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In the present paper, we investigate the dynamics of a model in which the real part of the economy,

described within a multiplier-accelerator framework, interacts with a financial market with hetero-

geneous speculators, in order to study the channels through which the two sectors influence each

other. Employing analytical and numerical tools, we investigate stability conditions as well as

bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the

degree of market interaction, together with the accelerator parameter and the intervention of the fis-

cal authority, may affect the business cycle and the course of the financial market. In particular, we

show that even if the steady state is locally stable, multistability phenomena can occur, with several

and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that

the proposed model is able to explain several statistical properties and stylized facts observed in

real financial markets, including persistent high volatility, fat-tailed return distributions, volatility

clustering, and positive autocorrelation of absolute returns. Published by AIP Publishing.
https://doi.org/10.1063/1.4994617

The recent financial crisis unveiled and stressed how

instability is an intrinsic feature of the overall economic

environment, ranging from the real sector to the financial

one. A growing literature has been investigating how

speculative phenomena in financial markets are transmit-

ted to the real economy and whether real market devel-

opments feed back on the financial sector. Similarly, an

increasing interest concerned the phenomenon of financi-

alization of the real economy, that is, the process by

which the volume and the significance of financial instru-

ments and contracts have grown relatively to the overall

economic system. Since financialization transforms the

functioning of the economic system at the macro level, it

turns out to be relevant for the investigation of the two

interacting subsystems in light of the recent economic

developments. It is not news that macroeconomic varia-

bles, such as national income, employment rate, interest

rate, and exchange rate, exhibit persistent and irregular

fluctuations. Dynamical systems and chaos theory have

been shedding some light on the roles of nonlinearity in

deterministic processes to explain various complex

dynamic behaviors of such variables. Our research goal

is to deepen the understanding of the role of real and

financial feedback mechanisms in order to identify, by

means of rigorous analytical investigations comple-

mented by numerical simulations, how instability may

spread between the integrated markets.

I. INTRODUCTION

In his milestone contribution, Samuelson (1939) pro-

posed the multiplier-accelerator model, which actually gave

birth to the modern business cycle theory and to a wide

research strand, focusing on the study of the real economy

dynamics. One of the main novelties of Samuelson (1939)

was to show that, combining the principle of accelerator and

the multiplier analysis, fluctuations in the economic activity

can endogenously arise as a consequence of the interplay

between consumptions, investments, and national income

changes. But one of the main drawbacks of the original

framework of Samuelson (1939) was the lack of long-lasting

economic cycles. To overcome this issue, several improve-

ments have been proposed, for example, by considering the

monetary sector or the inventory adjustment (see Day and

Chen, 1993 and Hommes, 1995) as well as bounded invest-

ment functions (see Hicks, 1950; Puu et al., 2005; and

Naimzada and Pecora, 2017).

Besides this historical evolution of the multiplier-

accelerator framework, which enhanced the explanation

of business cycle dynamics, the recent 2008–2009 crisis

unveiled, once more, how instability is an intrinsic feature of

the overall economic environment, ranging from the real sec-

tor to the financial one. After the facts occurred with the

crisis, a growing literature has been investigating how specu-

lative phenomena in financial markets are transmitted to the

real economy and whether real market developments feed

back into the financial sector. With respect to this, we men-

tion the contributions by Charpe et al. (2011), who combines

a financial setting characterized by heterogeneous interacting
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agents with a Tobin-like portfolio approach, and by

Westerhoff (2012), who adopts a Keynesian good market

approach taking into account a stock market with heteroge-

neous speculators. Additionally, Naimzada and Pireddu

(2015) consider the evolutionary selection of forecasting

rules performed by heterogeneous speculators when interact-

ing real and financial markets are considered. It is worth

noticing that when integrated real and financial sectors are

studied, one must identify the channels through which the

influence between the two sectors is realized. It is debatable

which channels are the most relevant ones. The works in

Naimzada and Pireddu (2014); Chen et al., (2012); Lengnick

and Wohltmann (2013); and Westerhoff (2012) contain

examples to describe the repercussions from the financial

market to the real sector through channels such as wealth

effects or collateral-based cost effects. On the other side, the

opposite influence direction can be supported too, as the

works of Naimzada and Pireddu (2014); Lengnick and

Wohltmann (2013); Bask (2012); and Kontonikas and

Montagnoli (2006) highlight.

The present paper belongs to the stream of literature

which deals with the interactions between real and financial

markets. Our research is also motivated by the so-called phe-

nomenon of financialization of the real economy, that is, an

expansion in the size and importance of the financial sector

with respect to the overall economic system. Accordingly,

this results in raising the significance of the financial sector

with respect to the real one and in transferring income from

the real to the financial sector. Financialization operates

through different channels as well: changes in the skeleton

and operativeness of financial markets, in the behavior of

non-financial institutions and in economic policy. Since

financialization transforms the functioning of the economic

system at the macro level, it turns out to be relevant for the

investigation of the two interacting subsystems in light of the

recent economic developments.

Concerning the real sector, our starting point is

Naimzada and Pecora (2017), in which a multiplier-

accelerator model with a bounded investment function (fol-

lowing Hicks’ original intuition) is studied. The goal of

Naimzada and Pecora (2017) was to show the possible emer-

gence of instabilities in the dynamics when a nonlinear

investment function [The investment function in Naimzada

and Pecora (2017) as in the present contribution is shaped

according to Hicks’ idea of embodying a floor and a ceiling
in the evolution of investments, in order to allow the hypoth-

esis of disinvestment and impossibility of an indefinite

growth due to obvious resource constraints (see also Puu

et al., 2005; Sushko et al., 2010; and Bischi et al. 2001)]. is

taken into account and to understand the effect of the intro-

duction of suitable fiscal policy rules. In the present contribu-

tion, we extend such a framework considering the interaction

with a stock market populated by heterogeneous speculators

who place different types of asset demand. In particular, the

interaction between real and financial market occurs in both

directions. On the financial side of the economy, we assume

that the decisions of economic individuals are based on the

fundamental value of the financial asset. Such value depends

on both an exogenous fundamental value and an endogenous

component linked to a suitably weighted current realization of

income. On the real side, investments depend, with a certain

weight, on the stock market price. In particular, such a weight

represents the degree of interaction between the two markets.

The resulting setting allows us to understand how the acceler-

ator principle, together with the degree of interaction between

the two markets, may influence the dynamics of the economy

and the overall business cycle.

We remark that both Naimzada and Pireddu (2015) and

Westerhoff (2012) are in analogy with the present one as

they both consider the interactions between the two sides of

the economy. However, in the present contribution we deal

with a completely different setting for the real sector, that is,

the multiplier-accelerator. Moreover, in Naimzada and

Pireddu (2015) the investment function is linear and it posi-

tively depends on the national income, while in Westerhoff

(2012) the real market subsystem is described by a stable lin-

ear relation, while the financial sector is represented by a

cubic one, that is, by a nonlinear relation. The main conse-

quence is that the oscillating behavior can be only ascribed

to the financial subsystem. In the present contribution, as in

Naimzada and Pecora (2017), oscillations are endogenously

generated and stoked by the acceleration principle acting in

the real subsystem. This occurs through the nonlinearity of

the real subsystem which, in turn, is due to the nonlinearity

of the investment function with respect to the change in the

level of the national income.

Our research goal is to deepen the understanding of the

role of real and financial feedback mechanisms in order to

identify, by means of rigorous analytical investigations com-

plemented by numerical simulations, how instability may

spread between the integrated markets. To this end, in the

present contribution the central parameter is the one that

encompasses the degree of interaction. The research is car-

ried on acting at three levels.

First, taking into account two different fiscal policy

rules, we investigate their potential to lead the economy

toward the steady state national income. We find that a level-

adjusting rule with an increasing value of its reactivity with

respect to the national income target is able to lead the econ-

omy to the desired output level while either level-adjusting

or trend-offsetting rules together with suitably integrated

markets generate a higher income level with respect to when

they are independent. From this viewpoint, the conclusion

would be that a suitable high level of market interaction

would be beneficial. Such an exclusively static investigation

can be misleading, as it is well-known by Westerhoff (2012)

that, for example, speculators’ decision mechanisms can be

the source of complex market dynamics, which foster the

emergence of endogenous fluctuations in economic activity

that, in turn, affect the assets’ fundamental values, with a

cascade effect. On the contrary, as in the present setting, it

may be the case that the real market, thank to the investment

activities, boosts the output and the overall business cycle,

which affects the demands placed by speculators in the stock

market. In light of this, the government intervention can be

seen as an attempt to stabilize business fluctuations.

