UNIQUE CONTINUATION AND CLASSIFICATION OF BLOW-UP PROFILES
FOR ELLIPTIC SYSTEMS WITH NEUMANN BOUNDARY COUPLING AND
APPLICATIONS TO HIGHER ORDER FRACTIONAL EQUATIONS

VERONICA FELLI AND ALBERTO FERRERO

ABSTRACT. In this paper we develop a monotonicity formula for elliptic systems with Neumann
boundary coupling, proving unique continuation and classification of blow-up profiles. As an
application, we obtain strong unique continuation for some fourth order equations and higher
order fractional problems.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The present paper is devoted to the study of unique continuation from a boundary point and
classification of blow-up profiles for elliptic systems with Neumann boundary coupling. Systems
of such a kind arise from higher order extensions of the fractional Laplacian, as first observed in
[25], where the well known Caffarelli-Silvestre extension procedure characterizing the fractional
Laplacian as the Dirichlet-to-Neumann map in one extra spatial dimension was generalized to
higher powers of the Laplacian. More precisely in [25] (see also [7]) it is proved that, if s € (1,2)
and u € H*(RY), then

(AU)

1 —A)*u = K, lim t*—=—""=
@) (FA)Tu =K lim 5

where b = 3 — 2s, K is a constant depending only on s, AU = AU + %% and U is the unique

solution to the problem

AU =0, in RY* = RN x (0, +00),
U(z,0) = u(z), inRY,
88 =0, in RV,

where % = — limy_, o+ tb%—[tj denotes the conormal exterior derivative.
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Setting V' = AU and taking into account , the above fourth order problem can be rewritten
as the system

AU =V, in RY ™!,
AV =0, in R+
U(z,0) = u(z), in RV,
% =0, in RV,
—KS% = (=A)*u, in RN,

For further references on higher order fractional powers of the Laplacian see [0 [8, [9].
In [25] an Almgren’s frequency formula in the spirit of [3] is derived for solutions to the higher
order system

AU =V, in RYTY
AV =0, inRYTY
(2) .
% =0, inRY,
v =0, inRN,
obtained by extending s-harmonic functions; in the spirit of Garofalo and Lin [I6], such mono-
tonicity formula allows proving a unique continuation property for solutions to system . In [25]
a strong unique continuation property is also stated for s-harmonic functions.
The main goal of the present paper is to extend, in the case s = %, the monotonicity formula
developed in [25] for the homogeneous case to systems with a Neumann boundary coupling of
the type

AU =V, in Rf“,
AV =0, in RY 1,
3 ,
®) % =o, in RV,

9 +2a(z) TrU =0, inRY,
which arise naturally as extension of fractional equations of the form
(=AY 2y = a(z)u

once we put TrU(z) := U(z,0) in for any € RY. Indeed, by [15, Proof of Lemma 3.2, Step
6] we deduce that the constant Cj defined there equals V2 when b =0 and, since it can be shown
that K, = C;z with b = 3 — 2s, we deduce that K35 = %

For a closer look at the operator (—A)3/2 and its geometric interpretation see [9].

We point out that the proof of a monotonicity formula in the case of a fractional equation of
the type

(4) (~A)'u = a(z)u

with s € (1,2) is not straightforward. A first contribution in this direction was given in [15] for
equation with a = 0 and s € (1,2). The present paper represents a first step in the study of

with a nonzero potential a; the difficulties due to the singularity/degeneracy of the operator Ay,
b =3 — 2s, allow us to treat for the moment just the case s = % in which b = 0 and the extension
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operator A;, reduces to the standard Laplacian. The general case with a # 0 and s # % presents
additional technical difficulties and this is the object of current investigation.

In the proofs of our main results we exploit the validity of an Almgren’s type monotonicity
formula applied to a suitable frequency function A associated to problem . The precise definition
of N can be found in ([40).

The classical approach developed by Garofalo and Lin [I6] to prove unique continuation through
Almgren’s monotonicity formula is based on the validity of doubling type conditions, obtained as
a consequence of boundedness of the quotient N. We refer to [1, 2, 12} 14, 17, 23] [24] for unique
continuation from the boundary established via Almgren monotonicity formula.

While in the local case doubling conditions are enough to establish unique continuation, in the
fractional case they provide unique continuation only for the extended local problem and not for
the fractional one. Such difficulty was overcome in [II] for the fractional Laplacian (—A)® with
s € (0,1), by a fine blow-up analysis and a precise classification of the possible blow-up limit
profiles in terms of a Neumann eigenvalue problem on the half-sphere.

The problem of unique continuation for fractional laplacians with power s € (0,1) was also
studied in [I8] in presence of rough potentials using Carleman estimates and in [26] for fractional
operators with variable coefficients using an Almgren type monotonicity formula. As far as higher
fractional powers of the laplacian, the main contribution to the problem of unique continuation is
due to Seo in papers [20} 211, 22], through Carleman inequalities; in particular papers [20, 21, 22]
consider fractional Schrodinger operators with potentials in Morrey spaces and prove a weak unique
continuation result, i.e. vanishing of solutions which are zero on an open set; we recall that the
strong unique continuation property instead requires the weaker assumption of infinite vanishing
order at some point.

We observe that the presence of a coupling Neumann term in system produces substancial
additional difficulties with respect to the extension problem corresponding to the lower order
fractional case s € (0,1) and consisting in a single equation associated with a Neumann boundary
condition. In particular the proof of a monotonicity formula for is made quite delicate by the
appearance in the derivative of the frequency N of a term of the type

(5) —r/ auvdS’+2/ aux - Vyvde,
oB!, B

see Lemma [2.11] Throughout the paper we use the notation

(6) B, ={zcR"" 2| <r}, B} ={(x,t)€B,:t>0},
B, ={z cRY :|z| <7} =B, N (RN x {(z,0) : z € RV}),
St ={(z,t) € 9B, : t > 0}.

While in the lower order case we have only one component v = v so that an integration by parts
allows rewriting the above sum as an integral over B, in the case of two components u, v this is no
more possible and an estimate of the integral over “the boundary of the boundary” [, s QU ds’
is required. The method developed here to overcome this difficulty is based on estimates in terms
of boundary integrals (see Lemma and represents one of the main technical novelty of the
present paper in the context of monotonicity formulas; we think that this procedure could have
future applications in the extension of some of the results of [I1] to rough potentials, since it could
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avoid the integration by parts needed to write the above sum as an integral over B.., which requires
differentiability of the potential h.
Let N > 2, R> 0, and (U, V) € HY(B},) x H'(B};) be a weak solution to the system

AU =V, in BE,

AV =0, in B},
(7) ou i

— 3 !
5 =0, in Bj,
ov. __ : /
5, = hu, in Bp,

where u = TrU (trace of U on B%) and h € C'(B%). We also denote v = TrV (trace of V on
B%). By a weak solution to the system we mean a couple (U, V) € HY(B},) x H'(B}) such
that, for every ¢ € Hl(Bg) having zero trace on SE,

{foE VU(z) Ve(z)dz = — fB; V(2)e(z)dz,
fB; VV(z) Vo(z)dz = fB;% h(z)u(z) Tr p(x) dz,

where Tr ¢ is the trace of ¢ on Bj,.

Our first result is an asymptotic expansion of nontrivial solutions to ; more precisely we
prove that blow-up profiles can be described as combinations of spherical harmonics symmetric
with respect to the equator ¢t = 0.

Let —Agn~ denote the Laplace Beltrami operator on the N-dimensional unit sphere SV. It is
well known that the eigenvalues of —Agn~ are given by

A=(N—-140¢ (=0,1,2,....

