
Anomaly Detection As-a-Service
Marco Mobilio, Matteo Orrù, Oliviero Riganelli, Alessandro Tundo, Leonardo Mariani

University of Milano - Bicocca
Milan, Italy

{marco.mobilio | matteo.orru | oliviero.riganelli | alessandro.tundo | leonardo.mariani}@unimib.it

Abstract—Cloud systems are complex, large, and dynamic
systems whose behavior must be continuously analyzed to timely
detect misbehaviors and failures. Although there are solutions
to flexibly monitor cloud systems, cost-effectively controlling the
anomaly detection logic is still a challenge. In particular, cloud
operators may need to quickly change the types of detected
anomalies and the scope of anomaly detection, for instance based
on observations. This kind of intervention still consists of a largely
manual and inefficient ad-hoc effort.

In this paper, we present Anomaly Detection as-a-Service
(ADaaS), which uses the same as-a-service paradigm often
exploited in cloud systems to declarative control the anomaly
detection logic. Operators can use ADaaS to specify the set of
indicators that must be analyzed and the types of anomalies that
must be detected, without having to address any operational
aspect. Early results with lightweight detectors show that the
presented approach is a promising solution to deliver better
control of the anomaly detection logic.

Index Terms—Cloud computing, Anomaly detection, Anomaly
Detection as-a-service, Monitoring

I. INTRODUCTION

The adoption of cloud computing technologies can facilitate
achieving sophisticated capabilities, such as scalability, dynamic
resource allocation, and fault tolerance [7], [17], [31], [33].
However, it is not easy to design applications that behave
properly in highly dynamic cloud environments [23], [25], and
their health and reliability must be constantly monitored to
detect possible anomalous behaviours [1].

There are several monitoring frameworks that can be used to
deploy probes that collect data from cloud infrastructures (e.g.,
the CPU consumption of a machine), platforms (e.g., the band-
width consumption of a specific service), and applications (e.g.,
the number of users connected to an application running on the
Cloud) [4], [8], [16]. Since configuring a monitoring framework,
and reconfiguring it after every change that may occur in the
monitored system, might be challenging, it is possible to use
Monitoring-as-a-Service (MaaS) solutions, which support the
declarative (re-)configuration of the monitoring system [8], [16],
[27]. That is, the operator specifies the monitoring objective and
the MaaS solution automatically takes all the actions necessary
to collect and present the requested data to the operator.

Monitoring a software system is just a prerequisite to reveal
misbehaviours because operators still have to inspect the
collected data, to identify any problem that may require their
intervention. Since the amount of collected data can be huge
and it is not feasible to assume operators can be constantly
looking at the data, the detection of anomalous behaviors must
be automated.

Anomalies can be detected in many different ways using
different strategies and indicators, and also the anomaly
detection requirements may change easily when the collected
data change, it is thus important to be able to flexibly work
with the anomaly detection logic. In particular, operators should
be able to quickly modify the data and the strategy used to
detect anomalies (e.g., detecting anomalies based on threshold
values or detecting anomalies based on historical data). To
this end, this paper early investigates the idea of exploiting
the as-a-service paradigm also in the context of anomaly
detection, delivering Anomaly Detection as-a-Service (ADaaS).
The main principle is that the operator must be able to specify
declaratively the kind of anomalies that must be detected (e.g.,
threshold- or peak-based) and the data that must be used to
detect anomalies (e.g., an indicator about the memory or the
CPU), while the technical infrastructure does the work of
deploying and putting into operation the requested anomaly
detection framework automatically.

This paper presents our work about delivering ADaaS for
cloud systems. We defined our approach on top of VARYS [30],
which is a technology-agnostic MaaS framework for cloud
systems. ADaaS relies on an architecture that is designed to
dynamically and automatically deploy, redeploy, and un-deploy
anomaly detectors, based on operator’s needs.

The paper is organized as follows. Section II describes the
VARYS framework. Section III presents how we extended
VARYS to achieve ADaaS. Section IV presents a preliminary
evaluation of anomaly detection. Section V discusses related
work. Finally, Section VI provides final remarks.

