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These pages are only a schedule of some lessons for the final part of a course on Optimal Control. It
is a collection of some things that I use during my lessons: in particular, I would like to mention the very
interesting paper due to Bressan [3], the book [2], the sixth chapter of the note by Evans [6] and ....

In this schedule we use the optimal control theory, without recalling the fundamental notions and results:
I will use the notations used in [4].

Andrea Calogero
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Chapter 1

Introduction

See [3]

1.1 Concepts of equilibrium in game theory

Game theory deals with situations in which a finite number of players do maximize their own payoff, deciding
a strategy among all the available options. Generally each player establishes his own strategy at the same
time, taking into account that the game’s result depends also on the choice taken by others. Without loss
of generality, let’s consider the case with two players; both of them have to solve the following problem:

)glea)}(gi Ji(X1,%2) (1.1)
where x; € X;, which is the set of all possible options for Player ¢ = 1,2. This is a “one shot game” meaning
the payoff is entirely determined by the particular selected strategy.

In general it is not possible to find a solution (x7,x%) € X; x X which leads both Player 1 and Player
2 to get the maximum payoff; indeed, the outcome could be favourable only for one of them. This is the
reason why there exist different concepts of equilibrium that differ from each other in some features, such
as the type of available information, games’ mechanism in terms of choices’ sequence or, as an alternative,
the faculty to cooperate. Hereafter there are the main concepts of solution: Nash equilibrium, Stackelberg
equilibrium and Pareto optimality, but first it is necessary to introduce some notations.

In the simplest case of two players, say “Player A” and “Player B” the required ingredients are given by:

e The two (finite/infinite) sets of strategy A and B: the players choose their particular strategy, respec-
tively a € A and b € B, so that the payoffs achieved are J4(a,b) and Jpg(a,b).

e The two payoff functions: J4: A x B — R and J? : A x B — R which are continuous and known by

both players.

Definition 1.1 (Nash equilibrium). The pair of strategies (a*,b*) is a Nash equilibrium of the game if,
for every a € A and b € B, one has

Ja(a,b*) < Jy(a”,b%) Jp(a*,b) < Jp(a*,b%)

In this situation none of the players may increase his payoff changing his own strategy if the other do not
deviate from his one. This is a solution concept of non-cooperative game.

Definition 1.2 (Stackelberg equilibrium). A pair of strategies (a*,b*) € A x B is called a Stackelberg
equilibrium if b* € RB(a*) and moreover

Ja(a,b) < Ja(a*,b*)  Y(a,b), b€ RB(a), a € A,

1
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where RB(a) is the set of best possible replies of Player B (the follower), since Player A (the leader) has
already announced the strategy a, i.e.

RB(a) ={¥ € B: Jg(a,b) < Jp(a,V), Vb e B}.

Note that b* stands for the best reply of Player B, which can choose his strategy only after Player A (the
leader) has announced his own one. In other words, first Player A establishes his strategy optimizing his
utility function, then Player B defines his strategy taking into account what the first player has decided
(asymmetry of information).

1.2 Differential games
Let x € R™ describe the state of the system, evolving in time according to the ODE (called dyinamics)
x(t) = g(t,x,u1,uz...uy), a.e. t € [0,7] (1.2)
with fixed T' > 0 and a initial data
x(0) = x¢ € R™. (1.3)

Here uy, ug,...,uy are the controls of the N players (clearly we suppose N > 2). We assume that they
satisfy the pointwise constraints
ui(t)EUi, i=1,...N,

where U; C R¥ are the control sets for the i-Player.

It is clear that the possibility to solve the Cauchy problem (|1.2)—(1.3) is not clear: however, we usually as-

sume that the function ¢ is continuous, differentiable w.r.t. x and with the derivatives %gj(t, X,Uj,Ug...Uy)

continuous.
The aim of the i-player is to maximize

T
Ji(uy,...uy) = /0 filt,x,uy,...un)dt + (T, x(T)),

where, as usual in the control theory, f; are the running cost and ; are the payoff. Clearly the i-player
controls only the choice of u;.

In all that follows we suppose that there are only two players (N = 2), but it is easy to generalize.

The information available to players, such as the current state of the system and the strategy adopted
by the competitor, determine the kind of game that has to be undertaken by them. Let’s first give some
assumptions upon which the following analysis will be established and then let’s expose some of the most
well-known differential games. Each player has perfect knowledge of:

e the evolution of the system (identified by the function g¢), and the control sets Uy, Us.
e the two payoff functions Ji, Js.
e the instantaneous time ¢ € [0, 7]

e the initial condition for the system x
1.2.1 Some particular two-persons games
Let us introduce some particular situation for the two-persons games. We say that the game is symmetric if

fl(taxv u17u2) = f2(taxv u27u1))
1/}1 == ¢25 g(taxa 111,112) = g(t,X, u2)u1)7 Ul - UQ'
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A game is completely cooperative if

f1=fa, P = o, Uy = Us.

A game is zero-sum if
Ji=—f2 1 = —g;
in this case, setting f = f1 and ¥ = 11, the strike of the first player is to find a strategy u; in order to

max J(ug, ug),
uy

where .
J(ug,ug) = /0 flt,x,ug,ug) dt + (T, x(T));

while the strike of second player is to minimize the same functional, controlling us, since

T
max/ —f(t,x,u1,u2)dt — Y (x(T")) = — min J(u, uz).
0 "2

uz

1.2.2 Information structure: open-loop and feedback in two—persons game

In this context are just discussed two differential games: Open—loop strategies and Feedback (or Markovian)
strategies. Essentially, open—loop means that the players base their decision only on time and an initial
condition; whereas, the players use the position/state of the game as information basis in a feedback context.
A feature that is common to those two information structure is that the players do not need to remember
the whole history of the game when making a decision: only running time and the initial position xq are
relevant for the open—loop information structure, while for the feedback structure, only information on the
current position is relevant.
We focus our attention on two—persons game:

Definition 1.3. Open—loop strategies. The set S; of strategies available to the i-th Player, with ¢ = 1,2,
will consist of all measurable functions u; : [0,T] — U; such that

ui(t) = I/i(t, X())7

where xq is the initial data and v; is a decision rule, i.e. a measurable function v; : [0,T] x R™ — U;.

Definition 1.4. Feedback strategies (or Markovian strategies). Here, the control implemented by
Player i, fori=1,2, is u;, depending on both time t and system’s state x. The set S; of strategies available
to the i-th Player will consist of all measurable functions u; : [0,T] — U; such that

u;(t) = vi(t,x(t)),

where v; is a decision rule, i.e. a measurable function v; : [0,T] x R™ — U;; the Player i observes the
system’s position (t,x(t)) and chooses his action as described decision rule v;.

Other concepts of strategies can be given (see for example [2]).
Clearly, as we will see in the next lines, we require that the previous controls are admissible too. To be
more precise,

Definition 1.5. The class Ap; and the class App. We say that (uy,ug), with u;(t) = v;(t,xo), is
an admissible control (or strategy) in the class Aoy of open loop strategies for the game if t —
(v1(t,x0),v2(t,x0)) € Uy x Uz is a measurable function such that there exists a unique solution x of the

ODE
{X(t) = g(t,x(t),v1(t, x0), v2(t, X0)) a.e. t €[0,T]
x(0) = xg
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We say that (uy,ug), with u;(t) = v;(t,x(t)), is an admissible control (or strategy) in the class App of
feedback strategies for the game if (t,x) = (v1(t, x),v2(t,x)) € Uy x Uz is a measurable function such
that there exists a unique solution x of the ODE

{xgt)) = g(t,x(t),v1(t,x(t)), va(t, x(t))) a.e. t€[0,T]
x(0) = xg

1.2.3 Target and game set

In the games, as in the problem of optimal control, we deal with trajectories that satisfies some initial
and final condition. Let us consider a target set T C RT x R"; in this note we will consider closed target
sets. If we consider a dynamics and a target set, we define the game set G C R*T x R™ as the points
(1,€) € [0,00) x R™ such that there exists at least a trajectory x : [7,T] x R™ such that

x(1) =€ and (T,x(T)) € OT;

usually we say that x transfers (7,£) € G in T.
For every (7,€) € T, we can consider the trajectory x : [7, 7] — R"™ defined by x(7) = &; this trajectory
implies that
T Cg.

Let us list some particular case of game sets, depending on the final condition on the trajectory:
e (fized time and fized value of the trajectory): for x(T') = B, with T" and 3 fixed, we have T = {(T, B)};
o (fized time and free value of the trajectory): we have T = {T'} x R";

e (free time and fized value of the trajectory): we have T = Rt x {8}, with 8 € R" fixed.



Chapter 2

Nash equilibria for two—persons game

In all this chapter we are considering a two—person game (the general case of a N—person game is similar)

Player I: max J;j(uy, u2) Player II: max Jo(uy, u2)
u] u2
T
Hwru) = [ fxwu) e+ (D), 1.2 (2.1)
0
X = g(t,x,ul,u2)
x(0) = xg

where T is fixed, U; and Us are closed control sets for the players and (uj,ug) is an admissible control, i.e.
depending on the information structure.
A Nash equilibrium (uj, u3) is such that
Jl(uf, uS) > Jl(lh, u%), Yu
Jo(uy,uz) > Jo(uj, ug), Vg,

taking into account the information structure and the admissibility of the controls, as we will study in the
next sections.

