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Abstract: Coral reefs are declining worldwide as a result of the effects of multiple natural and 
anthropogenic stressors, including regional-scale temperature-induced coral bleaching. Such events 
have caused significant coral mortality, leading to an evident structural collapse of reefs and shifts 
in associated benthic communities. In this scenario, reasonable mapping techniques and best 
practices are critical to improving data collection to describe spatial and temporal patterns of coral 
reefs after a significant bleaching impact. Our study employed the potential of a consumer-grade 
drone, coupled with structure from motion and object-based image analysis to investigate for the 
first time a tool to monitor changes in substrate composition and the associated deterioration in reef 
environments in a Maldivian shallow-water coral reef. Three key substrate types (hard coral, coral 
rubble and sand) were detected with high accuracy on high-resolution orthomosaics collected from 
four sub-areas. Multi-temporal acquisition of UAV data allowed us to compare the classified maps 
over time (February 2017, November 2018) and obtain evidence of the relevant deterioration in 
structural complexity of flat reef environments that occurred after the 2016 mass bleaching event. 
We believe that our proposed methodology offers a cost-effective procedure that is well suited to 
generate maps for the long-term monitoring of changes in substrate type and reef complexity in 
shallow water. 

Keywords: coral reefs; unmanned aerial vehicles (UAV); structure from motion (SfM); object-based 
image analysis (OBIA); coral bleaching; Republic of Maldives  

 

1. Introduction 

Coral reefs are declining worldwide as a result of the effects of multiple natural and 
anthropogenic stressors, such as increased water temperature, ocean acidification, overfishing and 
land reclamation [1–3]. Among these factors, temperature-induced bleaching events have been 
reported to cause significant coral mortality in the Indo-Pacific Ocean, with two main destructive 
events in 1998 and 2016 [4–8]. 

One of the most critical consequences of a bleaching event is the loss of structural complexity, 
which seriously affects the ecological functionality of the ecosystem [9]. Biogenic reefs are formed by 



Remote Sens. 2020, 12, 2093 2 of 26 

complex structures built by corals, that support a high diversity and abundance of related organisms, 
such as fish, mollusks, echinoderms and other invertebrates [10–12]. The resulting structural 
complexity of the reef also absorbs wave energy, preventing or decreasing shoreline erosion [13,14]. 
Thus, coral mortality reduces the diversity of reef marine organisms and increases erosion of the 
coastline. A significant loss in structural complexity was reported worldwide as a result of the two 
major coral bleaching events that took place in 1998 and 2016 [9,15].  

Considering the increase in threats and the fragility of these environments, it seems clear that 
thorough time-series monitoring activities are of high importance. The data collected by remote 
sensing are the principal source of information that affords a synoptic overview of a vast portion of 
reefs [16,17]. Studies on the impacts on coral reef environments have commonly adopted satellite 
images. Free data from Sentinel and Landsat platforms, forming parts of the ESA (European Space 
Agency) and NASA (National Aeronautics and Space Administration) space programs, provide a 
great multi-temporal database of satellite imagery [18–21]. Additional solutions may involve 
commercial satellites, such as the Planet Dove satellite constellation, which provides daily coverage 
at 3.7 m resolution [22], or the use of aircraft integrated with sensors, such as LiDAR (light detection 
and ranging) to detect bottom rugosity [23]. However, the limitations on the use of these data are 
primarily related to their spatial resolutions (which are not suitable for undertaking studies on 
benthic communities in selected and small-scale coral reef areas) and secondarily related to adverse 
environmental and operational conditions that may prevail during surveys, including cloud 
coverage, high turbidity waters, breaking waves, limited access and costs. Other systems can be used 
to overcome most of these deficiencies. Low-altitude aerial and unmanned aerial vehicle (UAV) (or 
drones) surveys can collect data above reefs with a centimetric resolution, and they allow researchers 
to focus the efforts of data collection only during optimal weather conditions [24–26]. Furthermore, 
in the last several years, UAV platforms have become more affordable, and consumer-grade models 
have optimized the performance of battery life and camera image sensors [27–29].  

The use of UAVs to collect data and their processing by applying photogrammetry-based 
techniques and object-based image analysis (OBIA) classification algorithms increases the speed of 
monitoring and mapping activities. Moreover, structure from motion (SfM) techniques can be 
applied to produce digital surface models (DSMs) that can be used to analyze not only the spatial 
distribution trends of the habitats but also their structural complexity [30]. Indeed, to date, most of 
the studies on structural complexity have been qualitative [13,15,31], and the majority of the in-field 
quantitative measurements have been made using the chain-and-type method [32], which is time-
intensive and suffers from high variation [33]. Recently, underwater SfM photogrammetry has been 
used to simplify structural measurements in order to widen the spatial scale of the survey and to 
increase the resolution of the data [9,34–37]. However, underwater SfM is a time-consuming process 
and not suitable for monitoring large areas, thus reducing our understanding of an extensive process, 
despite the very high-resolution scale [38–40]. UAV imagery processed with SfM techniques can 
provide a low-cost and time-efficient alternative. Nevertheless, even though some authors have 
reported interesting applications of UAVs to collect imagery and bathymetric information ([24,33] 
among others), in contrast to in-water photogrammetric procedures (where thorough camera 
calibration is sufficient to correct the effects of refraction), when light passes between two different 
media (air and water), refraction causes the water depth to appear shallower and, consequently, the 
effect produced on data obtained from the application of SfM techniques may differ at each point of 
every image, causing errors in the accuracy of local horizontal and vertical measurements.  