II. VARYS FRAMEWORK

VARYS is a technology-agnostic Monitoring-as-a-Service
solution that can address KPI monitoring at all levels of the
cloud stack. The main purpose of VARYS is to allow users
to manage their monitoring systems through a declarative ap-
proach, without having to deal with the underlying technologies,
whose management is encapsulated in specific components of
the architecture.

VARYS is model-driven, that is, the monitoring goals are
selected from a tree-like model where nodes represent quality
attributes, which are decomposed into finer-grained quality
attributes, until reaching the leafs of the tree that represent
measurable properties. Operators can select monitoring goals
at any level of the tree. A selected monitoring goal is then
mapped to its measurable properties and the corresponding
probes are automatically deployed. Metadata associated with

ar
X

iv
:1

90
9.

08
37

8v
1

 [
cs

.S
E

]
 1

8
Se

p
20

19

probes and target services allow VARYS to automatically deal
with technical choices, without bothering the operator.

VARYS is also reconfigurable since it can be used to deploy
and undeploy probes based on the actual needs of the operator.

The architecture of VARYS is flexible enough to be able
to accommodate changes in the tree-like model, in the set of
probes, and in the underlying technologies used to implement
data collection. For instance, VARYS can interchangeably
use Elasticsearch [14] and Prometheus [24] as monitoring
technologies.

Compared to other MaaS frameworks [4], [8], [16], VARYS
is less tailored to specific technologies or platforms and it is
not limited to a set of KPIs, for instance low-level KPIs such
as memory consumption or network bandwidth. It also exposes
high-level APIs to express the monitoring intents declaratively,
reducing the integration barriers.

Note that we started from VARYS [30] to define ADaaS
because VARYS provides a flexible API that facilitates
integration. However, the ADaaS principle is not limited
to VARYS and can be developed also using other MaaS
frameworks.

III. ANOMALY DETECTION AS A SERVICE

A. The Approach

ADaaS delivers the capability to define both the set of
anomaly detection strategies and the indicators that should
be checked with these strategies, declaratively. For exam-
ple, an operator may use ADaaS to automatically deploy a
threshold-based anomaly detector for CPU consumption of
some containers and a history-based anomaly detector for
memory consumption of a different set of containers.

To work properly, ADaaS has to integrate with a monitoring
framework that collects the indicators about the behavior of the
target cloud system in a time-series database, which is accessed
by ADaaS to compute anomalies. This means that ADaaS can
be used with regular monitoring frameworks, but it is more
effective when used jointly with a MaaS framework, because
both the collected KPIs and the anomaly detection strategies
could be changed dynamically. In particular, our prototype has
been designed to seamless integrate with VARYS [30].

B. Architecture

The architecture of the ADaaS framework is shown in Fig. 1.
The ADaaS Server receives commands from the command

bus and maps these commands into the concrete operations that
must be performed to actuate them. In particular, the received
commands take the form of pairs 〈KPIs, analysis〉, where KPIs
represent the set of indicators that must be analyzed, and
analysis represents the anomaly detection strategy that must
be used. The ADaaS Server exploits a repository of anomaly
detectors to select the ones that correspond to the requested
analysis (the detectors in the repository are augmented with
metadata to make the selection possible), and requests the
ADaaS Bridge to deploy them.

The ADaaS Bridge is the component in charge of deploying
the anomaly detectors as requested by the ADaaS Server

while taking the target technology under consideration. That
is, the (technology-agnostic) logic for identifying the detectors
to be deployed is in the ADaaS Server, while the bridge
exploits information about the cloud platform to make optimal
deployment of detectors. In particular, it provides CRUD and
status operations that allow the ADaaS Server to know if a
detector has been fully deployed and is operational, to know
the list of active detectors, and more in general to manage the
lifecycle of the deployed detectors.