We then introduce a second level of investigation, in

which we analytically study the local stability properties of
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the steady states. We show that the stabilization of the

national income may become an intricate issue for the public

authority as such policies may also amplify the fluctuations

of the business cycle. Such results similar to those of

Naimzada and Pecora (2017) extend to the case of interact-

ing markets. In particular, the policy can introduce and/or

amplify the fluctuations of the business cycle for any degree

of interaction. However, we show that increasing the degree

of interaction can have a stabilizing effect in some cases, in

particular, for suitable accelerator values and that it never

introduces local instability. Hence, also from this perspec-

tive, its role is beneficial.

However, also the investigation of local stability is not

sufficient to have a complete picture of the possible dynami-

cal behaviors. In fact, with the help of numerical investiga-

tions, we analyze the global properties of the model and we

find that endogenizing the public expenditure together with

the degree of market interaction may imply multistability,

that is, the coexistence of different kinds of attractors. In par-

ticular, we show that, even if the national income is locally

stable independently of the interaction degree, as the interac-

tion degree increases, the stable steady state can coexist with

complex attractors, giving rise to erratic trajectories for the

national income. From the empirical viewpoint, this level of

investigation is essential to reproduce the fluctuations and

the recurrent boom-bust sequences observed in the real

financial markets together with several stylized facts regard-

ing stock prices and their return (and output as well), such as

positive autocorrelation, volatility clustering, and non-

normal distribution characterized by a high kurtosis and fat

tails. In the existing literature, the occurrence of complex

dynamics able to show qualitative properties of the economic

variables was generally linked to the loss of stability of the

steady state and ascribable to a local investigation of dynam-

ics. Pushing on the local analysis, the three levels of investi-

gations allow us to conclude that the interaction between the

real economy and the stock market may be either beneficial

or a trail for the whole economy.

The rest of the paper is organized as follows: Sec. II out-

lines the features of the two markets; in Sec. III, the analyti-

cal results concerning the stability of the steady state

equilibrium are presented; Sec. IV presents the numerical

simulations; and Sec. V concludes.

II. THE BASELINE MODEL

In what follows, we introduce the models we are going

to study, in which a real market is integrated with a stock

market. The two markets are separately outlined in

Subsections II A and II B. The modelling approach we pur-

sue is based, as in Naimzada and Pecora (2017), on a discrete

time framework, namely, both the real and the financial mar-

kets are studied at time periods t 2N: This also allows us to

compare the results to those in the literature, and in particu-

lar, to understand the effect of introducing interaction

between real and the financial sectors in the economic setting

studied in Naimzada and Pecora (2017).

A. The real market

The benchmark for the real market recalls the seminal

business cycle model of Samuelson (see Samuelson, 1939)

which incorporates the Keynesian multiplier, a multiplicative

factor that relates expenditures to the national income, and

the accelerator principle, whereby induced investment is pro-

portional to increases in the national income. In particular,

we consider the framework of a closed economy, similar to

that studied in Naimzada and Pecora (2017), with the sub-

stantial difference that in the present case the possible inter-

action with a stock market is taken into account.

The macroeconomic equilibrium condition, at any time

t, is given by

Yt ¼ Ct þ Gt þ It; (1)

where Yt, Ct, Gt, and It represent the national income, the

aggregate consumption, the government expenditures, and

private investment, respectively. In particular, the setup for

the real economy is as follows. Aggregate consumption at

time t depends on autonomous consumption �C and on the

previous period national income, that is

Ct ¼ �C þ cYt�1; (2)

where c 2 ð0; 1Þ is an exogenous constant representing the

marginal propensity to consume.

Investments are determined by the principle of accelera-
tor. In particular, the investments’ function is assumed to be

composed of three parts, which are, respectively, an autono-

mous component and two terms depending on the national

income variation and on the financial asset price, and reads

as:

It ¼ �I þ gðYt�1 � Yt�2Þ þ xpPt�1: (3)

The first part �I represents exogenous investments. The sec-

ond part g : R! R is a function which encompasses the

component of investments related to the national income var-

iation. In particular, as in Naimzada and Pecora (2017), a

possible expression for function g is given by the sigmoid

function

gðYt�1 � Yt�2Þ ¼ ca2

a1 þ a2

a1e�ðYt�1�Yt�2Þ þ a2

� 1

� �
; (4)

where c > 0 is the accelerator parameter that tunes the reac-

tivity of investments with respect to the national income var-

iation, a1, a2 are positive parameters, representing the lower

and upper bounds (�a2 and a1). As a consequence, the com-

ponent of investments related to the national income varia-

tion can increase (respectively decrease) by at most ca1

(respectively ca2) if the national income increases (respec-

tively decreases) from period t� 1 to t� 2: This choice is

also motivated by the classic literature during the period

1930s–1950s with several papers on macrodynamics such as

Kalecki (1935) where a gestation lag for investments is con-

sidered, Kaldor (1940) where a nonlinear investment func-

tion based on the profit principle is employed, Hicks (1950)

who extended the original Samuelson’s model with floor and
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ceiling, and Goodwin (1951) who assembled Samuelson’s

model with a nonlinear delay investment based on the accel-

eration principle. More recently, the nonlinear accelerator

model with investment delays is discussed in Matsumoto

(2009) and Matsumoto and Szidarovszky (2015).

The third term xpPt�1 in (3) links investments’ function

to the performance of the stock market. In particular, p is a

positive parameter, which connects investments to the price

of the financial asset, as it is assumed investments’ decisions

of firms and households depend also on the performance of

the stock market, while x 2 ½0; 1� measures the degree of

interaction between real and stock market. If x¼ 0, the two

markets are independent while if x¼ 1, the two markets are

fully integrated. Moreover, due to the linearity of this last

term, we assume that p is suitably small to avoid unham-

pered increase or decrease in the national income.

Finally, concerning the government expenditures, simi-

lar to Naimzada and Pecora (2017), we study two possible

fiscal policy rules, namely

• a policy strategy based on a level adjusting rule

Gt ¼ �G þ g1ðYF � Yt�1Þ; (5)

• a policy strategy based on an anti-cyclical rule

Gt ¼ �G þ g2ðYt�2 � Yt�1Þ: (6)

The main difference between (5) and (6) is that according to

(5) the expenditures for time t are adjusted proportionally to

the difference between the income target YF, which is

assumed to be exogenously set by a fiscal authority, and the

last national income at time t� 1; while according to (6)

the government adjusts its expenditures proportionally to the

deviation of the last observed change in national income

level. The latter rule aims at either cooling down or stimulat-

ing the economy when there is an upturn or a decline in the

output level. Finally, in both (5) and (6), constants gi repre-

sent the adjustment speed coefficients (For further details

about (5) and (6) we refer to Naimzada and Pecora (2017).

Hence, replacing (2) and (3) [in which we use the

expression of g given by (4)] into (1), it follows that the

national income can be expressed by

Yt ¼ �C þ �I þ Gt þ cYt�1

þ ca2

a1 þ a2

a1e�ðYt�1�Yt�2Þ þ a2

� 1

� �
þ xpPt�1; (7)

where Gt is either (5) or (6).

B. Stock market

We assume that, as in Westerhoff (2012), two types of

speculators populate the financial market, namely, funda-

mentalists and chartists. Moreover, there exists a market

maker who sets the price of the financial asset Pt by evaluat-

ing the market excess demand and determining the price by

a linear adjustment mechanism

Pt ¼ Pt�1 þ qðDF
t�1 þ DC

t�1Þ; (8)

where q > 0 is a positive adjustment parameter, DF
t�1 and DC

t�1

are fundamentalists’ and chartists’ demands, respectively, so

that market excess demand is determined by their sum.

