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Abstract— The realization of embedded molecular control
systems is a challenging aim in Synthetic Biology, where a major
goal is to design synthetic biological circuits performing specific
tasks. In this field, the novel emergent approach is to assemble
the circuit in a modular fashion, possibly restraining reciprocal
interactions from interconnected modules (zero-retroactivity).
Within this framework, recent results have been proposed,
dealing with the realization of an embedded subtractor module,
with the idea of exploiting it in a more general chemical
reaction network that resembles a classical control scheme.
So far, this research has been carried out according to the
deterministic approach. More sophisticated analysis requires
the use of stochastic models, which play a paramount role in
investigating noise propagation in chemical reaction networks,
especially when the species copy number is low and the intrinsic
stochasticity of the phenomena under investigation cannot be
neglected. This note deals with a first analysis of the subtractor
module, according to the stochastic approach. To this end,
Chemical Master Equations are exploited to model one of the
possible molecular circuits implementing the subtractor, and
moment equations are written in order to evaluate how noise
propagates with respect to different values of the inputs and
different model parameter settings.

Index Terms— Chemical reaction networks, Stochastic ap-
proach, Moment equations

I. INTRODUCTION

A major research trend in Synthetic Biology aims at
designing molecular reaction systems in a modular fashion
[14], [17], [11]. Modularity can be considered a common
denominator among the Control Systems and Synthetic Biol-
ogy communities. Indeed, if modularity is a well-established
requirement in control systems design (and in synthetic
science in general, spanning from the many applicative fields
of engineering and computer science), from the other hand
in a seminal paper of Hartwell et al. in 1999 [18], it is
clearly suggested to detect and analyse cellular functional
modules to describe and unravel the complexity of biological
organization. To this end, the design of embedded intercon-
nected molecular reaction modules has taken great advantage
from recent results aiming at reducing retroactivity, i.e. the
undesired coupling effect occurring by the mutual interaction
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of interconnected modules, which prevents their nominal
behavior occurring as stand-alone devices [13].

The development of modular embedded molecular systems
has fostered the application of control design concepts to
realize and improve the behavior of synthetic circuits (see,
e.g. [12] and references therein). Within this framework,
a novel interesting trend is to design Chemical Reaction
Networks (CRN) to work as modular building blocks, per-
forming a specific task to be exploited when interconnected
into a larger embedded system. This approach enables the
development of a general method for the design of closed-
loop feedback control schemes in synthetic biology (like,
e.g. the ones recently presented in [5], [15], [27], [23], [6],
[25], [28]) by means of the most suitable selection and
proper interconnection of distinct building blocks (similarly
to classical control scheme design), each provided by the
chosen CRN.

Encouraging results towards these directions have been
presented in [9], where some CRN have been suggested for
the realization of a subtractor module, able to compare (and
make the difference of) a pair of input signals. Together
with retroactivity analysis performed in [2], the design of
a subtractor appears to play a pivotal role for the imple-
mentation of any modular feedback control scheme. In both
papers a pure deterministic approach is exploited to model
the CRN, according to the mass-action law. On the other
hand, noise is known to play a relevant role in biological
processes [22]. Random fluctuations, provided by a wide set
of concurring factors including, for instance, thermal noise
or asynchronous occurrence of synthesis and degradation
events, need to be considered when modeling most of the
molecular processes involved in cellular regulation, as well as
in gene expression, see e.g. [1], [7]. Moreover, thinking at the
subtractor within a classical closed-loop control scheme, it
may have a reference signal to be tracked as input therefore,
asymptotically, the subtractor may work with small species
copy numbers, a framework that usually requires a stochastic
modeling approach [29].

