,1Z2,2 + α1,2Z1,2Z2,2 + α1,3Z1,3Z2,2

Ż2,3 = 0

(15)

It clearly appears that the driver equations in (15) include
the original state variables1, since x1 = Z2,2, x2 = Z1,2,
with their related dynamics involving other driver variables.
By defining an augmented state that includes x1, x2, x3 :=

1It is possible to show that the set of times where xi = 0, making (11)
undefined, has zero measure, so that x1 = Z2,2 and x2 = Z1,2 do hold
everywhere, provided that we extend by continuity the functions Z2,2, Z1,2,
which are solution of the ODE (14), (15). For more details about this issue
we refer readers to [5].



Z1,3 = x2

x1
, x4 := Z2,1 = x1

x2
and x5 := Z1,1 = Z2,3 = 1, the

original ODE system (5) is now embedded in the following
extended system evolving in R5:

ẋ1 = α1,2x1x2 + α1,3x1x3 + α1,1x1x5

ẋ2 = α2,2x2x1 + α2,1x2x4 + α2,3x2x5

ẋ3 = α2,2x3x1 − α1,2x3x2 − α1,3x
2
3

+α2,1x3x4 + (α2,3 − α1,1)x3x5

ẋ4 = −α2,2x4x1 + α1,2x4x2 + α1,3x4x3

−α2,1x
2
4 + (α1,1 − α2,3)x4x5

ẋ5 = 0

(16)

or, in the more compact ‘Driver-type’ ODE form, see [5]:

ẋi =

5∑
i=1

vi,jxixj = (v′ix)xi (17)

with

v1 =
[
0 α1,2 α1,3 0 α1,1

]′
v2 =

[
α2,2 0 0 α2,1 α2,3

]′
v3 =

[
α2,2 −α1,2 −α1,3 α2,1 (α2,3 − α1,1)

]′
v4 =

[
−α2,2 α1,2 α1,3 −α2,1 (α1,1 − α2,3)

]′
v5 =

[
0 0 0 0 0

]′
. (18)

or, in terms of the original parameters,

v1 =
[
0 k1 k−1 0 −k1ET

]′
v2 =

[
−k1 0 0 k1ET −(k−1 + k2)

]′
v3 =

[
−k1 −k1 −k−1 k1ET (k1ET − k−1 − k2)

]′
v4 =

[
k1 k1 k−1 −k1ET −(k1ET − k−1 − k2)

]′
v5 =

[
0 0 0 0 0

]′
. (19)

Remark 1: It is worth noting that the inclusion of a state
variable with a trivial dynamics, x5 = 1, is required to have
a homogeneous second-order nonlinear transformation in the
right-hand-side of (17). This fact will be exploited in the
solution formula provided in the next section.

III. MAIN RESULTS

A. The solution formula

For a first order ODE system

χ̇ = f(χ), χ ∈ Rn (20)

let t 7→ χ(t) be the solution of (20) with initial condition
χ(t0), and consider the Taylor expansion of a generic scalar
component χi(·) with respect to the initial time instant t0:

χi(t) =

∞∑
k=0

ck(i)
(t− t0)k

k!
, ck(i) = χ

(k)
i (t0). (21)

Unfortunately, the series expansion cannot be straightfor-
wardly applied to compute the solution or to build up a nu-
merical integration algorithm, since it requires the derivatives
of the solution. Below is reported a Theorem (see [5] for the
proof and any details) that allows to compute the coefficients

of the Taylor expansion for a system in the ‘Driver-type’
ODE form (17).

Theorem 2: Consider a ‘Driver-type’ ODE in the form
(17). Then the coefficients ck(i), k > 0, in the Taylor
expansion (21) are given by

ck(i) =
∑

i1,...,ik∈S
vk+1
i,i1,...,ik

· xi(t0)xi1(t0) · · ·xik(t0), (22)

where is ∈ S = {1, . . . , n}, for s = 0, 1, . . . , k (we set
i0 = i), and the (constant) coefficients vk+1

i,i1,...,ik
, are given

by the following recursive equation

vk+1
i,i1,...,ik

= vki,i1,...,ik−1

k−1∑
j=0

vij ,ik

 , v1i = 1. (23)

Coefficients vi,j , i, j = 1, . . . , 5, in (23) refer to the j-th
entry of vi in (18)-(19).

We below report the explicit computation of the coeffi-
cients provided by Theorem 2 for the cases k = 1, 2, in
addition to the trivial case k = 0, provided by

c0(i) = x
(0)
i (t0) = xi(t0), ∀i ∈ S = {1, . . . , 5} (24)

For k = 1:

v2i,i1 = v1i vi,i1 = vi,i1 i, i1 ∈ S

c1(i) = x
(1)
i (t0) =

∑
i1∈S

v2i,i1 · xi(t0)xi1(t0)

=
∑
i1∈S

vi,i1 · xi(t0)xi1(t0) =
(
v′ix(t0)

)
xi(t0) i ∈ S

For k = 2:

v3i,i1,i2 = v2i,i1 (vi,i2 + vi1,i2)

= vi,i1 (vi,i2 + vi1,i2)

c2(i) = x
(2)
i (t0) =

∑
i1,i2∈S

v3i,i1,i2 · xi(t0)xi1(t0)xi2(t0)

=
∑

i1,i2∈S
vi,i1 (vi,i2 + vi1,i2) · xi(t0)xi1(t0)xi2(t0)

B. The numerical integration algorithm

A fixed step numerical integration algorithm is here pro-
vided, based on Theorem 2 results. In the following tj ,
j = 0, 1, . . . denote the time steps, with tj+1 − tj = ∆,
for any j = 0, 1, . . ., whilst x̂ki (tj) denote the estimate of
xi, i ∈ S , at step tj , according to a given order k of
the series expansion. The numerical integration algorithm
is below reported. To this end, coefficients vk+1

i,i1,...,ik
are

computed off-line, so they do not affect substantially the
computational burden.