For every ¢ € N, it is easy to verify that there exists a spherical harmonic on SV of degree ¢ which
is symmetric with respect to the equator t = (ﬂ Therefore the eigenvalues of the problem

® —Agntp = A, inSY,
8
Vst -e=0, on 881,
with
SN = {(61,0,...,0n+1) €SN :On11 >0}, e=(0,0,...,0,1),

are given by the sequence {\; : £ = 0,1,2,...}; for every ¢, A\, has finite multiplicity M, as an
eigenvalue of (8). For every ¢ > 0, let {Y; ., }m=1,2,.. 0, be a L%S{X)-orthonormal basis of the
eigenspace of (8) associated to A\¢ with Y7, being spherical harmonics of degree /.

We note that, if W is an eigenfunction of , then ¥ # 0 on 6Sf = SV~ indeed, by unique
continuation, ¥ and Vgn ¥ - e can not both vanish on SY. In particular Yy, # 0 on 0S¥ = SN~!
forall e Nand 1 <m < M,.

Theorem 1.1. Let N > 2 and let (U, V) € H'(B},) x H'(B};) be a weak solution to (7)) such that
(U, V) #(0,0). Then there exists £ € N such that

A UN2) = U(z), AV (A2) = V(z), strongly in H*(B;)
It is enough to take a homogeneous harmonic polynomial P = P(z1,x2,...,zx) in N variables of degree £ and

consider the homogeneous harmonic polynomial in N + 1 variables P/(z1,z2,...,2N,2N+1) = P(z1,22,...,ZN),
whose restriction to SV satisfies the required properties.
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as A — 0T, where
=Y amYem()s V) =12 Y b Yom (),
o] 2l o] 2

» R-N-20+1 (R Vs
©)  am=R U(RO)Ypm(0)dS — [ V(t0)Yym(0)dS | dt
: o : N+20-1), sy ’

R t—[—‘rl
- V(t0)Yem(0)dS | dt,
+/0 20+ N —1 /Sﬁ (£0)Yem(6)

(1) o), =R /S V(R 6)Yim(8) dS

v
R—N—2t41 /R N+40—1 (/ / ’ / /
- t - h(t0 UtG,OYLm(‘),OdS)dt
Niail [ U0, 0)Y:(6,0)
+/Rte / h(t0")U(t0',0)Ye,m (0',0)dS" | dt
o 204N —1 \Jsvos R em AT
and
M,
> ((@em)® + (af,,)?) # 0.
m=1

A first remarkable consequence of Theorem is the validity of a strong unique continuation
property (from the boundary point 0) for solutions to @

Theorem 1.2. Let N > 2 and let (U,V) € H'(B};,) x H'(B}) be a weak solution to (7). If
(11) Uiz)=o(|z]") as|z| =0 foralln eN
thenUszOmBE.

We observe that in the case of a single equation a blow-up result as the one stated in Theorem
[L.1] directly yields the strong unique continuation: indeed, if the solution has a precise vanishing
order it cannot vanish of any order. On the other hand, in the case of a system of type (7)), the
blow-up Theorem |1.1| ensures that the couple of the limit profiles (U V) is not trivial, i.e. at
least one of the two components U,V has a precise vanishing order; hence some further analysis is
needed to deduce strong unique continuation from Theorem

When N > 3, system is related to fourth order elliptic equations arising in Caffarelli-Silvestre
type extensions for higher order fractional laplacians in the spirit of [25]. Let us define D as the
completion of

(12) T = {U e Co®NT) U —(in RN}

1/2
1Ullp = </ |AU(1:,t)|2dxdt> .
R+

By [15] there exists a well defined continuous trace map

Tr: D — D¥2(RY),

with respect to the norm
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where for any s > 0 the space D*(RY) is defined as the completion of C>°(R") with respect to
the scalar product

(13) () 1= | €T de
In 4 denotes the Fourier transform of « in RY:
N 1

u§) = L /RN e ¥%y(z) dx .

Moreover in we denoted by 7(€) the complex conjugate of (€).

We observe that, since u and v are real functions, is really a scalar product although their
respective Fourier transforms are complex functions.

As a corollary of Theorem we derive sharp asymptotic estimates and a strong unique con-
tinuation principle for weak D-solutions to the fourth order elliptic problem

AU =0, in RY*H,
(14) U =, in RV,
a(aAUU) =hTrU, inQ.

By a weak D-solution to we mean some U € D such that

/ AU (z,t)Ap(x,t) dedt = —/ h(z) TrU(z) Tr o(x) dz
RY*! Q

for all ¢ € D such that supp(Tr¢) C Q.

Theorem 1.3. Suppose that N > 3.

(i) Let U € D, U # 0, be a nontrivial weak solution to for some h € C1(Q), with Q being
an open bounded set in RN such that 0 € Q. Then there exists £ € N such that

Mg ME
ORI DTS O () IR CO BRI DR oM (=)
m=1 m=1

strongly in H(B"), where Z%ﬁ‘:l((az,m)2+(a27m)2) # 0 and ay,m, oy, are given in (©)—(To)
with V = AU.
(ii) If U € D is a weak solution to such that

U(z) =o(|z]") as|z| =0 for alln € N,
then U =0 in BE.

As mentioned above, a motivation for the study of higher order equations of type and
consequently of systems @ comes from the interest in higher order fractional laplacians and their
characterization as a Dirichlet-to-Neumann map in the spirit of [5].

Let us consider the fractional laplacian (—A)3/2 defined as

—

(—A)2u(€) = ¢*a(¢) .
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If u € D3/2(RN) then (—A)?/%u may be interpreted as a distribution which acts on test functions
as follows:

(8700 = [ FHOFE . tor any o € CZRY).

Theorem 1.4. For N >3, let Q CRY be open, a € C1(), and u € D¥?(RN) be a weak solution
to the problem

(15) (=N 2u=au, inQ,
i.€.
(u, o) ps/2mny = / aupdxr for all p € C(0).
Let us also assume that !
(16) (—A)2u € (DV2RM))",
where (DY2(RN))* is the topological dual space of DY/?(RN).
(i) If u vanishes at some point xo € Q0 of infinite order, i.e. if
(17) u(z) = o|x — xo|™) as x — xy for everyn € N,

then uw =0 in Q.
(ii) If u vanishes on a set E C Q) of positive Lebesgue measure, then u =0 in (.

Remark 1.5. We observe that assumption is satisfied in each of the following cases:
(i) ue D?(RY);
(ii) u € D32(RN) solves (T5) with Q = RN and a € LN/?(RN)NC(RY); in this case the validity
of follows by (15)) because of Sobolev embeddings.

The proof of Theorem is based on Theorem and the generalization of the Caffarelli-
Silvestre extension to higher order fractional laplacians given in [25], see also [15]. Indeed, according
to [25], we have that if u solves (I5), then u is the trace on RY x {0} of some U € D solving
with h = —2a.

We observe that the unique continuation result stated in Theorem does not overlap with
the results in [20, 2] 22]. Indeed, from one hand [20, 21, 22] consider more general potentials;
on the other hand we obtain here a strong unique continuation and a unique continuation from
sets of positive measure, which are stronger results than the weak unique continuation obtained in
[20 211 [22]. We also observe that we assume that equation is satisfied only on the set 2 and
not in the whole R¥.

The paper is organized as follows. In section 2] we develop the monotonicity argument, proving
in particular the existence of a finite limit for the frequency function N' = N(r) as r — 07. In
section 3] we carry out a careful blow-up analysis for scaled solutions, which allows proving Theorem
and, as a consequence, Theorem (1.2 Finally section 4] is devoted to applications of Theorem
to fourth order problems and higher order fractional problems , with the proofs of
Theorems [[.3] and [[4l

List of notations.
e For the definitions of B,, B, Bl and S, see (6).
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z=(z,t) € RYT with 2 € RN and ¢ > 0.

o dz = dz,dt: element of volume in RNV *1.
e 5, or U, in R™: exterior normal derivative of a function U defined in Ry™", i.e.

