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ABSTRACT. In this paper, we address ambiguity, intended as a characteristic
of any data expression for which a unique meaning cannot be associated by
the computational agent for either lack of information or multiple interpre-
tations of the same configuration. In particular, we will propose and discuss
ways in which a decision-support classifier can accept ambiguous data and
make some (informative) value out of them for the decision maker. Towards
this goal we propose a set of learning algorithms within what we call the
three-way-in and three-way-out approach, that is, respectively, learning from
partially labeled data and learning classifiers that can abstain. This approach
is based on orthopartitions, as a common representation framework, and on
three-way decisions and evidence theory, as tools to enable uncertain and ap-
proximate reasoning and inference. For both the above learning settings, we
provide experimental results and comparisons with standard Machine Learn-
ing techniques, and show the advantages and promising performances of the
proposed approaches on a collection of benchmarks, including a real-world
medical dataset. a logic of incomplete information, cast in the setting of pos-
sibility theory.

Keywords: Three-way decision, uncertainty, ambiguity, partial labels, ma-
chine learning.

1. INTRODUCTION AND RELATED WORKS

Recently Machine Learning (ML) has continuously attracted the interest of the
research community, both from a mathematical-theoretical point of view and, more
predominantly, from an application point of view. This interest has been stimulated
by the fact that different research communities (e.g. health-care and medicine,
finance and economics, ...) have acknowledged the ubiquity of uncertainty, in
different forms, e.g. vagueness, randomness, ambiguity, as an intrinsic part of their
practice [1, 2], and thus see ML as a potential tool to represent, manage and, in
some cases, overcome this uncertainty.

However, uncertainty has been largely ignored in the mainstream ML community,
despite the fact that this common condition can undermine the reliability and
performance of ML systems when deployed in real-world settings [3].

The goal of this article is to analyze a specific form of uncertainty affecting data,
which we denote with the common term of ambiguity. With this term we intend a
characteristic of any data configuration with which a unique, clear meaning cannot
be associated by a human or computational agent for either the coexistence of
multiple interpretations of the same configuration, or a lack of (disambiguating)
information. In particular, we will consider ways in which a classifier can accept
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FIGURE 1. An illustration of three-way-in learning: classes are
rendered as circles (different colors are associated with different
classes). Objects are represented as dots. On the left there is the
true labelling (training set); on the right, the classifier’s labelling,
possibly affected by misclassification errors (red dots). In three-
way-in learning, the classes are disjoint, and objects in the input
(on the left) can be labelled with uncertainty (and thus represented
within circles with a multi-color dashed border). The classifier
assigns each object to one and only one class in the output (on the
right).

ambiguous data in the above sense, and provide the decision maker with some
informative advice in spite of (and sometimes even in virtue of) this ambiguity. Our
proposal is motivated by the idea that ambiguity should not be discarded, when
it occurs in real-world data that are to be used as input data of model learning,
i.e., as training data. Moreover, even classifiers could produce ambiguous output,
in terms of non-discriminative predictions, if necessary and for the sake of better
decision support.

We will consider classifiers as composed by two components involved in a two-
step pipeline:

e The learner, which takes a set of labeled data as input, i.e. as training
set, and according to this data it optimizes some parameters of the second
component;

e The predictor, which, on the basis of a new instance and the parameters
optimized by the learner, produces a new prediction for the instance at
hand as output.

Under this view, we call input the input of the learner, i.e., the labeled training
set, and output the predictions obtained by the predictor, i.e., the model learnt by
the learner.
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FI1GURE 2. An illustration of multi-label classification: classes are
rendered as circles (different colors are associated with different
classes). Objects are represented as dots. On the left there is
the true labelling (training set); on the right, the classifier’s la-
belling, possibly affected by misclassification errors (red dots). In
multi-label classification, the classes are not necessarily disjoint,
and therefore the objects in the input (on the left) can belong
to multiple classes. The classifier can assign objects to multiple
classes in the output (on the right).

Furthermore, we distinguish between two types of ambiguity: r-ambiguity (for
row ambiguity); and c-ambiguity (for column ambiguity). In particular:

e We have r-ambiguity when, given a single instance x in the training set,
there is no specific classification that we can assign to x, that is,  has a set-
valued labeling. Notice that r-ambiguity is essentially different from multi-
label classification: this latter classification assumes a set-valued but certain
labeling, that is each input instance x may naturally belong to different
categories (this frequently occurs in domains such as text categorization or
bio-informatics [4]). R-ambiguity also potentially causes a given instance
to have a set-valued labeling, but in this case the set represents a degree
of uncertainty: only one or, potentially, none! of the labels in the set is
the correct one, while the others are assigned to instance x only due to our
incomplete or uncertain knowledge.

e We have c-ambiguity when multiple instances x1, ..., x,,, that are sufficiently
similar to each other, have different classifications associated with them
and, thus, no clear-cut classification can be assigned to any of them. This
concept is similar to, but generalizes, inconsistency in Rough Set Theory:

n this case the proper learning setting is a generalization of superset learning [5].
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FIGURE 3. An illustration of three-way-out learning: classes are
rendered as circles (different colors are associated with different
classes). Objects are represented as dots. On the left there is the
true labelling (training set); on the right, the classifier’s labelling,
possibly affected by misclassification errors (red dots). In three-
way-out learning, the classes are disjoint, and the objects in the
input (on the left) belong to one and only one class. The classifier
can abstain on objects to avoid potential misclassifications.

we will allow, in general, the decision attribute to be set-valued, i.e., repre-
senting a degree of uncertainty over the real value of the decision. Further-
more, we will not typically assume the correctness of the decision attribute,
i.e. different decisions associated with two indistinguishable objects could
be due to errors or noise.

Similarly we will distinguish two different learning frameworks on the basis of these
two distinct ambiguity types:

e Three-way In (TWI) learning, which concerns r-ambiguity, that is, when a
set of different possible but mutually contradictory labels are assigned to
each training instance. In this case, the learner takes this set-valued label
representation and produces a model that can disambiguate its predictions
as much as possible;

e Three-way Out (TWO) learning, which concerns c-ambiguity: in this case,
the classifier must detect the ambiguities in the data representation and
yield predictions accordingly. Thus, in this case, the predictor can abstain
(completely or partially) on certain instances, whenever the available evi-
dence is not sufficient to make a precise decision.

An intuitive representation of the two considered learning settings, compared
with standard multi-class and multi-label classification, is depicted in Figures 1, 2,
3 and 4.
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F1GURE 4. An illustration of multi—class classification: classes are
rendered as circles (different colors are associated with different
classes). Objects are represented as dots. On the left there is the
true labelling (training set); on the right, the classifier’s labelling,
possibly affected by misclassification errors (red dots). In multi-
class classification, the classes are disjoint, and the objects in the
input (on the left) belong to one and only one class. The classifier
assigns objects to one and only one class in the output (on the
right).

Some previous research have been conducted in both learning tasks. The concept
of the three-way-out learning, indeed, is based on, and adapts, the ideas originated
in works about three-way decisions [6] and cautious classification [7, 8]. In fact,
three-way decisions have been originally suggested, taking inspiration from human
decision-making, as an approach to treat and manage the uncertainty in data by
making use of a third category (different from positive and negative), that reflects
a lack of knowledge, a (temporary) abstention, or a delayed decision while wait-
ing for more evidence. This concept has been widely and successfully applied in
the communities of Data Analysis and Machine Learning [9], and Decision Mak-
ing [10]. Most relevantly with respect to the present work, we can cite the work on
classification with uncertain boundaries [11], which presents a novel algorithm to
properly take into account uncertain objects in binary classification by using rough
sets and three-way decisions, a focus that we adopt in the discussion of the TWO
learning paradigm. Also the work of [12], which proposes a sequential three-way
decision based approach to manage multi-class decision problems, is relevant to our
proposed techniques. However, we do not employ sequential methods, instead, we
directly operate on a multi-class representation employing decision-theoretic tech-
niques. Finally, we also cite the work presented in [13], which proposes a novel
technique for ensemble construction based on three-way decisions. As already
pointed out, we can see that the concept of r-ambiguity shares similarities with
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the concept of inconsistency in Rough Set Theory. Indeed, in the study of inconsis-
tent decision tables the notion of possible rules [14, 15] represents a form of what
we call Three-Way-Out (TWO) learning. Differently from the standard Rough
Set techniques tackling this problem, our approach is not based on fundamental
Rough Set theoretic notions (such as reducts and approximations), nor we consider
rule-based approaches. In fact, our work proposes generalizations of standard Ma-
chine Learning algorithms like tree-based, ensemble-based or optimization-based
classifiers. The decision-theoretic framework that we adopt, however, shares some
similarities with works on Decision-Theoretic Rough Sets [16, 17] and, relevantly for
our discussion of ensemble and optimization-based approaches, on Interval-Valued
Decision-Theoretic Rough Sets [18] .

