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Abstract—One of the aims of Synthetic Biology is to regulate
metabolic products for specific biochemical reaction networks.
These networks are usually designed as elementary modules to
be interconnected each other and efforts are spent to minimize
undesired coupling effects arising from the mutual interaction.
Within this framework, this note considers a basic enzymatic
reaction scheme as an elementary input/output module, with
a related specific control problem addressed according to a
quadratic immersion, a recently developed control methodology.
The quadratic immersion embeds the system equations that
model the enzymatic reaction network into an extended, finite-
dimensional state-space, according to which the control problem
may be restated in a simplified version, whose solution guarantees
the output asymptotic convergence to a desired value according
to a smooth trajectory.

Index Terms—Nonlinear Systems, Enzymatic Reactions, Syn-
thetic Biology

I. INTRODUCTION

Synthetic Biology is a challenging and quite recent research
field, aiming at engineering artificial biological systems, po-
tentially useful for biotechnology industry, human health and
environment (see [4], [14], [12] and references therein). To
this end, modularity is considered an unavoidable frame, and
efforts are devoted to minimize undesired coupling effects
arising from the interaction of mutually interconnected mod-
ules [13], [11]. Indeed, recent results showed how synthetic
feedback control schemes could be implemented by suitably
designing chemical reaction networks to work as building
blocks of a larger interconnected embedded system [3], [15],
[24], [10].

In this work a control problem is addressed for a ba-
sic enzymatic reaction scheme, which can be exploited as
a standard toy-model for any kind of enzymatic reaction.
Enzymes are known to play a relevant role in many and diverse
cellular activities (like metabolism, signal transduction and cell
regulation), and their malfunction may lead to the raise of
serious diseases [8], [9]. Further interest has recently gained
from the practical applications of enzymes as specific catalysts
in drug development, food processing and biofuel production
[20]. These facts explains the interest in predictive mathemat-
ical models associated to such elementary chemical reaction
network, resumed in Fig. 1: a substrate S that is transformed
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Fig. 1. Basic scheme of enzymatic reactions.

into a product P by means of the catalytic action of an enzyme
E that first forms a complex C according to a reversible
binding/unbinding reaction and, then, releases the product
according to a not-reversible reaction. This network may be
seen as an input/output system, with the output provided by
the accumulation of the final product P , and the control action
exerted by varying the enzyme concentration. The goal of the
control law is to regulate the concentration of the final product
P , possibly according to a chosen smooth trajectory. In this
work we neglect random fluctuations, thus assuming to have
a number of molecules of each species large enough to rely
on Ordinary Differential Equation (ODE) models describing
average concentrations that vary continuously [25].

The approach followed is based on the quadratic immersion
[7], a procedure that allows to embed a nonlinear system
into a larger, finite-dimensional state space. According to non-
restrictive conditions, the quadratic immersion may be applied
to a large class of nonlinear ODE systems, to which the
one describing the enzymatic reaction scheme belongs. Such
embedding allows to restate the original nonlinear dynamic
equations into a homogenous quadratic form. When applied
to the system under investigation, we find out that the control
input enters the quadratic immersion in a way that allows
to decouple the original control problem into a cascade of
elementary steps. The main result provides a closed-loop
control that ensures the final product asymptotic convergence
to a desired value according to a smooth trajectory.

II. PROBLEM SETTING

A. Mathematical model of a basic enzymatic reaction scheme

Consider the chemical reaction network reported in Fig.1,
representing a classical enzymatic reaction scheme. According
to the deterministic approach, the state of the system is
provided by the species concentrations, here denoted by S,
C, P and E. The ODE dynamics is written below according



to standard mass action law.