2.1 Open-loop Nash equilibria

Definition 2.1. A pair of control functions (uj,u3) € Aor, with decision rule uj(t) = v;(t,xg) and
trajectory x* such that

x*(t) = g(t, x*(t), vi(t,%0), v3(t, x0)) a.e. t€[0,T]

x*(0) = xo
is a Nash equilibrium within the class of open—loop strategies Aoy, for the game if the following
holds:

I the control uj provides a solution to the optimal control problem for the Player I, i.e. for

max / f1(t,x(t), v1(t,x0), v (t,x0)) dt + 1 (x(T))

(ur,uj)eAor,
x(t) = g(t,x(t),v1(t,%0),v5(t, X0))
x(0) = xo

with u; (t) == Vl(tvx(t));

IT the control uj provides an optimal open—loop control for the problem for the Player II, i.e. for

max /fztx V(1 %0), a(t, x0)) i + 1 (x(T))

ul,uz)eAOL
x(t) = g(t,x(t), vi(t, x0), v2(t, %0))
x(0) = xo
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with uy(t) = va(t, xg).

In order to find a pair of open-loop strategies (uj, u}) yielding a Nash equilibrium, it is reasonable to
introduce

Hl(t,X, U.1,U.2,>\1) = fl(tvx7 u17u2) + A1 . g(t7X7 U.1,U.2) (22)
HQ(t7X7 U1,UQ,)\2) - f2(t7X7 u17u2) + )\2 . g<t7X7 u17u2)

A necessary condition for optimality is given by Theorem taking into account that since T is fixed and
the final value of the trajectory is free we can assume that the control is normal:

Theorem 2.1. Let us consider the problem with f;, ¥; and g in C*. Let (uf,u}), with u;(t) = v;(t, o),
be a Nash equilibrium in the class od open—loop strategies. Let x* be the associated trajectory.
Then there exists a continuous multiplier X} : [0,T] — R"™, with i = 1,2, such that

i) for all T € [0,T] we have

ui(7) € arg max Hy (7, x7(7), v, u3(7), Ai(7))
veUa

u;(7) € arg max Hy(r, x"(7), ui(7), v, A3(7));

it) in [0,T] we have

AT = _VXHl(t¢X*7u>{vu;7AT)a )‘; = _VXHQ(t7X*7uT7u;7)‘§);

iii) we have X](T) = Vo1 (x*(T)), A5(T) = Vxto(x*(T)).

Since Theorem gives only a necessary condition for optimality, we have to consider sufficient results
such as Mangasarian’s sufficient conditions (see Theorem [A.2]) or Arrow’s sufficient conditions (see Theorem
A.3)), in order to be sure the couple of controls (uj, u3) stands for an open-loop Nash equilibrium.

2.1.1 Workers versus capitalists

This model is due to Lancaster (see [13]). Let us denote by k = k(t) the capital stock of the economy,
and the rate of production is proportional to k, i.e. the production at time ¢ is ak(t), with o > 0 fixed.
Within the limits a and b, workers decide their share u = u(t) of production; the remaining production
(1 — u)ak is controlled by the capitalists, who invest a fraction v = v(¢) and consume the other portion, i.e.
(1 —v)(1 — u)ak. Both workers and capitalists want to maximize their own total consumption.

T T
Workers: max/ uak dt Capitalists: max/ (1 —v)(1 —u)akdt
v Jo v Jo
O<a<u<b<l ' 0<v<l1
E=v(l—u)ak
kE(0) =ko >0

Although workers usually do gain future benefits from investments, their willingness to sacrifice consumption
can be exploited to the capitalists. On the other hand, a willingness to invest will be less effective if the
workers too soon press their share towards the limit b. We choose the time unit such that the constant of
proportionality « is 1.

We have the Hamiltonians

Hy = uk + M\iv(1 — u)k, Hy=(1-v)(1—u)k+ Xv(l —u)k,
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and using Theorem [2.1] we have

b if v <1
u € arg max kp(l—X\v)=4 77 if \jv=1 (2.3)
pelat] {a if Ao > 1
1 ifA>1
v € argmax kq(ha —1)=< 77 if Ag=1 (2.4)
acl01] {0 if Ay < 1
Eo= v(l—u)k
A o= —u—\o(l—u) (2.5)
Ao = (u—1)(1—v+ ) (2.6)
M(T) = 0 (2.7)
X(T) = 0 (2.8)

where in order to obtain (2.3) and (2.4) we use that k(t) > ko > 0 since k > 0. We note that u and v in
(2.3) and (2.4) do not depend on the trajectory k: hence we are in the position to looking for a open—loop
solution.

It is easy to see that (2.4) implies that in (2.6)) we have
Xo(t) <0,  Vtel0,T]: (2.9)
indeed by the adjoint equation (2.6 and the Maximum principle (2.4)),

ifdg>1, = do=(u—1)X<0
if g <1, = do=(u—1)<0.

Hence, by ([2.8)), there exists 7 € [0,T) such that

Ao(t) <1 Vte (r,T]. (2.10)
This implies, by and (2.4)), v(t) = 0 and u(t) = b in (7, T]. Relations (2.5)-(2.8) give
A(t) =—=b(t—T), Xt)=1=-b)(T—-t) Vte(r,T); (2.11)
Condition implies .
r=T - (2.12)

Note that A2(7) = 1 and together with (2.9) we have A2(t) > 1 in [0,7): hence, by (2.4), we obtain
v(t) =1 vt € [0,7]. (2.13)

Now we have to distinguish two cases: b > % and b < %
e b > 3 : Note that for such b, by , we have A;(T) = 125 > 1; moreover, by in we obtain A; (1) < 0.
This gives that A\;(¢) > 1 for t € [T —¢, 7) for some positive e: now, replacing the same arguments we obtain
that A1(¢) > 1in [0, 7]. Hence, this inequality and give by that u(t) = a in [0, 7]. We obtain that
the candidate to be a Nash equilibrium is (u*,v*) with

« Ja iftel0,7] “(t) = 1 iftel0,7]
YT\ b ifte(r,T) YWT0 ifte (rT]

with 7 as in (2.12)). First, we have to guarantee that (u*,v*) is admissible, i.e. there exists a unique path
k*, solution of the dynamics and the initial condition. We have that

{k =v*(1—uk=1—-a)k iftel0,7]
k(0) = ko
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gives k(t) = ket for t € [0, 7]; moreover

E=vQ—uk=0 iftel[rT]
k() = koe =7

gives k(t) = koe' =07, for t € [, T]. Hence (u*,v*) is admissible.
In order to prove that (u*,v*) is really a Nash equilibrium, we remark that (k,u) — Hi(¢, k,u,v*,\]) and
(k,v) — Ha(t,k,u*,v,\5) are not concave functions (for fixed ¢) and hence we are not in the position to
apply Theorem however, if we construct the maximized Hamiltonian functions HY and HY for H; and
H, respectively, we obtain
HY(t,k,v*,\}) = max Hi(t,k,u,v*,\}) = E[\jv* + max u(1 — X))v*)],
u€fa,b] u€fa,b]
HY(t, k,u*, \5) = max Ho(t, k,u*, v, \3) = k(1 — u*)[1 + max (A5 — 1)v)];
vel0,1] vel0,1]

it is easy to verify that such two functions are concave in k, for fixed ¢, and hence Theorem guarantees
that (u*,v*) is a Nash equilibrium.
e b < 1:Notethat A\(1) = % < 1; then there exists 7/ € [0, 7) such that

M) <1 Vtelr, 7). (2.14)

This inequality with imply that, by , u(t) = b. The adjoint equation and the condition for
A1 in 7 give the ODE
M=-b—M\(1—-0) fortelr 1],
o

The solution is

It is easy to see that for

T =7+ In(20) (2.15)

1-0

we have A\1(7") = 1. Now the same argument of the case b > 1/2 gives that A\;(¢) > 1 in [0, 7] and we obtain,
as before, u(t) = a. Hence we have that the candidate to be a Nash equilibrium is (u*,v*),

ool if t € [0, 7] v (t) = 1 iftel0,7]
b ifte (1)’ |0 ifte(r,T]

with 7 and 77 as in (2.12) and (2.15)). In order to prove that (u*,v*) is really a Nash equilibrium, we use
arguments similar to the previous case.

2.2 Feedback Nash equilibria

Definition 2.2. A pair of control functions (uj,u3) € App, with decision rule u}(t) = v;(t,x*(t)) and
trajectory x* such that

{x*(t) = g(t,x*(t), vi(t,x* (1)), v5(t,x*(t))) a.e. t €[0,T]
= Xy

is a Nash equilibrium within the class of feedback strategies App for the game if the following
holds:
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I the control uj provides an optimal feedback control to the problem for the first Player, i.e. for

max / Fi ({0, w1 (1 x(0), Vi (E x(0)) dE 4+ (x(T))

(u1 112 E.AFB
x(t) = g(t, (), v1(t, x(t)), v5(t,%(t)))
x(0) = xg

where uy (t) = v1(t, x(t));
IT the control u3 provides an optimal feedback control to the problem for the second Player, i.e. for

max / fo (6,%(8), 1% (8, x(0)), va(t, x(1))) dt + ¥ (x(T))

(uj,u2)€Arp
x(t) = g(t, x(t), vi(t, x(t)), va(t, x(t)))
x(0) = %o

where ug(t) = va(t,x(t)).

