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Abstract

We study a monopolistic market characterized by a constant elasticity demand
function, in which the firm technology is described by a linear total cost function.
The firm is assumed to be boundedly rational and to follow a gradient rule to
adjust the production level in order to optimize its profit. We focus on what
happens on varying the price elasticity of demand, studying the effect on the
equilibrium stability. We prove that, depending on the relation between the
market size and the marginal cost, two different scenarios are possible, in which
elasticity has either a stabilizing or a mixed stabilizing/destabilizing effect.
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1. Introduction

Even if economic theory usually assumes agents to be endowed with perfect
rationality, there is a lot of evidence showing that economic agents often have
only reduced informational and computational capabilities, in particular when
the information set is too broad. In such situations, agents are inclined to
use simple decisional heuristics (Kahneman et al. [1]), based on adaptive and
learning mechanism in order to approach their optimal choice. To this end,
different reduced rationality adjustment mechanisms have been proposed and
studied: for a complete dissertation of possible heuristics, we refer to the book
of Bischi et al. [2].

Even if a monopolistic market is much more simple than an oligopolistic
one, it is likewise realistic to assume “ignorant monopolists”, since “ignorance
about demand conditions is a ubiquitous feature of market life in the real world”
(Clower [3], pp. 716). Both Clower in [3] and later Baumol and Quandt in [4]
investigated a monopolistic market in which the firm has reduced rationality,
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proposing a rule of thumb mechanism which, under suitable conditions, allows
progressively adjusting output levels toward the profit maximizing output. Such
mechanisms are based on a gradient rule, namely when the profit variation is
positive (resp. negative), the agent tries to adapt his choice increasing (resp.
decreasing) it. The adjustment is usually regulated by a multiplicative constant
which represents the reaction speed of the economic agent.

Subsequently, Puu in [5] reconsidered the previous framework. Taking into
account an economy characterized by a cubic price function with an inflection
point, he studied a two dimensional discrete time model in which the monopolist
chooses his production level according to a discrete gradient, and he showed the
occurrence of complex dynamics and multistability. Subsequently, Naimzada
and Ricchiuti in [6] proved that similar complex dynamics are possible consid-
ering a simple cubic price function without inflection point, taking into account
a continuous gradient rule in a one dimensional time discrete model.

Later researches moved toward the generalization of [5] and [6], considering
more and more general demand and cost functions and improving the decisional
mechanism, introducing for instance memory and delay, in both continuous and
discrete models (Askar in [7], Matsumoto and Szidarowski in [8, 9, 10]). Most
of this literature focuses on the effects of the decision-making mechanism on the
equilibrium stability, showing that increasing the reaction speed of agents has
a destabilizing effect.

About similar models and investigations, we also mention the contributions
of Naimzada and Ricchiuti [11], Matsumoto et al. [12, 13], Al-Hdaibat et al.
[14].

In our contribution we want to draw attention to the effects of the variation of
the demand function on the stability of the steady state and on the convergence
toward the profit maximizing output. To this end, we consider an economic
setting characterized by a microfunded demand function with constant elasticity
ε, and we investigate the effect of the variation of ε on the steady state, the
optimal profit and the local stability of the equilibrium. We assume that the
technology of the firm is described by linear total costs. In such scenario, we
prove that the steady state is unique and that corresponds to the maximizing
profit output.

Our main result consists in proving a dual elasticity behavior. When the
marginal cost is small with respect to the market size, we have that increasing
the price elasticity of demand has a stabilizing effect on the equilibrium, and
there is always a sufficiently large value of elasticity for which the equilibrium
is stable and trajectories converge to the maximizing profit output. Conversely,
when the marginal cost is large with respect to the market size, we have a mixed
scenario. In fact, in this case, equilibrium is unstable for suitably small and large
values of elasticity, while it can be, depending on marginal cost, stable in the
intermediate interval.