The Anomaly Detectors AD1 . . .ADn are the actually de-
ployed detectors. The architecture is intended to favour
the usage of (potentially many) small, lightweight anomaly
detectors, each one targeting a different kind of anomaly
on different indicators, instead of using heavy monolithic
and holistic machine-learning components. Specifically, small
detectors, fast to deploy/un-deploy, that require small or no
learning time and that focus on a very limited set of KPIs
(often just one) are a natural choice for situations in which
the monitored KPIs change frequently, as in dynamic cloud
environments. Since anomaly detectors read and write data from
time-series databases, the anomaly detectors can be combined:
the anomalies produced by a detector can be the input to another
detector to generate higher-level anomalies from lower-level
anomalies.

ADaaS
Server

ADaaS
Bridge

AD2 AD3AD1 ADn

AD
Repository

…

Data Stream

Anomalies Stream

Command Bus

Fig. 1. The ADaaS Architecture.

One bus and two data streams are also part of the architecture
in Fig. 1. The Command bus is used to send commands to the
ADaaS Sever. The Data Stream and Anomaly Stream are input
and output connections, respectively. These connections can be
linked to actual streams or time series databases (using a single
time-series database for both input and output operations is
indeed possible).

C. Scenario: Deployment of the Anomaly Detectors

In this section, we summarize the behavior of ADaaS when a
request for changing the set of deployed anomaly detectors (to
add/remove/replace detectors) must be served. ADaaS works
according to the following sequence of steps:

1) The ADaaS Server receives a request from the command
bus.

2) The ADaaS Server compares the content of the request
and the status of the deployment to identify the set of

changes that must be performed on the existing detectors.
The status of the deployed detectors is obtained by
querying the ADaaS Bridge. The metadata associated
with the available probes (e.g., the name of the specific
KPI to query on the time-series database) enable the
completion of this step.

3) The ADaaS Server sends a specific request for changes
to the ADaaS Bridge.

4) The ADaaS Bridge maps the request into a set of concrete
operations that depend on the target technology, such as
the type of cloud platform used (e.g., based on containers
or virtual machines) and the type of time-series database
used.

5) The ADaaS Bridge monitors the status of the deployment
of the detectors and makes it available to the ADaaS
Server, and to dashboards that might be used to visualize
the status of the system.

D. Anomaly Detectors

Although a virtually unlimited number of anomaly detectors
can be defined and deployed in the context of ADaaS, we
started with the following three general anomaly detectors that
can be applied to any numeric indicator:

• Fixed Threshold Anomaly Detector: This anomaly detector
depends on the value of parameters V and n, which are
specified in the request received by the ADaaS Server and
are set when the detector is first deployed. The anomaly
detector works as follows. If n consecutive values in
the checked indicator have values above threshold V ,
the anomaly detector fires the anomaly. More formally,
given a time series . . . , vt+1, . . . vt+n of values, if vt+i ≥
V,∀i = 1, . . . n, this detector fires an anomaly at time
t+ n, otherwise no anomaly is fired.

• Sigma Limit Anomaly Detector: This anomaly detector
can detect burst, outliers, and short term variations in the
analyzed indicators. It works by comparing the current
values to the mean and variance of the values collected
in the recent past. If the current value can be classified
as an outlier, an anomaly is fired. In particular, a value
vt+1 is reported as anomalous if equation 1 holds

d(vt+1,mean(vt−∆, vt)) > σ ∗ std(vt−∆, vt) (1)

where:
– d(x, y) represents the distance between two values. In

many cases this can be a simple difference, however
more complex distance functions can be used for
instance when samples are tuples.

– vt+1 is the value that is checked and t+1 is the time
at which the anomaly can be fired.

– ∆ is the size of the window that contains the values
from t−∆ to t.

– mean(vt−∆, vt) is the mean of all values in the
window.

– std(vt−∆, vt) is the standard deviation of all values
in the window.

– σ is a parametric multiplier that determines the
sensitivity of the detector (usually σ = 3 is used).

• Mean Shift Anomaly Deetector: This anomaly detector
can detect long-term changes in KPIs. It is aimed at
indicators (or combinations thereof) that are supposed to
remain stable in normal usages scenario (e.g. memory
consumption, or the ratio between memory consumption
and number of requests being served). Formally, the
detector fires if equation 2 is valid

|mean(vt−2∆−1, vt−∆−1)−mean(vt−∆, vt)| > λ (2)

where:
– ∆ is the chosen size for the window.
– mean(vt−∆, vt) is the mean of all the last ∆ values.
– mean(vt−2∆−1, vt−∆−1) is the mean of the previous

∆ values.
– λ is a parameter that determines the sensitivity of

the detector. As an example, we may set λ =
std(vt−2∆−1, vt−∆−1), so that the detector fires an
anomaly if the difference between the mean of the
current window and the mean of the previous window
is greater than the standard deviation of the previous
window.