On the other hand, Three-way-In (TWI) learning originates from the seminal
work on learning from ambiguous [19], superset [5] or partial labels [20] that
proposed, under the standard optimization-based framework of modern Machine
Learning literature, a generalization of the semi-supervised learning setting. Sim-
ilar related approaches, which offer a different perspective that is more focused
on attribute reduction and rule induction, have been investigated in the Rough
Set and three-way decision communities by considering approaches applicable to
semi-supervised and incomplete decision tables [21, 22]. However, TWI learning
consists in a generalization of these approaches by not assuming that the real label
is in the superset labeling of a given instance x. Moreover, the algorithms that
we propose represent a generalization of ensemble learning and convex optimiza-
tion approaches to Machine Learning, augmented with the capability to take into
account the intrinsic uncertainty and ambiguity of these learning problems.

Our main goal in this article is to provide a unified mathematical framework for
these two learning tasks, which encompasses algorithms and techniques by which to
explicitly manage the uncertainty representation. To this aim, we employ the con-
cept of orthopartitions [23] as a general representation framework for both learning
problems and use techniques based on evidence theory and three-way decision, to
implement, respectively, generalized uncertain reasoning based on lower and upper
probabilities (which, as we will show, arise naturally when considering orthopar-
titions), and meaningful criteria based on decision-theory to treat and manage
uncertainty.

The rest of this work will be organized as follows: in Section 2 we will present
the mathematical background necessary for the development of the techniques and
approach that we propose. In Section 3, we will present a general background
for the Three-way Out setting, illustrating both general-purpose techniques and
algorithm-tailored ones to tackle this learning task. In Section 4, we will describe
the Three-way In learning setting in greater detail, explaining both how this setting
can occur and also algorithmic techniques to learn classifiers in this context. In
Section 5, we will present an experimental validation of the proposed techniques
compared with previous existing methods and, finally, in Section 6, we will make
the concluding comments and suggest some future line of work.

2. Basic NOTIONS

In this section, we give the mathematical background on decision tables, orthopairs
and orthopartions that will be used in the following.

Definition 1. A multi-observer decision table is a tuple (U, A,t, D) where
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U is a universe of objects of interest;

A is a set of attributes (or features) that we use to represent objects in U.

In particular, we define each attribute as a function a : U — V, where V,

is the domain of values that the attribute a can assume;

o t ¢ AUD is a distinguished decision attribute, that we assume to be the real
(but, in general, possibly unknowable) decision associated with the object in
U, we will denote with' Y the domain of values of t;

e D, with DN(AU{t}) =0, is a set of decision attributes that represent the

decisions (possibly incorrect) that a set of observers assign to objects in U;

when |D| = 1 we will use simply the notation d and call (U, A,t,d) simply

decision table [24]. We will assume that Vd € D, Vg =P(Y).

Based on this notion of decision table, we can now formally define the notions
of c-ambiguity and r-ambiguity.

Definition 2. Let dist be a distance function dist : U x U — RY and M =
(U, A, t, D) a multi-observer decision table. Let XAY = (X \Y)U (Y \ X), where
X, Y CU. Let aggr : P(Y)IPl s P(Y) be an aggregation function mapping the
different decision attributes to a single (but possibly set-valued) decision attribute.
Then

e M is c-ambiguous if
Ix1, 29 € U : dist(x1,x2) < € such that aggr[D(x1)|Aaggr[D(z2)] # 0
e M is inconsistent if
Jxq, 20 € U : dist(xy,x2) < € such that aggr[D(x1)] Naggr[D(xs)] =0
e We say that M is r-ambiguous if 3z € U such that |aggr[D(z)]| > 1.

We can make two observations: first, M could be both r-ambiguous and c-
ambiguous; second, inconsistency implies c-ambiguity. Indeed, if M is inconsistent
on z1,zy then aggr[D(z1)|Aaggr[D(z2)] = aggr[D(x1)] U aggr[D(x2)] # @. The
reverse does not hold in general, e.g., let aggr[D(z1)] = {1,2}, aggr[D(x2)] =
{2,3}., then M is c-ambiguous but not inconsistent.

It is then easy to observe that Definition 2 corresponds to the following intuitive
concepts: c-ambiguity means that we are uncertain about the true class assign-
ment for at least an object, r-ambiguity means that we have very similar objects
but with potentially incompatible classifications, inconsistency is a stronger form
of c-ambiguity in which the classifications of the two objects are definitely incom-
patible. Furthermore, notice that we made no assumptions on the correctness or
“noise-freeness” of the available decision attributes (those in D). This means that
there may be an instance = s.t. ¥d € D,t(x) ¢ d(x) (i.e. we admit the possibil-
ity of noisy classifications, while in superset learning [5] or in traditional rough-set
based analysis this possibility is rejected). In particular, if M is inconsistent on
x1,x2 then either the decision associated to at least one of zq,z9 is noisy (i.e.,
t ¢ aggr[D(z1)] Vt ¢ aggr[D(z2)]) or we are forced to reject standard smooth-
ness or locality assumptions (i.e., there may be very close instances with different
classifications).

The goal of the Machine Learning endeavor is, given a decision table (S C
U, A, D), to recover the true decision attribute ¢, that is find an approximation,
also called predictive model f, such that f well approximates ¢t. In general, f may
be expressed as a single element of Y or as a probability distribution defined over Y,
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representing the belief that the model assigns to the different alternatives. Other
types of structures defined over Y (e.g. the class of the orderings over Y') are also
possible. In particular, in the following, we will be interested in the case where
f: U~ P(Y), ie., the labeling given by f assigns subsets of ¥ to each instance
x € U. With this representation we model ambiguous or uncertain assignments:
that is, if f(z) = {y1, ..., yx} then it is uncertain whether x belongs to class y1, ...,
or class y.

2.1. Orthopairs and Orthopartitions. To express our partial knowledge we will
use the notion of orthopartions, further, we will use the corresponding entropy
functions to measure their intrinsic uncertainty [23].

Definition 3. An orthopair [25] over the universe U is a pair of sets O = (P, N)
such that PN C U and PN N = (), with P and N standing, respectively, for
positive and negative. From these two sets we can also define a third set, called
boundary, as Bnd = (P U N)°.

An orthopair represents the uncertainty of our knowledge on a set: specifically,
the status of the elements in the boundary is uncertain (i.e., they can or cannot
belong to the given set). Thus, a given orthopair stands for a collection of consistent
sets.

Definition 4. We say that an orthopair O = (Po, Npo) is consistent with a set
CcUif:

(2.1) xr€Pp = 2€CANx€e€No = z¢C

Basically, if we consider C to represent a concept defined over U, i.e., a set of objects
sharing a certain property, then a consistent orthopair O can be considered as an
approximation, given by a lack of knowledge, that we have for that concept. Under
this interpretation the set Po contains the objects that surely are in C, while the set
No contains the objects that surely are not in C. On the other hand, the boundary
Bndo contains the objects whose belonging to the target concept C' is uncertain.
This may occur for different reasons. If the orthopair O represents the output of
a classification algorithm, then the objects in the boundary may represent objects
on which the classifier opted to abstain for lack of confidence, e.g., the prediction
score of the best option is too low to conclusively claim it, due to uncertainty or
noise in the data. As we will show, properly constructing the boundary (hence the
abstention decision given by the predictor), allows the classifier to retain a high
accuracy and precision but with increased reliability, avoiding over-commitment to
potentially wrong decisions. On the other hand, if we have a degree of uncertainty
with respect to the target concept C' that we want to learn, then we can represent
this uncertain and incomplete labelling using an orthopair, turning the analysis of
these data into a problem of semi-supervised of superset [5] learning.

We can define different orderings between orthopairs, in particular we say that
01 is more informative than Oy, denoted O1 >; O5 if P, C P; and Ny C V.