In our work we aimed to develop a new approach for analyzing point clouds, obtained by 
applying photogrammetric techniques on shallow water UAV imagery collected in the southern part 
of Faafu Atoll (Maldives). In particular, we acquired shallow-reef high-resolution images using a 
consumer-grade UAV from a few months after the 2016 bleaching event (February 2017) to two years 
later (November 2018), in condition of absence of wind, low tide and optimal location of the sun in 
order to avoid water motion and reflections. We firstly applied OBIA algorithms to automatically 
classify the orthomosaic map generated by SfM aerial photogrammetry to obtain a time-efficient, 
high-resolution and a reef-spatial scale monitoring of the change in substrate type, with ground 
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control and assessment of accuracy as local horizontal measurements, thus avoiding the need of using 
the Digital Terrain Model (DTM) as source of pure bathymetric measurements. In addition we 
analyzed the complexity of the seafloor expressed by the rugosity index, assuming that the estimated 
accuracy of the obtained DTM and the OBIA classification can offer also a valid indication of the 
accuracy of the results obtained from terrain analysis.   

2. Materials and Methods  

2.1. Study Area 

The Republic of Maldives is an archipelago composed of coral reef islands, grouped in a double 
chain structure in the middle of the Indian Ocean (Figure 1a). The 1192 islands of the archipelagos 
extend for 860 km from 7° 6′ 35″ N to 0°42′ 24″ S latitude. The Maldives cover an area of about 859,000 
km2, but only 227.45 km2 is land area [41]. The majority of the territorial area consists of sea and coral 
reefs. The islands, generally with a mean elevation of less than 2 m above sea level, can be divided 
into three groups: inhabited, resort islands and uninhabited [42]. Therefore, coral reef ecosystems are 
vital for the Maldives in terms of economic income and shoreline protection from erosion. Fisheries 
and tourism industries are both dependent on the health status of the coral reefs, and numerous 
ecosystem services/benefits are provided by coral reefs to the local population [43]. However, in the 
last two decades, anthropogenic and natural impacts and global climate change have increased the 
threats to the Maldivian reefs. Sea surface temperature (SST) anomalies and the resulting bleaching 
events are among the main stress factors for the integrity of the coral reefs of the archipelagos [44]. 
From April to June 2016, the largest bleaching event since 1998 was registered, along with 
pronounced changes in coral communities in the following months [8]. Furthermore, predation by 
corallivores, such as the sea stars Acanthaster planci [45] and Culcita spp. [46] and the snail Drupella 
spp. [47], has exacerbated the effect of the bleaching event, increasing coral mortality and delaying 
coral recovery. Fieldwork and data collection were carried out in an ocean-facing reef in the southern 
part of Faafu Atoll (Figure 1b), where Magoodhoo island is located (Figure 1c). The reef rim, with 
highly transparent water and a maximum depth of 1.5 m, offers optimal conditions for UAV data 
collection [24,48,49]. Additionally, on the island, the MaRHE Center (http://marhe.unimib.it), a 
research and high educational center of the University of Milano-Bicocca, has operated since 2009. 
Therefore, thanks to the numerous research activities carried out by different researchers over time, 
the ecology and biology of the surrounding coral reefs are well known [46,50–53].  
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Figure 1. (a) Geographic location of the study area, Republic of Maldives; (b) Faafu Atoll. (c) The four 
monitored reef areas around Magoodhoo island: black dotted lines indicate the approximate extent 
of the UAV-surveyed areas and the flight paths; red dashed lines indicate the snorkeling transects. 

Our work monitored four selected portions of the entire Magoodhoo reef system, hereafter 
named Areas 1, 2, 3 and 4 (Figure 1c), from a few months after the bleaching event (February and 
March 2017) to the end of 2018 (October/November), more than two years later. Logistics reasons 
bounded the period of field data collection. Area 1 and Area 2 are both parts of the same reef flat 
area, which includes the reef crest that faces the open ocean to the south. The surveyed reef system is 
here exposed to the waves and the currents that come from the oceanic channel that separates Faafu 
and Dhaalu atolls. Area 3 and Area 4 are instead located toward the lagoon and lack a direct 
connection to the crest. Area 3 is a small subcircular patch reef confined in a minor and sheltered 
small-scale lagoon system, formed within the reef rim and bounded to the north by a tiny sub-
elongated reef representing Area 4. Areas 1 and 2 are subject to very similar environmental conditions 
because they are included in the same wide geomorphic sector of the reef system, while Areas 3 and 
4 represent unique small-scale reef sectors located in an area that is less exposed to ocean currents. 