E. Design of the Anomaly Detectors

To flexibly support the various combinations of time-series
databases, and more in general the various sources of data, we
separated the data handling logic from the anomaly detection
logic, using the design shown in Fig. 2.

CSV_DHPrometheus_DHElasticsearch_DH

DataHandler

MeanShift_AD

AnomalyDetector

FixedThreshold_AD SigmaLimit_AD

source

destination

Fig. 2. Design of the anomaly detection and data handling logic.

In particular, the specific anomaly detectors are extensions
of the general class AnomalyDetector, which implements the
behavior that is in common to every anomaly detector. This
includes:

• The instantiation of the source DataHandler that connects
the detector to the source time-series database with the
indicator(s) that must be checked.

• The instantiation of the target DataHandler that connects
the detector to the target time-series database to write an
indicator with the sequence of anomalies that have been
fired.

• The capability to run the anomaly detection logic with
the appropriate frequency.

To implement new anomaly detectors, developers only need
to create a subclass of AnomalyDetector with the proper
anomaly detection algorithm.

The implementation of the data handlers follows a similar
structure, with the general data handling logic implemented
in the DataHandler class and the specific operations to read
and write from different kinds of sources implemented in the
subclasses. We also defined a common output format for all
the data handlers. Right now we support data handlers that
can read and write from Elasticsearch, Prometheus, and CSV
files. While the first two data handlers are designed to support
online analysis, the third data handler has been implemented
to support repeatable offline data analysis. As an example, the
Elasticsearch_DH queries Elasticsearch for new documents
with the specific sampling rate and query specified in the
config file. The CSV_DH has been implemented specifically
for feeding offline experimental data, thus allowing to perform
the same analysis on different data without the need to modify
the code of the detector.

F. Implementation Details

Our current prototype implementation supports the deploy-
ment of anomaly detectors based on containers and their
dynamic configuration based on shared volumes. Both the
ADaaS Server and the ADaaS Bridge are Python components
that can be queried with a REST API. The individual anomaly
detectors are also implemented as Python components, although
our architecture does not impose any constraint on the language
to be used to implement the detectors.

IV. EVALUATION

In this section, we report early results obtained by applying
failure prediction in combination with the sigma limit anomaly
detection.

A. Subject System

The objective of the evaluation is to assess the approach
with a realistic case, to observe our prototype in operation and
determine to what extent anomaly detection may support failure
prediction capabilities. To this end, we selected Clearwater [21]
as subject system, which is an open source implementation
of an IP Multimedia Subsystem. A standard installation of
Clearwater consists of six components running in separated
VMs.

In this evaluation, we detect anomalies from 315 KPIs
collected from all the components of the system and from
different layers. Examples of KPIs are the number of rejected
requests, the average latency, and the used memory. All the
detectors have been deployed declaratively.

B. Experiment Setup

We evaluate the quality of the anomaly detection mechanism
by studying how it can support the automatic prediction
of failures. In particular, we execute Clearwater without
producing any failure and we train a one class Support Vector
Machine [11] for predicting failures based on the reported

anomalies. Note that a one class Support Vector Machine can
be trained from positive samples only and also failure-free
executions produce anomalies.

More specifically, we use a sliding window of fixed length
to generate multiple windows with anomalies, starting from the
anomalies reported while running the system with normal (non-
failing) executions. The trained model is able to predict failures
based on the degree of difference between the anomalies
produced by the actual observed behavior and the sets of
anomalies observed in the training phase.