S0 =550 foramyrcRY.

e D: completion of the space of smooth functions U € C¢° (Rf“) with U, = 0 in R, with
1
respect to the norm ||U||p := (fRN+1 |AU(z)|2dz) ‘)
+
e #: Fourier transform of a function defined in RY | i.e. u(¢) := W S~ € u(z) da.

e D*(RY): completion of the space C2°(RY) with respect to the norm

Jullcany o= ( [ lePlaterPae)

e Fractional Laplacian (—A)2: it is defined implicitly by (—A)2u(€) := |¢2(E). If u €
D3/2(RN) then (—A)*/2u is the distribution defined by ((—A)%/?u, @) := [o¥EPTU(E)P(E) dé
for any ¢ € C°(RY).

e TrU: it is the trace operator which maps any function U defined over Rf“ into the
function x + U(z,0) defined for any z € RV.

2. THE MONOTONICITY ARGUMENT

Suppose that N > 2. For all r € (0, R) we define the functions

(18) D(r) =N+l l/ N (IVUP +|VVPP+UV)dz — h(z)u(z)v(x) dx]
B B!,
and
(19) H(r) = T*N/ (U2 +V?)dS.
st

We define the space D?(RY ) as the completion of the space C2°(RY ') with respect to the
norm

1/2
N+1
HU||D1,2(R£+1) = (/RN+1 |VU|2dz> for any U € C°(RYH) .
+

From [4], we have that there exists a constant K > 0 such that

(20) K| Tx UHD%(RN) < HU”DL?(Rf“) for any U € DV2(RYT).

Here we are denoting as Tr the trace operator Tr : D12 (Rf“) — D2 (RY). We recall that, for all

v < % the following Sobolev embedding holds: there exists a positive constant S(N,~) depending
only on N and + such that

(21) SN ullFzx vy vy < Nl ey for any u € CZ(RY)
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where 2*(N,v) = 2N/(N — 2v). Moreover the following Hardy type inequality due to Herbst [10]
holds: there exists A > 0

@2(95) 2 1/2/mN
(22) A dz < [[@l|p1/zny, forall o € DVE(RY).
Ry |7

Combining and (| we obtain that

(23) S(N, )K2 ||TrU||2 5 ) <|UIZ, ®Y) for any U € DV2(RY ).
Similarly, combining with (| ., we infer

TrU|?
(24) AK? /RN | ] | <|[UZ,, 2(RY ) for any U € DV2(RYT).

We recall the following lemmas from [II], which provide Sobolev and Hardy type trace inequalities
with boundary terms in N 4+ 1-dimensional half-balls.

Lemma 2.1 ([I1] Lemma 2.6). Let N > 2. For anyr > 0 and any U € H'(B,") we have

N
where w="TrU and S is a positive constant depending only on N.

N -1
/ \VUPdz + ——— | U?dS
2 S+

Lemma 2.2 ([II] Lemma 2.5). Let N > 2. For anyr >0 and any U € H'(B,") we have that

~ 2 _
A/ ”idxg/ |VU|2dz+E/ U2ds
B!, || B 2r S;

where u =TrU and A is a positive constant depending only on N.
The following Poincaré type inequality on half-balls will be useful in the sequel.

Lemma 2.3. Let N > 2. For everyr >0 and W € HY(B,") we have that
N 1
- W(2)dz < - W?2(z)dS —|—/ VW (2)]? dz.
= JBf T Jsit B
Proof. From the Divergence Theorem we have that
(N +1) W2(2)dz = / (div(W?z) —2WVW - 2) dz
B} B

=7 WQ(Z)deQ/ WYVW - zdz
st Bf

<r W?2(2)dS + W2(2)dz + 7“2/ VW[ dz
st Bt Bt

thus yielding the stated inequality. O

The following lemma contains a Pohozaev type identity for solutions to system @
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Lemma 2.4. Let N > 2 and let (U,V) € H(B};) x H'(B},) be a weak solution to (7). Then for
a.e. v € (0, R)

(25) /B+ (IVUP 4+ |VV[P+UV) dz = /S+ <8UU + Wv) ds + /B h(z)u(z)v(z) dx

ov ov .
and
N-1 2 2 r 2 2
26) ——— [ (VUP+|VV]})dz+ | V(z-VU)dz+= [ (VU +|VV[?)dS
2 B B 2 Jsy
oUu? oV |?
= /B;_ h(z)u(z)(x - Vo) d:v—i—r/sr+ ( M + ¥ ) as

where u(x) := U(z,0) and v(z) = V(z,0).

Proof. Identity follows by testing the equation for U with U and the equation for V with V'
and by integrating by parts over B;'.

To prove we first observe that U,V € H?(B,") for all r € (0, R). Indeed, since %—g =0 on
B, the function

[7( t) U(ﬁ,t), if ¢t > 0,
X prd
’ Uz, —t), ift<0,

satisfies the equation AU = V, where V(z,t) = V(z,t) if t > 0 and V(z,t) = V(z,—t) if t < 0.
Since V € L%(Bg), by classical elliptic regularity we have that U € H2(B,.) and hence U € H2(B;)
for all » € (0, R). By the Gagliardo Trace Theorem we have that u = TrU € H'/2(B.) for all
r € (0,R) . Since h € C'(BY};) we have that hu € H'/2(B.) for all r € (0, R). Therefore, for all
r € (0, R), V satisfies

AV =0, in B,
9V ¢ HY*(BL).

From elliptic regularity under Neumann boundary conditions (see in particular [19, Theorem 8.13])
we conclude that V € H?(B;") for all r € (0, R).

Since, for every r € (0,R), U,V € H?(B;), we can test the equation for U with VU - z (which
belongs to H!(B,")) and the equation for V with VV -z (which belongs to H'(B;)), thus obtaining

26). 0

Lemma 2.5. Let N > 2 and let (U, V) € HY(B}) x H(B},) be a weak solution to such that
(U, V) # (0,0) (i.e. U and V are not both identically null). Let D = D(r) and H = H(r) be
the functions defined in and ([19). Then there exists ro € (0, R) such that H(r) > 0 for any
r € (0,79).

Proof. Suppose by contradiction that for any rg > 0 there exists r € (0,79) such that H(r) = 0.
Then there exists a sequence 7, — 07 such that H(r,) =0, i.e. U=V =0on S} . From it
follows that

(27) /B+ (VU + |[VV> +UV) dz :/B h(x)u(z)v(z) dx.

r v
n Tn
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From , Lemma and Lemma it follows that

7'2 v[72 V‘IQ v[72 V‘fQ Uv
(1 2N> /B+ (| | | | )dz\/+ (| | | | )dz

n BTn

= /B h(z)u(z)v(z)dz < constry, (/B rzd:v +/B r};'dx>

< constrn/ (IVU]? + |VV?) de.
Bt

T™n

’
Tn

Since r,, — 0T as n — 400, the above inequality implies that [+ (|[VU[*+ |VV]|?)dz =0 for n
sufficiently large. Hence, in view of Lemma U=V=0in B;’; . Classical unique continuation
principles then imply that U =V =0 in BE giving rise to a contradiction. g

Lemma 2.6. Let N > 2. Letting (U,V) € H'(B}) x HY(B}) be as in Lemma and D, H as
mn 7, there holds

(28) D(r) zr'=N </ L (VU +[VVE) dz> (14 0(r)) — H(r)O(r),
B}

(20) D(r) > Nr—1-¥ (/B+ v+ v2)dz> (1+0(r) - H(rO(D),

asr — 07,

Proof. From Lemma [2.3] we have that

(30) / (U* +V?)dz < THNH(T) + ’“2/ (IVU? + |VV?) d=.
B N N Jpr
From it follows that
1+N 7“2
(31) /Bj UV dz| < 55 H(r)—i—ﬁ - (IVUP + |VV?) dz

whereas Lemma [2.2] implies that, for all € (0,r),

r u? + v?
/ huv dx| < ||h||Loo(B;0)§/ ——dr
B!, B!,

(32) 2]

r N -1
< ||h||L°°(B;,O)ﬁ </B+ (|VU|2 + |VV|2) dZ) + ||h||L°<>(B;,O) Py rNH(r).