2.2. UAV Data Collection and Field Survey 

DJI Phantom 4 was chosen for data acquisition. This consumer-grade UAV is a quadcopter with 
high sensing characteristics. It is equipped with a 1/2.3″ CMOS camera sensor (12.4 MP) that can 
collect RGB images with a resolution of 4000 × 3000 pixels and an integrated GPS/GLONASS system. 
DJI Phantom 4 is lightweight and easy to carry, and it can efficiently fly at low altitudes to obtain 
good-quality ground-resolution images. Additionally, easy take-off and landing procedures make 
this UAV a remarkable solution for low-height and short-range surveys. Metadata of the acquired 
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images are recorded in an EXIF (exchangeable image file format) file, which incorporates information 
such as shutter speed, apertures, ISO (International Organization for Standardization) and GPS 
(global positioning system) coordinates (x, y and z).  

In addition to the UAV surveys, four bionomic transects (i.e., perpendicular to the coastline), 
each approximately 200 m in length, were examined across the four monitored areas (Figure 1c) in 
order to identify the composition of the benthic community and validate the remote sensing data.  

2.3. Flight Planning 

The surveys were designed using DJI GS PRO [54], a flight planner distributed by DJI for use on 
an iPad device. This application enables detailed planning of all the aspects of the UAV mission: 
generating flight paths, setting camera parameters and directly checking data acquisition on the iPad 
display. For all the surveys, we set fixed flight and image acquisition parameters (Table 1). 

Table 1. UAV survey periods and flight acquisition parameters and SfM processing specifications for 
selected areas. 

  2017 2018 
  AREA 1 AREA 2  AREA 3 AREA 4 AREA 1 AREA 2  AREA 3 AREA 4 

U
A

V
 Im

ag
es

 A
cq

ui
sit

io
n Flying Date 11-Feb 12-Feb 05-Feb 18-Feb 04-Nov 14-Oct 05-Nov 

Flying Altitude 35 m 35 m 
Frontal Overlap 85% 85% 
Lateral Overlap 75% 75% 

Speed 2.2 m/s 2.2 m/s 
Shutter Interval 2.0 s 2.0 s 

Image Resolution 1.5 cm/px 1.5 cm/px 
Covered Area 4.98 Ha 4.46 Ha 1.20 Ha 5.37 Ha 5.52 Ha 4.38 Ha 1.49 Ha 5.39 Ha 

Images Numbers  495 431 123 662 550 425 186 664 
                  

Sf
M

 P
ro

ce
ss

in
g Alignment and Dense 

Cloud processing 
accuracy  

High High 

Dense Cloud Points 87,138,680 56,885,927 12,412,455 96,498,907 89,836,998 54,737,644 15,038,040 96,149,457 
DTM Resolution cm/pix 2.94  3.16  2.97  2.86  3.08  3.17  3.1  2.9  
Ortomosaic Resolution 

cm/pix 1.49  1.58  1.43 1.36 1.54 1.58 1.55  1.45  
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Additionally, in order to collect relevant data for temporal comparison, we selected similar 
environmental conditions for all surveys. During the 2017 and 2018 surveys (Figure 2), we always 
flew during low tide to reduce water column effects and with a low sun position in the horizon (half 
an hour after the sunrise or one hour before the sunset) to avoid the glint effect in images or 
inconvenient shadows for data processing [24]. Moreover, we chose days with no or little wind (less 
than 5 m/s) and, consequently, a calm sea state: waves strongly influence the ability to recognize and 
map benthic communities [49]. Such conditions are common during the dry season (around 
December to April) and occur irregularly during the wet season (around May to November). The 
described expedients allowed us to minimize image adjustments during the post-processing and 
comparison of the output data. 

 
Figure 2. Example of UAV flight paths over Area 2 in 2017 and 2018. The surveys were carried out 
with similar environmental conditions: low tide, little wind and during the late afternoon (one hour 
before the sunset). 

2.4. SfM Processing and Georeferencing 

Agisoft Metashape [55], a commercial structure from motion (SfM) software, was used to process 
UAV images of each area. The software was chosen for the affordable price of the license and its 
spontaneous workflow, user-friendly interface and excellent quality of the outputs [56]. These 
features have made it a widely used tool by the scientific community [38,57,58]. The images were 
processed following four main steps: alignment of the photos using a high-accuracy setting and the 
creation of a sparse point cloud; then, generation of a dense point cloud with an aggressive filter 
setting; and finally, creation of a digital terrain model (DTM) from the dense cloud. As final outputs, 
high-resolution orthomosaics were obtained from the DTM. Processing parameters and output 
details are provided in Table 1. For additional information on the SfM procedure, see Verhoeven 
(2011) and Brunier et al. (2016) [59,60]. 