To generate the normal executions to train the model, we
designed a workload that implements a business scenario which
performs calls based on calendar patterns such as time of the
day and day of the week. In particular, we consider regular
office hours and our workload variation patterns are of two
types: daily variations and hourly variations. In the former case,
the system is busier on working days of the week (Monday to
Friday). In the latter case, our system experiences an increase
in calls during the daily hours with peaks around 2pm, and
only a few calls during the night.

Predictions are generated by checking the anomalies within
sliding windows of the same length of the windows used in
the training phase. If the trained failure predictor consistently
returns a failure prediction for several windows, the failure
prediction is finally returned to the operator. We determined
empirically that collecting a sample per minute and reporting
a failure prediction when the prediction is stable for 7 samples
works quite well.

To evaluate failure prediction in presence of faults, we
injected the following four types of faults: packet loss faults,
excessive workload conditions, memory leaks, and CPU hogs.
We injected a fault per type: a packet loss fault in Sprout’s1

virtual network interface; a memory leak in Bono’s2 VM; a
CPU hog in Sprout’s VM; and an excessive workload for
the entire Clearwater system. We activated the injected faults
according to three activation patterns: (1) the fault is activated
with a same frequency over time; (2) the fault is activated
with a frequency that increases exponentially, resulting in a
shorter time to failure; (3) the fault is activated randomly over
time. In total we collected results for 12 experiments with
failing executions (4 fault types time 3 activation patters) and 1
experiment in which the system has been executed in its normal
operating conditions without faults or abnormal workloads.

C. Results

Since the failure prediction ability depends on both the length
of the sliding window and the length of the history used by the
sigma limit anomaly detector to compute thresholds, we started
by empirically studying the impact of these two parameters
on the effectiveness of the technique. Note that the sliding
windows should be big enough to contain a sufficient amount of
information to predict failures and small enough to be practical

1Sprout (SIP Router) acts as a combined SIP registrar and authoritative
routing proxy, and handles authentication.

2Bono (Edge Proxy) provides the entry point for the client connections to
the Clearwater system.

and sensitive to failure symptoms. In the evaluation, we studied
sliding windows of size 15, 20 and 25 minutes (window size).
In terms of historical data used to train the anomaly detector,
we considered to use the values of the indicators observed in
the last 10, 20, 50 and 100 minutes (past data interval).

Figure 3 shows the results obtained for the standard measures
of precision and recall: Precision is the ratio of correctly
predicted failures over all predicted failures; Recall is the
ratio of correctly predicted failures over actual failures. Values
are averages over all the experiments.

0%

20%

40%

60%

80%

100%

<10, 1
5>

<20, 1
5>

<50, 1
5>

<100, 1
5>

<10, 2
0>

<20, 2
0>

<50, 2
0>

<100, 2
0>

<10, 2
5>

<20, 2
5>

<50, 2
5>

<100, 2
5>

<past data interval, window size>

Precision Recall

Fig. 3. Precision and Recall.

Results indicate that the values of the studied parameters
impact on predictions, and that a sliding window of 20 minutes
and detectors working on the data reported in the last 10
minutes reach the best prediction effectiveness among the
experimented sizes in term of precision (96%) and recall (86%).
It is interesting that the resulting approach seldom generates
false positives (96% precision) and predicts failures for the
vast majority of the samples that have been analyzed (86%).
Note that 86% recall implies that for 86% of the windows
collected when a failure occurs, the failure is actually predicted.
Thus failure predictions have been reported for all the analyzed
failures.

Since it is important to know how early failures can be
predicted, Table I shows the average time occurring between
a failure prediction and the failure occurrence (i.e., a system
crash or the system being unable to serve calls). Failures are
predicted well in advance, giving to operators the opportunity
to intervene.

TABLE I
RESULTS FOR EACH FAULT TYPE.

Fault Type Failure Prediction Lead-Time (avg)

CPU hog >12 hours
Memory Leak 150 mins
Packet Loss 136 mins
Excessive Workload 161 mins

Finally, we compared the effectiveness of the failure pre-

TABLE II
FAILURE PREDICTION COMPARISON.