This note investigates noise propagation in a CRN that
implements a subtractor module, according to a stochastic
modeling approach that relies on Chemical Master Equations
(CME), describing the time-evolution of the probabilities
of the involved chemical species [29]. Except for very
special cases, finding the exact solution of a CME (even
just looking for the steady-state solution) is an extremely
high-dimensional problem, not allowing affordable solutions
in reasonable computational times. As a matter of fact,
one usually resorts to deal with only a limited number of



features related to the CME solution. Among these, second
order moments are usually exploited to quantify how noise
propagates within the CRN under investigation, according to
the coefficient of variation associated to the given species
(see, e.g. [24], [4]). These computations do not usually
provide analytical solutions, since moment equations are not
in closed-form unless the propensities associated to the CME
are linear [19]. This drawback is here overcome by means
of a moment closure techniques that has been proven to be
especially suited for reactions with small population sizes
[26]. Approximate analytical results are, then, compared to
numerical Monte Carlo simulations, run according to the
Gillespie Stochastic Simulation Algorithm (SSA) [16]: as
usual, these numerical simulations (though time-consuming)
will be considered as the baseline to validate the approxima-
tion provided by moment closure.

II. SUBTRACTOR MODEL SETTING

The chemical reaction scheme under investigation is a
version of the subtractor module proposed in [9]. It is an
open Chemical Reaction Network (CRN) with 3 species,
namely A, B and C. In the following, the species copy
numbers will be referred to with a, b and c, respectively.
Moreover, we will denote with ⟨h(a)⟩ the first order moment
of a generic function h of a random process a, and with
⟨h(a)⟩ = limt↦+∞ ⟨h(a)⟩ its stationary value whenever it
exists and is finite. In case of the identity function h(a) = a,
its steady-state first order moment will be denoted by ⟨a⟩ = a
for short.

The CRN species evolve according to four reactions: A
species production, regulated by the exogenous productions
rate u1 (reaction 1), B species production regulated by the
exogenous productions rate u2 (reaction 2), degradation of
species A and B with kinetic constant k3 (reaction 3),
and C species production as coming from the A-into-C
transformation with kinetic constant k4 (reaction 4):

∅ 1→ A
4→ C ∅ 2→ B A +B

3→ ∅ (1)

Dealing with the CRN as an input/output plant, we set the
two inputs in the exogenous fluxes u1, u2, while the chosen
output is given by species C flux. Indeed, fluxes are known
to be the interconnection signals of CRNs. According to the
deterministic approach, in [9] it is shown that such a CRN
satisfies the properties that ensure the output flux of C to
converge asymptotically to the difference of the two input
fluxes u1 − u2, provided that the input fluxes are constant
and u1 > u2.

According to the stochastic approach, Table I describes the
discrete resets associated to the reaction set (1), as well as the
corresponding propensities wi, i = 1,2,3,4 that allow one to
build the Chemical Master Equations associated to the CRN.
The degradation process is treated similarly to a sequestration
dynamics, with the propensity modeled by the product of
the binding species copy number (see, e.g. [8], [10], [21]).
CMEs consist of a set of Ordinary Differential Equations
(ODE) describing the probability associated to any discrete
combination of the species copy numbers [29]. CMEs are

TABLE I
CHEMICAL REACTIONS.

Reaction ID Event Reset Propensity function
1 A production a↦ a + 1 w1 = u1
2 B production b↦ b + 1 w2 = u2
3 A, B clearance a↦ a − 1 w3(a,b) = k3ab

b↦ b − 1
4 C production c↦ c + 1 w4(a) = k4a

a↦ a − 1

known to properly deal with fluctuations and chemical fluxes,
and they are usually invoked whenever a deeper information
concerning noise investigation and propagation is required.
The drawback of such a powerful modeling tool is the
so called curse of dimensionality which, in many cases,
although CMEs are linear equations, prevents from explicitly
computing the solutions. Therefore, even when looking for
the stationary distribution, one usually sets the problem in
order to implement efficient algorithms [3], or resort to
approximate solutions (like e.g. the Finite State Projection
algorithm [20]), or to numerical Monte Carlo approaches,
like the Gillespie Stochastic Simulation Algorithm (SSA)
[16].