Variational approach is not useful

Let us suppose that we are interesting on finding a feedback solution using the variational method: we will
show that the Pontryagin necessary condition is much more complicated and it is not useful. In order to do
that, let us suppose that (uj, u}) € App, where u!(t) = v} (t,x*(t)), is a Nash equilibrium within the class
of feedback strategies, with x* its trajectory. Without lost of generality, we assume that n = ky = ky = 1;
moreover, we assume U; = Uy = R. Hence we have (t,x) — (vi(t,z),v5(t,x)) € R? measurable function
such that z* is the solution of the ODE

{fb(t) = g(t,x(t), w3 (L, 2(2)), v5 (¢, x(t)))
x(0) = xg

and ui (1) = vi (" (), us(t) = v (t,2* (1)),

Let us put our attention on the first Player and we fix a continuous function 4 : [0,7] — R and for every
constant € € R we define the function u; ¢ : [0,7] — R by

ur,e(t) = vi(t, 2" (t)) + eh(t) = uj(t) + eh(t) (2.16)
and we suppose that there exists the trajectory z. associated to (uj.,v5), i.e. the solution of the ODE

{ &(t) = g(t, x(t), ure(t), v3 (¢, 2(t)))
z(0) = xo

Clearly
i) —uiolt)  wo®) =a*(1),  @(0) = o, (2.17)

As usual in the variational approach to a problem of optimal control, we define the function 7, : R — R? as

T
Tile) = /O F1(t (8, 1.0, V3 (1 2 (1)) e + 9 (e(T))

We introduce the Hamiltonian H; as in ([2.2]). Using the dynamics and by integrating by part we have

T : T
jh(e) = / [Hl(ta Te, U e, V;(ta .’L'E), /\1) + )\lxe] dt — (/\lme 0 + wl(xe(T))
0
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Since (uj,u}) is a Nash equilibrium, for the first Player we have that optimal J3,(0) > Jp(€), for every e,

and hence %(O) = 0. Classical calculation gives
€
dJh
0 = 0
de (0)
T *
0H; s - 0H; . x x ov. o | dxe
— /0 {[&U(t7x ,U17U2,A1)+>\1+87u?(t,$ ,Ul,UQ,Al)ai;(t,.fC ) de (0)+

OH v
We note that the bad new is the term a—l(t, ¥ ul, us, )\1)8—2(15, x*) that arrives from the fact that we are
u x

2
working with feedback controls, i.e. v5(t,z(¢)). In [9] (see Theorem 7.1) there is a sufficient condition for
a particular type of games in order to obtain a feedback Nash equilibrium using the variational approach:
such condition it not really useful.

With the Dynamic Programming approach

Let us start with the definition of the value function that, with respect to the situation of optimal control
problems, it must be specialized:

Definition 2.3. Let’s suppose that a pair of control functions (uj,u3) € Arp, where u}(t) = v;(t,x*(t)),
is a Nash equilibrium within the class of feedback strategies App. Then we define the value functions
Vi :[0,T] x R" = R, for Player i, by

T
‘/1(7—?5) - ( Sl;p.A fl(t,X(t),Vl(t,X(t)),V;(t,X(t)))dt—|—w1<X(T))
ui,uy)€Arp J 7
where uy(t) = v1(t,x(t)). Similarly, we define

T
VQ(T?E) - sup fg(t,x(t),I/T(t,x(t)),Vg(t,X(t)))dt—i-1/)2<X(T))

(uj,u2)eAprp J7
where uz(t) = va(t,x(t)).

Some comments: first we remark that such definition is on a Nash equilibrium. Second, to be clear, in the
definition of V; we consider the sup on all the feedback controls u; such that, for the fixed feedback control
u3, there exists a unique solution of

{)'c(t) = g(t,x(t), v1(t, x(t)), v5(t, x(t))) a.e. in |7, 7]
x(1) =¢

Finally, since (uj,u%) is a Nash equilibrium, we have that

T
Vi(r,€) = / f1(t %, uf, u5) dt + 4y (x(T))

Similar situation appears in definition of V5.

Now, we are in the position to apply the Dynamic Programming results. Let us suppose that the value
functions V;, defined on a feedback Nash equilibrium (uj, u3) with trajectory x*, are differentiable, then we
know that such value functions solve

oV

S (1) + ma | (%, v, v (6,30) + VaVa(t) - gt x,v1,v5(%) | = 0, ¥(tx) € [0,7] x R
Vi 1

oV;

S tx) + ma [fg(t,x, V(1 %), va) + VaVa(t, ) - g(t, X, u;(t,x),vQ)} =0, V(t,x)€0,T]xR”
v2 2

‘/1(T7 X) = 1/)1(X)a Vx c R"

%(T7 X) = %(X)a Vx € R”
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and in particular along the optimal path, for all ¢ € [0,7] we have

%Vf@,x*(t)) + (X7 (8), (1), w3 (8)) + VaVa(t, X7 () - gt %" (1), uf (2), u (1)) = 0
%?(t,x*u)) + falt, X" (1), i (1), w5 (8)) + VacVa(t, X" () - g(t, x* (1), wj(£), u(t)) = 0

And in order to construct such value functions, as in Theorem we have (see [2])

Theorem 2.2. Let us consider the us consider the problem with f;, ; and g in C1. Let’s consider a
pair of control functions (uj,u}) € App, where u!(t) = v} (t,x*(t)) and x* is the solution of the ODE

{x(t) (t,x(t), vi(t,x(t)),v5(t,x(t))) a.e. in[0,T]
x(0) = xg

Let us suppose that there exist two functions W; : [0,T] x R® — R, i = 1,2, differentiable such that, for
every (t,x) € [0,T] x R™,

5%
_T;(tvx) = Jflea(}]{l [fl(t,X,Vl,Vs(t,X)) + vXWl(taX) 'g(t,X, Vl,VE(t,X))}
= fl(t,X, VT(LX%V;(LX)) +VXW1(t7X) -g(t,x, VT(t7X)7V§(t7X))
oW
_87752@7)() = 3;1?5;2 |:f2(t7x7 I/T(t,X),Vg) + VXWQ(tax) -g(t,x, VT(t7X)7V2):|

= folt,x,v](t,x),v5(t,x)) + VxWa(t,x) - g(t,x,v](t,x),v5(t,%x))
Wi(T,x) = 1i(x)
WQ(T7 X) = ¢2(X)

Then x* is the optimal trajectory and (uj,u}) is a Nash equilibrium in the class App. Finally, W; are really
the value functions for the problem in such Nash equilibrium.

2.2.1 Affine—Quadratic differential games

Now let us consider a particular type of games: we say that a two person differential games is Linear—
Quadratic if

I 1
Hlllfix 5 /0 (X/le —+ 2X/51 + u'lRLlul + UIQRLQUQ) dt + §X(t1)/P1X<t1)
1 r / / / !/ 1 /
max 5 ; (x'Qox + 2x'Sy + uj Ry 1uy + ujRy pup) dt + QX(h) Pyx(t1)
g(t,x,u;,u2) = Ax + Bju; + Bougy + C
x(0) = a
C = {(ug,uy) : [0,T] — R¥ x R¥2, admissible}

where v’ is the transpose of the matrix v; we denote the trajectory x and the control u such that x =
(z1,22,...,2,) and w; = (uj1,ui2,...,uk) respectively; with @Q; = Qi(t) and P; = P;(t) symmetric
matrices, and R; ; = R; (t), A = A(t), B; = B;(t) and C = C(t) matrices. We have the following result
(see [2]):

Proposition 2.1. Let us suppose that for a Linear—Quadratic two person differential games there exist the
value functions V;, then we have

1
Vi(t,x) = ix’Zix +xW; +Y; (2.18)
fori=1,2, with Z; = Z;(t), W; = W;(t) and Y; = Y;i(t) matrices.

Moreover, let us mention the following particular situation (see [2], [3] for details):
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Remark 2.1. Let us consider the Linear—Quadratic two person differential games in the linear and homo-
geneous case, i.e. with
C =0, and S; = 0.

If there exists the value functions for the problem, then

1
Vi(t,x) = ix’Zi(t)x.

2.2.2 Infinite horizon case

Let us consider a two—person, infinite horizon with discount, differential game

Player I: max Jj(uy,us) Player II: max Ja(uy, uz)
u] u2
o
Ji(uj,ug) = / fi (x,ug,ug) e "dt, i=1,2 (2.19)
0
x = g(x,ur, uz)
x(0) = %o

where 7 > 0 and U; are the two control sets for the players. In this situation we are in the position to
introduce the current value functions V,° : R — R". More precisely, since f and g do not depend on ¢, it
is possible to prove (as in a optimal control problem) that the existence of the value function (V;,V3) that
satisfies the BHJ system is equivalent to the existence of the current value function (V?, V') that satisfies a
current BHJ system: moreover

Vi(t,x) = e "V (x), V(t,x) € [0,00) x R"
Taking into account that

oV

Vi Vi(t,x) = e*”VXViC(x), v

(t.x) = —re "V (x),
Theorem 2.2] becomes
Remark 2.2. Let us consider the us consider the problem with f; and and g in C'. Let’s consider
a pair of control functions (uj,u}) € App, where u}(t) = vi(t,x*(t)) and x* is the unique solution of the
ODE

(1) = g(x(t), w1t x(1)), w3(t,x(1))) ae. in [0,00)

x(0) = xg

Let us suppose that there exists two functions V¢ : R" — R, i = 1,2, differentiable such that, for every
x € R",

PVEG) = mas |0 vi (X)) + VxVE() - gloe Vi (1))
= fl(x7 Vi(ta X)? V;(t7 X)) + vxvlc(x) ’ g(X7 I/T(t,x), V;(t, X))
rVE() = man | fale v (1), v2) + VS () - g, (%), v2)|

= f2(x7 Vylﬁ(tax)a V;(t>x)) + VXX/QC(X) ’ g(x, Vﬂlﬁ(tx)a V;(tax))

Then (uj,u3) is a Nash equilibrium in the class App. Finally, Vi are really the current value functions for

the problem i such Nash equilibrium.