From and it follows that

2
1-N 2 2 T r
D(r) = (/BT+(|VU| +|VV| )dz) (1 3N IIhILoo<B;O>2K>

T N-—-1
—rH(r) (2]\7 + ||h||L°°(B;O)47\) :

The proof of is thereby complete. Estimate follows by combination of and (30). O
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Remark 2.7. We observe that estimates and can be rewritten as

(33) / (IVUP? + |VV?) dz < D(r)rN "Y1+ O(r)) + H(r)O(r),
B

(34) /Br+ (U2 + Vz)dz < %TN-HD(T)(l +0(r) + H(T)O(TN—H),

asr — 0.

Lemma 2.8. Let N > 2. We have that H € W21 (0, R) and

(35) H'(r) = 21"7N/ (U%—g + V%—‘If) dS, in a distributional sense and for a.e. v € (0, R),
+

r

2
(36) H'(r)= ;D(r), for every r € (0, R).
Proof. See the proof of [I1, Lemma 3.8]. O
Lemma 2.9. Let N > 2. The function D defined in belongs to W (0, R) and

loc
Loy 2 oul® |ov|? 1

ov
_ 2 VVU-zdszfl/ UV dz
B

v g+ rN
N -1 1
+—% / huv — —— / huvdS' +2— [ hu(z-V,v)de
r B!, r B!, B!

in a distributional sense and for a.e. v € (0, R).

Proof. For any r € (0, R) let

(38) I(r) = /+ (IVUP 4+ |VV[?+UV) dz — / h(z)u(z)v(x) dx.

B B!,
From the fact that U,V € H'(B};) and Lemma [2.2]it follows that I € W''(0, R) and
(39) I'(r) = / (VU + WV +0V) dS— [ h(@)u()o(z)dS’

S;t B!,

for a.e. r € (0, R) and in the distributional sense. Therefore D € W’1(07 R) and, replacing 7
O

(38), and into D'(r) = r~N[—(N — 1)I(r) + rI'(r)], we obtain .
In view of Lemma [2.5] the function

D(r)

H(r)

is well defined. As a consequence of estimate we obtain the following corollary.

Corollary 2.10. Let N > 2 and let (U, V) € HY(B}) x H'(B},) be as in Lemma and let

D,H,N be defined in , , and respectively. For every € > 0 there exists r. > 0 such
that

(40) N:(0,r0) =R, N(r)=

NT)+e>0 foralld<r<re,
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i.€.

(41) lminf M(r) >0

r—0t
Lemma 2.11. Let N > 2. The function N defined in ([40]) belongs to T/V1 (0 ro) and
(42) N'(r) =vi(r) + 1a(r)

in a distributional sense and for a.e. r € (0,79), where

o[ (Js (181" 1851%) 45) - (4 (0 v2)5) - (Jsr (U2 + V) as) |

vi(r) =
(Js: @2 +v2) ds)
and
rfS+UVdS 2fB+VVU zdz — (N —1) fB+Ude
(43) Vv (7‘) - D) D)
Jsr (U2 +V2)dS
+ N-1) fB, huvdz—rfaB, huvdS’—FQfB/ huz - Vyvdz
Jor (U2 +V2)dS
Proof. Tt follows directly from the definition of N and Lemmas [2.8] and 2.9} O

We now estimate the term v in (43). This is the most delicate point in the development of the
monotonicity argument for system ([7)), due to the presence of the integral over “the boundary of
the boundary” fBB’ huv dS’ in the term vs.

Lemma 2.12. Let N > 2 and let vo be as in . Then

va(r) =0 (1 +N(r)+r rff(;()r)> asr— 07,

where

(44) B(r) = /S+(|VU|2 +|VV[?)dS

Proof. We observe that

(45) =0(r) asr—0".

fs:f(UQ +V2)dSs
From and we have that

‘fB+VVU-zdz’ ) i i i
- <
6) Jor (U2 +V2)dS = 2rNH(r) (/Brv et /Br V] dz)

N+1
S 2N

——N()r(1+0(r)+ O(r) K N(r)r(1+ O(r)) + O(r)
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and

Jpz UV ]
o (U7 1 V7)ds <

(47) N( (14 O(r)) + O(r)

as r — 07. From and we have that

Jp, huv dl" 17l Lo, )
Jo+ U2+ V2)dS < oA N(r)(1+0(r)) +0(1) = N(r)O(1) + O(1)

(48)

asr — 0T,
Integration by parts yields

/ hux-vadx:r/ huvdS’—/ v(Nhu+uVh -z + hz - Vyu) d
7 8BI !’

d

so that
(49) —r/ huvdS'+2/ huz - Vyvde
6BI ’
:/ hux~vad:177/ hvx~V$udx—/ w(Nh+xz - Vh)dz.
’ B/ ’

From Lemma and we have that

‘fB, wo(Nh + - V) da:‘ INh + 2 - Vahl 1o (51
T <

(50) T S RN ) (1 +0(r) + 0(1)
s
— N(rO(1) +0(1)
asr — 0.

On the other hand, by the Divergence Theorem we have that

(51) / huz-vadxz—/ hu(x - Vyv)eysr - vde

= _/+ h(z)U(z,t) (z-VV)eny1 - vdS — . % [h(z)U(z,t) (z-VV)] dz
St By

— [ h@)U@ ) (2 VV)ensr - vdS — / h(@)U, (= - VV) d=
S B

—/ h@)U (Vi + 2 VV;) dz

/ h(z)U(z,t) (z-VV)enyr -vdS — / h(z)Us (z-VV)dz

—r/ h(x)UthS—&-/
sk B

r

(Nh(m)—i—Vh-x)Uthz—i—/+th(VU~z)dz
By
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Hence, taking into account Lemma [2.3

/ huz - Vv dx| < const <m/7‘NH(r)B(r) + r/ (IVU? + |VV]?) dz+/ (U2 +V?) dS)
B!, B St

for some const >0 independent of r. In a similar way we obtain that

/ hvzx - Vyudz| < const <r\/rNH(r)B(r)+r/ (IVU* + |VV|2)dz+/ (U2+V2)dS).
B, B St

As a consequence, in view of we conclude that

(52)

’77”]83' huvdS’+2fB, huz~vadx‘ B(r)
53 - L < o1 (0] o1
asr — 0T,
Inserting — into the proof of the lemma follows. O

Inspired by [14, Lemma 5.9], in the following lemma we estimate B in terms of the derivative
D'

Lemma 2.13. Let N > 2 and let B be defined in . Then there exist C1,Co,7 > 0 such that
B(r) <2r¥7ID'(r) + C17rN"2(D(r) + CoH(r)) and D(r)+ CoH(r) >0 for all r € (0,7).
Proof. From the definition of D (see (|18))) we have that

(54) D'(r)=r"NB(r)— (N -1)r'D(r) + rHV/

st

Uvds — rHV/ huv dS'.
oB!.