Anomaly Detection Method Precision Recall Memory Usage

Sigma Limit 96% 86% 70 MB
HTM 100% 89% 250 MB

diction based on sigma limit anomaly detectors, which is
a lightweight detector, to the effectiveness of Hierarchical
Temporal Memory (HTM) [2], which exploits models that
replicate the structural and algorithmic properties of the
neocortex to identify anomalies in an unsupervised environment.
The HTM models have been trained on the same data used
for the lightweight anomaly detectors. Table II reports the
precision, recall, and memory usage of the two methods. We
can observe that the effectiveness of the lightweight anomaly
detectors used in ADaaS and the effectiveness of HTM are
similar, but the sigma limit method reduced memory usage by
72%. This result confirms our initial intuition that large cloud
systems with thousands or millions of running services can be
more effectively addressed with scalable lightweight anomaly
detectors.

This result is preliminary and further experiments are
necessary to generalize the collected evidence.

V. RELATED WORK

The body of knowledge related to anomaly detection is large
since it covers a number of disciplines (such as, data science,
machine learning, and statistics) and includes a wide variety of
techniques (such as, classification and clustering techniques)
spanning over multiple applicative domains (such as, intrusion
and fraud detection, and medical informatics) [9]. There might
be a large variety in the approaches but, by and large, the
underlying rationale is looking for patterns of either features
or behaviours that differ from what is considered normal or
regular [9], [10].

A large variety of anomaly detection techniques have been
designed to specifically target data collected sequentially, such
as in the case of time series.

However, many anomaly detection techniques simply process
data in batches and for this reason are unsuitable for real-time
streaming applications. This is the case of Symbolic Aggregate
Approximation [18], which has been used to find the most
unusual subsequences within a time series, the supervised
learning approach by Hermine et al. [3], which leverages a
combination of a Bayesian maximum likelihood classifier and a
linear regression model to spot anomalies in temporal structures,
and the Netflix’s robust principle component analysis (RPCA)
method [22], and Yahoo’s EGADS [19].

The spread of the cloud computing technologies [15], with
their inherent dynamic nature, which favours adaptability,
extendability, and scalability of resources and users, led to
the emerging popularity of streaming applications, which are
characterized by the processing of a continuous sequence of
data in real-time. In the field of cloud computing, various
techniques for detecting anomalies have been adopted and

redefined [13], [20], [26], [34]. However, common usage
scenarios for cloud administrators and practitioners do not
fit well with these approaches that use complex statistical
analysis, are not scalable, and often require supervised learning
of training sets coming from a historical data. On the contrary,
there is a demand for anomaly detection strategies able to
work online, in a continous fashion without or with a minimal
training, with no need of storing the entire stream, that can
adapt dynamically to the environment, producing alerts and
returning anomalies as fast as possible [2], [10].

Semi-online anomaly detection solutions partially respond to
these requirements because they offer online anomaly detection
abilities after an initial learning phase [12], [28]. For instance,
OLINDA identifies anomalies based on the concepts of novelty
behaviour and drift [28] and the approach by Chen et al.
provides anomaly detection capabilities in the context of cyber-
physical systems [12].

Recently Subutai et al. introduced a novel approach for the
anomaly detection of streaming data based on Hierarchical
Temporal Memory (HTM) [2], a model able to capture
interesting features of time-series data. This technique is unsu-
pervised but the computational burden, in our experience, is not
negligible. To achieve full online anomaly detection capabilities,
approaches frequently exploit statistical techniques that provide
efficient training and analysis capabilites including changepoint
detection [6], Holt-Winters method and its extensions [29],
eccentricity analysis [5]

This body of work addresses the problem of efficiently
detecting anomalies, but contrarily to ADaaS they do not
consider the problem of controlling the deployment and un-
deployment of the anomaly detectors. Indeed, ADaaS can
incorporate different kinds of anomaly detectors, including
statistical anomaly detectors as reported in this paper, whose
deployment can be fully controlled by the operator. Interest-
ingly, the operator can change at any time the set of detected
anomalies, based on the emerging needs and changes in the
monitored data. Even if a comprehensive anomaly detection
as-a-service remains an open challenge [32], the degree of
automation presented in ADaaS is a key enabling factor for
its realization.