Chartists (or technical analysts) make their decision on

future assets prices based on price estimation on observing

prices time series. They buy stocks if they think price is

increasing (bull market) and they sell stocks if they think

price is decreasing (bear market). Their demand is defined as

DC
t ¼ eðPt � FtÞ; (9)

where Ft is the fundamental value perceived by speculators

and e> 0 is the chartists’ reactivity parameter.

On the contrary, fundamentalists base their decision on

fundamental values of the market: They invest when stocks

are undervalued while they sell when stocks are overvalued,

since they believe the stock price will return to its fundamen-

tal value. Hence, the order placed by fundamentalists is for-

malized as

DF
t ¼ f ðFt � Pt; Þ (10)

where f> 0 is the fundamentalists’ reactivity parameter.

The stock market fundamental value is connected, of

course, to the developments of the real economy. The funda-

mental value of the asset price estimated at time t is described

by a weighted average of an exogenous fundamental value F
and a component proportional to the national income, that is,

Ft ¼ ð1� xÞFþ xdYt; (11)

where x 2 ½0; 1� is the interaction parameter introduced for

the investments function in (3) and d> 0 captures the rela-

tion between the fundamental value and the national income

[As for p in (3), we assume that d is suitably small to prevent

the divergence of fundamental value Ft.]. It is worth noticing

that for x 2 ð0; 1�, the fundamental value of the asset varies

over time and if the economy is expanding the national

income increases, as well as the fundamental value of the

financial asset. Similar to Westerhoff (2012), speculators use

the current level of national income as a proxy for the funda-

mental value. But additionally, the fundamental value is also

linked to the real market via the interaction parameter x.

Plugging (11) into (9) and (10), and replacing these into (8),

the price equation can be rewritten as

Pt ¼ Pt�1 þ qðeðPt�1 � ð1� xÞF� xdYt�1Þ
þ f ðð1� xÞFþ xdYt�1 � Pt�1ÞÞ: (12)

We notice that it is common to assume (see Naimzada

and Pireddu, 2015) that, since the speed of price adjustment

in a financial market is much larger than that of good market

prices, the speed of adjustment in the stock market is infinite,

namely, q!1: In such way, we obtain the equilibrium

condition in that market as

Pt � Pt�1

q
¼ eðPt�1 � ð1� xÞF� xdYt�1Þ

þ f ðð1� xÞFþ xdYt�1 � Pt�1Þ

and when q!1 we get
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eðPt�1 � ð1� xÞF� xdYt�1Þ þ f ðð1� xÞF
þ xdYt�1 � Pt�1Þ ¼ DF

t�1 þ DC
t�1 ¼ 0;

namely, depending on the national income Yt, the price Pt is

such that the aggregated market demand provides a null

excess demand. Indeed, from the previous equation we

obtain (As in Naimzada and Pireddu (2014), we assume that

fundamentalists and chartists have different reactivities, i.e.,

e 6¼ f ; as, otherwise, the dynamic equation (12) of the stock

market would reduce to Pt ¼ Pt�1:)

Pt ¼ ð1� xÞFþ xdYt; (13)

which means that price is given by a weighted average of the

exogenous fundamental value and of a component propor-

tional to the national income.

In order to study the interaction between the two mar-

kets, it is convenient to replace the investment function (13)

into the national income relationship (7), obtaining

Yt ¼ �C þ �I þ Gt þ xpð1� xÞFþ ðcþ x2pdÞYt�1

þ ca2

a1 þ a2

a1e�ðYt�1�Yt�2Þ þ a2

� 1

� �
;

which is a second order difference equation, which can be

reduced to a system of two difference equations by introduc-

ing the new variable Zt�1 ¼ Yt�2. Finally, replacing Gt with

either (5) or (6) and setting A � �C þ �G þ �I to collect

the autonomous components, we can introduce functions

Ti : R2
þ ! R2, for i ¼ 1; 2; respectively defined by

T1 :
Yt ¼ Aþ YFg1 þ ðdpx2 þ c� g1ÞYt�1 þ pxð1� xÞFþ ca2

a1 þ a2

a2 þ a1eZt�1�Yt�1
� 1

� �
Zt ¼ Yt�1

8<
: (14)

representing the model in which the level adjusting rule is adopted and

T2 :
Yt ¼ Aþ g2Zt�1 þ ðdpx2 þ c� g2ÞYt�1 þ pxð1� xÞFþ ca2

a1 þ a2

a2 þ a1eZt�1�Yt�1
� 1

� �
Zt ¼ Yt�1

8<
: (15)

representing the model in which the anti-cyclical rule is

adopted.

III. ANALYTICAL RESULTS ON LOCAL STABILITY

In this section, we investigate models (14) and (15),

studying the local stability of the steady states. In this

respect, we are going to pay specific attention on the role of

the interaction parameter x; of the accelerator c and of the

reactivity of the fiscal policies gi.

Before presenting the results, it is worth noticing that if

we consider x¼ 0, that is, the case of independent real and

financial markets, we reduce to the setting considered in

Naimzada and Pecora (2017). In particular, we recall from

Naimzada and Pecora (2017) that if we also set gi ¼ 0; the

unique steady state Ys ¼ A=ð1� cÞ coincides with the equi-

librium of the original Samuelson multiplier-accelerator

model (see Samuelson, 1939). We report the following

Proposition from Naimzada and Pecora (2017).

Proposition 1. The Samuelson equilibrium Ys is locally
stable provided that

c < cNS ¼ a1 þ a2

a1a2

:

Moreover, at c ¼ cNS a supercritical Neimark-Sacker bifur-
cation occurs. [The reader may refer to Naimzada and

Pecora (2017) for the proof.]

Furthermore, if we consider the stock market to be inde-

pendent on the real market, the asset price equilibrium value

is F and it is always stable because of the equilibrium

hypothesis.

A. Model with a level-adjusting fiscal policy rule

When considering a level-adjusting rule, such as in (5),

we refer to a government who decides to compensate for the

difference between the last output realization and a bench-

mark value (e.g., a long run average value or a value near the

full employment level). Hence, the dynamics of the model is

also dependent on how the fiscal authority aims at pushing

the national income to the benchmark output level. So does

the steady state.

A straightforward computation shows that the unique

steady state equilibrium of the map T1 is

Y�� ¼ Z�� ¼ Aþ YFg1 þ pxð1� xÞF
1þ g1 � c� dpx2

;

which is strictly positive and well defined for any interaction

degree x 2 ½0; 1� provided that

1þ g1 � c� pd > 0: (16)

We stress that condition (16) requires that parameters p and

d, which respectively connect investments to the price of the

financial asset and the fundamental value to the national
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income, are suitably small. Such constant is in agreement

with the economic considerations about p and d of Sec. II. If

x¼ 0, we indeed retrieve the steady state found in Naimzada

and Pecora (2017), Sec. III A. Moreover, we remark that Y��

is increasing with respect to F and YF, while concerning the

role of g1 and x we have the following:

Proposition 2. The national income equilibrium
ðY��; Z��Þ converges toward YF as g1 ! þ1. The conver-
gence is monotonically increasing if

YF >
Aþ pxð1� xÞF

1� c� dpx2
¼ Y�; (17)

while it is monotonically decreasing if YF < Y�:
Let

dðAþ YFg1Þ
1þ g1 � c

< F <
2dðAþ YFg1Þ

1þ g1 � c� dp
: (18)

Then, there exists ~x 2 ð0; 1Þ so that the national income
equilibrium Y�� is strictly increasing on ½0; ~xÞ and strictly
decreasing on ð~x; 1�, reaching its maximum value for ~x.

Conversely, if (18) does not hold, the national income
Y�� equilibrium is strictly increasing on x 2 ½0; 1� and
attains its maximum value ðAþ YFg1Þ=ð1þ g1 � c� dpÞ at
x¼ 1.

In both cases, the national income when the two markets
are fully integrated is always greater than when they are
independent.