Two orthopairs O, Os are disjoint if it holds that:

(2.2&) lePQ :[Z)
(22b) P, N Bndy = B A Bndi NPy, = 1]
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Definition 5. An orthopartition is a collection O = {O1,...,On} of orthopairs
such that the following axioms hold:

(2.3a) VO;,0; € O, 0;,0; are disjoint
(2.3b) U uBnd;) =U

7

(2.3¢) Ve € U(30; s.t. € Bnd;) = (30; with i # j s.t. x € Bnd;)
(230 [0/ <|U]

An orthopartition can be considered as a generalization of a partition or, in the ML

context, of a multi—class classification, in which we can express partial knowledge
with respect to the membership of the objects in the concept classes. This inter-
pretation is given by extending the definition of consistency with orthopartitions.

Definition 6. We say that a partition m is consistent with an orthopartition O
ff VO,; € O, 3'S; € 7 such that S; is consistent with O;. We denote with Ilp the
set of all partitions consistent with O: Mo = {r|r is consistent with O}.

Given an element z € U and an orthopartition O we define the boundary set of
x as Bnd(z) = {O; € Olz € Bnd;}. As with single orthopairs, the boundary set
contains the objects whose class assignment cannot fully be determined from only
the data.

The entropy of a partition 7 is defined as:

Uy T
(2.4) H(m) = —Z ||U| -loga ||U||

We can extend the definition of entropy to orthopartitions as follows (other defini-
tions can be found in [23]):

(2:5) Hyet(0) = = Poct(0;) - 1oga Poet (O:)

i
where Pyt (0;) = ﬁ (| 7] —&—ZmeBndi m). We notice that Hy.; gives a precise
value by assigning a different weight to the instances on which we are uncertain,

i.e., the ones belonging to the boundary. Starting from the definition of entropy, it
is also possible to define a generalized mutual information measure as:

(2.6) It (01, 02) = Hpet(O1) + Hpey (O2) — Hpet(O1 A O3)
where O1 A Oy = {<Pz n Pj,Ni U NJ>|Ol € 07 and Oj S 02}

3. THREE-WAY OUTPUT

In this section, we will describe in greater detail the Three-way Out (TWO)
learning setting. In this context, the chosen data representation, i.e., the selected
features and/or their level of granularity, is such that a form of c-ambiguity arises.
Thus, the chosen data representation does not allow us to distinguish different ob-
jects that are either identical or “too near” in the sample space, similarly to the
concept of indiscernibility in standard Pawlak’s rough sets [24] or generalized rough
sets [26]. In fact, if these two or more indiscernible objects are associated to dif-
ferent classifications (this concept is usually known as inconsistency in rough set
terminology) then we have a classification-level ambiguity: given a new instance
the classifier would not be able to provide a clear-cut and error-free classification.
The most meaningful approach to deal with this type of ambiguity, which amounts
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to a lack of evidence for certain cases or instances, consists in allowing the classifier
to abstain, even partially, that is excluding some of the alternative possible clas-
sifications. This approach to classification has already been explored in three-way
decision theory [6], that recently attracted great interest in the domain of granular
computing [9] and Machine Learning [27], possible rules in Rough Set Theory [14]
and cautious classifiers [7]. In doing so, there is a trade-off between the cover-
age of a classifier algorithm, i.e., the instances on which the classifier provides a
decision, and its reliability and robustness to classification errors, while striving
to keep as large an accuracy as possible: the goal is to learn classifiers that are
still as precise as possible, but express a prediction only when they are sufficiently
confident. While most three-way decision techniques and applications focus on the
binary case, the approaches that we present in the following sections is also suited
to the multi-class case, a problem which is typically tackled using sequential three-
way decisions (e.g. see [12] as a recent example), in which a multi-class decision
problem is converted into a sequence of binary (three-way) ones. Our work, on the
other hand, is not based on a sequential approach. Instead, we employ a multi-class
optimization-based approach to three-way decisions in order to infer an optimal or-
thopartition where the class boundaries represent the objects whose assignment to
a specific class would undermine the reliability of the classifier. Furthermore, har-
nessing the fact that orthopartitions naturally define belief measures we also discuss
evidence-theoretic approaches to information fusion that can be employed to imple-
ment ensemble-based and optimization-based solutions to TWO learning problem.
More specifically in Section 3.1 we describe a general decision-theoretic approach
(that can be seen as a generalization of the standard three-way decision-theoretic
framework), while in Sections 3.2 and 3.4 we present algorithm-tailored techniques
that are obtained by modifications of standard Machine Learning algorithms.

3.1. Decision-Theoretic Approach. In this section, we will present two strate-
gies for converting probabilistic classifiers into three—way classifiers, generalizing
the work in [28].

Let A : X — PR(Y) be a probabilistic classifier: i.e. for each z € X, A(z);
represents the probability that algorithm A assigns to the event that x belongs
to class y; € Y. We will also denote by A(z)* the ordering of A(z) in terms of
decreasing probability scores.

The first strategy is based on the idea that when different alternatives have
probabilities which are too close to each other then, choosing among them is not
a justified decision. In order to formalize this idea, let € € [0,1], d : [0,1]> = R a
distance function and A(z)* as defined above. We say that

Definition 7. A probabilistic classifier A(x) is (m, €)-ambiguous, wherem € {1,...,|Y|},
if
Vi <m d(A(x)], A(z)]) <e

Furthermore, we say that A(x) is mazimally (m*, €)-ambiguous if
(3.1) m* = max,{A(x)* is (m, €)-ambiguous}

Equation 3.1 provides a simple criterion for converting a probabilistic classifier into
a three—way classifier:

(3.2) A(@)amp = {A@)1, ., Al@),-}

amb — m*
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Evidently, this transformation has a time complexity of O(m - logm), required
for ordering A(x), or O(m) in case A(z)* is already available.

Example 1. Let Y = {1,2,3,4,5} and A be a classifier such that, for a given
instance x we have A(x) = (0.2,0.3,0.15,0.1,0.25). Then, if we set e = 0.1, we
have that A(x)} = 0.3 (thus, in particular the most probable alternative is 2), thus

A(x)fz%b = {1’ 2, 5}'

As regards the second strategy, which is a generalization of previous work on
three-way classification [28], it is based on a decision-theoretic framework and con-
sists in balancing the costs of errors and abstentions.

Let
0 €12 -+ €]y
€21 0 - ey
(3.3) E=
fyp €y 0

be the error cost matrix, i.e., F; ; is the cost of predicting y; where the true class
is y;. To define the cost of abstention, it is not sufficient to set a constant value
of a, otherwise the when the three-way algorithm decides to abstain, it will always
output the full set of classes Y:

Theorem 1. [29] If the abstention cost « is constant, then the minimal cost solution
is always Z =Y, where Z is the output of the classifier.

Thus, let a : P +— R be a monotonically increasing set-valued function with
a(Z) =0VZ st |Z| =1 and where «(Z) represents the cost of abstaining among
the alternatives in Z.

Definition 8. Let Z CY representing a partial abstention decision, we define the
risk of decision Z as:

D yiez Eii

(3-4) R(Z)=a(Z)- Y Alx)i+ Y Alx);- 7]

Yi€Z Yi¢Z

This function defines the cost of taking the generalized decision Z, given the error
and abstention costs and the evidence at hand (modeled by the probabilities in
A(z)). Thus, the decision minimizing this objective function can be considered the
most sensible (i.e., least risky) decision to be made by the classifier. Equation 3.4
provides another criterion for transforming a probabilistic classifier into a three—way
one, namely

(3.5) A(z)E. = argming{|Z| : Z € argming R(Z')}

That is, we select the generalized decision resulting in the minimal possible risk: in
this case the algorithm should decide to abstain (totally or partially) when taking a
single decision would incur in an unwarranted risk, that is, when, based on the costs
of taking a wrong conclusion and the probability of the top-ranked alternatives, the
risk would be greater than choosing to abstain.

Evidently, the basic procedure to obtain this transformation requires enumerat-
ing all the possible subsets of Y, thus its time complexity is O(2™). Interestingly,
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if Vi,j €;; = € with € constant, we can greatly reduce the computational cost. In-
deed, as shown in [28], in this case the optimization problem in Equation 3.5 can
be reformulated as:

J
(3.6) argmin;a(j) * Z A(x)! + e x Z Az

i=1 i=j+1
that can be solved in time O(n) (if A(x)* is already available) using dynamic
programming.

Example 2. Let e =1 and o(Z) = \‘ﬂjf with Y ={1,2,3,4,5}.
Let A be a classifier such that, for a given instance x we have

A(z) = (0.2,0.3,0.15,0.1,0.25)

Then we have that: R({2}) =0.7, R({1,2}) = 0.625 = R({1,2,5}),
R({1,2,3,5}) = 0.775, R(Y) = 1. Thus A(z){, = {1,2}.