In this note we exploit the CME to achieve the first- and
second-order moments equations. First-order moments pro-
vide the average values of the species copy numbers, while
second-order moments allow to quantify species fluctuations,
thus providing a measurement of noise propagation. In fact,
we are interested in assessing the fluctuations of the model
output provided by the flux of species C. Then, according to
the stochastic approach, such an output y is provided by the
propensity of reaction 4, namely y = w4(a) = k4a. Similarly
to [24], [4] we exploit the stationary Coefficient of Variation
(CV) to measure the output noise, therefore

CV 2
y =

⟨w2
4(a)⟩ − (w4(a))

2

(w4(a))
2

= ⟨a2⟩ − a2

a2
(2)

Any order moment equations can be readily written be-
cause the model nonlinearities are of polynomial fashion
[19]. Moment equations are linear but, unfortunately, they
are not in closed form, in the sense that lower-order mo-
ment equations depend on higher order moments, unless
all propensities are linear. As a matter of fact any order
moment equations can be thought of as linearly evolving
on an infinite-dimensional state space. This drawback is
overcome by approximating higher order terms by suitably
defined nonlinear functions of lower order moments [26].
Following this moment closure technique we provide the
analytical solution of the approximate moment equation in
the next Section.

III. MOMENTS EQUATIONS

It is worth noting that the output of the system under
investigation (i.e. the flux of C provided by the propensity
of reaction 4) is univocally identified by the copy number of



only species A and B, evolving independently of species C.
Therefore, in the following, from an input/output perspective,
we will refer to the C flux as the output of the subsystem of
species A and B.

By denoting with x = [a b]T the aggregate vector of the
A, B species copy numbers, the general formula to achieve
the dynamics of any order moment of the type ai1bi2 from
the model is below reported [19]

d

dt
⟨ψi1,i2(x)⟩ =

4

∑
j=1

⟨(ψi1,i2(x +∆j) − ψi1,i2(x))wj(x)⟩

(3)
where

ψi1,i2(x) = ai1bi2 , i1, i2 = 0,1, . . . (4)

is a polynomial function implementing any order moment
by properly varying the integers i1, i2, and ∆j stands for the
state update that happens whenever reaction j occurs. For
instance, the four reactions in Table I are described by:

∆1 = [1
0
] , ∆2 = [0

1
] , ∆3 = [−1

−1
] , ∆4 = [−1

0
] .
(5)

Therefore, first-order moments are readily computed for
ψ1,0(x) = a and ψ0,1(x) = b:

d

dt
⟨a⟩ = u1 − k3 ⟨ab⟩ − k4 ⟨a⟩ (6)

d

dt
⟨b⟩ = u2 − k3 ⟨ab⟩ (7)

It is easy to check that at steady-state we get

⟨ab⟩ = u2
k3
, a = u1 − u2

k4
(8)

which imply that the output y = k4a asymptotically con-
verges in average to the displacement u1 − u2. It is worth
noting that such results are achieved without any approxi-
mation and it confirms in average the same results yielded
by the deterministic approach.

Unfortunately, due to the nonlinearity of one of the
propensities there is not a closed form for the other steady-
state first-order moment, i.e. b, therefore we need to resort to
moment closure techniques. It is also apparent that species C
does not converge in average to a finite copy number, since
the model does not account for any clearance reaction for C.

Concerning the second-order moment dynamics we con-
sider ψ2,0(x) = a2, ψ0,2(x) = b2 and ψ1,1(x) = ab in (3)
so that:

d

dt
⟨a2⟩ = − 2k4 ⟨a2⟩ + k3 ⟨ab⟩ − 2k3 ⟨a2b⟩

+ (2u1 + k4) ⟨a⟩ + u1 (9)
d

dt
⟨b2⟩ =k3 ⟨ab⟩ + 2u2 ⟨b⟩ + u2 − 2k3 ⟨ab2⟩ (10)

d

dt
⟨ab⟩ =(k3 − k4) ⟨ab⟩ + u1 ⟨b⟩ + u2 ⟨a⟩

− k3 ⟨a2b⟩ − k3 ⟨ab2⟩ (11)