Proof. The first assertion is straightforward. The behav-

ior with respect to g1 is obtained noticing that

@Y��

@g
¼ �Fpxð1� xÞ � Aþ YFð1� c� dpx2Þ

ðdpx2 þ c� g1 � 1Þ2
:

Concerning x, a simple computation shows that

@Y��

@x
¼ Fpðg1 � cþ 1Þ þ 2pxðAd � Fþ Fc� Fgþ YFdg1Þ þ Fdp2x2

ð1þ g1 � c� dpx2Þ2

whose sign is determined by the sign of the numerator. Let

us introduce the function q : ½0; 1� ! R, where qðxÞ is the

numerator of @Y��=@x. Function q represents a convex

parabola with qð0Þ ¼ Fpðg1 � cþ 1Þ > 0 and for which

qð1Þ ¼ 2dpðAþ YFg1Þ � pFðg1 � cþ 1� dpÞ and q0ð1Þ
¼ 2dpðAþ YFg1Þ � 2pFðg1 � cþ 1� dpÞ: As a conse-

quence, we have

qð1Þ > 0() F <
2dðAþ YFg1Þ

g1 � cþ 1� dp
¼ 2 ~F

and

q0ð1Þ > 0() F <
dðAþ YFg1Þ

g1 � cþ 1� dp
¼ ~F:

If qð1Þ < 0 (which implies q0ð1Þ < 0) since q is convex and

qð0Þ > 0, we have that there exists ~x such that qðxÞ > 0 for

x 2 ½0; ~xÞ and qðxÞ < 0 for x 2 ð~x; 1� so that @Y��=@x
> 0 for x 2 ½0; ~xÞ and @Y��=@x < 0 for x 2 ð~x; 1�, which

means that Y�� is increasing for small values of x and

decreasing for large values of x.

If qð1Þ � 0 and q0ð1Þ � 0, since q is convex and qð0Þ
> 0 we have that qðxÞ � 0 for any x 2 ½0; 1�, so @Y��=
@x � 0 for any x 2 ½0; 1� and Y�� is strictly increasing.

Conversely, if qð1Þ > 0 and q0ð1Þ � 0; in principle we

may have several situations. Let xV be the vertex of q, for

which we indeed have xV < 1. In this case, we have qðxÞ
> 0 for any x 2 ½0; 1� if and only if xV � 0 (in which case q
is strictly increasing) or qðxVÞ > 0 and xV > 0.

We have xV ¼ ðFð1þ g1 � cÞ � dðAþ YFg1ÞÞ=ðFdpÞ;
which is strictly positive provided that

Fð1þ g1 � cÞ � dðAþ YFg1Þ > 0; (19)

and we have

qðxVÞ ¼
�F2ðg1 � cþ 1Þð1þ g1 � c� dpÞ þ 2FdðAþ YFg1Þðg1 � cþ 1Þ � d2ðAþ YFg1Þ2

Fd

We notice that

�F2ðg1 � cþ 1Þð1þ g1 � c� dpÞ
þ FdðAþ YFg1Þðg1 � cþ 1Þ
¼ Fðg1 � cþ 1Þ �Fð1þ g1 � c� dpÞ½
þ dðAþ YFg1Þ

�
� 0

since q0ð1Þ � 0, and that

FdðAþ YFg1Þðg1 � cþ 1Þ � d2ðAþ YFg1Þ2

¼ dðAþ YFg1Þ Fðg1 � cþ 1Þ � dðAþ YFg1Þ
� �

> 0

thanks to (19). This implies that qðxVÞ > 0 and hence

qðxÞ > 0 for any x 2 ½0; 1� so that @Y��=@x � 0 for any

x 2 ½0; 1� and Y�� is strictly increasing.

To prove the last assertion, it is sufficient to note that

the numerator of Y�� is equal to Aþ YFg1 for both x¼ 0 and
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x ¼ 1; while for x¼ 0 its denominator is 1þ g1 � c
> 1þ g1 � c� dp; which is the denominator for x ¼ 1:
This concludes the proof. w

We notice that the value Y�, which has been introduced

in the previous Proposition, is actually the steady state of the

model in which no policy rule (i.e., g1 ¼ 0) is adopted and

the government expenditure is constant �G:
To study the local stability of ðY��; Z��Þ, we introduce

the threshold values

cf
1 ¼

a1þ a2

2a1a2

ð�1� cþ g1� dpx2Þ; cns
1 ¼

a1þ a2

a1a2

;

xf
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dp
g1� c� 2a1a2c

a1þ a2

� 1

� �s
;

gf
1 ¼ cþ dpx2þ 2a1a2c

a1þ a2

þ 1;

(20)

where xf
1 is defined provided that g1 � c� 1� 2a1a2c=

ða1 þ a2Þ � 0

In the next Proposition, we investigate the local stability

of ðY��; Z��Þ showing the only possible behaviors on varying

parameters x; c and g1: We stress that an unconditionally

stable/unstable scenario is realized when the steady state is

locally asymptotically stable/unstable independently of the

parameter values; a stabilizing/destabilizing scenario occurs

when the steady state is locally asymptotically stable only

below/above a given threshold and unstable otherwise; a

mixed scenario arises when the steady state is locally asymp-

totically stable only for intermediate parameter values,

between two stability thresholds, and unstable otherwise.

Proposition 3. The only possible scenarios on increas-
ing the degree of interaction x are the unconditionally
unstable, the unconditionally stable, and the stabilizing sce-
nario. In this last case, a period halving bifurcation occurs
at x ¼ xf

1:
The only possible scenarios on increasing the adjust-

ment speed g1 are the unconditionally unstable and the
destabilizing scenario. In this last case, a flip bifurcation
occurs at g ¼ gf

1:
The only possible scenarios on increasing the accelerator

c are the unconditionally unstable scenario, a destabilizing
scenario, in which a Neimark-Sacker bifurcation occurs at
c ¼ cns

1 ; and a mixed scenario in which a period halving bifur-
cation occurs at c ¼ cf

1 and a Neimark-Sacker bifurcation
occurs at c ¼ cns

1 ; being ðY��; Z��Þ stable for c 2 ðcf
1; c

ns
1 Þ:

Proof. The Jacobian matrix of the map (14) is

J1 ¼ c� g1 þ dpx2 þ c
a1a2eZt�1�Yt�1ða1 þ a2Þ
ða2 þ a1eZt�1�Yt�1Þ2

�c
a1a2eZt�1�Yt�1ða1 þ a2Þ
ða2 þ a1eZt�1�Yt�1Þ2

1 0

0
B@

1
CA;

which evaluated at the steady state provides

J��1 ¼
c� g1 þ dpx2 þ c

a1a2

a1 þ a2

�c
a1a2

a1 þ a2

1 0

0
B@

1
CA;

where TrðJ��1 Þ¼c�g1þdpx2þca1a2=ða1þa2Þ and detðJ��1 Þ
¼ca1a2=ða1þa2Þ are, respectively, the trace and the deter-

minant of matrix J��1 .

According to the usual Jury’s conditions (see, e.g.,

Medio and Lines, 2005), the steady state is locally asymptot-

ically stable provided that

1� TrðJ��1 Þ þ detðJ��1 Þ ¼ 1þ g1 � c� dpx2 > 0; (21a)

1� detðJ��1 Þ ¼
a1 þ a2 � a1a2c

a1 þ a2

> 0; (21b)

1� TrðJ��1 Þ þ detðJ��1 Þ ¼ c� g1 þ dpx2 þ 2a1a2c
a1 þ a2

þ 1 > 0:

(21c)

The first condition is always satisfied thanks to assumption

(16), while the second one requires c < cns
1 . Solving the last

stability condition with respect to c we find c > cf
1, so

inequalities (21b) and (21c) are simultaneously fulfilled pro-

vided that cf
1 < c < cns

1 : Since we need c > 0; this means

that if cf
1 � cns

1 we have the unconditionally unstable sce-

nario, if cf
1 � 0 we have the destabilizing scenario, and if

0 < cf
1 < cns

1 we have a mixed scenario.

If we consider (21) both with respect to x and g, if c
� cns

1 ; condition (21b) is not fulfilled independently of x and

g, so we have the unconditionally unstable scenarios with

respect to both x and g. Now, we assume c < cns
1 and we

solve (21c) with respect to x: Thanks to the positivity of the

coefficient of x2; condition (21c) is either satisfied for any

x 2 R or for jxj > xf
1: Since we need x 2 ½0; 1�; in the for-

mer case or in the latter one for xf
1 > 1; the steady state is

unconditionally stable, while in the latter case for xf
1 � 1 we

have a stabilizing scenario.

Finally, assuming c < cns
1 and solving (21c) with respect

to g1 we find g1 < gf
1; so we are in the destabilizing scenario.