The two just outlined strategies can be applied independently from the learning
algorithm. However, it can be noted that these strategies do not consider the
information about the ambiguity intrinsic in the data during the training phase,
but only in the phase of predictions. When selecting a specific model class it is
also possible to define model-specific strategies, as we are going to explain in the
following sections.

3.2. Decision Trees. In [29] the authors propose a Three-Way Decision Tree
(TWDT) model that more directly links the learning algorithm and three-way clas-
sification. Let DT = (S, A,t) be a decision table with S = {z1,...,2|g} € X and
A ={ay,...;an}. Let S¢ = {x € S|vg(z) = v{} be the set of instances that have
value v{ for feature a. If a is a continuous attribute, then, given a threshold value
v, we can consider

57 sal@r) = {1 valak) > vf

0 otherwise

The optimal classification C{ for S{ is the classification obtained by solving the
decision rule described in Section 3. This class assignment is done locally on the
tree nodes, and not only on the final output of the classifier. That is, if Pr(y|S¢#) =
\{kaSilédq(rfk):y}l then

2yez €

(38)  Cr =argmingcya(Z)- 30 Priolst) + 3 Prlyist) - =12

yeZ y¢zZ
Since this classification determines an orthopartition O,, we can then compute the
mutual information of O, w.r.t. S as described in Equation (2.6) and choose the
feature a® which results in the maximum mutual information value, and then recur
on the subsets of S determined by feature a* until a termination criterion is met.
Note that, especially in the more general case described by Equations (3.4) and
(3.5), this approach requires the resolution of a complex decision optimization prob-
lem, whose complexity, in general, is exponential in |Y|, at each level of the tree.
Furthermore, this split criterion essentially amounts to selecting the optimal split
node on the basis of a generalized version of the accuracy. Accuracy is non-smooth,
a property that is known to be detrimental to the induction of decision trees and
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tree-based ensembles. In fact, more efficient procedures can be obtained when using
the criterion defined by Equation (3.2).

In order to cope with this limitations, we define a new criterion. Let dist :
X x X — R be a distance function defined among instances, then given a threshold
value r, we can define the r-neighborhood of x; € X as:

(39) T[.Tk] = {xl S Dg|di$t($k,{tl) S T‘}
We can then compute the probabilities Pré(y|zy) = Hxler[xk“d](r:’):y}l and then

[r[zk

the € — ambiguity class of the top-alternative y** = argmax, Pr(y|zy), that is
(3.10) ely™] = {y' € Y|d(Pri(y), Pri(y™)) <e}.
On this basis, we can construct the orthopartition Of = {O,,, ..., wal} given
by the following assignment rule:
o If e[y™] = {y;} then z € P, ;
o If [y™] = {vy1,...,yn} then x4, € Bnd,,, ..., Bnd,,,
o If y; ¢ e[y then 2, € N,,,.

Example 3. Consider the set of instances in Table 1.

Instance | ay as d
T 4.11 | -4.78 | 2
o -6.29 | 7.21 |0
T3 3.61 0.64 |1
Ty -1.44 ] -14.70 | 1
Ts 0.1 | -9.93 | 2
Tg 1.45 | -1.72 | 1

TABLE 1. Example dataset

Then, if we consider instance x1, with feature a; and threshold value v{ = 1.45
then Di* = D\ {z2,x4, 25} and Di* = {x2, x4, 25} according to equation (3.7). If
we set r = 6, then rlz1] = {x1, 3,6}, Pri*(lz1) = 2 and Pri*(2]z;) = 1. Thus,
if we set € = 0.33, it holds that €[y™] = {1, 2} thus 1 € Bndy, Bndy and x1 € Ny.

The rationale behind this criterion is that we can consider the objects in r[x] to
be ambiguous with xj, that is, given our desired level of granularity, expressed by
the parameter r or, equivalently, by a number nn of nearest neighbors, we are not
able to distinguish zj from objects in r[zj]. Thus, when deciding which classes to
assign to zy, we should consider that the ambiguity on the level of objects translates
into a possible ambiguity, given by e ambiguity, at the level of the classes. Given
the orthopartition Of we can compute its entropy according to Equation (2.5) and
select the attribute-split value combination resulting in the minimal average, w.r.t
all values 7 of attribute a, entropy value. This process is repeated until the leaves
are reached (that is, a termination criterion has been satisfied) and each leaf L
corresponds to a specific orthopartition O = {OF, "'O|LY\}' This orthopartition
can then be used to assign a class to new instances by selecting the class according
to the following Equation, which selects the class having highest probability:

L 1
‘Py | + ZmEBndé |{y/€Y:m€Bnd5,}|

L]

(3.11) class(Or) = mazryecy
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3.3. Random Forests. In [28] the authors also defined an ensemble learning pro-
cedure, inspired by Random Forests. Basically, the learning process, as in standard
Random Forest learning, first induces a set of n TWDT estimators, which we denote
as 11, ...,T,. Each of these TWDT estimators can be viewed as an orthopartition
O; = {(Py,, Ny, ), .- (Py,, Ny, )} on the set of instances X, which assigns a set of la-
bels T;(x) C Y to each instance x € X according to one of the approaches presented
in Section 3.2.

Let x € X be a new instance to classify, then the ensemble of trees 11, ..., T},
determines the following basic belief assignment (BBA), in the sense of evidence
theory [30]:

12 sy - MBI =)

This BBA could then be transformed to a probability distribution using the pig-

nistic transformation [31] p(y;) = > g5, %, obtaining a probabilistic classifier

to which the decision procedure described in Equation (3.5) could be applied.
This procedure can be with respect to two different aspects, defining both a new

ensemble combination strategy and a new decision procedure:

(1) First of all, as regards the combination of the different tree predictions,
the trees are used to construct a single BBA by means of a naive counting
measure technique. Another approach is to consider each tree as a source
of information, interpreting their answers as their encoding of the belief
x € Ty(x) = Z. Tt is then natural to view the question of how to aggregate
the votes of the Decision Trees under an information fusion perspective
[32]. In particular we consider each decision tree as providing a different
simple bba m; st. m;(T;(x)) = 1 —s,m;(Y) = s and m;(Z) = 0 for
all other Z C Y, where s € (0,1). We then obtain the aggregated mass
function using the combination rule defined by Smets in Transferable Belief
Model [31]

(3.13) me(2)=@Qmi(Z)= > mi(A)-..-m}A)

AiN..NA,=Z

(2) With respect to the decision criterion, after having computed the aggre-
gate bba as explained above, we can obtain a set-valued aggregate de-
cision by using the interval dominance [33] criterion (thus, without per-
forming the pignistic transformation of m,). For each y € Y we compute
I(y) = [Bel(y), Pl(y)] = [ms(y),>_,cz m2(Z)] and we select as the final
solution the set {y € Y|y’ € Y Bel(y) > Pl(y')}.

Notably, the proposed aggregation algorithm being based on Smets’ combination
rule, this approach does not require a re-normalization of the masses in order to
assign zero mass to the empty set. Thus, the Three-Way Random Forest classifier
can express a complete abstention, i.e., completely refuse to provide any answer. If
we denote as RF'(x) the decision expressed by the Random Forest algorithm then
we say that RF(x) =7 if

(3.14) Yy eY, m(0) = Pl(y)

that is, the empty set is not interval dominated. This additional condition is in-
spired by the fact that in TBM the frame of discernment is usually thought as not
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necessarily exhaustive and, in fact, the empty set is usually thought as encoding
the belief that the true value is outside the considered domain.

Example 4. Consider an instance x and a Random Forest RF composed of three
trees T1,To, T3 s.t. Ti(x) = {1,2,3}, Ta(x) = {1,4} and T3(x) = {1,2,4} with
s =0.1. Then my is defined as follows m4({1,2}) = m,({1,4}) = 0.081, m,(Y) =
0.001, m,({1,2,3}) = m.({1,2,4}) = 0.009 and m,({1}) = 0.729. Thus Bel(2) =
Bel(3) = Bel(4) = 0, PI(3) = 0.01, Pl(2) = Pl(4) = 0.1, Bel(1) = 0.729 and
Pl(1) = 1. Consequently 1 is the single non-dominated alternative and thus the
results is RF(x) = 1.