In this work we also investigate the long-term behavior of profits, considering
the evolution of cumulative profits, showing that equilibrium profits are larger
than profits achieved when equilibrium becomes unstable.

The work is organized as follows: in Section 2 we introduce the model, which
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is then analyzed in Section 3. Section 4 is devoted to simulations. Finally. we
propose conclusions and future research aims in Section 5.

2. Model

The monopoly model we consider is set in a market characterized by an
isoelastic demand function (a microfoundation for a duopoly can be found in
the work by Fanti et al. [15])

p(q) =
a

q1/ε
, (1)

which, for ε > 1 and a > 0, is strictly decreasing and concave. Moreover,
ε represents the price elasticity of demand. Assuming constant marginal cost
c > 0, the profit function π : (0,+∞) → R is

π(q) = q ·
a

q1/ε
− cq, (2)

and, consequently, the marginal profit function is

π′(q) =
ε− 1

ε

a

q1/ε
− c. (3)

In what follows, we study the case of ε > 1, which allows the profit function
(2) to have a unimodal shape. The remaining case of inelastic or unitary elastic
demands (ε ≤ 1) can not be handled with the approach we consider, as in such
case the profit function would be decreasing, leading to q → 0 optimal choice.
This is an economically uninteresting situation in which, moreover, π → +∞.

As in [6], we suppose that the monopolist, who has a reduced degree of
rationality, in order to maximize his profit, tries to adapt his production level
following a “rule of thumb” mechanism, increasing (resp. decreasing) the pro-
duced quantity when profit variations are positive (resp. negative). This can be
modeled through a gradient mechanism, in which the variation of q from time
t to t + 1 is proportional to the variation of profits induced by the production
level at time t, namely

qt+1 − qt = απ′(qt),

in which α > 0 represents the reactivity (or adjustment speed) of the agent.
The resulting adjustment mechanism is then described by the discrete dy-

namical system

qt+1 = qt + α

(

ε− 1

ε

a

q1/ε
− c

)

, (4)

which, after having introduced parameters k = αa and d = c/a, can be rewritten
as

qt+1 = f(qt) = qt + k

(

ε− 1

ε

1

q1/ε
− d

)

. (5)
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We remark that starting from an initial production level q0 > 0, trajectories
qt may cross unfeasible production levels regions qt ≤ 0. In this work, we will
only focus on such initial data and parameters for which the output level stay
positive for all t. Conversely, when f(qt) ≤ 0, the next time production level
should be set to zero.

In the next proposition, we study the behavior of function f .

Proposition 1. Function f(q) : (0,+∞) → R, defined by (5), is decreasing for
q < qm and increasing for q > qm, where

qm =

(

k
(ε− 1)

ε2

)
ε

ε+1

(6)

is its (global) minimum point, for which we have

f(qm) =

(

k
ε− 1

ε2

)
ε

ε+1

+ k

(

ε− 1

ε

(

ε2

k(ε− 1)

)
1

ε+1

− d

)

.

Proof. Thesis easily follows from the derivative of f

f ′(q) = 1−
k(ε− 1)

ε2q(ε+1)/ε
,

by imposing f ′(q) > 0.

The previous proposition assures that f is non negative provided that f(qm) ≥
0. In particular, we remark that since the only negative term in f(qm) is −d,
positivity is guaranteed provided that the marginal cost c is sufficiently small
with respect to the market size a.

In addition to the positivity of the output, we also need to check the positiv-
ity of profit π(qt), since, from (2), profit is positive provided that q ≥ d−ε. Al-
though it is acceptable that profit becomes negative for short times, cumulative
profits, namely the sum of profits over times, have to stay positive. Supposing
that the monopolist have an initial endowment Π0, we can recursively define
cumulative profits Πt through

Πt+1 = Πt + π(qt+1), t > 0. (7)

In general, it is not possible to compute analytically Πt. In Section 4, cumu-
lative profits are computed numerically and their behavior is studied through
simulations. Similar analysis is performed by Matsumoto in [16, 17, 18].