In many situation of the previous remark we have that the decision rule does not depend explicity by t,
i.e.
u; (t) = v (x(t)). (2.20)

We mention that in the case of problem ([2.19]) one can decide to restrict the attention only to the feedback
control of the type (12.20]), called stationary feedback strategies (see [14]).
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2.2.3 Two firms in competition
Suppose two firms produce an identical product. The cost of producing is governed by the total cost function

1
C(ui) = cu; + 5“22’

where u; = u;(t) refers to the i-firm’s production level at time ¢ and ¢ is a positive constant. Each firm sells
all it produces at time ¢ into a market with a common price p = p(t). The relationship between the total
amount of production uq + us supplied and the change in price is described by

p=s(a—ur—uz—p),

where s and a are positive constants and pyg is the price at the initial time ¢ = 0. Hence the situation is (this
model is presented in see [11], page 278)

4 o0 1
I Prod.: max/ et (pu1 —cuy — u%) dt up >0
ul 0 2
> 1
II Prod.: max/ e "t <pu2 —cug — u%) dt ugy >0
u2 0 2
p=s(a—u —uy —p)
p(0) =po >0 p(t) >0

with the rate of discount r that is a positive constant. Note that it is a symmetric game. We are interested
on a non zero Nash equilibrium in the family of feedback strategies, i.e. strategies for the two firms that
depend, at every time, on the price p(t).

With a infinite and discounted problems, it is convenient to introduce the current value functions V° =
VE(p) and Vi = Vi(p) and their Bellman-Hamilton-Jacobi equations: for every p we have

1
—rV{ + max [pv —cv— -2+ s(V) (a—v—vy — p)] =0
v=2

2
= oV sta == p)(VE) 4 max (0 - e - sV - 307 =0
—rVy + max {pv —cv— %’02 +s(Vs) (a—vy —v — p)] =0
= o5+ sta =~ p)(VE) + max (o - e - (V) - 307 =0
Clearly we obtain, for i = 1,2
A0 =50 = {3y ey o

Note that such strategies are stationary feedback strategies: hence if our strategy is zero, for some ¢, we
have that such strategy is zero at every time. Let’s concentrate our attention on strategies that are different
from zero: hence we have

vip)=p—c—s(V)(p), vilp)=p—c—s(Vs)(p). (2.21)

in the assumption

p—c—s(V) (p) >0, i=1,2 (2.22)

Let us consider the first current BHJ equation; we obtain

C c\/ c\/ 1 c/2
Vet s(a =2+ e+ s(V) ) () + 5 (p—e—s(V)) =0, .
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Since the problem is Linear-Quadratic (see Proposition [2.1]), we looking for value functions as

1 1
VE(p) = a1 + Bip + 571192, V3 (p) = ag + fap + 5’}’2}?2. (2.23)

We obtain, using (2.21f) and (2.23]), that the two current BHJ equations now require that for every p

wr (ot s o) sfa =2 o s (B )] (51 )+ 5 (0 e s (B k) =0 (220

v (ar B o) e sfa =2 oo s (B )] (o) + 5 (0 e s (B ) =0 (225

The previous equations give two polynomials of degree 2 in p and they are identically zero for every p:
equating the coefficients of p?, we obtain

22 4 (—r — 65 +25%y)y1 +1=0 (2.26)
sy + (=17 — 65+ 25*y1 )1 +1=0

Let us prove that y; = 72: in order to do that, let us subtract the previous two equation obtaining

(v —2)[s%(m1 +2) —r — 65] = 0.

If v1 # 9, we have
s* (71 +72) =7 + 65 (2.27)

Now let us consider the dynamic: with u; = v and ug = v3 given in (2.21)) and taking into account (2.23]),
we obtain

p=s[s(n1+72) = 3lp+sla+2c+s(B1 + Ba)].
The solution of this ODE in p is

a+2c+ s(B1+ B2)

1) = AeSls(ntr2)=3]t _
2(t) PG,

(2.28)

where A is a constant that depends on pg. We note that, by (2.27)),

r+ 3s
s

s(y1+72)—3= > 0.
Hence, A # 0, for the price p(t) goes to sgn(A) - oo, for ¢ — oo: this is not reasonable. If A = 0, then
p(t) = po is constant; relation (2.21)) give u}(t) = v (po) and this is not a feedback strategy. Hence v, # 72
is impossible.

From now on, let us simplify the notations setting v = 71 = v2. The price, by (2.28]), now is

_a+2c+5(B1+ Bo)
25y —3

p(t) = Aess7=3) (2.29)

and equation (2.27) becomes
3s?y* — (r+6s)y+1=0

with solutions

r+6s £ +/(r +6s)2 — 1252
652 '

6 V3652 — 1252 3 6 3
S s+ S 8% _ +\f>

Yt =

We note that

ias 652 3s 2s
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implies again that the price in (2.29) goes to oo for t — co. Hence we consider only the solution v = v_ and
we obtain

r+6s—+/(r +6s)2 — 1252

V- = o (2.30)
Let us prove that 81 = 5. Let us note that
0< 327_ < 6327_ <14 (6—2V6)s <r+3s. (2.31)
Equating the coefficients of p in and (| we obtain
(28 v —r— 33)61 + $2y_fy = ¢ — 2sey_ — sary— (2.32)

S2y_B1 4 (2527 — 1 — 35)By = ¢ — 2s¢y_ — say—
Let us subtract the previous two equation obtaining
(B1 — B2)(s*y— —r —3s) = 0.
This relation, by , gives B1 = Bo. Let us set 8 = By = [2: by

Y-(2c+a)—c
= 2.33
b= r —l— 3s — 3s2y_ ( )
It is easy to see that § > 0. Moreover, by ([2.21)) and ( - we have
vi(p) =v5(p) =p —c—s(B+-p). (2.34)

Now let us prove that a; = ag (note that such coefficients play no role in the strategies, but we have to
guarantee that exist (V{¢, V') solutions of the current BHJ equations) Taking into account that 81 = B2 = S,
equating the coefficients of zero degree on p in and we obtain

1 .
—rai—l—s(a—i-c—i-sﬁ)ﬁ—i-i(c-i-sﬁ)z=0, i=1,2.

Clearly such «; exist and are equal. Finally, we obtain by ([2.34)

up (t) = v (p*(t)) = (L =7 )p"(t) = (Bs +¢), i=1,2 (2.35)
pr(t) = <p0 AT ;r 202;2_85> -y TS T ;362;2_86 (2.36)

where v_ and 3 are defined in (2.30) and (2.33)) respectively.

Let us set k = % It is easy to see, using 5 > 0, that k£ > 0 and hence the shape of the trajectory—

price function in 6)) implies that
p*(t) > mln( *(0), hm pr(t )) = min (po,z;) > 0.
Hence p* is a good price, i.e. p*(¢t) > 0. Finally, the assumption is now
(I=sy-)p>(Bs+c):
this condition requires that the trajectory p lies in a regionﬂ R
R ={(t,p) €[0,00) x (0,00) : (1 —s57-)p>(Bs+c)}.

Clearly R depends on the constants involved in the model. More precisely, our trajectory p* lies is this
region R if and only if, again by the shape of p* in (2.36), the following

mln( *(0), hmp (t )) = min (po,%) > Pste

1—svy_
is satisfied. Some computations gives that for some choice of (a,c,r, s, py) the previous condition holds and
for some others choice is not true. However, if (2.37) is satisfied, then Remark guarantees that (uj,u3)
in (2.35) is a Nash equilibrium in the family of feedback strategies.

(2.37)

1We note that (1 — sy_) > 0.
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2.3 Further examples and models

2.3.1 Two fishermen at the lake

In the present model (see [11], page 285) we will see that the open—loop Nash equilibrium and the feedback
Nash equilibrium coincide.
The model. Suppose that the evolution of the stock of fish x = z(¢) in a lake is governed by

T=ar— frinx

for t > 0 and where o and 8 are positive constants. We assume that x(¢) > 2, one of each gender, for the
fish population to survive and z(0) = zyp > 2. At every time, the stock = generates ax births and it has
BxInx deaths.

Two fishermen harvest fish form the lake and each fisherman’s catch ¢; is directly related to the level of
effort w; = w;(t) he devotes to this activity and the stock of fish: thus

C; = X;W;.

Clearly, the fisherman’s activity reduced the fish stock in the lake and with respect the equation of the
evolution of the fish we have
T =ar— frinx —wizr — wer.

Each fisherman derives satisfaction from his catch according to a log utility function U; as
U; = a; In(w;x),

where a; are positive constants, in an infinite period. Hence we will introduce a discount factor e="*, with
r > 0, for such utility.

It is convenient for computations to set y(t) = Inz(¢): hence § = 7. the target of very player-fisherman
is to realize

[e.e] o0
max/ ai(y +Inw;)e " dt = a; max/ (y + Inw;)e " dt,
0 0

Wy Wy

since a; > 0. Hence we have the following symmetric gameﬂ

w1

w; >0 wy >0
y=a—w —wy— Py
y(0) =yo >1In2,  y(t)>In2

IF. max/ (y +Inwy)e ™ dt I F. max/ (y + Inwsy)e " dt
0 w2 Jo

Let us assume for simplicity
a— 308 > 2r. (2.39)

We are interested on non zero Nash equilibria in the class of open—loop strategies and in the class of feedback
strategies.
Open—loop Nash equilibrium.ﬁ] Let us introduce the two current Hamiltonians:

Hi =y+Inw + M\e(a—wy —wy — By)
HS =y + Inwy + Aae(a — wy —wa — By)

2Suggestion: In order to solve the Bellman-Hamilton-Jacobi equation for the current value functions, we suggest to looking
for the solution in the family of functions

Vi°(y) = ay + b, Vi (y) = cy +d, (2.38)

with a, b, ¢, d constants.
3In subsection we looking for a open—loop Stackelberg equilibrium.
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We have to guarantee the following conditions:

vi(t,y) € argmax Hf = argmax(lnv — \jev) = Alic if i > 0 (2.40)
’ v>0 ¢ v>0 A it A <0