From it follows that

1 1 1
/ huvdS’:f/ hu:z:~V:cvdx+f/ hvx~V$udx+f/ w(Nh+x - Vh)dz.
dB!, rJB:. T JB, T JB,

By and we deduce that, for every € > 0, there exists C. > 0 such that

1/ hux - Vyvdr
" JB

< eB(r) + CrV H(r) + 0(1) / (VUP + [VV]?) d= + O (L) H(r)

B

<eB(r)+ 0N H(r) + O()rN7ID(r) asr — 0T,
An analogous estimate holds for the term % f g hwzx - Vyudz, whereas implies that

1
- / wo(Nh +x-Vh)de = O1)rN T H(r) + O(1)rN'D(r) asr — 0.
B

Therefore we conclude that

(55) / huv dS'’
o8B!,

<2eB(r) +O)rNTH(r) + O0(1)rNTID(r) asr — 0.
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From Corollary and , choosing € = i, we deduce that, for some constants Cq,Cs > 0
independent of r, D(r) + CoH(r) > 0 and

1
D'(r) = irlfNB(r) - %T*I(D(T) + CoH(r)) for all r sufficiently small.
The proof is thereby complete. O
Lemma 2.14. Let N > 2 and let N : (0,79) — R be defined in . Then
(56) N(r)=0() asr—07.
Furthermore the limit
il )
exists, is finite and
v 2 0.

Proof. Let us consider the set
S ={re(0,r):D'(r)H(r) < H'(r)D(r)}

(which is well-defined up to a zero measure set).

If there exists r € (0, ro] such that |(0,7) N3]y = 0 (where |- |; stands for the Lebesgue measure
in R) we have that N > 0 a.e. in (0,7) and hence N is non-decreasing in (0,7) and admits a limit
as r — 0% which is necessarily finite and non-negative due to .

Let us now assume that, for all r € (0,7¢], [(0,7) NX]; > 0. In view of Lemma and we
have that, a.e. in (0,79) N %,

H'(r)D
(57) B(r) < 2rN_1g)()(r) + C1rN=2(D(r) + CoH(r))
T
D?(r) N-2
(D H(r)).
T+ O D) + Ca(r)

Schwarz inequality implies that the function v; appearing in Lemma [2.11] is non-negative, hence

, Lemma and imply that
N'(r) 2 0(1) (14N () + VANZ(r) + (N () + C) )

= 4N 72

as 7 — 07, r € ¥. Hence there exist C,7 > 0 such that
N'(r) > -C(1+N(r)) forae re(0,7)NX.

Since the above inequality is obviously true in (0,7)\ X (provided 7 is sufficiently small), we deduce
that

(58) N'(r) > —-C(1+N(r)) forae. re(0,7).
Integrating the above inequality in (r,7)
N@) +1< ST N(F) +1) for all r € (0,7).
The above estimate together with Corollary yield . Furthermore implies that

(eér(l +/\/'(7")))/ >0 a.e. in (0,7),

we obtain that
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hence the function r — eé’”(l + N(r)) admits a limit as 7 — 0". Therefore also the limit
v := lim,_,o+ N (r) exists; furthermore ~ is finite in view of and v > 0 in view of . g

A first consequence of the previous monotonicity argument is the following estimate of the
function H.

Lemma 2.15. Let N > 2. Letting v be as in Lemma|2.14], we have that

(59) H(r)=0(*) asr—0".

Furthermore, for any o > 0 there exist K(o) > 0 depending on o such that

(60) H(r) = K(a)r*™  for all r € (0,7).

Proof. See the proof of [11, Lemma 3.16]. O

3. BLOW-UP ANALYSIS
Lemma 3.1. Let N > 2 and let (U,V) € HY(B},) x HY(B},) be a weak solution to (7)) such that
(U, V) #(0,0), let N be defined in ([40), and let v := lim, o+ N'(r) be as in Lemma[2.1] Then

(i) there exists £ € N such that v =¢;
(i) for every sequence N, — 07, there exist a subsequence {\,, }ren and 2M; real constants

Beans By m=1,2,..., My, such that S0 ((Beym)? + (B))?) = 1 and
M M
UM, 2) e z V(Ane2) = z
— — |Z ﬁf,m}/@,m T 0 ) — — |z B mn,m T E
Tow) m; (\zl) "o mE::l - <Iz|)

weakly in H*(B}") and strongly in H*(B;") for allr € (0,1). See Sectionfor the definition
of My and Yy p, .

Proof. Let us define

_U(Xz) = V(Az)
(61) Ux(z) = O Vi(z) = 7O
We notice that
(62) AUy = \*Vy,  and / (U3 +V3dS = 1.
S+

1

By scaling and we have

(63) /+ (IVUL(2)]? + [VVa(2)|? + X2Ur(2)Va(2)) dz — )\/ h(Az)Ux(z,0)Vi(z,0) dz

By By
=N(\) =0(1)
as A — 0%. On the other hand, Lemmas and imply

2 Al
N = ( /B (VOEP + V) dz) (1 R zx(B)>

A2 >\||h||Lm(B,;,O)(N -1)

2N 4\
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so that and Lemma imply that
{Ux}re0,5) @nd {Va} ¢(o,5) are bounded in HY(B})

for some A > 0.
Therefore, for any glven sequence A\, — 01, there exists a subsequence \,, — 07 such that

Ux,, — U and Vi, — V weakly in H*(B}") for some U,V € H'(B;). From compactness of the
trace embedding Hl(Bfr) < L2(S]) and from we deduce that

(64) /S+(l72+‘72)d8: 1,

hence (U,V) # (0,0), i.e. U and V can not both vanish identically. For every A € (0,}), the
couple (Uy, V) satisfies

AU)\ = /\2VA, in Bf_,

AVy =0, in B,
(65) A m By

0,Ux =0, on Bi,

6VV)\ = /\h(/\x)u,\, on Bi,

in a weak sense, i.e.

(66) {fB+ VUx - Vpdz = =X* [ Vapdz

Jp+r VVa - Vedz = )\fB, (Az)uy(x) Trp(x) dx,

for all ¢ € HY(B) such that ¢ = 0 on S]", where uy = TrU,. From the weak convergences
Uy, — U and W, — V in HY(B;), we can pass to the limit in (66)) to obtain

ni

VU - Vgdz =0
{fB1+ 4 for all ¢ € H'(B]") such that ¢ =0 on S,

IBT vV . Vedz =0,
i.e. (U,V) weakly solves
AU =0, in B,
AV =0, in B,
3,,6 =0, on Bj,
d,V = 0, on Bj.

(67)

From elliptic regularity under Neumann boundary conditions (see in particular [19, Theorem 8.13])
we conclude that

(68) {Ux}re(o,x) @nd {Vatyg(o.5) are bounded in H?*(B;) for all r € (0, 1),
hence, by compactness, up to passing to a subsequence,

(69) Uy, — U and VA, = V weakly in H?(B;") and strongly in H'(B;) for all 7 € (0,1).

n
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For any r € (0,1) and k € N, let us define the functions

Dy(r) = r—N+1 { /B . (|VUM 2+ |V, I+ AikUvank) dz

r

— )\nk/ h(An,z)un, (2)0r, (T) dcc},

Hy(r) =1~ /S (U, + V2 )dS,

s

where we have set vy = Tr V). By direct calculations we have

Di(r) _ D7)
Hi(r)  H(\p,7)

From it follows that, for any fixed r € (0, 1),

(70) Ni(r) := =N\, ) forallre(0,1).

(71) Dy(r) = D(r) and Hy(r) — H(r) as k — 400

where

(72) ﬁ(r):r_N'H/ (|vr7|2+|vx7|2)dz and .FNI(T):T_N/ (U2 +V?)ds
B iy

for all r € (0,1). We observe that H(r) > 0for all 7 € (0,1); indeed, if H(7) = 0 for some 7 € (0, 1),
the fact that U,V (and their even extension for ¢ < 0) are harmonic would imply that U =V =0
in B;', thus contradicting the classical unique continuation principle. Therefore the function

~ D
N(r):= N(T)
H(r)
is well defined for 7 € (0,1). From (70), (71)), and Lemma we deduce that
(73) Rr) = Jim N(hr) =

for all » € (0,1). Therefore A is constant in (0,1) and hence N (r) = 0 for any r € (0,1). Arguing
as in the proof of Lemma [2.11] we can prove that

) (0 108) (1 (05 58) o)
( [ (T2 +72) dS)

for all 7 € (0,1). Therefore for all r € (0,1)

(/S+< 2>dS>~(/ST+(62+172)dS>—(/gj(ﬁ%lz+‘7%\3) ds>220

which implies that (U, V) and (%, %) have the same direction as vectors in L?(S;F) x L2(S;F).