Ṡ(t) = −k+S(t)E(t) + k−C(t)

Ċ(t) = k+S(t)E(t)− (k− + v)C(t)

Ṗ (t) = vC(t)

Ė(t) = −k+S(t)E(t) + (k− + v)C(t) + u(t)

(1)

The control action is exerted on the enzyme E, with the control
input u denoting the external flux control on E. Here we
assume that u may be both positive or negative, i.e. it may
work as an inward/outward exchange flux. In other words
we allow to add or to spill out the enzyme at a desired
rate. One way to diminish one species concentration is by
means of molecular sequestration (see, e.g. [3] where it has
been exploited to design molecular controllers that perform
integral action). In any case, herein we do not address how
to effectively achieve such control; instead we just allow the
control input to assume positive or negative values.

Notice that the presence of external fluxes modeled by the
control input u makes the chemical reaction scheme an open
system, since the overall enzyme concentration is not con-
served. On the other hand, the overall substrate concentration
(provided by the sum of the unbound substrate S, the complex
C and the final product P ) is conserved, as it straightforwardly
comes from the sum of such three time-derivatives, identically
equal to zero.

B. The regulation problem
The regulation problem consists in designing the control

law u(t) in order to track a desired stationary value for P (t),
possibly according to a smooth trajectory. Before to introduce
our control proposal, we just briefly comment on existing
methods of nonlinear control that could in principle be used
to solve the regulation problem for a system of the type (1).
System (1) is a quadratic differential equation for which most
of the existing control methods cannot yield the solution of
the regulation problem in a systematic way. For instance, the
optimal control approach would give place to the Hamilton-
Jacobi-Bellmann (HJB) equations, with no analytical solution
unless trivial cases. We refer readers to [1], [2] and [21],
for a theoretical account as well as for methods providing
approximate solutions of the HJB equation. Lyapunov based
methods require the determination (non trivial, as well, in most
cases) of a Lyapunov function on the basis of the system
equations; related papers, among others of a wide literature
on this subject, include also ISS (Input-to-State Stability)
based methods, such as [23], [18]. Also, the application of
the feedback linearization [17] would require the not easy
determination of a full relative degree function for system (1):
indeed none of the state variables in (1) can be referred to
as such an output function with full relative degree, and the
search for it would mean to look for a solution (in closed form)
of the partial differential equations describing the binding
between such a function and the diffeomorphism providing
the linearized system coordinates.

The solution that we propose here, is based on the exact
quadratization procedure developed in [7], (see also the former

papers [5], [6] for case studies and examples of applications),
where it is proved that a very large class of nonlinear systems,
namely those which are analytic and in Integral Closed Form
(ICF systems), can be re-written as a second-order homoge-
nous ODE by systems immersion, a procedure that allows
to embed the original nonlinear system into a larger, finite-
dimensional state space. The class of systems to which exact
quadratization can be applied is very large. Indeed, the ICF
systems include all systems’ functions expressed by a finite
composition of (i) elementary algebraic operations (sums,
products, powers of real exponents), (ii) common transcen-
dental functions (sin, cos, exponential, logarithm, etc.) or (iii)
integrals of the above functions, with bounds expressed by any
of them. One of the advantages of the quadratic immersion
is that the dynamics related to each entry of the augmented-
state, may depend of (possibly) all control inputs. This sort
of input ‘shuffle’ makes the quadratizing transformation of
interest even in control problems for quadratic systems, like
the enzymatic reaction model at issue. Moreover, the quadra-
tization procedure benefits of two further nice properties.
First, it is easy to implement, because all the transformations
providing the new state variables are predetermined, i.e. they
are readily obtained in a systematic way from the equations
of the original system. Finally, the embedding transformation
does not modify the original system dynamics: indeed, the
new state vector is a larger one which simply includes the
original state as a sub-vector, and thus the control designer is
not concerned with inverting the transformation in order to get
the system back in the original coordinates.

C. Quadratic Immersion

We briefly summarize the concept of quadratic immersion,
and refer the reader to [7] for all the details.