In order to accurately georeference the orthomosaics resulting from SfM processing, we collected 
ground control points (GCPs) in all the monitored areas. At least eight GCPs per area were identified 
over structures that were easily visible and detectable in the UAV imagery (Figure 3). Global 
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navigation satellite system (GNSS) coordinates were recorded with Emlid Reach RS© [61], low-cost 
single-frequency RTK (real-time kinematic) GNSS receivers (a base station and a rover). This GNSS 
is able to operate in long range radio (LoRa 868/915 MHz) mode, with one receiver working as a base 
station that sends real-time correction to the second receiver, which acts as a rover [62]. The base 
station was set in a fixed position for all the surveys, and the position accuracy was calculated using 
the PPP correction service offered by The Canadian Geodetic Survey of Natural Resources Canada 
[63]. Considering this single frequency GNSS in PPP base correction, the accuracy of horizontal and 
vertical components of the collected points is in the order of a few centimeters. After the photo-
alignment in Photoscan, markers were placed over the GCPs, and corresponding RTK coordinates 
were imported. This process allowed us to estimate the XYZ accuracy of the orthomosaics as the root-
mean-square error (RMSE). 

 
Figure 3. Identification of suitable ground control point features over easily recognizable structures 
from drone images. 

2.5. OBIA and Classification of High-Resolution Orthomosaics  

The analysis and classification of the orthomosaics obtained from UAV surveys were performed 
through Trimble eCognition Developer 9.4 [64]. The use of this software allowed us to carry out a 
robust image analysis in order to create comparable benthic coverage maps. Analysis (OBIA) 
algorithms followed the methods described in previous studies for satellite images [65] on satellite 
images and on UAV data [26]. A multiresolution segmentation algorithm based on homogeneity 
criteria was applied to the high-resolution orthomosaics (Figure 4b,b’). The image layer weights were 
set equal for all three bands, and the optimal scale parameter found was 150. For the homogeneity 
criteria, we established a shape value of 0.1 and compactness of 0.5. After the segmentation process, 
nearest neighbor classification (a supervised classification technique) was used to select well-defined 
samples as training areas. The accuracy of the samples was established by bionomic transects 
collected by snorkelers (Figure 1c). Classification takes advantage of the features calculated for each 
object, such as the spectral value, but also size, shape, texture and proximity [66]. Using the thresholds 
between these parameters, we defined a ruleset for the classification algorithms that allowed us to 
classify and to label the three main substrate types that characterize the four study areas: hard coral 
(including live and dead corals), sand, and coral rubble (Figure 4c,c’). The sand class was classified 
on the basis of the spectral difference (mainly in brightness level and band ratio) between coral rubble 
and hard coral. Instead, hard coral and coral rubble were classified considering the difference in 
brightness, band ratio, standard deviation, saturation and the form and texture of the segments. 
Unfortunately, it was not possible to discriminate between dead and alive colonies from only the 
RGB channels because of the inaccuracy of an analysis based only on visible colors.  
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Figure 4. Examples of results obtained from the application of the OBIA workflow in Area 2. High-
resolution orthomosaics of Area 2 (a,a’) over time. Image segmentation output (b,b’) and classification 
of substrate type (c,c’) in February 2017 and November 2018. 

2.6. DTM Analysis and Structure Complexity Evaluation 

From the derived DTMs of Area 2 and Area 4, we selected two sub-areas far from the edges and 
close to GCPs. The reason for this is that during the SfM process, a slight broad-scale deformation 
can be produced that could affect the accuracy of the z value [67]. Moreover, from the visual 
comparison of the orthomosaics over time (2017 to 2018), we observed an evident change in the 
substrate composition in both areas. These two aspects make the two selected sub-areas suitable sites 
to be tested to evaluate our workflow designed to detect changes in structural complexity. 

The models were imported in ArcGIS 10.6 and analyzed by using 3D Analyst Tools and applying 
the benthic terrain modeler (BTM) algorithm (i.e., vector ruggedness measure—[68]). The DTMs were 
firstly resampled to a uniform resolution of 5 cm/pix (using Resample Tool in ArcGIS 10.6) and then 
a low-pass filter (3 × 3) was applied. On the processed models, we calculated the linear rugosity and 
the average slope along five virtual transects and terrain ruggedness over the area around these 
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transects in order to estimate changes in structure complexity between years. The transects were 
virtually laid parallel to the reef crest and started at randomly selected points within the target area. 