Hence there exists a function n = n(r) such that (OU (rd), %‘: (rH)) = n(r)(U(r0), V(r8)) for all

au

./\7’(7") _ 27"[([&* ( £

v

~ 2
oU
ov

av
+‘m
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r € (0,1) and 6 € SY. By integration we obtain

(74) U(r6) = /i 1950 (0) = o(r)W1(0), 7€ (0,1), 6 €SY,
(75) V(rg) = eI "=V (0) = o(r)Wy(0), € (0,1), 0 €SY,
where @(r) = /i 105)4s and ¥, = ﬁ|SN’ Uy(0) = ‘7|SN From (67), (74), and (75), it follows that
+ +
_ / _
(76) r N(T‘N(p/) U, (0)+r 2@(r)AS$\I/i(6) =0, onS¥, =19
0,V; =0, on 3Sf,

Taking r fixed we deduce that ¥, Uy are either zero or restrictions to Sf of eigenfunctions of —Agn
associated to the same eigenvalue and symmetric with respect to the equator 3Sf . Therefore there
exist £ € N, {Be,m,ﬂzm}%’;l C R such that

_Agf\lll = /\5\111, on Sj_i\_,, _Asf‘ll2 = /\4\112, on Sf’
0,¥; =0, on 3Sf, d,¥y =0, on 3Sf,

and
M, M,
U= BomYem, P2=> BinYim:
m=1 m=1

In view of we have that [i~ (U3 + ¥3)dS = 1 and hence
+

M,
> (Bem)? + (Bem)?) = 1.
m=1
Since ¥; and W, are not both identically zero, from it follows that ¢(r) solves the equation

&"(r)+ Xl (r) ~ 2eplr) = 0

and hence ¢(r) is of the form

Plr) = err 4 eV
for some c¢1,co € R. Since either |z|’(N*1)’£\I/1(é) ¢ H'(B;) or |z\*(N’1)*e\Ilg(|—§|) ¢ HY(B;)
(being (¥q,¥y) # (0,0)), we have that c; = 0 and () = c1rf. Moreover, from (1) = 1 we
deduce that ¢; = 1. Then
(77) U(rg) = r'W,(0), V(rf) =r‘Wy(h), forallre (0,1)and d e SY.

From and the fact that

/N(\p§+qf§)dsz1 and /N(|VSN@1|2+|VSN\I/2|2)dSZAg
SN sy
it follows that

D(r) = / (VTP + |VV2) dt do

N1 e
CAUN 140 o

_ 24
N+20—1 =tr

:rl—N£2/ tN+2(K—1)dt+r1—NAe/ tN+2([—1)dt:
0 0
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and
H(r) = /S (000 +7240)) as = 1

D(r)

o) = {. The proof of the lemma is complete. U

Hence from 1) it follows that v = N'(r) =

Lemma 3.2. Let N > 2 and let (U,V) € HY(B},) x HY(B},) be a weak solution to such that
(U, V) #(0,0), let H be defined in , and let ¢ be as in Lemma . Then the limit

lim r~2H(r)

r—0+t

exists and it is finite.

Proof. We recall from Lemma [3.1] that ¢ = lim, o+ N'(r) with A/ as in ([40).
In view of it is sufficient to prove that the limit exists. By and Lemma we have

d H(r)

dr 2t —20r~ 27V H (1) 472 H (r) = 2r 271 (D(r) — LH (7))

221 F (1) / "N (p)dp

From and (56]) it follows that there exists some ¢ > 0 such that N’(r) > —c for all r € (0,7).
Then we can erte N'(r) = —c+ f(r) for some function f € L{ _(0,7) such that f(r) > 0 a.e. in
(0,7). Since A has a finite limit as 7 — 0 we have that necessarily f € L(0,r).

Then integration of over (r,7) yields

(79) Iig? - Iﬁ? = 2/; p~* " H(p) </Op f(t)dt> dp — 2C/j p~*“H(p)dp.

Since f > 0, we have that hmr_>0+f p~2 " H(p) ([ f(t)dt) dp exists. On the other hand, (59)
implies that p=2‘H(p) € L'(0,7) and hence the second term in the right hand side of (79) has a
finite limit. Therefore both terms at the right hand side of (|7 . admit a limit as » — 0T the second
of which is finite and hence their sum has a limit. g

(78)

Let (U, V) € HY(B},) x H'(B}) be a weak solution to (7)) such that (U, V) # (0,0). Let us
expand U and V as

oo My, oo My
UE) =UMN) =D > ormNVem(®), V() =V =D > Grm(\)Vim(0)
k=0m=1 k=0m=1

where A = |z| € (0, R], 6 = z/|2| € S¥, and

(80) %,m(A)Z/SN UAO)Yem(0)dS,  @rmX) = | V(AO)Yim(0)dS

N
5¥

Lemma 3.3. Let N > 2 and let (U,V) € H'(B},) x H*(B};) be a weak solution to (7)) such
that (U, V) # (0,0), let £ be as in Lemma and let Gpm, 0e.m be as in . Then, for all
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1 <m < MZ7
(81)  @rm(A) =\ Cé’m‘F/R i@m(t) dt) + A~ V-b-=¢ L@m(ﬂ dt
’ ! N 2U+N-—-17" o N+20—-177
=\ c“”+/Rtm~ (t)dt + O(\?) as A — 0T
- 1 N 2£—|—N— 1@E,m 5 )
(82)  Prm(A) =\ df”"+/R iQm(zf) dt ) + 2\~ V-D=¢ ALQm(t)dt
’ ! y 204+ N-1" o N+20—1>"
=\ dz’m—i—/Rt_HlC (t)dt+ O(N) as A — 0"
B ! L 2+ N1t ’ ’
where
1
(83) Com(N) = < R(AOYU(NO',0)Ye,,n (6,0) dS’,
)\ SN—I
and

R-N-26+1 R
(84) Am=R"* / U(RO)Yym(0)dS — —r—r / N+t / V(t0)Yem(0)dS | dt,

(85) A" =R [ V(RO)Yym(0)dS
sy

R7N72e+1 /R Nf—1 (/ ( /) ( 12 ) ( / ) ’
- 2 h(t0")U(t60",0)Yy, m (60,0 dS)dt.
N+20—1), v

Proof. From the Parseval identity it follows that

oo My

(86) H(\) = / (U2(00) + V2(00) dS = 33 (3,u(N) +3F,,(1), forall 0 < A< R.
s k=0m=1

In particular and yield, for all £ > 0 and 1 < m < Mg,

(87) Orm(N) =0 and P\ =00\ asA—0".

Equations and imply that, for every k > 0 and 1 < m < My,
{“’%mm = ¥k + G 0 (V) = G (V), i (0, R),
BN = X ) + G G (V) = Gen (V) in (0, R),

where

(88) Com(A) = %/SNA h(AO" YU (N, 0)Ym (0,0) dS".
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By direct calculations we have, for some clf’m, cg’m, dlf’m, dg’m € R,

R —k+1
t ~
(%) pun ) =M [ B0 )
ANk [ km o N4k 0 di
Co + N 1-N— k@k m( ) ;
R k41
~ _ k k,m t

(90) prn) =X (4 [ G 0ar)

A= (N=1)—F [ gkm oo Nk d
+ 2 + \ I_N_2ka:,m(t) t).