Recalling that when 1� detðJ��1 Þ ¼ 0 we have a Neimark-

Sacker bifurcation while a flip bifurcation occurs when

1� TrðJ��1 Þ þ detðJ��1 Þ ¼ 0 allows identifying the kind of

bifurcations occurring at cf
1; c

ns
1 ;x

f
1 and gf

1: This concludes

the proof. w
A graphical illustration of the stability regions in the

parameter planes ðc;xÞ; ðc; g1Þ and ðg1;xÞ is reported in

Fig. 1, for which we set A ¼ 50; YF ¼ 1; c ¼ 0:8; d ¼ 0:7;
p ¼ 1;F ¼ 50; a1 ¼ 3, and a2 ¼ 0:2: From Fig. 1 it is evi-

dent that all the possible scenarios described by Proposition

3 actually occur for some parameter configurations. As we

103120-7 Cavalli, Naimzada, and Pecora Chaos 27, 103120 (2017)



can see from Fig. 1(a), for a fixed value of the accelerator

parameter, the stability region (represented in yellow) of

ðY��; Z��Þ enlarges as the interaction degree increases.

Similarly, for a fixed policy adjustment speed, increasing x
has a stabilizing effect [Fig. 1(c)].

Moreover, in agreement with the results of Proposition

3, we may have both a single and a double stability threshold

with respect to the accelerator parameter c [Figs. 1(a) and

1(b)]. We notice that, as in Naimzada and Pecora (2017), an

increasing reactivity of the public expenditures with respect

to the deviations of the national income to its target may

reduce the size of the stability region. Finally, looking at Fig.

1(c), we can confirm that the steady state is locally stable

when the public intervention is not extreme as well as the

degree of interaction between the real and the financial sec-

tor is sufficiently large.

The previous results regarding the stability of the steady

state equilibrium with respect to the interaction degree x and

the reactivity of the fiscal policy g1 can be related to the by

now accepted wave of globalization and the recent global

financial crisis. While the origin of the crisis is attributed to

the financial sectors, there are also some counterparts in the

real economy. Fiscal policy is then called upon to provide

additional stabilization in a scenario in which the integration

between the two sides of the economy is becoming more

tightened.

In Sec. IV, we will deepen the investigation about the

dynamics arising when the steady state loses stability

through numerical simulations. We stress that Proposition 3

shows that, as a consequence of either a flip or a Neimark-

Sacker bifurcation, both periodic and quasi-periodic trajecto-

ries are possible. The relevance of a Neimark-Sacker bifurca-

tion is connected to its capability to explain the emergence

of endogenous quasi-periodic phenomena, resembling the

alternation of periods of high and low economic activity

(business cycles), without requiring to introduce into the

model exogenous ad-hoc shock components. Similarly, a

cascade of period-doublings can lead to the emergence of

chaotic dynamics, resembling indeterministic trajectories.

For further discussions about the economic interpretation of

different dynamics, we refer to Hommes (2013).

B. Model with an anti-cyclical rule

In this part, we assume that the fiscal authority aims at

offsetting the national income trends. Policy makers increase

(decrease) the government expenditures when the national

income has just been falling (rising) with the aim of smooth-

ing out the business cycle. Especially after the recent finan-

cial crisis, evidence showed that fiscal policy may be an

appropriate countercyclical tool when the financial sector is

weak or the output gap is particularly large. Keeping this in

mind, the model we are going to analyze is described by map

T2 in (15).

Simple computations allows us to determine the unique

steady state of the system (15), which is given by

Y��� ¼ Z��� ¼ Aþ pxð1� xÞF
1� c� dpx2

;

on which we make the assumption (Notice that this is the same

condition as in the model without government expenditures.)

1� c� dp > 0

to guarantee the economic meaningfulness of Y��� for any

interaction degree. Similar to condition (16), such condition is

fulfilled when parameters p and d are suitably small. If x¼ 0,

we again retrieve the steady state found in Naimzada and

Pecora (2017), Sec. III B, which coincides with the

Samuelson equilibrium Ys. We remark that Y��� does not

depend on the speed of adjustment g2 of the policy rule, while

it is increasing with respect to F and YF: On varying the

degree of interaction, we obtain the following Proposition.

Proposition 4. Let

dA

1� c
< F <

2dA

1� c� dp
: (22)

Then, there exists ~x 2 ð0; 1Þ so that the national income
Y��� is strictly increasing on ½0; ~xÞ and strictly decreasing
on ð~x; 1�, reaching its maximum value for ~x.

Conversely, if (22) is not fulfilled, the national income
Y��� is strictly increasing on x 2 ½0; 1� and attains its maxi-
mum value A=ð1� c� dpÞ at x¼ 1.

FIG. 1. Stability regions in ðc;xÞ; ðc; g1Þ, and ðg1;xÞ parameter planes. Yellow, green, and blue colors, respectively, identify regions in which the steady state

is stable, unstable, and does not fulfill the assumption (16). Solid and dashed red lines, respectively, represent flip and Neimark-Sacker bifurcation curves.

Black dotted lines point out unconditionally unstable (UU), unconditionally stable (US), destabilizing (D), stabilizing (S), and mixed (M) scenarios.
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In both cases, the national income when the two markets
are fully integrated is always greater than when they are
independent.

Proof. Comparing Y��� with Y��; it is evident that the

former steady state is obtained by formally setting g1 ¼ 0 in

the latter one. Proposition 4 can be then proved following

step by step the proof of Proposition 2. w
The only possible scenarios arising with respect to the

local stability of ðY���; Z���Þ are investigated in Proposition

5, in which we use the values

cf
2 ¼

a1þ a2

2a1a2

ð�1� cþ 2g2� dpx2Þ; cns
2 ¼

a1þ a2

a1a2

;

xf
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dp
g2� c� 2a1a2c

a1þ a2

� 1

� �s
;

gf
2 ¼ cþ dpx2þ 2a1a2c

a1þ a2

þ 1;

(23)

where xf
2 is defined provided that g2 � c� 1� 2a1a2c=ða1

þa2Þ � 0: The following Proposition summarizes the results

on local stability of the ðY���; Z���Þ steady state.

Proposition 5. The only possible scenarios on increasing
the degree of interaction x are the unconditionally unstable,
the unconditionally stable, and the stabilizing scenario. In this
last case, a period halving bifurcation occurs at x ¼ xf

2:
The only possible scenarios on increasing the adjustment

speed g2 are the unconditionally unstable and the destabilizing
scenario. In this last case, a flip bifurcation occurs at g ¼ gf

2:
The only possible scenarios on increasing the accelera-

tor c are the unconditionally unstable scenario, a destabiliz-
ing scenario, in which a Neimark-Sacker bifurcation occurs
at c ¼ cns

2 ; and a mixed scenario in which a period halving
bifurcation occurs at c ¼ cf

2 and a Neimark-Sacker bifurca-
tion occurs at c ¼ cns

2 ; being ðY���; Z���Þ stable for interme-
diate values of c 2 ðcf

2; c
ns
2 Þ:

Proof. Proceeding as in the proof of Proposition 3, we

compute the Jacobian matrix of (15)

J2 ¼
c� g2 þ dpx2 þ c

a1a2e Zt�1�Yt�1ð Þða1 þ a2Þ
ða2 þ a1e Zt�1�Yt�1ð ÞÞ2

g2 � c
a1a2e Zt�1�Yt�1ð Þða1 þ a2Þ
ða2 þ a1e Zt�1�Yt�1ð ÞÞ2

1 0

0
BB@

1
CCA

and we evaluate it at the steady state, obtaining

J���2 ¼
c� g2 þ dpx2 þ c

a1a2

a1 þ a2

g2 � c
a1a2

a1 þ a2

1 0

0
@

1
A

where TrðJ���2 Þ ¼ c� g2 þ dpx2 þ cða1a2Þ=ða1 þ a2Þ and

detðJ���2 Þ ¼ cða1a2Þ=ða1 þ a2Þ � g2 are, respectively, the

trace and the determinant of J���. Jury’s conditions guarantee

the local asymptotic stability of the steady state when

1� c� dpx2 > 0;

a1 þ a2 � a1a2c > 0;

c� 2g2 þ dpx2 þ 2a1a2c
a1 þ a2

þ 1 > 0:

8>>><
>>>:

(24)

Conditions (24) are obtained by setting g1 ¼ 2g2 in the sta-

bility conditions (21) referred to the model with the level

adjusting policy rule. This means that thresholds (23) are

obtained by replacing g1 with 2g2 in (20) and that the result-

ing stability regions of ðY���; Y���Þ for (15) are in one-to-one

correspondence with those of ðY��; Y��Þ for (14). This con-

cludes the proof. w
The possible stability scenarios under the anti-cyclical

rule are the same as those under the level adjusting rule.