3. Analysis

Before studying analytically the possible steady states of (5) and their local
stability, we want to make some remarks. The steady state clearly requires that
the marginal profit vanishes, which means that the marginal revenue

Ra,ε(q) =
ε− 1

ε

a

q1/ε
(8)
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must equal the marginal cost c. Function Ra,ε(q) has a hyperbolic shape, since

lim
q→0+

Ra,ε(q) = +∞, lim
q→+∞

Ra,ε(q) = 0

and R′

a,ε(q) < 0, R′′

a,ε(q) > 0, and it can be very steep for q < q̃ and very flat
q > q̃, where q̃ is such that |R′

a,ε(q̃)| = 1. Moreover, as elasticity ε increases,
such behavior becomes more and more pronounced. It is easy to see that

q̃ =

(

a
ε− 1

ε2

)ε/(ε+1)

,

to which corresponds

Ra,ε(q̃) =
ε− 1

ε

(

ε2

ε− 1

)1/(ε−1)

aε/(ε+1). (9)

Since

lim
ε→+∞

ε− 1

ε

(

ε2

ε− 1

)1/(ε−1)

= 1,

we have that
lim

ε→+∞

R(q̃) = a.

This means that, with respect to the price elasticity of demand, we can ex-
pect two different asymptotic scenarios. When marginal cost c is larger than
a, for sufficiently large ε the equilibrium will fall in the region in which the
marginal revenue function is very steep. Since the local stability of the equi-
librium depends on the marginal revenue variation, we can expect that when
c > a elasticity has a destabilizing effect. Conversely, if marginal cost c is
smaller than a, for sufficiently large ε the equilibrium will fall in the region in
which the marginal revenue function is very flat, and in this case we can expect
that elasticity has a stabilizing effect.

To check the previous conjecture, we start studying the possible steady states
of (5).

Proposition 2. When ε > 1, dynamical system (5) has a unique steady state

q∗ =

(

ε− 1

εd

)ε

, (10)

in which profit function (2) attains its maximum. The corresponding equilibrium
values for price and profit are

p∗ = c
ε

ε− 1
(11)

and

π∗ =
(a

ε

)ε
(

ε− 1

c

)ε−1

. (12)
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Proof. Value q∗ is found by imposing f(q) = q, which reduces to the first order
condition for profits π′(q) = 0, which is solved by (10). Since

π′′(q) = −
k (ε− 1)

ε2 q1/ε+1
< 0,

second order condition is satisfied. Equilibrium values (11) and (12) can be
easily computed.

The previous proposition states that the steady state of system (5) is unique.
Now, we analyze how equilibrium values change on varying elasticity ε.

Looking at the behavior of the equilibrium production level, if we compute
∂εq

∗

∂εq
∗ =

(

ε− 1

dε

)ε(
1

ε− 1
− log

ε

ε− 1
− log(d)

)

,

we have that (1/(ε−1)− log(ε)/(ε−1)) is a strictly decreasing positive function
vanishing for ε → +∞. This means that, when d ≤ 1, we have ∂εq

∗ > 0 and
q∗ increases with the elasticity. Conversely, for each d > 1, there exists a εd
such that ∂εq

∗(εd, d) = 0, so q∗ increases when ε is increased from 1 to εd, while
it decreases when ε is increased above εd, hence attaining its maximum when
elasticity is εd. This behavior is reported in Figure 1.
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Figure 1: Plot of f for different values of parameters. Left plot: we set d = 0.5 and k = 1 and
we considered two different elasticity values ε1 = 1.1 and ε2 = 1.5. The equilibrium output
level increases with ε. Right plot: we set d = 1.5 and k = 0.1 and we considered three different
elasticity values ε1 = 1.1, ε2 = εd ≈ 1.84 and ε3 = 3, where εd is the solution of ∂εq∗ = 0.
The equilibrium production level increases with ε for ε < εd, then it decreases.