(91) Com(N) = V A2 B(2AL) U (2, 0) Vi (

o8],

with Uy as in (61)). Since {Ux} is bounded in H2(Bf’/2) in view of (68), from continuity of the

trace embedding HZ(BI*'/Q) — H3/2(B'/ ) we deduce that {TT U,\},\ is bounded in H'(B 1/2) and

its trace on 831/2 is bounded in L? (831/2) Hence from and (59)) we conclude that, for all
k>0and 1 <m < Mg,

(92) CeomN) =01 as A — 0T,
From and (| it follows that, for all 1 < m < My, the functions

t b f*lw,m@), s NG (1)t (), e (),
belong to L(0, R). Hence

0 R t7€+1
w7 [ B @) =, s,
A\ _

ef sem o —~(N-1)—¢ +
A dl’ + m<[7m(t) dt) = 0()\ ), as A — 0 s
N —

and consequently, by , there must be

. R tN+e , R N+t
o[ () dt and di = | ¢ (t)dt
K /0 TN _girmt)dt and dy /0 YA

Using and , we then deduce that
R A
03) At [T ) =N [ G ) d = 001,
R A
C(N—1)— m N+ N1 N+4¢
(94) A-(VY f(dé’ +A Tz lem(l >dt> =AY 4/0 Nz lem(t) dt = O,

as A — 07. From , (190)), , and we deduce (81)) and . Finally, and follow
30).

by computing and (82 for A = R and recalling ( d

We observe that

0) ds’

Bk

We now prove that lim,_,o+ 7~ 2“H(r) is strictly positive.
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Lemma 3.4. Under the same assumption as in Lemmas[3.4, we have

lim 7~ 2“H(r) > 0.

r—0+

Proof. Let us assume by contradiction that limy_,o+ A™2H(A\) = 0. Then, for all 1 < m < M,
would imply that
lim A “@p,,m(N) = lim A3, (\) = 0.
A—0+

A—0t

Hence, in view of and ,

’ R t—f—‘rl ’ R
m — Oy (t)dt =0 d d™
G +/0 WEN 17" (t) an 1 +/o

which, in view of and , yields
. om R t—[—l—l _ ’ A t—e+1 _ 042
o) N(dms [ e ) =3 [ B d =00

(96) S d‘“”+/Rtmc (t)dt V/Atmg (t)dt = O\
! L 20 N1 ~ )y 1=20= N B

as A — 0F. Estimates (81)), (82), (95), and imply that

Vem\) =0T and  Fpm(N) = O as A — 0 for every 1 <m < M,,

t—@+1

s N =0

namely,

VH(N) (Ux, Yeun) p2syy = OM\*?) and VH()) (Vs Yeun) p2(sy) = OM\* ) as A — 0%,

for every 1 < m < M. From , there exists K > 0 such that /H(\) > K03 for A sufficiently
small. Therefore

3 1
(97) (Ux, Yem)p2@y) = O(A2) and - (Va,Yem)p2sy) = O(A2) as A — 0%,

for every 1 < m < My. From Lemma for every sequence A\, — 07T, there exist a subsequence
{Any fren and 2M; real constants Bym, By ,, m = 1,2,..., My, such that

M,

(98) ST (Bem)® + (Br)?) =1

m=1

and
M, M,
z z
U)\n — ‘Z|€ Bf,myf,m ) VAn — |Z|[ Bé,myf,m ), ask— +oo,
g |2 g |2
m=1 m=1

weakly in H'(Bj) and hence strongly in L2(S;"). It follows that, for all m = 1,2,..., My,
Be,m = kETOO(UAnk>n,m)L2(Sf) and  f,, = kgl}rloo(vxnk »Yem)r2(sy)
and hence, in view of ,
Ben =0 and ), =0 forevery m=1,2,..., My,
thus contradicting (98)). a
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Proof of Theorem[1.1l From Lemmas [3.1] and [3.4] there exist ¢ € N such that, for every sequence
A, — 01, there exist a subsequence {)\nk tren and 2M, real constants aLm, =1,2,..., My,

such that S"™° ((apm)? + (af,,)?) # 0 and

M,

_ _ z
(99)  AUOw2) = Jalf Z ¥ (1) AalV Owiz) = |al > az,mn,m(m),
strongly in H*(B;) for all 7 € (0,1), and then, by homogeneity, strongly in H'(B7").
From above, . ., . . ., and ( ., we deduce that

Qg = hm /\nk /N U, 0)Ye m(0)dS

5%

R —0+1
. — lm ~
= lim Aorrm(Any) = 4™ + /0 2L N Pem(t)dt

N+20-1

R t—f-‘rl
+ /0 s | L, VMm@ a5 ) a

Ay = Jim At / V (A, 0)Yen(0)dS

N
S+

R—N—Q@-{-l R
=R™* / U(RO)Yym(0)dS — ——— / N+t V(t0)Yem(0)dS | dt
sy 0 sy

and

t—[—‘rl

R
= lim A B (A,) = dp" + /O St dt

=R / V(RO)Yy.m(0)dS
SN

R_N_%-H " N+£—1 / / / !
- | N h(tOU (t0',0)Y).m (6',0)dS’ ) dt
| ([, oo o, @.0)as')

R t,g
S LN 1 h(tOU(t0',0)Ys ., (0',0)dS" ) dt
+./0 2€+N—1(/SN_1 (t0")U (0", 0)Ye,m (6, 0) S)

We observe that the coefficients ag’m,a})m depend neither on the sequence {A,}nen nor on its
subsequence {\,, tren. Hence the convergences in hold as A — 0% and the theorem is
proved. ]

Proof of Theorem[I.3 Let us assume by contradiction that (U, V) # (0,0). Then Theorem
implies that there exist £ € N such that
(100) AU > TU0), A V(A2) = V(0),
strongly in Hl(Bfr) where (U, V) # (0,0).
Assumption (T1)) implies that U = 0. Hence V # 0. Let us denote Uy(z) = A="2U(\z). Then

U, satisfies N
—AUx(2) = XV (\2).
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We have that, for all ¢ € C°(By),

lim VUA(2) - Vi(z)dz = lim AV (A2)p(2)dz = /B+ V(2)e(2) dz.

A—0t B;r A—0t B;r

On the other, by assumption we have that

lim VUA(z) - V(2)dz = — lim Ux(2)Ap(z) dz

+ +
=0t B A=0% J Bt

= — lim A*H/ U(M2)Ap(z)dz = 0.
BY

A—0t

Therefore we obtain that
/ V(2)p(z)dz=0 forall pe C(B)
Bf
which implies that V=0in Bfr , a contradiction. O

4. APPLICATIONS TO FOURTH ORDER PROBLEMS AND HIGHER ORDER FRACTIONAL EQUATIONS

In this section we discuss applications of Theorem [I.1]to fourth order problems and higher order
fractional equations, by proving Theorems [I.3] and

Proof of Theorem[1.3. From [I5, Proposition 7.2] we have that, if U € D, then U € HY(B}).
Furthermore, [I5, Proposition 2.4] implies that, if U € D is a nontrivial weak solution to
for some h € C1(Q), then V := AU belongs to H'(B}) for some R > 0 so that the couple
(U, V) € HY(B};) x H'(B},) is a weak solution to (7)) such that (U, V) # (0,0). Then statement
(i) follows from Theorem |1.1| while (ii) comes from Theorem [1.2 O

Proof of Theorem [T} In view of [25] (see also [I5]), we have that, if u € D3/2(R"), then there
exists a unique U € D such that A2U =0 in Rf“ and Tr U = w on Rf“. Moreover