. OH¢

)\ic = T)\ic - 8yl = (T + B))\ZC -1 (241)

for i = 1,2. We note that vy and v in ([2.40|) do not depend on the trajectory y: hence we are in the position
to looking for a open—loop equilibrium. Let us looking for some non zero Nash equilibrium, we obtain by

(2.40)
1 1

t) = t t) = t) = 2.42
wi(t) =i (t) = el wa(t) = va(t) oell) (2.42)
in the assumption that
Aie > 0. (2.43)
The adjoint equations (2.41)) give
1 1
Ae(t) = AeBHnt 4 — Aogo(t) = BeBH7t 4~
1e(t) e +6+r’ 2¢(t) e +5+r7
with A and B constants. Clearly (2.42) gives, putting in evidence the dependence by the two constants,
A B+r B B+r
t) = t . 2.44
wl() (ﬁ'i_r) ,8+T)t+1 w2() (IB"—T) ,B-i-?“) +1 ( )
The dynamics now gives
t
yAB(t) = e Pt [/0 (o — wi(s) —wd(s ) e B85 ds + yo (2.45)

We claim that the case A = B = 0 is the unique candidate to a be a Nash equilibrium. In order to prove
that, first we put A < 0 and, for ¢ sufficiently large, we obtain wf < 0 which is impossible. The case B < 0
is similar. Now, let us suppose that A and B are non negative; note in this case (2.43) hold: we want to
prove that

/ (yAP + mwe "t dt < / (y°B + Inw?)e " dt, (2.46)
0 0
B

i.e. that (w1 ,wy ) is not a Nash equilibrium since for the first player, with sz fixed, there exists a better
strategy with respect to wl Now, taking into account that

t (ﬁ+7’)2 (B+r)s B
3 05 T
=1 (A(B+ e £ 1) —In(A(B+ 1) +1) (2.47)
for every fixed ¢t we have, by (2.44)) and ([2.45)),
_ ! B+r s
yAB)+lnwi(t) = e P [/0 (a G reFrh 1 —wd(s )> A ds+y0] +

+In(f+7r)—In (A(B + )Pt 4 1)
b @) = [ [ (0 uf) e s ]+ +

(B+r)s 4 oB(s—t)
—(ﬂ+r)/0 (’B(Jrﬂczr) B+:):e+1 ds —In(A(B+7) +1)

<t e Bt [/Ot(a—wz( ) Bsds—i—yg}—i—ln(ﬁ%— r) — (ﬁ+r)/0te6(5t)ds

= yOB(t) + Inwd(t), (2.48)




18 CHAPTER 2

where in the inequality “<”we use A(8 + r) > 0 and the fact that, for every h and k positiveﬁ we have,

_k+h

<-h < h<l1.
k+1— -

Clearly relation ([2.48)) implies (12.46)).

Let us study the case A =B =0, i.e.

wi(t) =ws(t) = B+r (2.49)
(1) = e+ C2IE D gy
(0 = X5 = 5

Let us check that y*(t) > In2: in fact, by plotting the function y* and by (2.39), we have

a—2(8+r)
s

We recall that in order to guarantee some sufficient condition of optimality in a infinite horizon problem

(see subsection [A.1.1)), we require that lim/ oo A*(t) - (x(t) — x*(t)) > 0 where A* is the multiplier, x a

generic trajectory and x* the trajectory candidate to the optimal. Since Af(t) = e ""\5(¢) = e " /(B + 1),

this sufficient condition for the i-problem is

y*(t) > min <yo, ) >1, t>0.

Jim A (O((0) ~ v* () 2 Jim e 2~y (1) =0

Finally it is easy to see that the Hamiltonians
(y7 wl) = Hf(ya wi, w;(t)v Tc(t)) and (yv wQ) = HZC(ya wT(t% w2, Azc(t))

are concave functions, for every fixed ¢, and that the control sets U; = Us = [0,00) are convex. Hence
(wi,w3) in is a open—loop Nash equilibrium.

Feedback Nash equilibrium. Let us introduce the two current value functions Vi° = Vf(y) and Vi =
Vs (y): the BHJ equations are

=V +y+ (V1) (a — v = By) + max[Inv —oV{] = 0
v>
—rVs +y+ (V5) (o = vf = By) + max[nv — V5] =0

We obtain that we realize the previous two max for

1 1 c\/
Vity) = viy) =4 v LW >0
0 if (V) (y) <0

(2.50)

Let us looking for a non zero Nash equilibrium. Hence the BHJ equations becomes

V44 07 (- i - By) ~mORY =10
15+ (3) (0= e~ 0) (V) = 1=0

Now, using the suggestion 1) an easy computation in the previous system gives a = ¢ = ﬁ It is clear,

by , that we obtain

wi(t) =vi(y) =B+
as in (2.49). Since such (w},w}) is admissible (solve the dynamics with the initial condition and check that
y* > 2 with calculations similar to the open—loop case) then it is a feedback Nash—equilibrium.

4 s—t)

in our case h = e”
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2.3.2 On international pollution

We denote by u; = u;(t), for i = 1,2, the level of emissions of two economies and let x = z(¢) be the stock
of pollution at time ¢. The system has a (little) capacity to self-cleaning; let us fix o € (0,1) such that
& = —ax describes this capacity of the system.

The damage of the emission is quadratic with respect to x with coefficients %qﬁi, for every i-player, and
we suppose that the utility for the i-economy related to its emission wu; is given by the concave function
U; (kl — %uz), with k; positive constants. Hence we have

( [e%e] 1 1
I Econ.: max/ e Tt <u1 <k1 — u1> — ¢1m2> dt u; >0
e 2 2

1 1
IT Econ.: max/ et <u2 <k:2 — u2> — (Z)g:z2> dt ug >0
u2 0 2 2
T =u+us — axr

x(0) = xo, x(t) >0

with the rate of discount r that is a positive constant. This model is proposed in [5].
Open loop Nash equilibrium, in the general case. Let us introduce the two current Hamiltonians:

1 1

HY = kyuy — iu% — §¢1x2 + Aie(ur + ug — ax)
1 1

HS = koug — §u§ — 5({)2:1:2 + Aoc(u1 + ug — ax)

We have to guarantee the following conditions:

1
v;i(t,x) € argmax Hf = argmax <(/’<:Z + Aic)v — v2> =
v>0 v>0

2
S ki N iR+ Xe>0
- { 0 if k; + Xie <0 (2.51)
. He
Nie = T Nje — g L= (a + T)/\ic + ¢;x (2.52)

ox

for i = 1,2. We note that v; and v» in do not depend on the trajectory x: hence we are in the position
to looking for a open—loop equilibrium.

Let us looking for some non zero Nash equilibrium: more precisely we are interested in the case where
the emissions wu; are positive in [0,00), i.e. we assume that in we have

k; + )\ic(t) > 0, Vit (2.53)

Taking into account (2.51)) in the dynamics and with (2.52), we have to solve the system

T T k1 + ko -« 1 1
}\lc =A )\lc + 0 ) with A = le a—+r 0
Ao A2¢ 0 ¢ 0 a+r

The eigenvalues of A are § = o + r and

2 2
0 _ r4 \/r +4(« 2+ ar + ¢1 +¢2)_ (2.54)
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Three eigenvectors for each eigenvalue are v = (0,1, —1)7 (related to 0) and v+ = (o + 7 — O+, —¢1, —p2)T
respectively. Hence the general solution for the homogeneous part of our system is given by

(2, Mes oe) T = 10 + caet® vy + ezet®- 0

where ¢; are generic constants. It is easy to see that a particular solution of our system is given by

ki + k2)
part )\part )\part T _ ( 1 2 . - T
(33‘ » Me M2 ) OJ(CK+T)+¢1+¢2 ((a—i—r), ¢17 ¢2)

Hence we obtain

z(t) = o (a+r—04)+c3e® (a+r—0_) + 2Pt
Ae(t) = el — g, (czet9+ + 03et9—> + Abart (2.55)
)\QC(t) — _Cle(a+T)t _ ¢2 (C2et9+ + C3et9,) + /\gzﬁf

Using the expression of Ai. given by ([2.55)), putting (see (2.51))
Ul (t) = l/l(t) =k + )\lc(t)7

and taking into account that
29—7">0 29+—7">0,

it is easy to see that, if (¢1,c2) # (0,0), then for ¢t — oo we have

1 1 1
et <u1 (k1 — u1> — 21/11302) ~ —56_” (()\10)2 + wlxz) — —00

2
Hence we have ¢; = ¢ = 0 and, by the initial condition on the stock of pollution
() = <$ (et )kt k) ) o (ot r)(ki+ k)
ala+7) + g1+ ¢2 ala+7) + ¢1+ ¢

* (t) _ _L (:L' B (Oé + T')(kl + k2) ) etg_ B (kl + k2)¢1

le at+r—6_\"" ala+71)+ ¢1 + ¢o ala+7) + d1 + o
Nt = 9 (1: () (k1 + ko) ) 0. (k1 + ka) o

2¢ a+r—0_ 0 a(a+7“)+¢1+¢2 a(a+r)—|—¢1+¢)2

Note that x*(¢) > 0. We have to verify that (2.53|) holds. In order to do that note that
AL(t) >0 & T > xPrt

Hence, in the case zg > 2P we have to check that A% (0) + k; > 0, while in the case zo < zP"* we have to
check that /\ff s k; > 0. We are not interested on this tedious calculations.