Moreover, we have cns
1 ¼ cns

2 and gf
1 ¼ gf

2; while, if we com-

pare the policy rules for the same speed of adjustments

g1 ¼ g2; we have cf
1 < cf

2 and xf
1 < xf

2: This result, recalling

Propositions 3 and 5, allows us to concluding that the stabil-

ity region of ðY��; Y��Þ for (14) always includes that of

ðY���; Y���Þ for (15). All the considerations we made at the

end of Sec. III A about the role of parameters, in particular

on the degree of interaction, still hold. Similarly, stability

regions reported in Fig. 1 are qualitatively the same of those

for the model considered in the present section (Recalling

the proof of Proposition 5, stability regions can be simply

obtained applying transformation g1 ¼ 2g2:)

IV. NUMERICAL SIMULATIONS

In this section, we complement the analytical study of

local stability performed in Sec. III with several numerical

investigations. The goal is to study the possible dynamics

when trajectories do not converge toward the steady state

and to check whether the nonlinear, possibly complex,

dynamical behavior of economic variables fosters the emer-

gence of stylized facts in the time series of prices. In particu-

lar, we are interested in the effects, on the dynamics of the

national income Yt; of the interaction degree between real

and financial markets. We stress that we just present results

for the model with the level adjusting policy rule, since we

extensively checked through simulations that the results are

qualitatively the same when the anti-cyclical rule is consid-

ered. So, all the comments and conclusions of this section

can be extended to model (15), too. All the results reported

in this section are obtained for the same parameter setting

used for the stability regions of Fig. 1, namely, for A
¼ 50; YF ¼ 1; c ¼ 0:8; d ¼ 0:7; p ¼ 1;F ¼ 50; a1 ¼ 3, and

a2 ¼ 0:2; while x; g1 and c are specified time by time.
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First, we investigate what happens when the steady state

loses stability, reporting in Figs. 2(a)–2(c) three black bifur-

cation diagrams obtained on varying x; c, and g1; setting ini-

tial conditions (Y 0, Z0) suitably close to the steady state. The

bifurcation diagram reported in Fig. 2(a) is obtained setting

c ¼ 1:4 and g1 ¼ 2:5 and confirms the stabilizing role of the

interaction degree. In agreement with (20), when x
decreases below xf

1 ¼ 0:5; the steady state loses stability

through a period-doubling bifurcation, giving rise to a

period-2 cycle, which remains stable for any x < xf
1:

Period-doubling bifurcations, as the policy reactivity g1

increases [Fig. 2(b)] and as the accelerator c decreases [Fig.

2(c)], provide qualitatively similar stable period-2 cycles.

We remark that such behavior is robust, and in all the simu-

lations we performed we observed that period-2 cycles aris-

ing from flip bifurcations of the steady state remains locally

stable on decreasing (for x and c) or increasing (for g1) the

bifurcation parameter. We notice that, recalling (20), gf
1

� 2:203; obtained for c¼ 1 and x ¼ 0:2; and cf
1 � 1:6987;

obtained for g1 ¼ 2:5 and x ¼ 0:3; are in agreement with

the flip threshold we find in Figs. 2(b) and 2(c).

Conversely, if we set g1 ¼ 2:5 and x ¼ 0:3; as the

accelerator increases above cns
1 � 5:333; a Neimark-Sacker

bifurcation occurs and Yt follows quasi-periodic trajectories

[Fig. 2(c)]. In many business cycle models, the underlying

economic variables usually tend to converge to a steady state

(made up of, e.g., a constant output level, a constant stock of

capital). Usually business cycles are seen as emerging from

shocks that perturb an otherwise stable environment. But this

is not always the case, as economic forces may naturally

produce cyclical phenomena. That is, in the absence of any

shocks, economic forces by themselves may favor recurrent

periods of high economic activity followed by periods of

low economic activity. This outcome emerges, for example,

if the underlying system generates a closed invariant curve.

When a supercritical Neimark-Sacker bifurcation occurs,

indefinitely repeating fluctuations take place. More precisely,

in economics, this kind of bifurcation is associated with

endogenous oscillations or self-sustaining cycles, to refer to

the business cycle arising from endogenous forces that foster

the stimulus of economic and financial activity. Such stimu-

lus, in turn, causes the economy to be naturally unstable so

that it would undergo boom and bust dynamics even in the

absence of any stochastic disturbances (see, e.g., the works

of Kaldor, 1940; Goodwin, 1951; and Bischi et al., 2001 for

the analysis of business cycle models and the related bifurca-

tions arising in their settings).

However, the local stability analysis and the dynamics

arising from the destabilization of the steady state just pro-

vide a partial picture of the overall possible phenomena.

Figures 2(c) and 2(d) show that coexistence among different

attractors is possible. The red bifurcation diagrams superim-

posed to the black ones are obtained by considering 5002

possible initial data uniformly distributed on the square [15,

37]2 [Fig. 2(c)] and on the square ½10; 40�2 [Fig. 2(d)], and

representing only those points belonging to trajectories that

do not correspond to the stable steady state or to the period-

2 cycle and the quasi-periodic trajectories arising from the

destabilization of ðY��; Y��Þ: As we can see, the resulting

structure is quite complex, and the numerical investigations

suggest that coexisting attractors can appear and disappear

on varying both c and x. In particular, we have that the sta-

ble steady state can coexist with complex, possibly chaotic

attractors, even when ðY��; Y��Þ is unconditionally stable, as,

for example, in the case reported in Fig. 2(d).

Such results point out that it may be very difficult that

trajectories converge toward the steady state, even when it is

locally stable, even more so under the effect of exogenous

indeterministic fluctuations. To investigate more in depth

such phenomena, we focus on some representative situations

arising in the simulations reported in Fig. 2. The correspond-

ing basins of attraction are collected in Figs. 3(a)–3(f), which

exhibits the coexistence between the stable steady state with

periodic or complex attractors. When different attractors

coexist in the phase-space, the structure of their basins of

attraction, and the dependence of the basin boundaries to the

parameters of the model, plays a crucial role in the long-run

behavior of the economy under scrutiny. Eventualities of

attractors coexistence have been reported for a wide range of

nonlinear dynamic economic models in discrete time (see,

e.g., Agliari and Dieci, 2006; Agliari et al., 2007; and Dieci

and Gallegati, 2011) and the mechanisms that lead to the

appearance of new attractors or to the disappearance of exist-

ing ones are generally related to the occurrence of global

bifurcations. What needs mentioning, especially for the eco-

nomic interpretation of such phenomena, is the implication

for the course of the underlying business dynamics. As is the

case of the present model, the system will select among mul-

tiple long-run dynamic outcomes, which may include steady

FIG. 2. Bifurcation diagrams with respect to x; c, and g1: Black bifurcation

diagrams are obtained with an initial datum which is suitably close to the

steady state. The red bifurcation diagrams reported in (c) and (d) show mul-

tistability, with coexisting attractors and complex dynamics, that can occur

even when the steady state is unconditionally stable, as in (d).
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states and other types of attractors, e.g., periodic or chaotic

attractors. In such cases, the representation of the basins of

attraction, even in the presence of attractors with a relatively

simple structure, helps in predicting which attractor will be

selected by the economy. This is crucial for the long-run eco-

nomic dynamics. Hence, the final outcome of the system

may be totally uncertain when the initial condition is

selected, in particular, the regions of the phase-plane and

when the basins exhibit rather complicated structure: An

uncertainty in the position of the phase space, or a shock,

may generate the transition from convergence to one attrac-

tor to convergence to a different one. Moreover, thanks to

such path dependence, the model is capable to encompass

different stable scenarios for the same economic setting,

accounting for the possibility that the same institutional and

economic conditions can lead, depending on the past history,

to different final outcomes (see Arthur, 1994).