3.4. Optimization—based Learning. Several ML approaches (e.g. logistic re-
gression, support vector machines, deep learning, ...) are based on a mathematical
optimization framework, in which the learning process consists in optimizing the
value of a loss function with respect to the parameters of the algorithm. While gen-
eral global search techniques could be used towards this purpose, the gradient de-
scent algorithm and its variations, can be used to more efficiently solve the optimiza-
tion problem when the loss can be represented as an (at least) sub—differentiable
function, also providing convergence and optimality conditions when the objective
function satisfies certain mathematical properties, e.g., convexity, smoothness, Lip-
schitz continuity. It is easy to note that the decision rule described in Equation
(3.4), that could be seen as a generalized version of the standard 0-1 loss, is not
convex nor smooth:

Theorem 2. [28]The loss function determined by the decision procedure described
in Section 3 is not convex and not smooth.

Z+ 3Z*which solves Eq. (3.5),

y*  otherwise

Proof. Let D(z*) = {

0 C(x)=D(x)
Then the loss of algorithm A w.r.t to instance x is L(z) = (7 C(z) € D(x)

€ otherwise
Clearly, L(x) is not convex. Also, given that the function is not even differentiable,
is evidently non—smooth. [l

In [28], a convex upper bound of the loss function is defined as a piece—wise linear
approximation also providing a one-vs-one scheme, based on evidence theory, for
extending the above introduced loss function to multiclass problems.

A limitation of this approach is that it is not amenable to using the gradient
descent algorithm or interior point [34] methods, in fact the approximate loss L(w)
is not smooth, nor even differentiable, while it admits a sub—gradient and thus can
be solved using sub—gradient methods [34], which, however, are less computationally
efficient. Another limitation is that the loss function is not directly applicable to
multi—class problems, requiring the usage of a one-vs—one scheme whose complexity,
however, is quadratic in |Y|.

We propose a new convex and natively multi-class formulation, inspired by the
work of Berrada et al. on top-k classification [35] and the definition of e-ambiguity.
Let A be a scoring classifier, i.e., a classifier that, given an instance x € S, returns
a set of scores A, (x), one for each y € Y. Let € € R be a confidence threshold;
A(x)* = mazryey Ay(x), with y* the corresponding class label and A(z)(g = {y €



16 ANDREA CAMPAGNER, FEDERICO CABITZA, AND DAVIDE CIUCCI

Y|Ay-(z) — Ay(xz) < €}. Evidently if t(x) € A(z)q then, according to the set
confidence threshold, ¢(x) is indistinguishable from y* and thus we should assign
low loss values to these cases. A direct generalization of Crammer and Singer
formulation of the hinge loss can be given as follows:

(3.15) L.(A(x),y) = max{A(:c)f’Z]\y +e— Ay(x), A(m)iy +1—-Ay(x)}

where A(x)\, denotes the values of A(x) when restricted to Y\ {y} and

A(x)f?]\y = minA(x) [\

Example 5. Let Y = {1,2,3,4,5} and A be a classifier such that, for a given
instance x we have A(z) = (0.2,0.3,0.15,0.1,0.25). Then, if we sete = 0.1 andy =
2 we have that A(x)q\2 = {1,5} and, hence, A(a:)?:]\y =0.2. Thus L(A(x),2) =
max{0.2+ 0.1 —0.3,0.25 + 1 — 0.3} = max{0,0.05} = 0.05. In fact, the difference
between As(x) and As(x) is less than the margin 1, thus the loss should penalize
this score in order to increase the margin.

y-

It is easy to verify that if A(x) can be expressed as a convex function on the
parameters, e.g. for SVMs, or logistic regression if the scores are obtained via the
softmax transformation of the underlying linear estimator, then the loss is also
convex.

Theorem 3. L. is convex.

Proof. Both terms inside the max are linear, thus also convex, furthermore the
point-wise maximum of convex functions is also convex. (Il

We can also show that this loss is well-behaved, in fact:

e When A,(x) = A(x)* then the left part of the maximization assumes its
minimal value, which is 0. The same holds for the right part, in this case
the actual value depends on both the margin between A, (z) and A(z)* and
the value of e.

e When A, is outside A(x)re] then the right part of the loss becomes domi-
nating and thus drives the optimization towards including the true label y
inside the e-ambiguity subset.

From this formulation we can also define a smoothed, and, thus, differentiable,
version following the temperature-based smoothing proposed in [35], obtaining:

(316) Li(A(z),y) =7 In( Y P@NHELA@ ) —ron( 7 eXin 4@

yEYE yEYF

where 7 > 0 is a smoothing parameter, d(y,y) is defined as

€ y € A(x)r
oy, y) = [E]
1+ A(z), otherwise

Y'* is the set of k-tuples of classes in Y, and Yy’“ is the set of k-tuples containing the
true class label y. Note that, while the smoothed loss L? is convex and smooth, and
thus we can ensure convergence to a global optimum using standard out-of-the-box
optimizers, it is expensive from a time complexity point of view: indeed, in order to
compute the value of the loss, a summation over all possible k-tuples in Y is required
and thus computing the value of the loss requires O(|Y|!) evaluations. A trade-off
should then be considered among ease of convergence, for which L? is favored, and
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computational efficiency, for which L. is favored, also taking in consideration the
possibility of using approximate evaluation techniques, e.g., Monte Carlo based
approaches, that could be used to speed-up the computation of L? and the size of
Y.

4. THREE-WAY INPUT

While Three-Way Output denotes a single phenomenon, i.e., a classifier emitting
a set—valued classification, with Three-Way Input (TWI) we denote two different
phenomena leading to a form of r-ambiguity, i.e., the presence of set—valued values
in the training set (which is the input to the learning process):

(1) The target attribute d is set—valued, this setting is also called learning from
imprecise/partial labels [20, 19]: a set-valued classification can be seen as
a partial abstention of the labeler in establishing a precise and clear-cut
decision;

(2) The training set is a multi—observer decision table (i.e. |D| > 1) which is
converted to a standard decision table in which the target attribute may
be set—valued, in order to preserve the disagreement among the observers.

In both cases the goal of the learning task is to train a classifier that is able to
disambiguate, that is to reduce as much as possible the original r-ambiguity. Seminal
work in this field has been initiated by [19] that introduced the concept of learning
from ambiguous labels, now more commonly called partial labels, that sparked
some interest in the research community [36] with several approaches focusing on
optimization-based (see e.g. [37, 38]), instance-based (e.g. k-nearest neighbors)
approaches [39] or hybrid approaches [40]. On the other hand the study of multi-
observer decision tables has been largely side-stepped in the ML community, where
the common approach amounts to the selection of, for each instance, the most
common label (in classification settings) or the mean value (in regression settings)
[41, 42, 43]. We believe that more generalised transformations could be employed to
preserve the multi-faceted and information-rich nature of multi-observer labelings
[44]. However, we leave the full development of the multi-observer setting to a
future work and here, we will focus on the first case.

In particular, in Sections 4.1 and 4.2 we will describe learning algorithms for
the TWI setting, by first presenting methods proposed in the literature and then
presenting our newly defined algorithms, both in optimization-based learning and
for decision trees and random forests. These techniques, as in the TWO learning
setting, employ orthopartitions as uncertainty representation framework to model
uncertain assignments of objects to classes, and methods rooted in evidence theory,
three-way decision and interval arithmetics to enable learning and inference on these
structures.

4.1. Optimization—based Learning. This learning setting has been studied un-
der the names of learning from ambiguous labels [19], learning from partial labels
[20, 45] or also superset label learning in the literature. In these works, a standard
optimization-based learning framework is described as follows. Let Ay,(x) be the
score assigned by algorithm A to class y for instance x and L(-) : R — R be a
loss function. If y* € Y is defined as y* = argmax,Ay(x), then we can define the
following three strategies :
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(4.1) Limaz(A(x), ) = L(mazyesAy(z)) + > L(—
Y¢S
(4.2) Ly(A(z), S Z Ay(x)+ Y L(—
|S‘ yeS y¢s
(4.3) Lavg(A(), S Z L(Ay(2) + > L(-
|S| yeSs y¢s

These formulations are based on different assumptions: L., and L, assume
that the highest scoring alternative is likely to be the correct one (and thus, can
be considered as optimistic loss functions) and thus typically tend to maximize the
score of one alternative. On the other hand L4 tends to favor distributions A(x)
weighting the alternatives according to the available information, by optimizing the
average loss value among the possible alternative labels. It is also to notice that
the following result holds:

Proposition 1. If L is convex and decreasing then
Linaa(A(®), ) < Ly(A(2), ) < Laug(Alx), )
Proof. The result directly follows from Jensen inequality. d

This framework, however, does not take in consideration the uncertainty and am-
biguity which is intrinsic in this learning setting, on the contrary, this is eliminated
by making some form of assumptions, e.g. optimism, which is especially prevalent
in the L4, formulation. In fact, it is easy to see that any case of r-ambiguity,
and hence every Three-way In learning problem, naturally defines a distribution
over the possible values of the loss function, determined by the fact that different
possible consistent classifications can be obtained from the original ambiguous one.