VI. CONCLUSION

Cloud systems are large and complex software systems
whose behavior can be hardly predicted and controlled. For
instance, cloud applications can be dynamically scaled up and
down based on workloads, while components can be updated
based on emerging requirements. Although cloud systems can
be monitored quite effectively despite changes, the anomaly
detection logic is still quite expensive to modify and adapt
to changes that may modify the structure and behavior of the
observed system.

In this paper we discussed how to apply the as-a-service
paradigm to the anomaly detection logic, achieving Anomaly
Detection as-a-service (ADaaS). We also propose an archi-
tecture that supports the ADaaS paradigm and that can work

jointly with any monitoring system that stores data in time-
series databases.

We early experimented ADaaS with the Clearwater cloud
system obtaining results that demonstrate how the ADaaS
paradigm can be effectively used to handle the anomaly
detection logic. Our future work includes experimenting the
approach with a larger set of use cases to stress the flexibility,
generality, and efficiency of the solution.

ACKNOWLEDGEMENTS

This work has been supported by the H2020 5G-PPP Phase2
NGPaaS project (Grant Agreement No. 761557), by the H2020
ERC CoG Learn project (Grant Agreement No. 646867) and
by the “GAUSS” national research project, which has been
funded by the MIUR under the PRIN 2015 program (Contract
2015KWREMX).

REFERENCES

[1] G. Aceto, A. Botta, W. de Donato, and A. Pescapè. Cloud monitoring:
A survey. Computer Networks, 57(9):2093–2115, 2013.

[2] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time
anomaly detection for streaming data. Neurocomputing, 262:134 – 147,
2017. Online Real-Time Learning Strategies for Data Streams.

[3] H. N. Akouemo and R. J. Povinelli. Probabilistic anomaly detection
in natural gas time series data. International Journal of Forecasting,
32(3):948 – 956, 2016.

[4] Amazon Web Services, Inc. CloudWatch. https://aws.amazon.com/it/
cloudwatch/, 2019. [Online; accessed 15-May-2019].

[5] P. Angelov. Anomaly detection based on eccentricity analysis. In 2014
IEEE Symposium on Evolving and Autonomous Learning Systems (EALS),
pages 1–8, Dec 2014.

[6] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory
and Application. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation computer
systems, 25(6):599–616, 2009.

[8] J. A. Calero and J. G. Aguado. MonPaaS: an adaptive monitoring
platform as a service for cloud computing infrastructures and services.
IEEE Transactions on Services Computing, 8(1):65–78, 2015.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):1–58, July 2009.

[10] V. Chandola, V. Mithal, and V. Kumar. Comparative evaluation of
anomaly detection techniques for sequence data. In 2008 Eighth IEEE
International Conference on Data Mining, pages 743–748, Dec 2008.

[11] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3):27,
2011.

[12] P. Chen, S. Yang, and J. A. McCann. Distributed real-time anomaly
detection in networked industrial sensing systems. IEEE Transactions
on Industrial Electronics, 62(6):3832–3842, June 2015.

[13] D. J. Dean, H. Nguyen, and X. Gu. Ubl: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems. ICAC
’12, pages 191–200, 2012.

[14] Elasticsearch BV. Elasticsearch: RESTful, Distributed Search &
Analytics. https://www.elastic.co/products/elasticsearch, 2019. [Online;
accessed 15-May-2019].

[15] Gartner, Inc. Gartner Forecasts Worldwide Public Cloud Revenue to Grow
21.4 Percent in 2018. https://www.gartner.com/newsroom/id/3871416,
2018. [Online; accessed 15-May-2019].

[16] Hewlett-Packard Enterprise Development LP. Monasca - an OpenStack
Community project. http://http://monasca.io/, 2017. [Online; accessed
15-May-2019].

[17] A. D. JoSEP, R. KAtz, A. KonWinSKi, L. Gunho, D. PAttERSon, and
A. RABKin. A view of cloud computing. Communications of the ACM,
53(4), 2010.

https://aws.amazon.com/it/cloudwatch/
https://aws.amazon.com/it/cloudwatch/
 https://www.elastic.co/products/elasticsearch
 https://www.gartner.com/newsroom/id/3871416
http://http://monasca.io/

[18] E. Keogh, J. Lin, and A. Fu. Hot sax: efficiently finding the most unusual
time series subsequence. In Fifth IEEE International Conference on
Data Mining (ICDM’05), pages 8 pp.–, Nov 2005.