Again, we obtain second-order moment equations that do
not provide closed-form solutions because of the model

nonlinearities. To solve them we need to exploit moment
closure approximations [26]:

⟨a2b⟩ ≅
⟨a2⟩
⟨b⟩ (⟨ab⟩

⟨a⟩ )
2

, ⟨ab2⟩ ≅
⟨b2⟩
⟨a⟩ (⟨ab⟩

⟨b⟩ )
2

(12)

After substituting the nonlinear functions (12) in (9)-(11) we
obtain a closed nonlinear ODE, whose steady state solutions
come out from the following algebraic system:

0 = − k4⟨a2⟩ +
u1(u1 − u2)

k4
+ u1 −

⟨a2⟩
b

u22k
2
4

k3(u1 − u2)2
(13)

0 =1 + b − k4
⟨b2⟩
u1 − u2

u2

k3b
2

(14)

0 =u2
k3 − k4
k3

+ u1b + u2
u1 − u2
k4

− ⟨a2⟩
b

u22k
2
4

k3(u1 − u2)2
− k4

⟨b2⟩
u1 − u2

u22

k3b
2

(15)

By properly manipulating these constraints, we obtain

0 = −u2
k4
k3

+ (u1 − u2)b − u1 −
(u1 − u2)2

k4
+ k4⟨a2⟩ (16)

and so we can write ⟨a2⟩ as a function of b:

⟨a2⟩ = u1
k4

+ u2
k3

+ (u1 − u2
k4

)(u1 − u2
k4

− b) (17)

By substituting (17) in (13) leads to the quadratic equation
in b with the following form

αb
2 + βb + γ = 0

where

α =u1 − u2 (18)

β = − u
2
2

k4
+ u1u2

k4
− k4
k3
u2 +

k4
k3

u22
u1 − u2

(19)

γ = − k3 (
u1
k4

+ u2
k3

+ (u1 − u2
k4

)
2

)( u2k4
k3(u1 − u2)

)
2

(20)

It is readily verified that, since α > 0 and γ < 0, there always
exist two real solutions, one positive and one negative, since
β2 − 4αγ > 0 and β2 − 4αγ > β2, that means there exists a
unique meaningful (i.e positive real) solution for stationary
b:

b = −β +
√
β2 − 4αγ

2α
(21)

From (13) and (14), according to (21), we get

⟨b2⟩ =(1 + b)k3b
2(u1 − u2)
k4u2

(22)

⟨a2⟩ =k3bu1(u1 − u2)
2(k4 + u1 − u2)

k24 (k3(u1 − u2)2b + k4u22)
(23)

And finally, by properly exploiting (2) we have the fol-
lowing CV for the output:

CV 2
y = k3k4ab + k3b(1 + a)u2 − u22

k3k4ba
2 + u22

(24)



IV. DISCUSSION

This Section aims at investigating how noise fluctuations
impact the output of the subtractor according to different
working modes and/or model parameter settings. As a pre-
liminary remark, differently from what happens for the first-
order moments of the subtractor output (depending only on
the fourth reaction propensity, equal at steady-state to the
difference u1 − u2), both b and the second-order moment
(and the output CVy as well) depend on both u1 and u2.

A. Uniform variations of both input fluxes

Assume to uniformly vary u1 and u2 so that the difference
δ = u1 −u2 is kept fixed. This way one can investigate what
happens to the subtractor output fluctuations when the input
fluxes increase (or decrease) according to different output
working modes (i.e. according to different output average
values). To answer this question we first consider how b
varies. Then, let u2 vary and fix u1 = u2 + δ. According to
(18)-(21) it can be shown, after computations, that

lim
u2↦0+

b = 0, lim
u2↦+∞

b

u2
= k3 + k4

δk3
. (25)

The first limit in (25) is trivially coherent with the hypothesis
that, without the input u2, there is no accumulation of B. On
the other hand, the second limit tells us that b definitely
diverges to +∞ with u2 according to a linear fashion. The
slope of the oblique asymptote tells us about the asymptotic
sensitivity of b with respect to u2: the greater is the slope,
the greater is the asymptotic variation of b with respect to
variations of u2.