A systems immersion (resp. a dense immersion) (cf. [7]-
[19]-[16]) from a system, S1 in IRn, into another system
S2 living in IRm (with m ≥ n) is a smooth map from the
domain (resp. the domain with possibly the exception of a
zero-measure set) of S1 onto a smooth manifold, say M,
included in the domain of S2, such that any trajectory of
S2 starting from M includes a trajectory of S1, and all the
trajectories of S1 can be generated by trajectories of S2 starting
from M. A quadratic immersion is a dense immersion into a
quadratic system.

Now, let us consider a σπ-algebraic system, (σπ-system
for short) that is a system of the following form (written
component wise for i = 1, . . . , n):

ẋi =

νi∑
l=1

wi,lXi,l, (2)

Xi,l =

n∏
j=1

x
p
(l)
i,j

j , (3)

where νi are non negative integers (νi = 0 meaning that the
i-th state equation is ẋi = 0 ), the wi,l are (time-varying in



general) parameters, or controls1, Xi,l are said monomials,
defined in (3), and the exponents p

(l)
i,j are real numbers.

The basic results proved in [7] is the following: the (scalar)
variables

Z
(l)
i =

Xi,l

xi
, (4)

satisfy the following system of ordinary differential equations:

Ż
(l)
i =

( n∑
j=1

p
(l)
i,jZ

T
j wj − ZTi wi

)
Z

(l)
i , (5)

where wTj = [wTj,1, . . . , w
T
j,νj

], ZTj = [Z
(1)
j

T
. . . , Z

(νj)
j

T
],

which constitute a new system, written componentwise for
i = 1, . . . , n and l = 1, . . . , νi, of d homogeneous quadratic
differential equations where

d =

n∑
i=1

νi, (6)

is the number of monomials in system (2). The quadratic
system (5) is said the driver associated to the σπ-system (2).
The name ’driver’ comes from the fact that the general solution
of a σπ system can be written as a function of the solution of
the associated driver. Indeed, looking at (2), (3), and (4) we
have

ẋi =

(
νi∑
l=1

Z
(l)
i wi,l

)
xi = (ZTi wi)xi, (7)

whose solution is

xi = e
∫ t
o
ZTi wixi(0), (8)

and thus the quadratic system described by eqs. (5) can be
thought of as ’driving’ the ’final stage’, i.e. another system
given by eqs. (7), which is said the final system, and giving
back the original state components. The map x 7→ Z has the
same domain as the original σπ-system, unless possibly sets
of type {x ∈ IRn : xi 6= 0} which have a zero measure
in IRn. Moreover, if the driver (5) starts from Z(x̄), it gives
the original state x through eq. (8). Thus the map x 7→ Z is
a dense immersion into the quadratic system constituted by
(5), (7), that is: a quadratic immersion. From (5) we see, as
brought forward in section 2, that all the drivers components
depend of all the coefficients (and, hence, of all the controls),
and (by (7)) the original state components depend each only
of some of the driver components. What could make a driver
component independent of some entry of the control u is the
exponent in a well determined monomial (see (3)) that could
well be zero.

1Actually, they are either parameters or control-dependent coefficients, in
that they might be non independent of each other. In general they are a linear
combination of a set of independent controls. We have omitted here this detail
for sake of simplicity: for the problem here at issue such a distinction does
not apply since we have concern with a single scalar control u.

III. MAIN RESULTS

A. Applying the quadratic immersion to the enzymatic reaction
model

According to the quadratic immersion, we define the driver
state variables (4) as

Z =



Z
(1)
1

Z
(2)
1

Z
(1)
2

Z
(1)
3

Z
(1)
4

Z
(2)
4

Z
(3)
4


=



E
C/S
ES/C
C/P
S

C/E
1/E


. (9)

where Z(2)
2 = 1 has been clearly neglected. According to the

formalism introduced by (2)-(4) we have:

ν1 = 2, ν2 = 2, ν3 = 1, ν4 = 3 (10)

with

w1,1 = −k+, w1,2 = k−

w2,1 = k+, w2,2 = −(k− + v)

w3,1 = v

w4,1 = −k+, w4,2 = k− + v, w4,3 = u(t)

(11)

and
p
(1)
1,1 = 1, p

(1)
1,4 = 1, p

(2)
1,2 = 1

p
(1)
2,1 = 1, p

(1)
2,4 = 1, p

(2)
2,2 = 1

p
(1)
3,2 = 1, p

(1)
4,1 = 1, p

(1)
4,4 = 1

p
(2)
4,2 = 1, p

(l)
i,j = 0, elsewhere

(12)

from which the driver equations (5) are readily computed.
More in details, from the final stage equation given in (7),
the product dynamics can be written as:

Ṗ (t) = vZ
(1)
3 (t)P (t), (13)

that may be thought of as a scalar system driven by the input
Z

(1)
3 , whose dynamics is given by (from (5)):

Ż
(1)
3 (t) = k+Z

(1)
3 (t)Z

(1)
2 (t)− (k−+ v)Z

(1)
3 (t)− v

(
Z

(1)
3

)2
(t)

(14)
Analogously, Z(1)

3 may be thought of as a scalar system driven
by the input Z(1)

2 which, in turn, obeys the following dynamics
(from (5)):

Ż
(1)
2 (t) = ϕ1

(
Z(t)

)
+ ϕ2

(
Z(t)

)
u(t) (15)

with

ϕ1(Z) = −k+Z(1)
1 Z

(1)
2 + k−Z

(2)
1 Z

(1)
2 − k+

(
Z

(1)
2

)2
+(k− + v)Z

(1)
2 − k+Z(1)

2 Z
(1)
4 + (k− + v)Z

(1)
2 Z

(2)
4 (16)

ϕ2(Z) = Z
(1)
2 Z

(3)
4 . (17)

Thus, by means of (13), (14), and (15), we recognize a cascade
of input/output scalar systems from the control input u till the



Fig. 2. Input/output scalar cascade provided by the quadratic immersion.

variable of interest P : u drives Z(1)
2 , Z(1)

2 drives Z(1)
3 , and

finally Z(1)
3 drives P , see Fig. 2. Moreover, although the scalar

system of Z(1)
2 is affected by also other state variables of the

driver, the control input may be readily designed in order to
assign any chosen dynamics for Z(1)

2 . According to the formal
development of the control design in the next Section, such a
task requires a complete knowledge of the system, i.e. all the
species are required to be accessible from measurements.

Finally, notice that the original system equations are inter-
laced in a more complex way, and the causal bindings involve
couples of variables: we have that S drives C, and C drives P
in a simple way, but S in turn is driven by the couple (C,E)
and E is driven by the couple (C, u), so there is not a direct
causal binding u→ P as in the case provided by the quadratic
immersion.

B. Design of the global regulator

The goal is to design the control law u in order to have
a desired steady-state value Pd for the product. Before to
state the main theorem, we introduce the following preliminary
Lemma.

Lemma 1: Assume the following constraints involving the
system initial conditions hold true:

C(0) > 0, 0 < P (0) < Pd < S(0) + C(0) + P (0) (18)

E(0)S(0)

C(0)
<
k− + v

k+
+

vC(0)

k+P (0)
(19)

k− + v +
vC(0)

P (0)
− k+E(0)S(0)

C(0)
>

vC(0)

P (0) ln
(
Pd/P (0)

) (20)

Then, the second order equation

α2 − Σαα+ Πα = 0 (21)

with

Σα = 2(k− + v) +
2vC(0)

P (0)
− 2

k+E(0)S(0)

C(0)
(22)

and

Πα =
vC(0)Σα

2P (0) ln
(
Pd/P (0)

) . (23)

admits positive real roots.
Proof: The first constraints in (18) ensure meaningfulness

of the other two constraints. Constraint (19) ensures that
Σα > 0, that implies that also Πα > 0 since Pd > P (0).
Finally, constraint (20) ensures that the discriminant Σ2

α−4Πα

associated to (21) is positive. Hence the roots of (21) are
positive real.