The linear rugosity was calculated as the exact distance of a transect, considering changes in 
vertical surfaces (see Appendix A, Figure A1 and Figure A2), divided by the linear distance [34,69]: Linear Rugosity = 𝑇𝑟𝑢𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (3𝐷)𝐿𝑖𝑛𝑒𝑎𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (2𝐷) (1) 

The closer that this value is to 1, the flatter the surface is considered to be. 
The average slope along the transects was estimated using functional surface algorithms 

included in 3D analysis tools. Higher slope values indicate a steep area, while small slope values 
reflect smooth terrain [34,70]. The measure of area ruggedness was obtained using a vector 
ruggedness measure tool included in BTM. This system of measurement was used to quantify the 
surface complexity (rugosity) by assessing the 3D dispersion of vectors orthogonal to the surface of 
the DTM. Vectors orthogonal to each grid cell are decomposed into their x, y, and z components. A 
resulting vector is estimated within a 3 × 3 cell frame centered on each cell. A zero value indicates a 
flat terrain, while larger values indicate highly complex areas [9,68]. 

2.7. Map Accuracy Assessment  

Map accuracy was assessed by comparing the outputs with 732 randomly distributed points that 
proportionally cover all the monitored areas. The points were manually classified, and the accuracy 
of the maps was evaluated visually using the orthomosaics; this was possible because of the high 
resolution of the UAV images (1.5 cm/pix), which allowed an on-screen check to be conducted by an 
expert in coral reefs with good knowledge of the study area [26,71]. Then, the accuracy was evaluated 
by comparing the outputs with the reference data in a confusion matrix to estimate the user and 
producer accuracy and the overall accuracy of the maps and to calculate the kappa index [72]. Finally, 
the benthic cover maps from 2017 and 2018 were compared in ArcGis 10.6 to highlight the differences 
between the two years and calculate the gain and loss in the three classes. 

3. Results 

3.1. Map Accuracy  

The benthic assemblage maps had an overall accuracy of 79% and a kappa index of 56% (Table 
2), values that represent a moderate agreement level, according to Congalton and Green (2008) [72]. 
Individual classes had a user accuracy of 85% for sand, 66% for coral rubble and 86% for hard coral. 
The lower accuracy of the coral rubble is mainly due to the absence of precise boundaries between 
the other two classes. In some areas, the mixture of sand with coral rubble formed a transition zone, 
which may have led to misclassification. This also applies to the margin between hard coral and 
rubble. In addition, during the map processing in eCognition, the jagged margins of the segments 
were smoothed. This process may have created some centimetric imprecision in the boundaries 
between classes that, in several cases, may have contributed to a reduction in classification accuracy. 
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Table 2. Confusion matrix and accuracy index for the classified maps. 

Accuracy Table 

    Control Reference       

Be
nt

hi
c 

m
ap

s 
 

 

Hard Coral Coral Rubble Sand Total User Accuracy 

(%) 

Producer Accuracy 

(%) 

Hard Coral 349 39 21 409 85 86 

Coral Rubble  52 169 35 256 66 78 

Sand  2 7 58 67 86 51 
       

Total 403 215 114 732   

     

Overall 

Accuracy 
Kappa Index 

     79%  0.56 

3.2. High-Resolution Orthomosaics, Substrate Type Maps and Structural Complexity Variation 

The processing of the UAV images led to the realization of high-resolution orthomosaics (1.5 
cm/px) of 16 hectares of shallow-water coral reef environments around the island of Magoodhoo for 
the years 2017 and 2018. During this process, the average positional accuracy obtained for the models 
was 0.21 ± 0.09 m RMSE. The achieved detail of the models provides an overview of the dynamic of 
the benthic communities with low-cost and time-saving surveys. Moreover, the quality of the data 
highlights the difference in benthic assemblage extension between the two years with a visual on-
screen comparison of the orthomosaics (Figure 4a,a’). 

The benthic assemblage maps realized from the OBIA analysis define the coverage of hard coral, 
coral rubble and sand in selected portions of the four monitored areas a few months after the 2016 
bleaching events and more than two years later (Figure 4c,c’). The comparison of the maps revealed 
a general loss in the extent of hard coral framework coverage, precisely 11–15% of the total mapped 
area, with a total loss of 6119 m2 (Figure 5). Regarding the other two classes, we noticed an increase 
in coral rubble (a class closely linked to the degradation and fragmentation of the coral colonies) in 
Area 1, Area 2 and Area 4, the area most affected by the reduction in hard coral. 

 
Figure 5. The extent of detected substrates in the monitored areas between years. 

In Figures 6–8, changes in substrate type composition can be directly linked to the integrity of 
the reef system. In particular, the comparison between 2017 and 2018 DTMs (Figure 6b–e and Figure 
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8b–e) showed a general flattening of the monitored areas with a consequent loss of rugosity (Figure 
6c–f and Figure 8c–f). Therefore, both the linear rugosity and average slope values (Table 3 and Table 
4), measured along randomly chosen transects over the selected areas, suggest a general deterioration 
in structural complexity in the 2018 models. The linear rugosity index decreases close to a value of 1, 
indicating an increase in the extent of flat terrains in all the analyzed transects. Moreover, a reduction 
in the average slope values is noticeable and confirms the trend between the two years (Table 3 and 
Table 4).  