To this end, in what follows we aim at understanding if

the steady state, and/or an attractor coexisting with it, is suf-

ficiently robust with respect to perturbations, namely, if,

when trajectories are suitably close to an attractor, they

can be driven toward another attractor by small non-

deterministic fluctuations. In particular, we identify by rx the

radius of the largest circular neighborhood of ðY��; Y��Þ
included in its basin of attraction, corresponding to the inter-

action degree x: Moreover, we identify by BðY��Þ the basin

of attraction of ðY��; Y��Þ; while we use C and BðCÞ for any

attractor coexisting with the steady state and for its basin,

respectively.

In Fig. 3, we report BðY��Þ (in green color) and BðCÞ (in

yellow color) corresponding to x � 0:32; 0:545; 0:76; 0:84:
When x � 0:32, we have that C is a seven pieces chaotic

attractor whose basin BðCÞ is very scrambled and mixed

with BðY��Þ [see Fig. 3(a)]. We numerically checked that

approximately the same number of initial data converges to

each attractor. Moreover, r0:32 is quite small, so even when

trajectories are very close to the steady state, a small pertur-

bation very likely can make them cross BðCÞ and vice-versa.

In Figs. 3(b) and 3(c), we consider x � 0:409 and

x � 0:545; respectively, both belonging to interval ð0:387;
0:546Þ; in which, looking at Fig. 2(d), a period-3 cycle [Fig.

3(b)] appears and evolves through a cascade of period-

doubling bifurcations toward a three pieces chaotic attractor

[Fig. 3(c)]. We again have that the basins of attraction of the

steady state and the coexisting three pieces attractor are

scrambled, with r0:545 � r0:32: Simulations suggest that only

the ten percent of feasible initial data converge to the steady

state. Finally, we notice that the three pieces chaotic attractor

is close to become tangent to the boundary of BðY��Þ and to

consequently disappear through a global bifurcation.

In Fig. 3(d), we report the complex structure of BðY��Þ
and BðCÞ when x � 0:76 2 ð0:715; 0:758Þ and C is a four

pieces chaotic attractor coming from a cascade of period-

doublings of a period-4 cycle. The main difference with the

situation reported in Fig. 3(c) is that the probability to con-

verge toward either the steady state or the chaotic attractor is

reversed, as the number of initial data which converges

toward the steady state results three times larger than that of

FIG. 3. Basins of attraction corresponding to some values of x and for the parameter setting used for the simulation reported in Fig. 2(d). Color blue is used

for unfeasible regions or divergence, color green for the basins of attraction of the steady state, and color yellow for the basins of coexisting attractors.
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those converging to the coexisting attractor. Moreover,

r0:75 > r0:545:
Finally, in Figs. 3(e) and 3(f) we consider x � 0:84 and

x � 0:90; belonging to interval ð0:8; 0:92Þ; in which a cha-

otic attractor [Fig. 3(e)] is transformed into a period-3 cycle

though a cascade of period-halvings [Fig. 3(f)]. Even if the

structure of both BðY��Þ and BðCÞ is more regular than in the

previous cases, both basins are unconnected and a double

number of initial data converge toward the steady state

instead of C: In this last case, r0:84 is larger than in the previ-

ous three examples, and the steady state is more robust with

respect to perturbations.

The peculiar aspects common to the results described in

Fig. 3 are that the basins of attraction can have very complex

unconnected or scrambled structures, and even small pertur-

bations can lead trajectories to unpredictably jump from

BðY��Þ to BðCÞ and vice-versa, even when we are very

close to the steady state [for example, in Figs. 3(a)–3(d)].

Moreover, the ratio between the measures of BðY��Þ and

BðCÞ gives a piece of information about which basin is more

frequently crossed by the trajectories, and, as a consequence,

close to which attractor more likely they pass.

Keeping in mind the previous results and observations, in

the last part of this section we investigate the qualitative prop-

erties of time series, in particular, depending on the degree of

interaction between markets and on the accelerator. In this last

set of simulations, we take into account a stochastic perturba-

tion, to allow for exogenous shocks. To this end, we perturb

both fundamentalists’ and chartists’ demands by a stochastic

term. The demand placed by chartists is specified as

DC
t ¼ eðPt � FtÞ þ eC

t ; (25)

where eC
t is introduced to capture part of the variety that can

emerge in the technical analysis run by chartists. In fact, as

argued by Murphy (1999), even if the spirit of technical ana-

lysts is to ride on a trend, there exist numberless different

technical trading rules.

On the other hand, orders generated by fundamentalists

read as

DF
t ¼ f ðFt � PtÞ þ eF

t ; (26)

where eF
t is introduced to capture the idea that it is quite diffi-

cult for investors to determine the fundamentals (in fact fun-

damental values may change over time due to real shocks),

as already argued by Keynes (1936).

We assume that eC
t and eF

t are sequences of independent,

identically distributed random normal variables, with zero

mean and variance r2
F and r2

C: Using the perturbed demands

in (8) and acting as in Sec. II B we obtain

Pt ¼ ð1� xÞFþ xdYt þ et; (27)

where et is a sequence of independent, identically distributed

random normal variables, with zero mean and variance

r2 ¼ ðr2
F þ r2

CÞ=ðe� f Þ2:
Equation (27) is then used in (7) with policy (5) to obtain

a stochastically perturbed version of model (14). The goal of

this analysis is to demonstrate that a stochastic version of our

model can generate realistic dynamics that are able to mimic

several stylized facts of financial markets that, in turn, may

affect the behavior of the real sector. Our analysis reveals that

studying analytically the stability of the steady state become

useful to understand its out-of-equilibrium behavior in the

presence of noise. For related work on the intricate interplay

between deterministic and random forces, see, for instance,

Chiarella et al., 2011; He and Li, 2007; 2008; and Hommes

2013. In fact, it is worth mentioning that deterministic finan-

cial market models with interacting agents (see, e.g., Day and

Huang, 1990; Lux, 1995; Brock and Hommes, 1997; and

Chiarella et al., 2002) are able to produce intricate boom-bust

cycles while stochastic model versions (see, e.g., Lux and

Marchesi, 1999; Lux, 2009; Franke and Westerhoff, 2016;

and Gaunersdorfer and Hommes, 2007) may match the statis-

tical properties of financial markets in detail. Hence, thanks to

their apparent explanatory power, models that have been

being developed with interacting agents and sectors are

increasingly used as tools for economic policy design (see

Westerhoff and Franke (2013) for a survey).

In what follows, we study the times series of price

returns, defined as

Rt ¼ 100 	 log ðPtÞ � log ðPt�1ð Þ;

focusing, in particular, on the deviation from normality

and volatility of their distribution. For each x and c; both

kurtðRtÞ and volðRtÞ are evaluated computing the average

kurtosis and volatility obtained from 500 simulations with

different sequences of et:
In all the simulations reported in this section, we employ

the same parameter setting as in the previous ones, and we

set r ¼ 0:21: In Fig. 4(a), we show the bifurcation diagram

of Rt under the effect of the stochastic shock, corresponding

to the deterministic one of Yt reported in Fig. 2(d). A qualita-

tive comparison of Figs. 4(a) and 2(d) highlights some differ-

ences between the deterministic and stochastically perturbed

bifurcation diagrams. For x < 0:25; from Fig. 4(a) we have

no evidence of multistability, similar to the deterministic

case, and the modest deviation from the steady state is just

due to the small random fluctuations. When x > 0:25; we

can instead infer from Fig. 4(a) that we have at least an

attractor coexisting with the steady state for any interaction

degree. This is quite different from what is shown in Fig.

2(d), in which for some intervals of x > 0:25 we again have

that the steady state attracts all the initial data we considered.

This different behavior can be understood by noticing that

when introduce the stochastic component in the model, it is

as if we are considering the first equation of (14) with a dif-

ferent constant A, depending on the actual value of et: As a

consequence, the resulting deterministic map can have dif-

ferent properties with respect to multistability than that cor-

responding to et ¼ 0: Then, the behavior of the perturbed

version of the model is even more complex than that

reported in Figs. 2(c) and 2(d), and multistability can be

introduced or destroyed depending on the perturbation, too.