To investigate the variation of π∗ with respect to ε, we compute ∂επ
∗

∂επ
∗ = −

c (ε− 1)
ε−1

(log(ε)− log(ε− 1) + log(d))

εε dε
.

6



We have that ∂επ
∗ < 0 for any ε > 1 when d ≥ 1, while, for d < 1, we have

∂επ
∗ < 0 when ε < d/(d+ 1) and ∂επ

∗ > 0 when ε > d/(d + 1). In the former
case, we have that when elasticity increases, equilibrium profit decreases, while
in the latter case, we have that equilibrium profit attains its minimum when
ε = d/(d+ 1).

Finally, equilibrium price p∗ is strictly decreasing with respect to ε.
The previous results confirm the possibly ambiguous behavior of (5) with

respect to the price elasticity of demand. As conjectured, the model differently
acts depending on the ratio between the marginal cost and the market size. In
particular, we have two opposite behaviors when elasticity is sufficiently large,
as if ε is sufficiently small a positive variation of elasticity always leads to larger
equilibrium production levels and smaller equilibrium profits for both d ≤ 1
and d > 1. Conversely, if ε is sufficiently large, when d < 1 an increase in the
elasticity again corresponds to an increase in the equilibrium production level,
but, at the same time, it results in increasingly large profits for ε > d/(d + 1),
while when d > 1 both q∗ and π∗ reduce. This means that if marginal cost is
relatively small, since π∗ → +∞ for ε → +∞, the equilibrium profits are large
in those markets characterized by large elasticity values. Conversely, if d > 1,
large profits are achieved only for ε → 1.

As we said, in Section 4, we investigate through simulations the behavior
of cumulative profits. As a basis for comparison, we can consider cumulative
profits that the monopolist would achieve if he always chose equilibrium q∗, i.e.
cumulative equilibrium profits

Π∗

t+1 = Π∗

t + q∗p∗ − cq∗ = Π0 + (t+ 1)π∗ = Π0 + (t+ 1)
(a

ε

)ε
(

ε− 1

c

)ε−1

.

In the next propositions we study the local stability of the steady state with
respect to elasticity ε. Since different scenarios arise, we split the analysis into
two parts, considering separately d ≤ 1 and d > 1.

Proposition 3. For each 0 < d ≤ 1 and k > 0, there exists ε̃(d, k) such that
q∗ is locally asymptotically stable for ε > ε̃(d, k) and unstable for 1 < ε <
ε̃(d, k). Moreover, stability threshold ε̃(d, k) increases with both k and d. A flip
bifurcation occurs for ε = ε̃(d, k).

Proof. Equilibrium q∗ is stable provided that

−1 < f ′(q∗) < 1,

where

f ′(q∗) = 1− k
ε− 1

ε2

(

dε

ε− 1

)ε+1

. (13)

Inequality f ′(q∗) < 1 is indeed true, to study f ′(q∗) > −1 we set ε = 1/γ, and
we have to solve

kγ(1− γ)

(

d

1− γ

)1/γ+1

< 2
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for γ ∈ (0, 1). Computing the logarithm of both sides, we can rewrite the last
inequality as

zk,d(γ) = log(k) + log(γ) +

(

1 +
1

γ

)

log(d)−
1

γ
log(1− γ) < log(2), (14)

where
lim

γ→0+
zk,d(γ) = −∞, lim

γ→1−
zk,d(γ) = +∞.

The two previous limits assure the existence of at least a solution γ̃ of zk,d(γ) =
log 2, while uniqueness is guaranteed by the strict monotonicity of z(γ), namely
by

zk,d(γ)
′ =

2

γ
+

1

1− γ
−

1

γ2
log(d) +

1

γ2
log(1− γ) > 0. (15)

To prove (15), we notice that the first three terms are positive, while the last
one is negative. We will deal with two cases separately, γ ∈ (0, 1 − e−1] and
γ ∈ (1− e−1, 1). In the first interval, since 2γ > − log(1− γ), we have

2

γ
> −

1

γ2
log(1− γ), (16)

and then z′k,d(γ) > 0 for γ ∈ (0, 1− e−1]. Furthermore, for γ ∈ (1 − e−1, 1), we

can prove that γ−2 log(1− γ) is dominated by 1/(1− γ), or, equivalently,

ζ(γ) = γ2 + (1 − γ) log(1− γ) > 0.