Let us prove that (uj,u3) defined by (2.51)
ui(t) = vi(t) = ki + Ale(t),  ua(t) =v3() = ko + A5:(2),

and using A}, as in the last expression. Let us study the situation from the point of view of the first player.
It is immediate to see that
(Hf, ul) = ch(ta T,u, u;(ﬂv >{c(t))

is, for every fixed ¢, a concave function. It is clear that for every admissible trajectory x = x(t) we have, in
order to have z2e~"* integrable for ¢t — oo,

22(t)e ™ =0, t— oo
Note that this is equivalent z(t)e™""/2? — 0, for t — co. Recalling that A\j(t) = e " \f,(t), we have
. * o — \Dbart q —rt _ pparty _
Tim A ()(a(t) — 2 (1) = A Tim e (a(1) - 27) = 0
Hence u] is optimal for the first player (see subsection|A.1.1)): similar arguments hold for the second economy

and hence we have really that (uj,u3), defined by (2.51)), is a Nash equilibrium in the class of open loop
strategies.
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Stackelberg equilibria

In 1934, von Stackelberg introduced a concept of a hierarchical solution for markets where some firms have

power of domination over others. This solution concept is now known as the Stackelberg equilibrium or the

Stackelberg solution which, in the context of two-persons nonzero-sum games, involves players with asym-

metric roles, one leading (accordingly called the Leader) and the other one following (called the Follower).
In all this chapter we are considering the following hierarchy two—person game

( Player I (Leader): max Jy(ur,ur)
ur
T
Jr(ug,up) = / fo(t,x,up,up) dt + P (x(T))
0
Player II (Follower): max Jp(ur,ur)
up
T
Jr(ur,up) = / fr(tx,ug,up)dt + Yp(x(T))
0

X = g(t,X, uLauF)
x(0) = xo

(3.1)

where T is fixed and (ur,ur) is an admissible control, i.e. depending on the information structure. We
assume that the control sets for the Leader and for the Follower are Uy, and Up respectively.

3.1 Open-loop Stackelberg equilibria

Let us consider a open-loop strategy ur, with ur(t) = v (t,x0), for the Leader. We define the set of best
possible replies of the Follower R¥ (ur) in the family of the open-loop strategies, where the Leader has
already announced the strategy uy, as

RF(uL) = {up : (up,up) € Aor,

Jr(up,uy) < Jp(up,ur) V(ug,up) € AOL}-

Clearly (uz,ur) € R¥(uy) is an admissible pair of strategies and the set R (uy) can be empty.

Definition 3.1. A pair of control functions (u},u}) € Aor, with uj(t) = v} (t,x0) and u(t) = v5:(t,%xo),
is a Stackelberg equilibrium within the class of open—loop strategies Aoy if

i. wh € RY(u}), with associated trajectory x*;

i. given any open-loop strategy uy, for the Leader and every best reply up € R¥ (ur) for the Follower,
the following holds

T
/0 fot,xpp,up,up) dt + 1 (xpp(T)) <

21
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T
< / fo(tx* uh, wh) dt+ p (5 (T))
0

where X is the trajectory associated to the pair (ur,up).

In this case the problem has to be solved backward.
First of all, let us assume that

Asl the function fr, fr, g, ¥ are continuously differentiable w.r.t. x.

From the point of view of the Follower, for every uj, fixed, we construct the set of best possible replies
RE(ug). We have to solve, for a fixed uy,

T
max/ fr (t,x,up,up)dt + p(x(T))
0

ur
x = g(t,x,ur,up) (3.2)
x(0) = x¢

Applying Theorem if up € R (uy) and x is the trajectory associated to (ur,ur), then there exists a
continuous multiplier'| Ag : [0, T] — R™ such that

vr(t,xp) € arg max Hp(t,x(t),ur(t), v, Ap(t)) vt € [0,T] (3.3)
Ar = —VyHp(t,x,up, up, Ap) in [0, 7] (3.4)
Ap(T) = Vipp(x(T)) (3-5)

where up(t) = vp(t,x¢) and the Hamiltonian Hp of the Follower is defined by
Hp(t,x,up,up, Ap) = fr(t,x,ur,ur) + Ap - g(t,x,ur, up). (3.6)

We note that x depends on the choice of uy, and on the choice of ur in R (uy) (with the possibility that
this second choice can be not unique): hence x depends on (¢,ur,ur), i.e. x = x(¢,ur,ur). Moreover,
the multiplier is associated to the pair trajectory—control functions (x, (ur,ur)): hence Ap depends on
(X, uy, uF), i.e. AF = }\F(X, uy, uF).

We are looking for a open—loop strategy: hence let us assume that

As2 for every (t,xo,x,ur, Ar) there exists a unique max in

vp € arg max Hp(t,x,ur, v, Ar)
veUp

which does not depend on x.

Taking into account of the previous dependence, we have vp = vp(t,xo,ur, Ap). Moreover, since in this
situation the value x(7') of the trajectory at the final fixed time T is free, then our controls are normal: this
is the reason of our definition of Hp in . At this point we have to guarantee some sufficient conditions
for the game of the Follower.

Now, let us consider the point of view of the Leader. For every uy we associated (up,x,Ar) where
up € R¥(uyp) is given by and by up(t) = vp(t,xo,ur(t), Arp(t)); x is given by the dynamics of the
problem and Ay, is given by : in this procedure, the best choice for the Leader is u}. Hence the Leader
has to solve the following problem, where its control is uz, and its trajectory is (x, Ar) with the conditions

x(0) = x¢ and (3.5):

T
Hlézx/ fr(t,x,ur, vp(t,xo,ur, Ap)) dt + ¢r(x(T))
UL Jo

):(:g(t,X, llL,I/F(t,XO,llL,)\F)) (37)
Ar = —VxHp(t,x,ur,vr(ur, Ar), Ar)
x(0) = xo

(AR(T) = Vr(x(T))

"'We omit all the “*”.
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In this case the Hamiltonian Hj, for the Leader is defined by

Hp(t,x,Ar,ur, o, AL, A2r) = Aornfr(t,x,ur,vr(t,Xo,ur, Ar)) +
+A1L . g<t7xa ur, VF(t7 Xo,Ur, AF)) +
—Xar - Vi Hp(t, x,ur, vE(t, X0, ur, Ar), AF) (3.8)
We note that in the definition of Hy,, since the value of the trajectory (x, Ar) has a condition in the initial
point ¢ = 0 and in the final point ¢ = T' (more precisely the final equation in (3.7 represents a surface), we

are not in the position to guarantee the normality of the extremal: hence we insert Ag.
In order to apply again Theorem let us assume that (taking into account (3.6))

As3 for every (t,ur) the functions

)

(x,Ar) = fr(t,x,ur,vp(t,xo,ur, Ar))
(x,Ap) = g(t,x,ur,vp(t, %o, ur, Ar))
(

X, AF) = fF(taxa UL,VF(t,XO,UL,AF)) + AF 'g(t,X, UL,VF(t,XO,UL,)\F))
are in O

Hence if u} is a Stackelberg equilibrium, there then there exists a continuous multiplielﬂ (NoLs AL, A2r) :
[0, 7] — R?"*L such that Aoy is a non negative constant, (Aor, A1z, A2r) # (0,0,0) and

VL(t,XQ) S arg HéE(LJX HL(t,X(t),)\F(t),V, )\OL,AlL(t),AQL(t)) Vt S [O,T]
velp

iz = —VHp(t, %, Ap,ur, Aor, Adir, Aar) in [0, 7]

Ao = =V Hr(t, %, Ap,ur, Aor, Mz, A2r) in [0, T']

A1z(T) = Aor Vi (x(T)) = Aor(T) D*¢r(x(T)) (3.9)
A2r(0)=0

with uz(t) = vr(t,x0) since we are looking for a open—loop strategy. In D*)p(z(T)) denotes the
Hessian matrix of second derivatives of ©p, evaluated in x(7T); such transversality condition is a
consequence of the mentioned surface (3.5)): see section 4.2 in [3] for all details.

Clear, up to now we are discussing only of sufficient conditions of optimality for the two problems (|3.2))
and : in order to find a Stackelberg equilibrium for we have to guarantee some sufficient conditions
for the two mentioned previous problems.

3.1.1 On international pollution with hierarchical relations

Let us denote by ur, = ur(t) and up = up(t) the level of emissions of two economies, where the first (the
Leader) has a sort of domination with respect to the second economy (the Follower); for example, this is
the situation that occurs when the Follower has a big debit with the Leader. Now, as in subsection [2.3.2
let x = z(t) be the stock of pollution at time ¢, a € (0,1) is the coefficient of capacity to self-cleaning of the
system. The damage of the emission is quadratic with respect to = with coefficients %¢ 1, and %(bp, and we
suppose that the utility for the the two economies related to its emission are quadratic. As in subsection

we have
( > —rt 1 1 2
Leader: max e ur, | kp — —up, | — =orx® | dt ur, >0
ur, 0 2 2
* —rt 1 1 2
Follower: max e up | kp — zup | — —¢ppx” | dt up >0
up 0 2 2

T =ur+ur— ax
z(0) = o, x(t) >0

2We omit again all the “*”.
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with the rate of discount r that is a positive constant and with ¢, ¢r, K; and Kg positive constants. Let
us looking for a non zero Stackelberg equilibrium in the family of open—loop strategies.
Let us introduce the current Hamiltonian H for the Follower

1
Hf = krpup — %— iqﬁpxz—i—)\pc(uL—i—uF—aa:).

§U
Let us fix ur: hence all that follows for the Follower depends on such uy. We have to guarantee the following
conditions:

1
vp € arg max Hé = argmax ( (kp + Ape)v — =02 ) =

2
S kr+Ape itkrp+Apc>0
- {O ifkp +Ape <0 (3'10)
. OH¢
Afe = TApe — 8JJF = (a—l—r))\pc—i—qﬁpx (3.11)

where vp = vp(t,z,ur), Ape = Apc(t,ur) and = = z(t,ur). We note that v in (3.10) does not depend on
the trajectory x: hence we are in the position to looking for a open—loop equilibrium.
Let us looking for some Stackelberg equilibrium where the emissions are positive in [0, 00), i.e. we assume

that in (3.10) we have
kr + Apc(t,ur) > 0, Vit (3.12)