Both kurtosis [Fig. 4(b)] and volatility [Fig. 4(c)] behavior

can be understood looking at the shape of the bifurcation dia-

gram in Fig. 4(a). We recall that kurtosis measures how
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much fat are distribution’s tails compared with those of a

normal distribution. In this respect, to have a large kurtosis it

is not sufficient to have price trajectories with large diame-

ters but it is essential to have trajectories in which prices,

which are far from their average, frequently occur.

When x is suitably small, no coexistent attractors

emerge, and the erratic trajectories are uniquely determined

by the stochastic term, so the returns distribution reflects the

normality of et and the volatility is very reduced. The large

kurtosis for x > 0:25 is essentially due to the presence of

complex attractors. The non-monotonic behavior of kurtðRtÞ
is ascribed to the robustness of the emergence in the family

of perturbed maps (14) of sequences of coexisting attractors.

For example, for x 2 ð0:25; 0:5Þ we can infer from the bifur-

cation diagram in Fig. 4 that a family of coexisting attractors

exists, and it is replaced by a different family for x > 0:5;
which illustrates the different kurtosis behavior for x
2 ð0:25; 0:5Þ and for x > 0:5: Moreover, for x � 0:5 the

transition between the two different families of attractors

makes multistability less robust, with a consequent reduced

kurtosis. Moreover, the deviation from normality is more

significant for x 2 ð0:5; 0:7Þ than for x 2 ð0:25; 0:5Þ: This

can be understood recalling the considerations we made

about the basins of attraction reported in Figs. 3(a) and 3(b).

Since for x 2 ð0:5; 0:7Þ the measure of the basin of C, BðCÞ,
is larger than that of BðY��Þ; trajectories are more likely to

converge to the attractor C with respect to the case when

x 2 ð0:25; 0:5Þ; in which the measure of the basins of the

two attractors, BðCÞ and BðY��Þ are similar. As a conse-

quence, when x 2 ð0:5; 0:7Þ; tails in returns’ distributions are

fatter. As x further increases, recalling the comments con-

cerning Figs. 3(c) and 3(d) about the effect of perturbations,

the kurtosis decreases. The behavior of volatility is instead

more closely connected to the diameter of the trajectories.

The key aspect is that, for most values of the interaction

degree and of the accelerator, large kurtosis and volatility of

price returns’ distributions are the most common behavior,

essentially fostered by the interactions between the two sides

of the economy and the endogenous complexity of the model

from the global stability point of view.

Another peculiar stylized fact of returns’ times series is the

volatility clustering, namely, the occurrence of several consecu-

tive returns characterized by large volatility alternated with sev-

eral consecutive returns characterized by small volatility. This

is graphically evident from Fig. 5(a), in which a typical exam-

ple of time series of returns, obtained for the parameter setting

and the stochastic perturbations used for Fig. 4, is reported. If,

at each time period t, we compute the average volatility consid-

ering time periods t� 30; t� 29;…; t (i.e., the average moving

volatility over a window of 30 time periods), we can see that

intervals characterized by large and small volatility alternates

[Fig. 5(b)]. Finally, volatility clustering is highlighted by the

typical strongly positive, slowly decreasing autocorrelation

coefficients of absolute returns, reported in Fig. 5(c).

We remark that if we slightly change the standard devia-

tion of et; all the previous results remain qualitatively the

(a) (b) (c)

FIG. 5. (a) Time series of returns. (b) Moving volatility on a window of 30 time periods of the returns. The orange line shows intervals in which volatility is

larger or smaller than the volatility computed considering the whole time series. (c) Autocorrelation of absolute returns jRtj:.

(a) (b) (c)

FIG. 4. (a) Bifurcation diagram of returns Rt under the effect of stochastic shock et: (b) Kurtosis, with orange line portraying the reference value 3, representing

normality. (c) Volatility. All the plots are obtained on varying x:
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same. Indeed, as r � 0; the deterministic component is the

dominant one and the results are no more significant, as well

as if we keep increasing r: In this case, the shock becomes

dominant and the returns distribution become increasingly

close to a normal one, even if volatility increases. Finally,

even if we just reported results concerning a family of simu-

lations related to a unique parameter setting, we numerically

checked that the emergence of coexistence phenomena and

of the consequent stylized facts in the time series is robust.

Indeed, they can arise for different (either smaller or larger)

values of x with respect to those reported in the previous

simulations, but results and considerations remains qualita-

tively the same.

Overall, we can state that by adding a stochastic shock

to the speculators’ demand, which reflects certain within-

group heterogeneity, we have been able to replicate several

statistical properties of real financial markets. The resulting

outcomes can be seen as complementary to the deterministic

analysis, providing a broader macroscopic picture of the

emergent properties that may arise when connecting the two

(real and financial) subsystems.

V. CONCLUDING REMARKS

In this paper, we proposed a model belonging to the

strand of literature on the interactions between real and

financial markets (see, e.g., Westerhoff, 2012 and Naimzada

and Pireddu, 2015). The real side of the economy, which is

described within a nonlinear multiplier-accelerator frame-

work, where the nonlinearity is ascribed to the investment

function, interacts with a financial market with heteroge-

neous speculators. This allowed us to focus on the role of the

degree of interaction between the two markets, considering

two different well-known fiscal policy rules and studying

their capability to stabilize the course of the economy, lead-

ing it toward the desired output steady state and how the

accelerator influence such dynamics. By means of both ana-

lytical and numerical tools, we carried on the study at three

levels: a first static investigation of the possible steady states

and how they vary, the analysis of their local stability, and

the possible emergence of multistability phenomena. The

static analysis showed that a suitable degree of interaction

may generate a higher income level with respect to when

they are independent, both for the level-adjusting and the

trend-offsetting policy rules. The beneficial effect of the

degree of interaction seems to emerge also from the local

stability analysis, with a possible stabilizing effect for suit-

able accelerator values. However, deepening the analysis to

a global level reveals that multistability phenomena may

occur even when the national income steady state is locally

stable, independently of the interaction degree. As the inter-

action degree increases, the stable steady state can coexist

with complex attractors, giving rise to endogenous erratic

fluctuations. This level of investigation is essential to repro-

duce the recurrent boom-bust sequences observed in the real

financial markets together with several stylized facts regard-

ing stock prices and their return (and output as well), such as

positive autocorrelation, volatility clustering, and non-

normal distribution characterized by a high kurtosis and fat

tails. We plan to extend the research about real and financial

interacting markets in several ways. A first way is to con-

sider the introduction of an adaptive learning mechanism

through which agents can switch between the demand they

place in the market according to a performance measure, to

see how this increase or reduce the overall dynamical com-

plexity and improve the qualitative description of the real sit-

uation. Another possibility is to take into account money or

other financial asset as well as to investigate the interaction

occurring by the introduction of another speculative

market, as the housing market. Finally, more sophisticated

approaches in modelling the time frameworks of either or

both the real and the financial markets can be considered.

The modelling of the present economic setting would benefit

from a more refined and sophisticated time description, in

particular, that take into account the different speed of the

adjustment mechanisms of prices and agents of real and

financial sectors (the latter is usually faster). In fact, the

dynamics of financial markets are likely to be very different

from those of the real markets: Although this argument

seems nowadays plain, it is also backed empirically in the

work by Aoki and Yoshikawa (2011), who find that time

series of real economic data do not share the power law dis-

tribution of financial markets, implying that the latter are

characterized by higher economic activity. Additionally,

Lengnick and Wohltmann (2013) combine a simple agent-

based model of financial markets with a standard New

Keynesian macroeconomic model considering two different

time scales for the two sectors and bringing them together.

From the mathematical viewpoint, this can be realized

in several ways. Besides the classical approach based on dif-

ferential equations, we can mention the choice of delay dif-

ferential equations (as pursued in Matsumoto and

Szidarovszky, 2015 and Gori et al., 2016), in which intro-

ducing distinct delays for the real and the financial markets

would allow studying the effect of asynchronous decision

timing. Finally, as in Cavalli and Naimzada (2016) and

Lamantia and Radi (2015), another approach relies on hybrid

dynamical systems, in which discrete difference and continu-

ous differential equations are, respectively, used to model

the real and the financial market.
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