Since ζ(1− e−1) = 1 + e−2 − 3e−1 ≈ 0.0317 > 0 and, for γ ∈ (1/2, 1),

ζ′(γ) = 2γ − 1− log(1 − γ) > 0,

we can conclude that ζ(γ) > 0 for all γ ∈ [1− e−1, 1) and so (16) is true.
This proves that f ′(q∗) > −1 for γ ∈ (0, γ̃). Setting ε̃ = 1/γ̃ allows con-

cluding that the equilibrium is stable for ε > ε̃ and, since f(ε̃) = −1, that the
destabilization occurs through a flip bifurcation.

Finally, considering d1 ≤ d2 < 1 and k1 ≤ k2, from (14), we have that
zd1,k1

(γ) ≤ zd2,k2
(γ) for every γ ∈ (0, 1) and, consequently, zki,di

(γ) = log 2
for i = 1, 2 are respectively solved by γ̃2 ≤ γ̃1. Setting ε̃i = 1/γ̃i, we can
conclude.

Previous proposition asserts that, if marginal cost c is sufficiently small with
respect to market size a (c ≤ a), the price elasticity of demand has a stabilizing
effect. Moreover, if marginal cost c or reaction speed k are increased, as well as
if market size a is decreased, the stability interval becomes smaller.

Now we focus on the remaining case d > 1.

Proposition 4. Let be d > 1 and k > 0, then two situations are possible:

• there exist ε̃A(d, k) < ε̃B(d, k) such that q∗ is locally asymptotically stable
for ε ∈ (ε̃A(d, k), ε̃B(d, k)) and unstable otherwise;
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• the equilibrium is unstable for any ε > 1.

In the former case, for both ε = ε̃A(d, k) and ε = ε̃B(d, k), a flip bifurcation
occurs. Moreover, if 1 < d1 ≤ d2 and k1 ≤ k2, the stability region given by
(d2, k2) is a subset of that given by (d1, k1).

Proof. Imposing stability condition −1 < f ′(q∗) < 1 and acting as in the proof
of Proposition 3, we consider zk,d(γ) defined by (14). If d > 1, we have that

lim
γ→0+

zk,d(γ) = +∞, lim
γ→1−

zk,d(γ) = +∞,

so, in this case, the set of values γ that satisfy zk,d > log(2) could be empty. To
this end, we study the monotonicity of zk,d(γ) by imposing that z′k,d(γ) > 0, or,
equivalently,

ϕ(γ) = 2γ +
γ2

1− γ
− log(d) + log(1 − γ) > 0.

Since

lim
γ→0+

2γ +
γ2

1− γ
− log(d) + log(1 − γ) = − log(d) < 0

and

ϕ′(γ) =
γ2 − γ + 1

(1 − γ)2
> 0,

we have that z′(γ) is strictly increasing, negative for γ < γm and positive
for γ > γm, and hence z attains its unique minimum for γ = γm. Then, if
z(γm) < log(2), there exist γ̃B < γ̃A so that zk,d(γ) > log(2) if and only if
γ ∈ (γ̃B , γ̃A). Setting ε̃A = 1/γ̃B and ε̃B = 1/γ̃A we obtain the first stability
scenario for d ≥ 1.

Conversely, if zd,k(γm) ≥ log(2), we have that (14) is never satisfied and,
consequently, f ′(q∗) ≤ −1 for all ε > 1.