Notice that the first constraints in (18) includes the non-
restrictive assumption Pd < S(0) + C(0) + P (0) that means
we cannot set the desired value of the product at a value greater
than the total amount of substrate, provided by S + C + P .
Since no total substrate variations are considered, this amount
coincides with the initial total amount of substrate S(0) +
C(0) + P (0).

Theorem 2: Assume constraints (18)-(20) hold true, and
design the control law u as follows:

u(t) =
ψ(t)− ϕ1

(
Z(t)

)
ϕ2

(
Z(t)

) (24)

where ϕ1(Z), ϕ2(Z) are defined in (16), (17), and

ψ(t) = −vβ (α1e
−α1t+α2e

−α2t)

k+
+(

α2
1e
−α1t+α2

2e
−α2t

)
(e−α1t+e−α2t)−(α1e

−α1t+α2e
−α2t)

2

k+ (e−α1t+e−α2t)
2

(25)

with

β =
C(0)

2P (0)
(26)

and α1, α2 are the positive real roots of (21). Then, P (t)
converges to the desired value Pd according to the following
evolution

P (t) = P (0)e
vβ
(

1−e−α1t

α1
+ 1−e−α2t

α2

)
(27)

Proof: The proof is given by construction: it will be
shown how to design the control u in order to ensure the
asymptotic convergence of P to the desired value. To this
end, according to (13), we aim to set the control law in order
to ensure the following shape for Z(1)

3 :

Z
(1)
3 (t) = β

(
e−α1t + e−α2t

)
, α1, α2, β > 0 (28)

with parameters α1, α2 and β to be assigned. Indeed, if eq.(28)
holds true, by substituting it in (13) we have:

Ṗ (t) = vβ
(
e−α1t + e−α2t

)
P (t) (29)

whose explicit solution provides, after computations, eq.(27).
Thus, if Pd is the desired steady-state value for P (t), the
following constraint for the control parameters is given:

lim
t 7→+∞

P (t) = P (0)e
vβ
(

1
α1

+ 1
α2

)
= Pd

=⇒ vβ
(

1
α1

+ 1
α2

)
= ln

(
Pd
P (0)

)
> 0

(30)

Inequality ln(Pd/P (0)) > 0 is ensured by the fact that Pd >
P (0), according to the constraint (18). As a matter of fact,
the control law can force the product concentration to increase
only.

A second constraint comes from the initial value of Z(1)
3

since, according to (28):

Z
(1)
3 (0) =

C(0)

P (0)
= 2β =⇒ β as in (26) (31)



In order to have the explicit solution for Z(1)
3 (t) as the one

defined by (28), we substitute

Ż
(1)
3 (t) = −β

(
α1e
−α1t + α2e

−α2t
)

(32)

in (14), that becomes:

k+Z
(1)
3 (t)Z

(1)
2 (t)− (k− + v)Z

(1)
3 (t)− v

(
Z

(1)
3

)2
(t)

= −β
(
α1e
−α1t + α2e

−α2t
)

which entails, after computations, the following explicit ex-
pression for Z(1)

2

Z
(1)
2 (t) =

k− + v

k+
+
vβ

k+
(
e−α1t + e−α2t

)
− 1

k+
α1e
−α1t + α2e

−α2t

e−α1t + e−α2t
(33)

with a third constraint given by the initial condition:

Z
(1)
2 (0) =

E(0)S(0)

C(0)
=
k− + v

k+
+

2vβ

k+
− α1 + α2

2k+
(34)

Besides β, straightforwardly given by (31), constraints (30)
and (34) allow to univocally set parameters α1, α2. Notice that
these two constraints readily provide the solutions in terms of
sum and product of α1 and α2. Indeed, by denoting

Σα = α1 + α2 Πα = α1α2 (35)

constraints (30) and (34) allow to write Σα, Πα as in (22) and
(23), and Lemma 1 guarantees that eq.(21) provides real and
positive solutions.