Such an estimate of the uncertainty range on the loss function true value can be
given as:

(4.4) Lint(A(2), S) = [minyes L(A(z),y), mazyes L(A(z),y)]

Let w € R? be a parameter vector representing our classifier. For instance, in a
neural network w is the set of the weights of all the connections. The interval-valued
loss Lint(A(z),S) naturally induces a pair of parametrizations (Win, Wmaz), that
are obtained optimizing for, respectively, the minimum and the maximum values
of the loss function.

In order to explain how to use this interval-valued information, we consider the
case of binary linear classification. Let x be an instance of the training set and
assume, without loss of generality, d(x) = 1. We should find which of w.in, Wmaz
results, respectively, in the minimum and maximum loss value for L(A(z),1). Evi-
dently, war = Maic fmin,maz} Wi - T (TeSp., Wy, is the opposite one) will result in the
minimum L; (resp., maximum L, ) value of the loss function. Thus, the optimizer
should then modify the parameters wys (resp., wy,) so to optimize for the value of
L; (resp., Ly,).

If, on the other hand, I(z) = {0, 1} we can, for each of the two labels, determine
the interval-valued losses L(y = 1,w) = [L{,LL],L(y = 0,w) = [LY, L%] and we
can establish the value of L(y = {0,1},w) = [min{L{, LY}, maz{LL, L2}]. This



THE THREE-WAY-IN AND THREE-WAY-OUT FRAMEWORK 19

formulation can be extended to a multi—class model. However, in this case, in order
to determine the interval-valued loss for an instance z, solving a multi-objective
optimization problem (MOOP) is required for determining the values of w resulting
in the extremes of the loss value distribution. Thus, the learning framework consists
of four steps:

(1) Starting from initial random parameters, induce the interval-valued loss
defined in Equation (4.4);

(2) Update the parameters in order to optimize for the loss, thus determining
a pair of parametrizations;

(3) Propagate forward the pair of parametrizations finding the corresponding
minimum and maximum values of the loss function given the current pa-
rameter values, solving a multi-objective optimization problem;

(4) Repeat steps 2 and 3 until convergence or out of time.

A stochastic gradient descent-inspired version of this procedure, that we termed
Stochastic Interval-Valued Optimization (SIVO), is described in Algorithm 1.

Data: Dataset DT
Result: optimal interval-valued parameters [w™", 1w™]
Set w to an initial random candidate;
Select instance x € DT with |d(z)| > 1;
Lint (A(x)a S) = [minyESL(A(x)’ y)7 maxyESL(A(x)’ y)],
Update (w™, w™**) in order to optimize for L;,;
while not converged or out of budget do
Select instance x € DT}
Find wps € (™™, w™®) s.t. maxyes L, (A(z),y) is maximal;
Find wy, € (w™" w™®) s.t. mazyesLy,, (A(r),y) is minimal;
Lint(A(), 8) = [minyesLu,, (A(x). y), maz,es Luy (), y):
Update (w™, w™**) in order to optimize for L;,;
end
Algorithm 1: Stochastic Interval-Valued Optimization (SIVO) Algorithm

Note that to extend this approach to multi-layered non-linear classifiers (e.g.
deep learning algorithms, that can be understood as generalizations of logistic re-
gression) requires, in the forward phase, to solve multiple MOOPs layer by layer.

Interestingly, the SIVO algorithm also allows us to obtain a Three-way Out
classifier directly, without further applications of the techniques described in Section
3. In fact, considering the final parametrizations (w™", w™*) and a new instance
x to be classified, for each y € Y we can compute L;n:(A(z),y) = [L], LY].

Definition 9. We say that a classification y dominates y' if
V<LV or (LY=LY =0 and LY<LY)

Then, the output classification for instance z is {y|fy’ € Y, v/ dominates y},
that is, the set of non-dominated possible classifications.

Example 6. Let Y = {1,—1}, v = (1,2, -3,1) with d(z) = {—

1,1} and consider
a linear classifier A with initial parameter configuration w = (1,1

,1,1) and loss
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function L = maxz{0,1 — y(w - x)}. Then Ly (A(x),{-1,1}) = [0,2] and, the new
parameter vector becomes w™™ = (0,—1,4,0) and wpar = (1,1,1,1). Then, if
another instance ¥’ = x would be given as input to A we could distinguish three
cases:
(1) If d(z') = —1 then Lijn:(A(z'),—1) = [0,2] and the new parametrization
following the update would become w™™ = w™*® = (0, —1,4,0);
(2) If d(z') = 1 then L (A(x'),—1) = [0,15] and the new parametrization
following the update would become w™™ = w™*® = (1,1,1,1);
(8) If d(z') = {0,1} then Lin(A(x'),{0,1}) = [0,15] and the parametrization
would not change.
Thus, if the optimization would be stopped after the first iteration, then, the
resulting classification would be —1 (since it dominates the alternative 1).

4.2. Decision Trees and Random Forests. In a standard Decision Tree learn-
ing algorithm, we consider, at each internal node N; and for each attribute a,
a possible split point p, (the technique to determine the split point depends on
the specific adopted learning algorithm) and evaluate that split by computing its
induced mutual information:

L(pa, Ni) = P(va > palNi) - > P(ylva > pa, N;) - logaP(ylva > pa, N;)
yey

(4.5) + P(Ua < pa|Ni) ’ Z P(y|va < paaNi) : logQP(y|'Ua < pasz')
yey

= P(vq > pa|N;) - H(S|vq > pa, Ni)
+ P(Ua < pa|Ni) : H(S|Ua < payN'L)

Then, we select the attribute a and the split point p, corresponding to the minimal
value of L(ps, N;). In a leaf node N, a decision label d(NN;) is selected, according
to the Bayes optimal decision rule:

(4.6) d(Ni) = argmazyey P(y|Ni)

These formulas are not directly applicable in the Three—way In setting, since the
labeling of the instances does not form a partition but, more generally, an orthopar-
tition. This means, however, that we can use the definitions of entropy given for
orthopartitions in Section 2. We can, thus, redefine the value of L(P,, N;) by using
Hyt, comparing attributes and split points in the same way as for classical Decision
Trees.

As regards the leaves of the tree, we observe that each such leaf N; defines a
basic belief assignment (bba) m:

(4.7) ma, (2 CY) = {z € S|t(x) = Z Az € Ni}|
na

from which we can compute the corresponding pignistic probability:

(4.8) Pret(y) =Y TT(ZZR = ﬁ (Bl ani(x))

yeZ z€Bnd,

This line of reasoning can be directly extended from Decision Trees to Random
Forests. Basically we induce the n Decision Trees T7, ..., T}, to form the forest, then,
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each such tree T; defines a bba m;. From these we can obtain a global bba mgp
using the rule of combination:

(4.9) mpp(Z) = (@Qm)(Z) = > mi(A1)- .. - ma(Ay)
i AN..NA,=Z
from which we can again compute the pignistic probability:

(4.10) OEDS mrr(Z) _ D mi(Ay) - .. - mn(Ay)

yez ] ye€Z AiN..NA,=Z 2]
E < e n

Furthermore, as also described for the SIVO algorithm in Section 4.1, we can also
directly obtain a three-way classifier from Three-way In Decision Trees or Random
Forests by applying the interval dominance criterion on the basic belief assignment

mpy, oY mpRpr.

5. EXPERIMENTAL VALIDATION AND DISCUSSION

In order to assess the validity and efficacy of the proposed algorithms, in both
the Three-way Out and Three-way In learning settings, we performed two sets of
experimental validations: in Section 5.1 we report the experimental setting and
obtained results in the Three-way Out case, while in Section 5.2 we report the
same information for the Three-way In case.