The terrain ruggedness maps, calculated for the areas around the transects (Figure 6c–f and 
Figure 8c–f), showed a pronounced drop in high ruggedness values. The comparison between 2017 
and 2018 highlighted a significant increase in areas with values between 0 and 0.02 (Figure 7 and 
Figure 9), indicating a progressive reef flattening and an associated extensive decline in the structural 
complexity. The overall processing times for all the workflow steps, from image acquisition to DTM 
and structural complexity evaluation, are summarized in Appendix B (Table A1). 

 
Figure 6. A portion of orthomosaic and DTM of Area 4 monitored in February 2017 (a–c) and 
November 2018 (d–f). Hillshade DTM comparison (b–e) highlights an overall flattening of the area 
due to the destruction of coral colonies, mainly Acropora table colonies, indicated by the yellow arrows 
(for a close-range view, see Figure 11. Colored lines in (a–d) and (b–e) represent selected transects in 
which linear rugosity and average slope have been computed (see the text for an explanation and 
Table 3). (c,f) Images representing the rugosity maps of the area around transects.  
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Table 3. Variation in linear rugosity and average slope between years along the transects T1, T2 and 
T3 in Area 4 (Figure 6). 

  Linear Distance (m) True Distance (m) Linear Rugosity Average Slope 
T.1 2017 47,395 49,422 1042 23,878 
T.1 2018 47,395 48,189 1016 13,941 
T.2 2017 36,682 38,014 1036 21,763 
T.2 2018 36,682 37,219 1014 12,939 
T.3 2017 37,083 38,406 1035 21,407 

T.3 2018 37,083 37,684 1015 13,756 

 
Figure 7. The histogram describes the temporal change (from 2017 to 2018) in the extent of areas with 
the same rugosity index in the selected portion of Area 4 (Figure 6). 

 
Figure 8. A portion of the orthomosaic and DTM of Area 2 monitored in February 2017 (a–c) and 
November 2018 (d–f). Colored lines in (a–d) and (b–e) represent selected transects in which linear 
rugosity and average slope have been computed (see the text for an explanation and Table 4). (c,f) 
Images representing the rugosity maps of the area around the transects. 

Table 4. Variation in linear rugosity and average slope between years along the transects T1 and T2 
in Area 2 (Figure 8). 
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  Linear Distance (m) True Distance (m) Linear Rugosity Average Slope 

T.1 2017 47,705 48,057 1007 9647 

T.1 2018 47,705 47,809 1002 4908 

T.2 2017 47,705 48,004 1006 8815 

T.2 2018 47,705 47,801 1002 5078 

 
Figure 9. The histogram describes the temporal change (from 2017 to 2018) in the extent of areas with 
the same rugosity index in the selected portion of Area 2 (Figure 8). 

4. Discussion 

4.1. UAV Surveys and Image Processing  

The use of UAV data combined with SfM algorithms has increased in the last several years in 
different fields of environmental research, such as plastic and marine litter monitoring [73,74], marine 
habitat mapping [75,76], marine megafauna surveys [76–78], coastal geomorphology [79,80], 
structural geology [58,81] and forestry sciences [71,82]. However, from the first description of the 
great potential of these coupled techniques in monitoring ecology and geomorphology of the coral 
reefs by Casella et al. (2016) [24], the studies that have improved this methodology in this field are 
still few in number [48,83,84].  

In our study, we used for the first time UAV images coupled with SfM and OBIA algorithms to 
monitor and map temporal changes in coral reef benthic assemblages following a mass bleaching 
event. The high-resolution orthomosaics confirmed the potential of these low-cost and versatile tools 
for the monitoring of shallow-water reef environments. Consumer-grade UAVs, such as DJI Phantom 
4, can take off from the shore or a small boat. This flexibility allows for the easy monitoring of reef 
structures, such as patch reefs in lagoons, far from the coast. Of course, UAVs cannot be compared to 
a satellite in terms of spatial cover: satellite imagery analysis can be used to map an entire reef system 
[22,85–87]. However, even if the spatial and temporal resolutions of the satellite sensors have 
improved in the last decade (Sentinel 2 offers 10 m/pix in visible bands and a revisit time of 5 days), 
they are not comparable to the centimetric resolution obtained from UAV surveys. This level of detail 
places the monitoring activities of marine environments with UAVs on a scale that lies between a 
satellite and a snorkeling/diving survey [24,26].  