Considering 1 < d1 ≤ d2 and k1 ≤ k2, from (14), we have that the set of γ
values that solve zd2,k2

(γ) ≤ log(2) solve zd1,k1
(γ) ≤ log(2) too, and this allows

concluding.

This second scenario is quite different from that depicted in Proposition 3.
In fact, for c > a, elasticity can have a mixed behavior. If k, d are suitably
small, so that the stability region is not an empty set, increasing elasticity ε has
an initial stabilizing effect. However, if ε is further increased, the equilibrium
becomes unstable.

Propositions 3 and 4 prove the different effect on the local stability, de-
pending on d, of elasticity variations. Since for both d ≤ 1 and d > 1, when ε
approaches 1 the dynamics are inclined to become unstable, cautious adjustment
of production levels should be adopted, as decreasing reaction speed α extends
the stability region, leading to convergent trajectories for smaller elasticity val-
ues too. We notice that if the dynamic does not converge to the equilibrium
production level, smaller profits are achieved, as we will show in next section
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simulations, so, in order to achieve the largest possible profits, output levels
should be adjusted toward q∗ as fast as possible. Conversely, if the demand
is sufficiently elastic and the marginal cost relatively small, a suitably reactive
adjustment mechanism could be more beneficial. In fact, provided that α be
suitable to guarantee stable dynamics, the production levels would more quickly
approach the profit maximizing output q∗, allowing for larger cumulative profits.
On the contrary, such less cautious behavior is not recommended in the case of
relatively large marginal costs, as if demand is very elastic, unstable dynamics
may arise one more time. When d > 1, the behavior should be more and more
cautious as ε increases.

4. Simulations

In this section we present some simulations to confirm the theoretical analysis
of the previous section and to investigate the scenarios arising when stability
conditions are violated. In all the following simulations we set q0 = 0.1 and
α = 1.

Setting a = 1, c = 0.9, we investigate the case of d < 1, in which, accord-
ing to Proposition 3, elasticity has a stabilizing role. For such market size and
marginal cost, f ′

ε(q
∗) defined in (13), is strictly increasing with respect to ε,

as shown in Figure 2. Computing numerically the solution of f ′

ε(q
∗) = −1, we

1.4 1.5 1.6 1.7 1.8 1.9 2
−2.5

−2
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−1

−0.5

0

ε

f(
q* )

d<1

ε̃

Figure 2: Plot of f ′

ε(q
∗) on varying ε for a = 1, c = 0.9. Equilibrium q∗ is stable for ε > ε̃ ≈

1.700

obtain the instability threshold ε̃ ≈ 1.700, below which equilibrium loses sta-
bility through a flip bifurcation. In Figure 3 we report the bifurcation diagram
of (5) with respect to ε, which confirms that, starting from a chaotic attractor
(ε = 1.375), a sequence of period halving leads to stability when ε ≈ 1.7. In
Figure 4 we investigate cumulative profits. In the first plot, we show cumula-
tive profits Πt for t ∈ (8000, 10000), having set ε = 2. Cumulative profits are
positive and qualitatively increasing. In the second plot, we report cumulative
profits for T = 10000, for ε which varies in (1.375, 2), together with cumulative
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Figure 3: Bifurcation diagram for d < 1, for ε ∈ (1.375, 2). The equilibrium is stable for
ε > 1.700, below which a flip bifurcation occurs.

equilibrium profits. Cumulative profits are positive and coincide with equilib-
rium cumulative profits for ε > ε̃. When the equilibrium becomes unstable,
cumulative profits are smaller than those achieved at the equilibrium.
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Figure 4: Cumulative profits plots for d < 1. (Left plot) Cumulative profits for ε = 0.2.
(Right plot) Solid line: cumulative profits Π10000 on varying ε ∈ (1.375, 2). Dashed line:
corresponding cumulative equilibrium profits Π∗

10000
. When equilibrium is stable, Π10000 =

Π∗

10000
, while below stability threshold we have Π10000 < Π∗

10000
.