As for the Coefficient of Variation of the output (24), the
previous analysis carried out on b provides the following
results. By varying u2 when δ is kept constant, it happens
that:

– if u2 ↦ 0+, then CV 2
y converges to the following finite

value:

lim
u2↦0+

CV 2
y = k4

δ
(26)

Therefore, in case of low input fluxes (keeping fixed
δ) the output noise fluctuations become proportional to
parameter k4 (and insensitive to parameter k3). That
means, in case of low input fluxes, the output noise
reduction could be achieved by properly reducing the
strength of reaction 4;

– if u2 ↦ +∞, then CV 2
y converges to the following finite

value:

lim
u2↦+∞

CV 2
y = k3 + k4

δ
+ k3
k4

(27)

Therefore, in case of high input fluxes (keeping fixed
δ) the output noise fluctuations monotonically increase
with k3, whilst a non-monotonic behavior is referred to
k4.

Fig. 1 draws (as a continuous line) CV 2
y -vs-u2 for different

values of δ.

Fig. 1. CV 2
y of the output of the subtractor module for different values

of u2, keeping fixed δ = u1 − u2, with parameters k3 = 3.1 and k4 = 1.0.
Markers refer to numerical SSA.

B. Input difference variations

Assume to keep fixed u2 and let δ (i.e. the output of the
subtractor) vary. Then, we have the following limits for b:

lim
δ↦0+

b = +∞, lim
δ↦+∞

b = 0. (28)

The first limit in (28) substantially states that the steady-
state average value b tends to be large when δ is small
(keeping constant u2 flux); instead, the second limit states
that b decreases to zero when the difference δ goes to +∞.
This behavior is coherent with the kind of reactions, since
by keeping fixed u2 and reducing δ ↦ 0+ we force as well
a ↦ 0, according to (8); therefore, without A copy number,
reaction 3 never occurs and thus there is no clearance for B,
that indefinitely accumulates according to a fixed input flux
u2. On the other hand, by increasing δ ↦ +∞ we make as
well a↦ +∞, therefore the propensity of reaction 3 (the one
related to the clearance of B) increases as well to +∞, thus
forcing the asymptotic depletion of species B.

By varying δ when u2 is kept constant, it happens that if
δ ↦ 0+, then CV 2

y diverges to +∞ whilst if δ ↦ +∞, then
CV 2

y converges to zero

lim
δ↦0+

CV 2
y = +∞ lim

δ↦+∞
CV 2

y = 0 (29)

These results are reasonably coherent with the idea that a
greater output is subject to a smaller noise and vice versa,
regardless of the other model parameters. Fig. 2 draws (as a
continuous line) CV 2

y -vs-δ for different values of u2.

Fig. 2. CV 2
y of the output of the subtractor module for different values of

δ = u1−u2, keeping fixed flux u2, with parameters k3 = 3.1 and k4 = 1.0.
Markers refer to numerical SSA. The y-axis is in logarithmic scale.



C. Strength of reaction 3 (A and B clearance)

By keeping fixed u1, u2 and k4, and letting k3 vary, the
following limits occur:

lim
k3↦0+

b = +∞, lim
k3↦+∞

b = 0, (30)

meaning that the steady-state average value b tends to be
large when the strength of reaction 3 reduces; on the other
hand, when reaction 3 is dominant, then B is strongly forced
to be cleared, thus providing a trivial stationary value.