On the other hand, the main limitations of this type of UAV are the low accuracy of the built-in 
GPS and the restriction of data analysis to RGB images. Regarding the precision of the GPS, the 
unmodified geolocation is expected to have an error of up to 3 m [88]. This level of inaccuracy does 
not permit a comparison of the same area, monitored during two different flights, without precise 



Remote Sens. 2020, 12, 2093 14 of 26 

GCPs. To overcome this limitation, it is possible to use a UAV with an integrated RTK (such as the 
recent DJI Phantom 4 RTK quadcopter) or georeference the models with RTK GCPs collected in all 
the areas. Instead, problems in the classification system for high-resolution UAV RGB imagery (e.g., 
the extensive time spent performing on-screen manual classification) can be overcome with the 
application of OBIA algorithms. OBIA processing considers not only the spectral information but also 
the geometrical and spatial relation between pixels or groups of them [89], and this allowed us to 
manage RGB spatial data with low spectral separation between the classes (e.g., hard coral and coral 
rubble). Moreover, the use of OBIA helps to speed up the classification process: once the ruleset has 
been developed, it can be applied to all the orthomosaics that represent the same environments with 
slight changes in feature parameters. 

Another critical factor that may restrict the potential of the UAVs in benthic habitat surveys is 
the influence of environmental conditions on the water column. Thus, it is essential to monitor 
weather conditions and oceanographic parameters before the flight. Therefore, we planned the 
surveys to minimize class misclassification errors, and data acquisition was performed in the same 
optimal conditions for all the monitored areas in 2017 and 2018. 

4.2. Classification and Map Comparison  

The classification maps produced from the processing of orthomosaics with OBIA had good 
overall accuracy, 79%, which confirmed the validity of the classification process (Table 2). The 
workflow adopted allows for the classification of benthic substrate types (sand, coral rubble and hard 
coral) with higher accuracy than maps realized from free satellite images (Sentinel 2) with the same 
methodology [65,86]. The maps represent the composition of the substrate that characterizes the 
surrounding reef rim a few months after the 2016 coral bleaching event and more than two years 
later. Before the bleaching, the reef flat, the back reef and other minor reefs comprising the reef system 
of the Magoodhoo island were composed of flourished frameworks (Figure 10a,b) of Acropora spp. 
colonies (mainly branching but with some tabular) with an increase in massive Porites spp. colonies 
moving from the shore towards the reef crest. During the bleaching, the most affected corals were 
tabular and branching Acropora spp., the primary habitat-forming species of shallow reef 
environments in the Maldives [44]. Mortality rates in this genus reached 80% [90], and signs of colony 
desegregation were already recorded a few months after the event [91]. The benthic maps (Figure 4b–
d) describe an environment in which most of the extension of the hard coral class consists of dead 
Acropora still in the living position (Figure 10c,d). In addition, this category was composed of 35% 
dead coral, 51% sand, rubble and other organisms and only 14% live corals [92]. Unfortunately, it was 
not possible to discriminate the status of corals just from UAV images, so direct snorkeling 
observations were necessary. 
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Figure 10. (a,b) Underwater pictures of branching and tabular Acropora spp. colonies taken before 
bleaching (February 2016) on the reef flat of Magoodhoo. (c,d) Dead branching and tabular corals still 
in the living position in the same areas a few months after the bleaching event (February 2017). 

The comparison of the maps between 2017 and 2018 showed a substantial reduction in the hard 
coral class (Figure 5). The dead colonies gradually lost their structure because of the impairment 
caused by the action of bioeroders and the mechanical action of currents and waves. Therefore, a 
shrinking of the coral frameworks was evident in all the monitored areas (Figure 5). Most of the 
decline was driven by the degradation of branching and tabular colonies that, in some areas, entirely 
disappeared from the reef (Figure 6a–d and Figure 11). Consequently, an expansion of coral rubble 
was recorded. The extension of these degraded areas can lead to an increase in algal cover and the 
formation of unstable substrate unsuitable for coral larvae settlement [93]. 

In Area 3, the trends of the benthic assemblages, from 2017 to 2108, were slightly different from 
the other three (Figure 5). This is due to the sheltered position of the reef inside a small lagoon, and 
the mechanical action of waves and currents on colonies is likely less pronounced. Nevertheless, the 
general effect observed in all the mapped environments unveiled a significant transformation in 
substrate type, with a resulting deterioration in the integrity of the hard coral frameworks composing 
the surveyed reef areas. Rugosity is a crucial ecological factor since biodiversity is strongly correlated 
with habitat complexity [70,94,95]. The negative variation in this parameter due to the transition from 
healthy coral reefs to post-bleaching degraded environments can have significant implications on 
reef-associated organisms such as fish. Moreover, the described changes in the structural complexity 
of the fore reef can lead to an increase in the rates of coastline erosion as a result of the loss of their 
coastal protection functions [1,14]. The comparison of selected portions of the DTMs obtained from 
the SfM workflow let us detect this decline (Figure 6b–d and Figure 8b–d). Linear rugosity and 
average slope, measured along random virtual transects, showed a decrease between 2017 and 2018 
in both indexes (Table 3 and Table 4). These values, which are associated with the analysis of the 
terrain ruggedness, provide a detailed overview of the variation (Figure 6c–f and Figure 8c–f) and 
reveal shifts in the substrate type structure.  
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Figure 11. Close-range view of the three zones indicated with yellow arrows (A–C) in Figure 6. 