5.1. Experiments and Results: Three-way Out learning. As regards the
evaluation of Three-way Out classification algorithm, our experiments represent an
expansion of the experiments reported in [28]. Thus, we considered both classi-
cal algorithms: k-nearest neighbors (KNN), logistic regression (LR), Naive Bayes
(NB), SVMs, random forest (RF) and their respective three-way versions (prefixed
with TW in the following) considering both the decision-theoretic formulation (the
comparison between these and the classical algorithms was initially reported in
[28]) and the e-ambiguity based one. We considered also the algorithm for random
forests presented in Section 3.2, DIFID-TWRF in the following, using distance-
based split attribute selection, the information fusion base classifier combination
criteria and the interval dominance decision criteria. Finally, the last algorithm is
a linear classifier based on the L. loss function defined in 3.4, named L.-TWLC in
the following.

The experiments have been performed on a set of standard datasets from the UCI
repository: Iris, Wine, Digits, Breast cancer, Yeast, Olivetti faces and a real-world
medical datasets provided by IRCCS Galeazzi, one of the major research hospitals
in Italy. It will be named SF12 in the following and its target is to predict eventual
worsening of mental health of patients. See Table 2 for information about all the
datasets.

For each algorithm and dataset, we performed hyper-parameter selection and
computed the accuracy values averaged over a 5-fold cross-validation. As accuracy
we considered the average accuracy acca over all possible assignments of objects in
the boundaries and also the 95% confidence intervals around the mean is reported
in the following.

For the decision-theoretic three-way out algorithms we selected € = 1 and «(Z) =
%, while for the e-ambiguity three-way out algorithms, the L. LR algorithm and
the distance-based implementation of Random Forests described in 3.2 we set € =
0.3. The hyper-parameters settings and the references to the tested algorithms are
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Dataset # instances | # attributes | # classes
Iris 150 4 3
Wine 178 13 3
Digits 1797 64 10
Breast cancer 569 30 2
Olivetti faces 400 4096 40
Yeast 1484 8 10
SF12 462 10 2

TABLE 2. Number of instances, attributes and classes for the
tested datasets.
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FIGURE 5. Accuracies and 95% confidence intervals for the stan-
dard and three-way out classification algorithms on the Yeast
dataset.

reported in Table 3. The results of these experiments, some of which have been
previously reported in [28], are reported in Table 4 and the results for the Yeast,
Wine and SF12 datasets are also reported in Figures 5, 6 and 7.

In order to compare the different algorithms, and assess the statistical signifi-
cance of the differences in performances, we employed the Friedman test, a standard
hypothesis testing procedure to assess if any alternative algorithm consistently per-
forms better than others. More precisely, we used the post-hoc procedure [46] for
pair-wise comparisons between pairs of algorithms and Li’s correction [47] for mul-
tiple testing correction, in order to not over-estimate the p-values of the tests. The

average ranks registered for the 10 best performing algorithms are reported in Table
5.
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FIGURE 6. Accuracies and 95% confidence intervals for the stan-
dard and three-way out classification algorithms on the Wine
dataset. The y axis starts from 0.4 in order to better highlight
the differences among the algorithms.

Algorithm Ref. inside article | Hyper-parameters
Z
TW Eq. (3.5) e=1a=1{
eTW Eq. (3.2) e=0.3
L.-LR Sec. 3.4 e=0.3
DIFID-TWRF Sec. 3.2 €e=10.3,s=0.25

TABLE 3. References and hyper-parameters settings for tested algorithms

As can be seen from these tables the best performing algorithm was the TWRF
algorithm, and all three-way out versions of Random Forests were among the top
three-performing algorithms and separated by a small margin, i.e., no statistically
significant difference was found between their performances at the standard thresh-
old a = 0.05.

More generally, for each algorithm, the decision-theoretic three-way version per-
formed better than both the classical and e-ambiguity versions. The comparisons
among RF-TWRF, SVM-TWSVM and LR-TWLR were statistically significant at
«a = 0.05 while no statistically significant differences were found when comparing
decision-theoretic and e-ambiguity algorithms. Generally the e-ambiguity version
compared favorably with the classical version, producing better performing algo-
rithms in the case of LR, SVM and RF (both SVM and RF comparisons were
statistically significant) and the only two cases for which the opposite happened
were not statistically significant. Also, for both the ad-hoc developed algorithms,
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FIGURE 7. Accuracies and 95% confidence intervals for the stan-
dard and three-way out classification algorithms on the SF12
dataset. The y axis starts from 0.4 in order to better highlight
the differences among the algorithms

Algorithm Iris Wine Breast Digits Yeast Faces

SF12

KNN 0.984+0.03 | 0.75+£0.13 | 0.93£0.04 | 0.98 £0.03 | 0.57 £0.03 | 0.90 £ 0.16 | 0.82 4 0.02

TW-KNN 1.00 £ 0.00 | 0.99 £0.02 | 0.99 £0.01 | 0.90 £ 0.00 | 0.67 £0.02 | 0.89 +0.01 | 0.82 £ 0.01

e-TW-KNN 0.96 +0.04 | 0.99+0.03 | 0.96 £0.02 | 0.95£0.05 | 0.62 £0.03 | 0.81 +0.05 | 0.82 +0.01

LR 0.95£0.06 | 0.9540.05 | 0.95£0.02 | 0.93+0.04 | 0.53 £0.03 | 0.96 £0.03 | 0.73 +0.13

TW-LR 0.96 +0.01 | 0.98 +£0.02 | 0.98 £0.01 | 0.96 £0.02 | 0.78 £0.01 | 0.98 +0.01 | 0.77 &+ 0.01

e-TW-LR 0.94£0.00 | 0.934£0.01 | 0.96 £0.02 | 0.96 = 0.01 | 0.73 £0.02 | 0.87 £0.12 | 0.79 &+ 0.03

L.-TW-LC 0.97+0.01 | 0.954+0.02 | 0.98 £0.01 | 0.96 +0.01 | 0.78 +0.01 | 0.99 £0.02 | 0.81 +0.05

NB 0.95£0.04 | 0.964+0.03 | 0.94 £0.03 | 0.81 £0.06 | 0.15£0.02 | 0.82 £0.03 | 0.82 4 0.07

TW-NB 0.97+0.03 | 0.984+0.03 | 0.95+0.03 | 0.83+0.05 | 0.16 +0.02 | 0.84 £0.02 | 0.86 + 0.05

eTW-NB 0.914+0.05| 0.88+0.11 | 0.95+0.02 | 0.81 £0.07 | 0.16 £0.02 | 0.86 & 0.03 | 0.81 4+ 0.03

SVM 0.98+£0.03 | 0.73+0.09 | 0.94 £0.02 | 0.97+0.02 | 0.524+0.03 | 0.79 £0.05 | 0.74 + 0.04

TW-SVM 0.98£0.01 | 0.9040.01 | 0.96 £0.01 | 1.00 £ 0.00 | 0.81 £0.02 | 0.87 £0.04 | 0.83 & 0.06

e-TW-SVM 0.94+£0.02 | 0.91+0.02 | 0.93 £0.05 | 0.97+0.02 | 0.80 +0.00 | 0.87 £0.02 | 0.81 +0.04

RF 0.97£0.03 | 0.984+0.03 | 0.96 £0.02 | 0.94+0.02 | 0.58 £0.03 | 0.93 £0.02 | 0.83 &+ 0.05

TW-RF 0.98 +0.01 | 0.99 +£0.01 | 0.99 £0.01 | 0.99 £0.01 | 0.80 £0.02 | 0.98 +0.01 | 0.85 4 0.03

e-TW-RF 0.98£0.02 | 0.9940.03 | 0.97 £0.02 | 0.96 £ 0.02 | 0.82 +0.01 | 0.98 £0.01 | 0.83 +0.03

DIFID-TW-RF | 0.99 +0.01 | 0.98 +0.00 | 1.00 £0.01 | 0.98+0.02 | 0.78 £0.03 | 0.97 £0.02 | 0.86 & 0.02

TABLE 4. Measured 95% confidence intervals, centered around the
mean accuracy, for the considered datasets and algorithms.

‘ Alg. ‘ TWRF | DIFID-TWRF ‘ eTWRF ‘ L-TWLC ‘ TWLR ‘ TWSVM ‘ TWKNN ‘ RF ‘ KNN/e-TWLR/e-TWSVM ‘

[Rank | 2.14 2.28 | 271 | 371 [ 400 | 414 | 442 [4.86 ] 5.86

TABLE 5. Average ranks of the top 10 performing algorithms.
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L-TWLC and DIFID-TWRF, the obtained performances were statistically sig-
nificantly better than the respective classical algorithms, although no statistically
significant difference was found among these algorithms and the respective decision-
theoretic three-way out algorithms.