Regards to the output noise, these results have the follow-
ing implications. By decreasing the strength of chemicals
degradation, the output noise decreases to the following
lower bound:

lim
k3↦0+

CV 2
y = k4

δ
(31)

That means, low values of k3 provide the same behavior
(with respect to noise propagation) as for low values of u2,
with the coefficient of variation proportional to parameter k4.
Instead, by increasing the strength of chemicals degradation,
the output noise increases up to the following upper bound:

lim
k3↦+∞

CV 2
y = k4

δ
(1 + u2

δ
) (32)

It is worth noting that for high values of the output the two
bounds become closer and closer, thus making the subtractor
substantially insensitive to the strength of k3.

Fig. 3 draws (as a continuous line) CV 2
y -vs-k3 for different

choices of u1 and u2.

Fig. 3. CV 2
y of the output of the subtractor module for different values

of parameter k3, keeping fixed fluxes u1, u2, and parameter k4 = 1.7.
Markers refer to numerical SSA.

D. Strength of reaction 4 (C production)

By keeping fixed u1 and u2 and k3, and letting k4 vary,
the following limits occur:

lim
k4↦0+

b = 0, lim
k4↦+∞

b = +∞, (33)

Indeed, by reducing reaction 4 strength (k4), keeping fixed
the inputs, we have that the stationary value a tends to be
large, see (8), thus providing a large propensity for the clear-
ance reaction associated to B. On the other hand, the steady-
state average value b tends to be large when reaction 4 is
dominant, then A is strongly forced to transform into C, thus
reducing its stationary copy number to a negligible value,

therefore providing a negligible value for the propensity of
the clearance reaction associated to B (thus b diverges to
+∞).

Concerning the output noise, by keeping fixed u1, u2 and
k3, and letting k4 vary, if k4 ↦ 0+, then CV 2

y converges to
zero, whilst if k4 ↦ +∞, then CV 2

y diverges to +∞:

lim
k4↦0+

CV 2
y = 0 lim

k4↦+∞
CV 2

y = +∞ (34)

therefore, in case of high values of k4 the output noise
fluctuations become larger and larger, thus making less
reliable the output of the subtractor. The opposite happens
for low values of k4, i.e. a larger output corresponding to a
smaller noise. Fig. 4 draws (as a continuous line) CV 2

y -vs-k4
for different choices of u1 and u2.

Fig. 4. CV 2
y of the output of the subtractor module for different values

of parameter k4, keeping fixed fluxes u1, u2, and parameter k3 = 1.1.
Markers refer to numerical SSA.

In summary, we may say that:
● the stationary average output value is provided by (8)

without any approximation, and it matches the results
derived through the deterministic approach, constraining
it to the difference of the two input fluxes;

● regards to the output noise, analytical computations,
leveraging the moment closure approximation, show
that noise reduction may be obtained in different ways:
(i) the greater the subtractor output, the smaller the
output noise, whatever the other model parameter con-
figurations; (ii) small values of k4 help to reduce the
output noise, though in some cases CV 2

y exhibits a non-
monotonic dependence on k4, e.g. in presence of high
input fluxes, see (27).

To test the validity of the moment closure approximations
(12) exploited to achieve the analytical expression of first-
and second-order moments, we run a set of numerical
Gillespie simulations (SSA). All figures report markers that
refer to a numerical SSA, showing the good performances
of the moment closure approximation, thus validating the
proposed theoretical results.

V. CONCLUSIONS

A molecular subtractor module has been investigated in
order to analyse noise propagation. To this end, a stochastic
approach has been followed and Chemical Master Equations
have been considered to model the Chemical Reaction Net-
work that realizes the subtractor, and to evaluate the moment



equations of the system. Moment closure approximation
techniques have been exploited in order to achieve analytical
results in terms of the Coefficient of Variation of the output
of the system, providing a measurement of noise fluctuations
around the steady-state value. Explicit solutions allow to
understand the role of the inputs and of the model parameters
in noise amplification or attenuation. Numerical simulations
based on the Gillespie SSA confirm the validity of the
approximation of the analytical results.
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