Unfortunately, we were not able to compare the entirety of point clouds that generated all the 
DTMs and their terrain ruggedness because of the slight broad-scale geometrical distortion (i.e., 
doming effect [67,96]) that affected the final DTMs, especially along the edges and at major distances 
from collected GCPs. For this reason, we had to focus our analysis on a selected portion of the 
orthomosaics, where we observed that the accuracy of the variability of the topographic surface 
described by the surface roughness at the scale chosen by our analysis window (3 x 3 pixel) was not 
affected by the broad-scale error produced by the slight doming effect that could have affected the 
accuracy of the obtained DTMs. In future studies, this limitation can be overcome with the collection 
of additional water depth GCPs, at least 12 points regularly distributed over the monitored area, to 
scale and calibrate the Z value correctly in all the models. 
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5. Conclusions 

Because of the increase in the frequency of extreme heating events driven by climate change, the 
future of the coral reefs in the Anthropocene is unknown. Estimation of coral recovery after a 
bleaching event is definitely challenging [1]. In the Maldives, a full recovery from the 2016 mortality 
could take decades [97–99] and might be adversely affected by the increase in coral reef exploitation 
from fishery activities, tourism and land reclamation [42,2,100]. In this scenario, affordable 
monitoring techniques and reproducible protocols are essential to improve high-resolution data 
collection. 

Our study demonstrated the enormous potential of UAV data coupled with SfM and OBIA 
analysis as a tool to monitor shallow-water coral reef assemblages over time. Although with some 
limitation, our protocol showed that high-resolution imagery collected with UAVs can be efficiently 
analyzed to monitor changes in substrate type and structural complexity. The spatial resolution 
achieved from the orthomosaics allowed us to classify benthic community types with good accuracy, 
and the comparison of the maps over time clearly shows the deterioration of the reef area surveyed, 
confirmed by the loss in structural complexity that is estimated by the documented variation in 
terrain ruggedness.  

Limitations, such as the difficulty in the calibration of DTMs in order to calculate accurate 
elevation data over the entire area and over time, could be easily overcome in the future with a better 
GCP collection strategy and the continuous increase in the efficiency of UAV platforms and cameras 
to avoid broad-scale errors in the provided DTMs (i.e., the doming effect). However, the maps and 
the DTMs generated in this work prove that quantitative data can be effectively produced for a long-
term and cost-effective monitoring program to check the dynamics of shallow-water coral 
assemblages in this new human-dominated era. 
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Appendix A 

 
Figure A1. Comparison of terrain profiles along the three transects, T1–T3, in Area 4 (Figure 6) 
between 2017 and 2018. 
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Figure A2. Comparison of terrain profiles along the two transects, T1 and T2, in Area 2 (Figure 8) 
between 2017 and 2018. 
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Appendix B 

Table A1. Workstation set-up and a summary of the entire workflow time for all the monitored areas. The processing time is closely linked to the configuration of 
the computer and the number of collected images. . 

Workstation Configuration 

Workstation CPU RAM Memory GPU 

Dell XPS 15” Intel® Core™ i7-7700HQ CPU 2.80 GHz 32 Gb DDR3 Ram  
NVIDIA(R) GeForce(R) GTX 1050 Ti  with 

4 GB GDDR5 

CPU: central processing unit; RAM: random access memory; GPU: graphic processing unit 
 

  

DJI 

Phantom 

4 Images 

Acquisitio

n  

SfM Processing in Agisoft Photoscan Pro OBIA Workflow in eCognition 9.5 
Maps Comparison and DTM 

processing in AgcGis 10.6 

Overall 

Processing 

time 

   

Aligment
1  

DTM1 
Orthomosaic

1 

Multiresolutio

n 

Segmentation1 

Selecting 

Training 

Areas2 

Define 

Statistics
2  

Nearest 

Neighbor 

Classification
1  

Bentic 

Assemblages 

Maps 

Comparison2 

Structural 

Complesity 

Evaluation2 
   

Processin

g Time for 

Area 1  

21 min 24  min  
122 

min 
1.32 min 5.20 min 11.06 min ≈ 16 min ≈ 30 min 23 min  ≈ 20 min ≈ 30 min  ≈  303 min  

Processin

g Time for 

Area 2  

19 min 19  min  98 min 1 min 3.54 min 8.34 min ≈ 15 min ≈ 30 min  20 min  ≈ 20 min ≈ 30 min  ≈ 263 min  

Processin

g Time for 

Area 3  

11 min 8  min  26 min 0.22 min 2.05 min 3.23 min 
≈  10 

min 
≈ 30 min   15 min  ≈ 20 min ≈ 30 min  ≈  155 min  
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Processin

g Time for 

Area 4  

23 min 25  min  
142 

min 
2 min 9 min 28.13 min ≈ 20 min ≈ 30 min 30 min  ≈ 20 min ≈ 30 min  ≈ 360 min  

1 Automated Process; 2 Manual Process; 
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