(101) /N AU (z,t)Ap(z,t) dr dt = 2 (u, Tr p) ps/2(mr)
R+

for all ¢ € D. In particular, if u solves 7 we have that U is a weak solution to . Let
V = AU. Since (—A)3/?u € (DY2(RN))*, by (101)) we have that

o _A)3/2
(102) /Rf“ V(z, t)Ap(x,t)dedt =2 (DL/2(RN))* <( A)* =, Tr <p>D1/2(RN)

for all ¢ € T with T as in (12)). Applying [15, Proposition 2.4] to V' we deduce that V € H*(B;")
for all 7 > 0 and hence by (102)) and integration by parts we obtain

(103) - /R V() V(e ) dedt =2 oy ((~A)7 Tr<p>D1/2(RN)
+

for all ¢ € T.
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Since the trace map Tr is continuous from DV2(RY 1) into DY/2(RY), in view of assumption
we have that W (p1/2gny). ((—A)%2u, Tr W>D1/2(RN) belongs to (D"2(RY))*. Then,
by classical minimization methods, we have that the minimum

min
Wepl,Q(Ri\_“rl) 2

1 2 3/2
/]Rerl |VW(Q’,‘,t)‘ drdt + 2 (D1/2(RN))* <(—A) u’TrW>’D1/2(]RN)

is attained by some V € DV2(RYH!) weakly solving

(104) - /R - YV (@,t) - V(a,t) dzdt = 2 (prj2gany)- <(—A)3/2u, Tw>DU2(RN)
=2 [ lefaTrpde
for all p € C° (W) Combining and we infer that
(105) /RNH V(V(2,t) = Vi t) - Vool £) dedt =0 for all p € T
Xy

Actually still holds true for any ¢ € C°(RY ™). Indeed, for any ¢ € C°(RNF1), one can
test (105) with @ (z,t) = p(z,t) — oi(z,0) tn(kt), k € N, where n € CP(R), 0 < n <1, n(t) =1
for any ¢t € [—1,1] and n(t) = 0 for any t € (—o0, —2] U[2, +00), and pass to the limit as k — +oo.
Therefore, if we define

W =

— [ V(z,t) = V(x,1), if t >0,
V(z,—t) - V(x,—t), ift<0,

we easily deduce that [oy, VW - Vpdz =0 for all p € C°(RN*1). In particular W is harmonic

in RV+1. Furthermore, since V € L2(RY*1) and V € DV2(RY*1), we have that W = W, + W, for
some Wy € L2(RN*1) and W, € LT (RN+1). The mean value property for harmonic functions

ensures that, for every z € R¥*! and R > 0,

—~ 1 —~ const
Vo= mopr— | [ Wwa< S ([ Wil [ waly
|B(z, R)|n+1 |/ B(2,R) RN g m) B(z,R
const N1 N+3
< oAt <||W1||L2(RN+1)R 2+ |‘W2||L72(]f,vff) (]RN+1)R ’ )

where |-| 41 stands for the Lebesgue measure in RV ! and const is a positive constant independent
of z and R which could vary from line to line. Since the right hand side of the previous inequality
tends to 0 as R — +o00, we deduce that W = 0, and then V=V.In particular, in view of [5] and
, this implies that

(v, @) pr/2@ny = =2 (u, p)ps/2@ny  forall p € C>(RY),

where we put v = Tr V. This implies that —2[£[3% = |£[0 and hence v = 2 Au in RY.

To prove (i), it is not restrictive to assume xg = 0. Let us assume, by contradiction, that u Z 0.
Then the couple (U, V) # (0,0) is a weak solution to (7) in H'(B}) x HY(B},) for some R > 0
with h = —2a.
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From Theorem it follows that either u or v (which are the traces of U and V respectively)
have vanishing order ¢ € N at 0. In view of assumption we have that necessarily V' vanishes
of order ¢, i.e. there exists W : Sﬂ\_’ — R, a nontrivial linear combination of spherical harmonics
symmetric with respect to the equator ¢t = 0, such that ¥ # 0 on 0S¥,

AV (Az) = \z|€\II(|Z—‘) strongly in H*(B;) as A — 0T
z
and consequently
A fo(dz) — |z|Z\I!<%, 0) strongly in HY/2(B}) as A — 0%,
x
Let us denote
oa(z) = X "w(\z) and  Ux(x) = A2 fu(a),

so that
(106) vy — \x|€\11<|z—‘70) strongly in HY/?(B}) as A — 07
and

2Aﬂ,\ = Ux in RN.

For every ¢ € C°(B}) we have that

(107) - 2/ ur(—Ap) dx = —2/ o(—Auy) dx = / vy dx.
RN RN RN

From one hand, assumption implies that

lim ux(—Ap)dx =0

A—=0t JRrN
whereas convergence (106)) yields
x
li do = ‘\1/(*,0) da.
Jim [ o= [ el (0w s

Hence passing to the limit in (107) we obtain that
/ |x|2\11<£,0)<p(x) dz =0 for every ¢ € C°(By),
RN ||

thus contradicting the fact that |x|é\11(ﬁ, 0) Z 0.

To prove (ii), let us assume by contradiction, that u # 0 in  and u(z) =0 a.e. inaset £ C Q
with |E|y > 0, where | - |y denotes the N-dimensional Lebesgue measure. Since 2Au = v and
v e DY2(RN) c L (RY), by classical regularity theory we have that u € H2_(Q). Since u(z) = 0
for a.e. x € E, we have that Vu(z) = 0 for a.e. € FE and hence, since g—; € H _(Q) for every
i, Au = 0 a.e. in E. In particular there exists a set £/ C E C Q with |E’|xy > 0 such that
u(z) = Au(z) =0 a.e. in E’. In particular v(z) =0 a.e. in E'.

By Lebesgue’s density Theorem, a.e. point of E’ is a density point of E’. Let xy be a density
point of E’. Hence, for all £ > 0 there exists ro = ro(¢) € (0,1) such that, for all € (0,79),

[(RY\ E) 0 By (z0)|w

(108) B (20l

<e,
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where B!(zo) = {zx € RY : |z — x| < r}. Theorem implies that there exist Uy, Uy : S¥ — R
linear combination of spherical harmonics such that either ¥y £ 0 or W5 # 0 and

— xr—Xx
(109) Au(zo + Mz — 20)) — |x—x0|elﬂl(m,0)
and

_ r—x
(110) A v(zo + Mz — 20)) — \a:—md“l@(ﬁ,o)

strongly in HY/2(B/(z0)) as A — 0% and then strongly in L¥ 7 (B (z)) thanks to the Sobolev
embedding H (B (z0)) < L~¥-1(B)(20)). Since u =v =0 in E', by (T08) we have

/ u?(z) de = / u?(z) da
Bi.(zo) (RN\E")NB/.(x0)
N—-1

.
< ( / |u<x>|2N/<N—“da:) BN\ ') 0 Bl (o) [}
(RN\E")NB.(x0)

—1

N
< eVN|Bl(ay) %N( |u<x>|2N/<N1>dx)

/(RN\E’)QBL(IO)

and similarly

[ e dn < B ) N/N</ '”(x)'w/(wd”">
B! (z0) (RN\E")NB/.(w0)

for all r € (0,70). Then, letting u” () := r~‘u(xg + r(z — ¢)) and v"(z) := r~*v(2¢ + r(z — 20)),
N—1

N
/ " (z)2dz < ( ) et </ ()| #5 d ) :
B (zo) B (z0)
=
/ o (@) < (22 ) (/ UT(:U)|13N1dx> ,
B (zo0) B{(z0)

for all r € (0,70), where wy_1 = [sn_; 1dS’. Letting 7 — 07, from (109) and (110) we have that

|z — m0|2€\1112( Lo 70) dx
Bl (o) |z—z0]

N—-1
N

8

WN-1 % 1 2N ¢ I\?fl %
é( N ) 5N</B'( | — 2o V=T z(ﬁﬁ)‘ da:) fori=1,2,
1(zo)
which yields a contradiction as e — 0%, since either ¥; % 0 or ¥y £ 0. O
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