We add to these necessary conditions (3.10)—(3.11)), some considerations with respect to the sufficient con-
ditions of optimality for the Follower, for every uj fixed by the Leader. Suppose that for every fixed u; we
have a extremal tern (z}.(¢,ur), A\p.(t,ur), up(t,ur)): it is immediate to see that, always for every fixed ur,

(x,ur) — Hi(t,x,urn(t), up, \p(t,ur))

is, for every fixed t, a concave function. Moreover we have to guarantee that for every admissible trajectory
x = x(t,ur) we have

lim Ny (8, up)e " (z(t,ur) — 2*(t,ur)) > 0. (3.13)
t—00
In order to do that, let us note that if x(¢, uy,) is associated to an admissible control, then —‘%F(x(t, ug))?e "t —
0 for t — oo, and hence
. —rt/2 _
tlggloe x(tyur) =0 (3.14)
Now, if [A}.(t,ur)] — oo for t — oo, then |u*(t,ur)| = |kp + X\j.(t,ur)| = oo. Again, if u*(t,ur) is

admissible, then —% (u*(¢, ur))%e™"" — 0 for t — oo, and hence

: * —rt/2 _ 7q; * —rt/2 _
tlgélou (t,ur)e tlgélo Ape(t,ur) 0. (3.15)

Clearly, (3.14) and (3.15)) imply (3.13).
Let us pass to the point of view of the Leader; its current Hamiltonian HY is, taking into account (3.10)),

and (12).

1 1
HE = X <kLuL — 2u% — 2¢L£L'2> + /\1Lc(UL + Kp + Ape — ax) +
+ o7 ((Oé—i—T))\Fc—l—qux).

We note that we have no conditions on the final point ¢t = oo of the trajectory ¢t — (z(t), Arc(t)): hence we
are in the position to put A\g = 1. Now we have to guarantee the following necessary conditions:

1 2
v, € arg irLlagé Hf = arg Iilzaé( ((kp + Mret)v — 51} )



3.1. OPEN-LOOP STACKELBERG EQUILIBRIA 25

_ ka + >\1Lc if k'L + >\1Lc >0
o {0 ifkr + M <0 (3.16)
. OHS
MLe = T'AlLe — ke (a+7)\Le + ¢ — drare (3.17)
. OH¢
Nare = TAoLe — — L = —AiLe — QAare (3.18)
a)\Fc
A2re(0) =0 (3.19)

Since that v, in (3.16)) does not depend on the trajectory x, we are in the position to looking for a open—loop

equilibrium. Let us assume
ki, + /\1Lc(t) > 0, Vit (3.20)

Hence, by (3.10) and (3.16]), we have up = Kr + Ap. and uy, = K1, + A\i1.. Putting these information in the
dynamic, together with (3.11f), (3.17)), (3.18]), we have to solve the system

z=Az+ 2z (3.21)
where
x k1 + ko —« 1 1 0
AFe 0 or a+r 0 0
Zz = I Zy = I A =
)\1Lc 0 ¢L 0 a+r *QbF
AoLe 0 0 0 -1 -
with the conditions
z(0) =0,  A2re(0) =0 (3.22)

The eigenvalues 6 of A solve det(A — I6) = 0, i.e. using the first line for the computation of the determinant
[(—a—0)(r+a—0)—¢p]> — (—a—0)(r+a—0)¢, =0.

Setting
A=(—a—-0)(r+a—10) (3.23)

we obtain A2 — A(2¢r + ¢r) + d)% = 0. Hence

B 20F + ¢ £ \/46L0F + 07 (3.24)

2

Ay

Note that AL > 0. Putting A1 in (3.23) and solving we obtain

+ 2 4 4(a? A
by =" V2 + (024 +ar + i)' (3.25)

where the first “+” in the subscript of @ is related to the + in front of “\/” and the second is related to A.
Let zPot = (gPort )\%acﬁ, )\f‘l)aLZt, )\gath)T # 0 be such that AzP*? = 0; clear this is a particular solution of
(3.21)). Hence the general solution of (3.21)) is

z(t) = cre oy + coet® vy -+ ezel? oy + gt v 4 2Pt (3.26)

where c¢; are generic constants and vi4 eigenvectors relative to the eigenvalue 64 .
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We claim that ¢; = ¢; = 0: in order to prove that, let us denote by v, € R* the eigenvector related
to the eigenvalue 6, . Let us suppose that the first component v1+ 4 of vy is zero. It is easy to see that
(A—1I6,y)viy =0 implies vy = 0. Hence v}, # 0.

Now, if ¢; # 0, implies that, for t — oo,

z(t)?e™ "t ~ (clv}_+)2 LN

and integral, in our model, does not converge. Hence ¢; = 0. Similar arguments imply that co = 0. Hence
we obtain

Z(t) = (.T}* (t)a )‘}c(t)7 >{Lc(t)a A;Lc(t»T
= czel¥ vy +eqetl—v__ 4 ZPT (3.27)

where the two constants ¢z and ¢4 depends on the two initial conditions (3.22). We are not interested to
discuss the sufficient conditions for the Leader.

3.1.2 Father and son, fishermens at the lake

The model is presented in [2.3.1] but now the situation for the two players is hierarchical. The first player, the
father, decide to use its influence on the second player, the son. Let us looking for a Stackelberg equilibrium
in the family of open—loop strategies. Let us rewrite the problem taking into account that the the father is
the Leader and the son is the Follower:

o0 o0
Leader (father): max/ (y +Inwg)e " dt Follower (son): max/ (y + Inwg)e "™ dt
wry, 0 wg 0
wr, > 0 wr > 0

y=a—wy—wr— Py

y(0) =yo >In2,  y(t) >1In2

Let us assume for simplicity
a—383>2r (3.28)

Let us fix wy, the strategy of the father. We consider the point of view of the Follower—son and we
look for R¥'(wp), the set of best replies for the son: the current Hamiltonian is

Hy =y+Inwp + Apc(a —wp — wp — BYy).

We have to guarantee the following conditions:

1 .
c _ . Y B v if >\Fc(t) >0
vp(t) € arg T%HF arg Ivnzaa((lnv VApe(t)) { /HF if Apo(t) < 0 (3.29)
: OH¢
Nre = mApe — ayF = (r+B)Ap.— 1 (3.30)

Note that vp in (3.29) do not depend on the trajectory y: hence we are in the position to looking for a

open—loop equilibrium
1
t) = t) = 3.31
we(t) = vrlt) = s (331)

in the assumption that
Are(t) > 0. (3.32)

The adjoint equation (3.30)) gives

1
— BelB+mt o~
Arc(t) = Be + B1r

)
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3.1.
with B constants. Clearly (3.31)) gives, putting in evidence the dependence by B
B B + T
t 3.33
and the dynamics implies
(3.34)

?/B(t)zeiﬁt [/0 (a—wL() U)F( )) 55d3+y0

We claim that the case B = 0 is the unique candidate to be in R (wy). In order to prove that, first we put
B < 0 and, for t sufficiently large, we obtain wg < 0 which is impossible. Now, let us suppose that B > 0:

note that in this case (3.32]) holds: we want to prove that
(3.35)

/ (y? + InwB)e " dt </ (y° + Inwh)e " dt,
0 0

ie. wB ¢ RY(wy) for B > 0. Now, taking into account that

t B(B+r)2e (B+r)s 1
)5 R,

In (B3 +7)el®0' 1) — (B3 +7) +1) (3.36)

for every fixed t we have, by (3.33) and (3.34)),

Tt
yP(t) + mwB() = e _/0 (a—wL(S) (ﬂ+g+ﬁir)5+l>6ﬁsds+yo] +
+In(B+7)—In (B(ﬁ + )t 4 1)
ropt
/ (v —wp(s)) 55ds+yo] +In(B+71)+

EB(B + r)elB+s 4 ¢fls—)
—In(B 1
) | P ey G mBE )+

<t e Pt [/0 (o —wp(s)) e? ds—i—yo]—l—ln(ﬁ—l—r)—(ﬁ—l—r)/oe(s ) ds

(by B30) =

= y’(t) + Inwp(t), (3.37)
where in the inequality “<”we use B(3 +r) > 0 and the fact that, for every h and k posmvl we have

k+h
< <l
Thtl s <

Clearly relation 7)) implies (3.35)). By -, we have
(3.38)

wp(t) =B+
y’(t) = yoe ' + w(l —e ) - /t wr(s)e’57 ds
B 0

1
Arelt) = B+r

for every wy, fixed. Since such wy, is generic, we are not in the position to guarantee that y°(t) > In2, i.e
(wr,wr) € Aor. However, if R (wr) is nonempty, then R (w) = {wr} with wr as in (3.38).

3in our case h = ¢~
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Let us pass to the point of view of the Leader—father. For every strategy of the Leader—father, the
Follower—son consider the strategy in wg in (3.38)). The current Hamiltonians for the Leader is similar to
the definition in (3.8)), taking into account that we use the current adjoint equation for the Follower:

Hf =y+Inwp + Mpc(a —wp — (B+71) = By) + Xore((B+7)Ape — 1).