Finally, the control law u is derived from (15) by substi-
tuting the derivative Ż(1)

2 with its analytic expression coming
from the derivative of (33). After computations, eq.(24) with
(25) is obtained.

Remark 3: Notice that inequalities (19), (20) could be re-
placed by the following

KM >
E(0)S(0)

C(0)
, Pd > eP (0) (36)

where KM = (k− + v)/k+ is the Michaelis Menten co-
efficient. However, the inequalities in (36), though easier to
check and to deal with, are more conservative, since they are
sufficient conditions for (19), (20).

Remark 4: Regards to constraints in (18), they should be
here considered as non restrictive constraints. Differently from
the usual setting for a basic enzymatic reaction scheme (see,
among the others, [22]) the chemical reaction network here
investigated is not closed. Therefore nontrivial initial values of
the complex and of the product are biologically meaningful.
From a mathematical viewpoint, such constraints derive from
the quadratic immersion, defined on all the original system
domain, with the exception of a zero measure set, where
the driver state is not defined. This set, in our problem,
corresponds to P = 0, a zero concentration of the product.
This may not be actually a serious limitation, in that we have
excluded just a case of an exactly zero quantity of initial
product. Moreover, such a limitation could be removed by
expressing the original system in a new set of coordinates

TABLE I
MODEL PARAMETERS, ARBITRARY UNITS.

Parameter Value
k+ 1
k− 15
v 5

TABLE II
INITIAL CONDITIONS, ARBITRARY UNITS.

Initial condition Value
S(0) 10
E(0) 0
C(0) 1
P (0) 1

where the zero concentration is moved to some non zero
value in the new coordinates. However, this complicates the
system equations, and leads actually to another problem,
whose solution has no more the simplicity of the method here
proposed.

IV. SIMULATIONS

Simulations have been carried out in order to test the the-
oretical results, with model parameters and initial conditions
set as in Table I and Table II, respectively. The desired value
for the product concentration is Pd = 7.

Simulations are drawn in Fig.3, where the four chemical
players are reported. Fig.4 reports the production rate of the
enzyme (i.e. the control law u). Notice that it becomes negative
for a period, meaning that the enzyme is required to be spilled
out of the reactor, according to the designed control law.

Fig. 5 reports the same evolution of Fig. 3 (without the
complex, and on a larger time scale), together with the control-
free evolution (in dashed lines). It clearly appears the different
behavior, with the product in free evolution accumulating at
a higher (than Pd = 7) value, corresponding to the initial
total amount of substrate, complex and product S(0)+C(0)+
P (0) = 12.

Fig. 3. Evolutions of the four chemical players’ concentrations.



Fig. 4. Control law evolution

Fig. 5. Comparison between evolution with (continuous line) and without
(dashed line) control.

V. CONCLUDING REMARK.

The regulation problem for a general set of enzymatic
chemical reactions has been here considered and a closed-loop
solution, with exponential performance, has been proposed.
Actually, the synthesis of the control law requires the knowl-
edge of the initial conditions, so that it can be considered a
feedback/feedforward law. The considered type of system is
usually found in biochemistry, nonetheless, the same set of
equations describes any chemical process where a production
is activated in a substrate by some catalyzer, and thus it is
amenable for modeling many types of industrial reactors as
well. By using the quadratic immersion we have been able to
perform a decoupling of the original system, and this has been
the key for finding a solution to the regulation problem. The
present paper represents a first step where we have mainly
shown the capability of the method based on the quadratic
immersion for solving nonlinear problems. For the specific
problem of enzymatic reactions control, further work is needed
in order to improve the performance, for instance by making
tunable the convergence rate of the exponential shape of the
controlled variable.
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