[19] N. Laptev, S. Amizadeh, and I. Flint. Generic and scalable framework
for automated time-series anomaly detection. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, pages 1939–1947, New York, NY, USA, 2015.
ACM.

[20] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin. Localizing
faults in cloud systems. In Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), pages 262–273,
2018.

[21] Metaswitch Networks. Project ClearWater. https://www.projectclearwater.
org/. [Online; accessed 21-Jul-2019].

[22] Netflix. Surus. https://github.com/Netflix/Surus, 2015. [Online; accessed
20-Jul-2019].

[23] M. Orrú, M. Mobilio, A. Shatnawi, O. Riganelli, A. Tundo, and
L. Mariani. Model-Based Monitoring for IoTs Smart Cities Applications.
In 4th Italian Conference on ICT for Smart Cities And Communities
i-CiTies 2018, 2018.

[24] Prometheus Authors. Prometheus. https://prometheus.io/, 2019. [Online;
accessed 15-May-2019].

[25] F. Sabahi. Cloud computing security threats and responses. In 2011
IEEE 3rd International Conference on Communication Software and
Networks, pages 245–249, May 2011.

[26] C. Sauvanaud, K. Lazri, M. Kaaniche, and K. Kanoun. Anomaly detection
and root cause localization in virtual network functions. ISSRE ’16,
2016.

[27] A. Shatnawi, M. Orrú, M. Mobilio, O. Riganelli, and L. Mariani.

CloudHealth: A Model-Driven Approach to Watch the Health of Cloud
Services. In Proceedings of the 1st International Workshop on Software
Health (SoHeal 2018), pages 40–47. ACM/IEEE, 2018.

[28] E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. a. Gama. Olindda:
A cluster-based approach for detecting novelty and concept drift in
data streams. In Proceedings of the 2007 ACM Symposium on Applied
Computing, SAC ’07, pages 448–452, New York, NY, USA, 2007. ACM.

[29] M. Szmit and A. Szmit. Usage of modified holt-winters method in the
anomaly detection of network traffic: Case studies. Journal of Computer
Networks and Communications, 2012, 2012.

[30] A. Tundo, M. Mobilio, M. Orrú, O. Riganelli, M. Guzmán, and L. Mariani.
VARYS: An agnostic model-driven monitoring-as-a-service framework
for the cloud. In Proceedings to the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering Tallinn, Estonia, 26-30, Aug. 2019.

[31] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically Scaling
Applications in the Cloud. SIGCOMM Comput. Commun. Rev., 41(1):45–
52, Jan. 2011.

[32] D. Yao, X. Shu, L. Cheng, S. J. Stolfo, and E. Bertino. Anomaly Detection
As a Service: Challenges, Advances, and Opportunities. Morgan &
Claypool Publishers, 2017.

[33] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady. Dynamic Resource Allocation in Computing Clouds
Using Distributed Multiple Criteria Decision Analysis. In 2010 IEEE
3rd International Conference on Cloud Computing, pages 91–98, July
2010.

[34] T. Yongmin, N. Hiep, S. Zhiming, G. Xiaohui, V. Chitra, and R. Deepak.
Prepare: Predictive performance anomaly prevention for virtualized cloud
systems. ICDCS ’12, pages 285–294, 2012.

 https://www.projectclearwater.org/
 https://www.projectclearwater.org/
 https://github.com/Netflix/Surus
https://prometheus.io/

	I Introduction
	II VARYS Framework
	III Anomaly Detection as a Service
	III-A The Approach
	III-B Architecture
	III-C Scenario: Deployment of the Anomaly Detectors
	III-D Anomaly Detectors
	III-E Design of the Anomaly Detectors
	III-F Implementation Details

	IV Evaluation
	IV-A Subject System
	IV-B Experiment Setup
	IV-C Results

	V Related Work
	VI Conclusion
	References