0) tj and x̂ki (tj) are given;
1) compute coefficients ck(i) in tj from (22);
2) update the state estimate x̂ki (tj+1) in tj+1 according to

the series expansion in (21) in the neighborhood of tj ,
truncated at k-th order and computed in t = tj+1 =
tj + ∆;
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Fig. 1. Solution of system (4) via Matlab R© ODE45. Parameters are taken
from [13]. Note that the product concentration p (purple dashed line) is
negative throughout the whole simulation time.

Remark 3: For k = 1, it readily comes that the pro-
posed numerical integration algorithm coincides with the
Euler algorithm. This fact is actually true for any nonlinear
system (not only for the enzymatic reaction scheme here
investigated).

IV. SIMULATION RESULTS

Numerical simulations of the system (4) have been per-
formed in the Matlab R© suite. In the first set of simulations,
we consider the parameters taken from [13]:

k1 = 4 · 106M−1s−1, k−1 = 25s−1, k2 = 15s−1,
(25)

with total amounts (3)

ST =
k−1 + k2

k1
, ET = 10−3 · ST . (26)

We start from initial conditions

s(0) = 0.75ST , c(0) = 0.25ET . (27)

Fig. 1 shows the numerical solution obtained by means
of the standard ODE45 Matlab R© solver, based on the
Dormand-Prince Runge-Kutta method [14]. It is readily seen
from the plot of concentrations that, because of the stiffness
of the ODE system (4), the method fails since the product
level is negative during the whole time horizon.

Another off-the-shelf method is the ODE15s Matlab R©
variable-order solver for stiff differential equations [15],
which provides meaningful results (see Fig. 2) for the same
parameter set. Alternatively, a solution can be produced by
means of the method described in this paper. We choose
the truncation order k = 3 in the series expansion (21) and
the sampling time ∆ = 0.035s in the algorithm provided in
Section III.B. The solution in Fig. 3 looks indistinguishable
from the ODE15s solution. For the same time step ∆, the
solutions for k = 1 (Euler method) and k = 2 are unstable
(the concentrations diverge).
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Fig. 2. Solution of system (4) via Matlab R© ODE15s. Parameters are taken
from [13].
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Fig. 3. Solution of system (4) via the truncated time series expansion
described in this paper. Parameters are taken from [13]. The truncation
order has been set to k = 3.

In the second set of simulations, we increase k1 to the
value k1 = 4 ·107M−1s−1. This fact worsens the stiffness of
the ODE. While, quite predictably, the Matlab ODE45 solver
confirms the issues described above for the first simulation, it
is quite surprising that also the stiff solver ODE15s exhibits
an inconsistent behavior, with the substrate concentration
getting negative (see Fig. 4). Instead, the solution by means
of the time series method, truncated at order k = 2 and with
∆ = 0.005s, still provides a meaningful solution (in Fig. 5).

Finally, we further increase k1 to the value k1 =
108M−1s−1. In this case ODE45 simulations with default
settings are aborted by Matlab for not being able to meet
integration tolerances. The ODE15s stiff solver still exhibits
an inconsistent behavior with a substrate trajectory crossing
zero, as shown in Fig. 6. Instead, a simulation with our
method for k = 2 and ∆ = 0.0025s provides consistent
results (see Fig. 7).

Summarizing the results illustrated above, preliminary
simulations seem to show that the time series method can
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Fig. 4. Solution of system (4) via Matlab R© ODE15s, with parameters taken
from [13] except for k1, which is increased to the value 4 · 107M−1s−1.
Note that the substrate concentration s (cyan dotted line) becomes negative,
thus meaningless.
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Fig. 5. Solution of system (4) via the truncated time series expansion
described in this paper, with parameters taken from [13] except for k1,
which is increased to the value 4 · 107M−1s−1. The truncation order has
been set to k = 2.

be useful to provide meaningful integration of systems for
which standard numerical methods may fail. This is obtained
with a limited computational burden for low truncation
orders, since our simulations lasted very few seconds. It is
worth noting that the parameter setting has been taken from
the experimental literature [13], thus motivating the use of
the proposed methodology in real frameworks.

V. CONCLUSIONS

In this work, we proposed a novel solution to the problem
of approximating the solution of well-known enzymatic reac-
tion systems exhibiting an apparent double time-scale sepa-
ration. While such a kind of systems poses some integrability
issues by means of classical numerical solvers, the illustrated
scheme is based on a time-series-expansion approach, where
the exact solution formula needs to be truncated for practical
computability. Although the complexity of the approach
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Fig. 6. Solution of system (4) via Matlab R© ODE15s, with parameters taken
from [13] except for k1, which is increased to the value 108M−1s−1. Note
that the substrate concentration s (cyan dotted line) becomes negative, thus
meaningless.
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Fig. 7. Solution of system (4) via the truncated time series expansion
described in this paper, with parameters taken from [13] except for k1,
which is increased to the value 108M−1s−1. The truncation order has been
set to k = 2.

grows exponentially with the chosen truncation order, it
is shown by preliminary simulations that a relatively low
order offers a compromise between accuracy and efficiency.
Since some problems can be hardly solvable with low-order
truncation methods, future work will be devoted to problem-
dependent adaptations of the general procedure given in this
work, in order to overcome the curse of dimensionality.
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