From these observations we can conclude that three-way out algorithms offer a
trade-off among accuracy (and reliability) and coverage, i.e. the points that are
classified: they sacrifice coverage in order to obtain predictions that are more accu-
rate and more reliable because they reflect the uncertainty intrinsic in the training
data. It can also be observed that, compared to decision-theoretic three-way algo-
rithms, the e-ambiguity implementations provide comparable performance but with
less parameters to set and, if the most general formulation of the decision-theoretic
criterion is employed, increased computational efficiency. Indeed, time complexity
is log-linear instead of exponential in the number of classes. Similar observations
can be made with respect to the DIFID-TWRF and L.-TWLC algorithms.
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FIGURE &. Accuracies and 95% confidence intervals for the three-
way in classification algorithms on the Iris dataset.

5.2. Experiments and Results: Three-way In learning. Asregards the Three-
way In learning setting we compared five different algorithms: four variants of linear
classifiers based on the loss functions Ly, Lavg, Lmae and the SIVO algorithm pre-
sented in Section 4.1, and the random forest algorithm described in Section 4.2,
using the Hpe; entropy definition, called TWI-RF in the following. In order to eval-
uate the algorithm we considered a set of 4 different standard datasets from the
UCI repository: Iris, Breast cancer, Wine, Digits and two synthetic datasets:

e A 5 class isotropic Gaussian classification problem, with 10° instances and
o = 10. This dataset was created in order to have an adversarial dataset
for which the true classification would be difficult to recover, due to the
large o value that results in the classes to have large overlaps.

e A 2 class circle classification problem, with 10® instances and o = 0.1.
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For all these datasets we perturbed the original labels in order to evaluate the ability
of the Three-way In algorithms to recover the original labels. The perturbation was
generated as follows:

e For each instance z, collect the 10-nearest neighbors Nyg(x);

e Assign to instance x the set of labels {d(2')|z’ € Nyo(x)}.
In order to evaluate the algorithms we performed a 5-fold cross-validation, training
the algorithms on the perturbed data obtained via the above described procedure
and then testing the algorithms against the original labels of the validation in-
stances, in order to assess to which degree they were able to recover the correct
labelling.
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FIGURE 9. Accuracies and 95% confidence intervals for the three-
way in classification algorithms on the Digits dataset.

For each algorithm and dataset we registered the average accuracy over the
different folds and the 95% confidence intervals around the mean. These results are
illustrated in Table 6, while the results for the Iris, Digits and Circles datasets are
shown in Figures 8, 9 and 10.

Algorithm Iris Wine Breast Digits Gaussian Circles
LCy, 0.91+0.09 | 0.83£0.04 | 0.67+=0.14 | 0.70 £0.10 | 0.64 £ 0.03 | 0.54 £ 0.04
LCar | 0.88+£0.11 | 0.824+0.05 | 0.63 £0.14 | 0.65 +0.08 | 0.65 +0.02 | 0.53 £ 0.04
LCyuq 0.93+£0.06 | 0.86+0.02 | 0.63+0.13 | 0.71 £0.13 | 0.61 £ 0.06 | 0.53 = 0.03
SIVO 0.91+£0.04 | 0.87£0.04 | 0.65+0.12 | 0.74 £0.09 | 0.63 £ 0.04 | 0.54 £ 0.04
TWI-RF | 0.97+0.04 | 0.87 £0.11 | 0.92£0.03 | 0.93 £0.01 | 0.68 +0.02 | 0.78 £ 0.01

TABLE 6. Measured 95% confidence intervals, centered around the
mean accuracy, for the considered datasets and algorithms.

As can be seen from the tables the Random Forest-based algorithm provided
significantly better performance than all linear classifier-based methods, i.e. the
best accuracy even when taking into account the possible oscillations of performance
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FIGURE 10. Accuracies and 95% confidence intervals for the three-
way in classification algorithms on the Circles dataset.

given by the confidence intervals. A possible reason for this behavior is that all
the four other models make very strong assumptions, given that they are linear
classifier, and thus require, at least approximately, linear separability of data in
order to achieve good performance. This is particularly evident in the Circles
dataset in which the linearity assumption obviously doesn’t hold. On the other
hand, in general, Random Forest are complex non-linear classifiers and thus able to
better retrieve hidden patterns. Furthermore, the formulation of Random Forests
that we defined does not require a retraining for each different possible label and
thus, at least in principle, it is more efficient. It is to note, however, that only the
difference among TWI-RF and the other algorithms was found to be statistically
significant (at = 0.05, and using the hypothesis testing procedure described in
Section 5.1), and thus further studies in order to find significant advantages, if any,
of any technique should be considered.

6. CONCLUSIONS

In this article, we studied the ambiguity occurring in Machine Learning, from a
twofold perspective: both as a problem affecting the input of the learning process,
and as a potential resource to make the output of classifiers apter for sound human
decision making.

In particular, we presented techniques to represent and manage this type of
uncertainty in the training data that is fed into the learning algorithm, what we
called Three-way In), and also techniques to represent ambiguity and uncertainty
in the output of a learned model, what we called Three-way Out. More specifically,
in this work we provided a unified approach, based on orthopartitions, three-way
decisions and evidence theory, to address both problems under the same mathe-
matical framework and, possibly, in a unified end-to-end learning process. In so
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doing, our approach allows to build Machine Learning systems capable to take am-
biguous and partial data in their training, as well as to reflect this uncertainty in
the classification of new data points for which no sufficient evidence is available.

To this aim, we first provided a general description of the sources and instances
in which these types of ambiguity could arise; how they can be represented by using
orthopartitions; and how these data representation can be managed by some Ma-
chine Learning algorithms, by providing a set of different classification techniques
based on Decision Tree and ensemble or optimization-based methodologies.

In order to assess the validity of the proposed techniques and their capabil-
ity to properly manage ambiguity in both the Three-way In and Three-way Out
learning settings, we performed a set of experiments in which we compared the pro-
posed techniques with state-of-the-art approaches, and obtained promising results.
These results support the claim that the proper representation and management
of ambiguity in the data, instead of hiding or ignoring it, can bring advantages in
machine-learning settings.

In particular, we also claim that the proposed techniques are significant in real-
world problems, more importantly so in critical tasks in which ambiguity and, more
in general, uncertainty is intrinsic and to some extent unavoidable, as in medicine
and law. In such settings, we recall that multi-faceted and multi-view represen-
tations of the data are common, as different raters are often involved in labeling
problems [41, 42]: the capability of directly using and conveniently communicat-
ing the ambiguity encountered by the algorithm in recommending a class could
be critical to deliver reliable Machine Learning-based Decision Support Systems.
This also addresses the recent call for explainable, interpretable and accountable
methods [48, 49].

Indeed, in our view, abstention in the ML input is a way to trade reliability off
with completeness: i.e., to improve the former, we can decrease the latter. On the
other hand, abstention in ML output is a way to trade (decision) accuracy with
efficiency, as a computational system providing decision makers with unresolved
advice implies that these have to look for and consider more evidence, even beyond
the available data.

Given these observations, we believe that the following future works should be
investigated:

e in multi-rater tasks, the traditional approaches consist of converting a learn-
ing problem on a multi-observer decision table to traditional single-decision
learning problems, e.g. by taking the majority vote of the raters. This ap-
proach, although simpler than applying three-way in strategies, involves an
information loss. Therefore, experiments that compare possible advantages
of directly using Three-way In strategies should be conducted.

e Extensions of the proposed techniques to more general uncertainty types
(e.g. vagueness), and models (e.g. fuzzy or possibility-based approaches)
could be of interest in order to address different types of imperfect infor-
mation or rich data representations that can arise in real-world problems.

e While in this work we considered only uncertainty and ambiguity affect-
ing the target (or decision) variables, these problems could also affect all
other predictor variables, e.g. the predictor features could contain miss-
ing, set-valued or interval-valued data [22]; therefore, a generalization of



(1

2
(3]

[4]

(12]

(13]

14]

(15]

[16]

(17)

(18]

19]

THE THREE-WAY-IN AND THREE-WAY-OUT FRAMEWORK 29

the proposed approaches to these cases could extend the generality and
applicability of the proposed framework.

e Finally, a study of the learnability properties (e.g. sample complexity
bounds) of the considered learning settings, in the vein of [50], should at-
tract further research efforts.
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