If we consider a = 0.1, c = 0.2, we are in the scenario studied in Proposition
4, in which the elasticity has a mixed role. In this case, f ′

ε(q
∗) defined in (13),

is unimodal and intersects stability threshold −1 in two distinct points ε̃A and
ε̃B, as we can see in Figure 5. Computing numerically such values, we obtain
ε̃A ≈ 1.478 and ε̃B ≈ 3.356. Outside interval (1.478, 3.356), the equilibrium
is unstable, and we have two flip bifurcations, as shown in Figure 6. Starting
from ε = 1.2, we initially have a period halving that leads to stability when
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Figure 5: Plot of f ′

ε(q
∗) on varying ε for a = 0.1, c = 0.2. Equilibrium q∗ is stable for

ε ∈ (1.478, 3.356)

ε = ε̃A; then, a period doubling occurs for ε = ε̃B, leading again to chaos. In
Figure 7, for t ∈ (8000, 10000) we report cumulative profits Πt corresponding
to ε = 4.269, which stay positive. In the second plot, we report cumulative
profits for ε ∈ (1.2, 4.269) for T = 10000, together with cumulative equilibrium
profits. We have that, outside the stability interval, cumulative profits are
smaller than equilibrium cumulative profits again. We remark that cumulative
profits behavior we showed is quite predictable in the present case, as, being the
profit function unimodal, we have a unique internal equilibrium which provides
a global maximum profit. When equilibrium loses its stability, qt converges to
attractors which consist of a set of output levels for which profits are always
smaller than those achieved for q = q∗, as shown in Figure 8.

As noticed in Proposition 4, the stability interval can be empty. For example,
slightly modifying the previous parameters and setting a = 0.1, c = 0.23, we can
see from Figure 9 that function f ′(q∗) < −1, so equilibrium is unstable for all
ε > 1. In such configuration, we can again say that elasticity has initially
a “qualitatively” stabilizing effect, since, increasing ε allows for more regular
dynamics, as the initial chaotic behavior (5) evolves through a period halving
toward a period 2-cycle (ε ≈ 1.77). However, trajectories of system (5) never
converge to equilibrium and increasing further elasticity above ε ≈ 2.176 a
cascade of period doubling leads to chaos again. Moreover, increasing further
the marginal cost, the intermediate periodic attractors disappear and we just
have a chaotic behavior with possible windows of periodicity, as, for example,
considering c = 0.24. The corresponding bifurcation diagrams are reported in
Figure 10.

5. Conclusions

In our contribution, we investigated the effect of elasticity variation on the
local stability of the equilibrium. The main result concerns the existence of two
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Figure 6: (Top) Bifurcation diagram for a = 0.1, c = 0.2, on varying ε ∈ (1.2, 4.269). The
equilibrium is stable for ε ∈ (1.478, 3.356). (Bottom, left plot) Blow up of the period halving
bifurcation. (Bottom, right plot) Blow up of the period doubling bifurcation.

different behaviors, depending on the relation between the market size and the
marginal cost of the firm. When the market size is sufficiently large with respect
to the marginal cost, increasing the price elasticity of demand stabilizes the
equilibrium, while in the opposite case we have that, even if an initial increase
of the elasticity can introduce stability, if the price function becomes too elastic,
equilibrium again loses its stability. In particular, in both cases, we never have a
scenario of unconditional stability with respect to elasticity. We showed this, by
considering a discrete adjustment process, in which the boundedly rational firm
adapts its production level following a gradient rule. We aim to investigate the
robustness of such result with respect to the decisional mechanism and to the
control variable, considering for example an adjustment mechanism for prices.
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Figure 10: (Left plot) Bifurcation diagram for a = 0.1, c = 0.23. (Right plot) Bifurcation
diagram for a = 0.1, c = 0.24. In both situations, trajectories of (5) never converge. In the
former case, for some ε we have periodic attractors, while in the latter the behavior is chaotic.
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