We have to guarantee the following conditions:

c L if Aze(t) >0

vi(t) € argmax Hj = argmax(Inv — vAize(t)) = { B s <0 (3.39)
: o0H¢
>\1Lc = T)\ch - ayL = (T + ﬁ))\ch -1 (340)
: OH§

— _ L _ _ 41
AoLe = TA2Le D BA2Lc (3.41)
A2rc(0) =0 (3.42)

Note that and imply Aor.(t) = 0. Moreover the two conditions — are exactly the
same of the two conditions 73.30: all the same arguments of before used to obtain the strategy for
the follower in can be used to show that the candidate to be the optimal strategy for the Leader, the
associated trajectory and multiplier are

wr(t) =B+r (3.43)
y(t) = yoe Pt + w(l —e P (3.44)
Mielt) = 5
Xore(t) =0
Let us check that y(¢) > In2: in fact, by plotting the function y and by , we have
a—2(8+r)

B

Now, considering

wi(t) = wi(t) = B+ 7

y*(t) = yoe Pt + 04—2(55—1—7“)(1 — B
1
Arelt) = Aiselt) =

)‘;Lc (t) =0

we know that (w},w}) € Aor; in order to conclude our problem, we have to prove that R (w}) = {wh}
and that wy, is optimal for the point of view of the Leader. In order to do that, note that

lim AR (0)(y(t) — 5 (8) > lim ——e " (In2 — y*(£)) = 0

t—o0 t—o00 B +r
: * * : 1 —rt * _
Jim AT () (y(t) —y™ (1)) = Jim 1" (In2—y*(t)) =0

Tim AL () (Apelt) — Mo(£)) = Jim 0(Ael(t) — A1) = 0.
Finally it is easy to see that the Hamiltonians
(ya U}F) = ch(y7 WF, wz(t)7 )‘}c(t)) and (ya AFe; 'U}L) = H2C(ya AFe wF(t)7 wr, ATLC(ZL’)7 A;Lc(t))

are concave functions, for every fixed ¢, and that the control sets U; = Uy = [0,00) are convex. Hence
(w},w}) is a Stackelberg equilibrium.
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Two-persons zero-sum games

We are interested in the game

Player I: max J(uj,usp), Player II: min J(uy, ug)
up u2
T
J(ug,up) = / f(t,x,uy,uz) dt + (x(T)) (4.1)
0
X = g(t,x, u1>u2)
x(0) =«

where T is fixed and U; and U, are the two control sets for the players.
Note that Player I, whose control is uj, wants to maximize the functional .J; Player II has the control us
and wants to minimize J. This is a two-persons zero-sum differential game. In this context

Definition 4.1. A pair of control functions (uj,u3) € Aor, with u}(t) = v} (t,xo), is a Nash equilibrium
within the class of open—loop strategies Aoy, for if

J(u,u3) < J(uf, u3) < J(u], up) (4.2)

for every (uy,u3) € Aoy, and for every (uj,u2) € Aor.

A pair of control functions (uj,u3) € App, where u;(t) = v;(t,x*(t)), is a Nash equilibrium within
the class of feedback strategies App for if holds for every (ui,ul) € App and for every
(uj,u2) € App.

Relation (4.2)) implies that (uj, u}) is a saddle-point for J.

4.1 The case of open—loop equilibria

In this cas, the variational approach is useful and the Pontryagin necessary condition is as follows:

Theorem 4.1. Let us consider the problem with f, g and v in C', and let us suppose that the Isaacs’
condition is true.

Let (uj,u3) € Aor be a Nash equilibrium with x* associated trajectory, x(0) = .

Then there exists a continuous multiplier X* : [0,T] — R"™ such that

i. (min—max principle) for all t € [0,T], uy € Uy and uy € Uy

H(t,x* (1), wr, u(0), A (1)) <
< H(t,x" (1), wi (1), u(6), A"(1)) <

ii. (adjoint equation) in [0,T] we have X* = —VxH(t,x*,uf,us, X%);

29
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iti. (transversality condition) A*(T') = Vxu(x*(T)),
where H is the Hamiltonian function H defined by
H(t,x,uj,uz, A) = f(t,x,ug,u2) + A - g(t,x,us, uz).
In the situation of the previous two theorems, we know that
VxV(t,x*(t)) = A*(t), (4.3)

for every t € [0, 7.

Now, in order to give sufficient conditions to obtain a Nash equilibrium in the class Aoy, we apply
Theorem and to the two players, taking into account that the first one maximizes, while the second
minimizes.

In some situation, there exists a Nash equilibrium with the class of feedback strategies for the problem
, while the Nash equilibrium in the class of the open—loop strategies does not exists (see for example “the
lady in the lake” in subsection. In this situation the previous Theorem and the variational approach
is not useful for the reasons explained in subsection Even if an open—loop Nash equilibrium does not
exists, a version of the previous theorem can still be utilized to obtain the feedback Nash equilibrium: let
us give the details since this approach is largely adopted in the literature for solving pursuit—evasion games.
Let (uj,u3) € App, where
u; (t) = v (t,x*(t)), (4.4)

()

with the corresponding trajectory x* with x(0) = a, be a Nash equilibrum within the class of feedback
strategies for the game (4.1). Moreover let us suppose that a Nash equilibrium in the class of open-loop
strategies does not exists. However, let us consider the function

(ui (), u3(?)) (4.5)

given by (4.4]); this function is not a open—loop strategies, since by definition a open—loop strategy is a
function which depends only on ¢ and xo. This function is usually called open—loop representation of
the feedback strategy.

Theorem 4.2. As in Theorem let us consider the problem with f, g and v in C*. We assume
that there exists a Nash equilibrum within the class of feedback strategies (uj,u}) € App, with u}(t) =
v;(t,x*(t)), with x* associated trajectory. Let us consider its open—loop representation in . Then there
exists a continuous multiplier X* : [0, T] — R™ such that i~iii. in Theorem[{.1] are satisfied.

This result will play a fundamental role in “the lady in the lake” in subsection

4.1.1 War of attrition and attack

This model is due to Isaacs (see section 5.4 in [10] and page 91 in [6]). We assume that two opponents A and
B are at war with each other, for a very long time. Let us define x1 = x1(t) and xy = x5(t) the supply of
resources for A and B respectively, at time t. Each player at each time can devote some fraction of the efforts
(a = «(t) for A Player, g = [(t) for B Player) to attrition (= guerrilla warfare, for example to destroy
the production of resources of the competitor) and the remaining fraction (1 — « and 1 — 3 respectively) to
direct attack. Clearly a and /8 have values in [0, 1].

Let us introduce m; the constant rate of production of war material for the two players, c; the effectiveness
of B’s weapons against A’s production and co the effectiveness of A’s weapons against B’s production. We
will assume co > ¢1, a hypothesis that introduces an asymmetry into the problem. The dynamics are
governed by the system of ODE

{ L1 =my — c1 P2

.fg = MmM9o — CoXT
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The A opponent want to realize an advantage with respect to B in the direct attack, i.e

T
max/o [(1—a)z; — (1 = B)as]dt;

the B opponent want to realize an advantage with respect to A in the direct attack, i.e

T T
max/ (1—=pB)ze — (1 —a)x;|dt = —min/ [(1—a)z; — (1 — B)xg] dt.
0 0

Hence we have the following two-persons zero-sum game
Player A: max J(a, B), Player B: mﬂin J(a, )
0<a<l ’ 0<8<1
T = [ (1= aar - (1= faa)
T1 = mol —c1Bx2

To = M9y — CoTq
.Z‘Z(O) =x;0>0

The final time 7' is very large and fixed. Note that it is reasonable to require that x;(¢) > 0 but, in order to
simplify our solution, we remove it.

Let us looking for some Nash equilibrium in the family of open—loop strategies, using the variational
approach. The Hamiltonian H = H(x1, z2, o, 8, A1, A2) is

H=(1-a)x; — (1= 8)z2+ A\ (m1 — c18x2) + Aa(m2 — coaxy).

Note that the final value of the trajectory (z1,z2) is free and hence we put A\g = 1. For the upper and lower
Hamiltonians of Dynamic Programming we have, taking into account x; > 0,

Hi (21,09, A1, A2) = bgf(iﬁ afél[%ﬁ] H(x1,x2,a,b, A1, A2)

= X9 min b(l — Cl)\l):| + 21 [max a(—l — CQAQ) +x1 — 22 + ml)\l + mQAQ
be(0,1] a€(0,1]

= max min H(.,Tl, o, a, b, )\1, )\2)
a€[0,1] b€[0,1]
= HL_)P(wla T2, A1, )‘2)
Hence the Isaacs’ condition is satisfied. We have to guarantee the conditions of Theorem

1 if)\2<—é

o € arg max H = arg max a(—1 —codg) ={ 7 if g =—21 (4.6)
a€l0,1] a€[0,1] . £
0 if )\2 > —5
0 if A <&
in H = in b(1 — =07 ifa=21 4.
B € arg Jnin arg min b(1 —c1h1) =5 (4.7)
1 if )\1 > 1
. OH
= = _(1- 4.
A1 921 ( a) + caadg ( 8)
: OH
Ao=——=(1- A 4.9
2 D (1-58)+abMm (4.9)
AM(T)=X(T)=0 (4.10)

Note that the arg max and arg min in (4.6)) and (4.7)) do not depend on (z1,x2): hence we are in the position
to looking for a Nash equilibrium in the family of open—loop strategies.
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~ The adjoint equation (4.8) and the Maximum Principle (4.6) imply that A; is a decrease function since
A1 < —1: indeed

if)\2<—1/62 = a=1 = }\1:—(1—&)+02a)\2<—1

if AQZ—I/CQ = }\1:—(1—&)—}—62&)\2:—1

ifA2>—1/CQ = a=0 = }\1:—(1—@)+C204)\2:—1
A similar argument, using the adjoint equation (4.9) and the Minimum Principle (4.7), implies that Ao is

an increase function since Ay > 1.

Now, by (4.10]) there exists 7 € [0,T") such that
1 1
A(t) < —, Ao (t) > ——, vt e (1,7, (4.11)
C1 C2
i.e. « =3 =01in (7,7T]. The adjoint equation A1 = —1, Ay = 1, and the transversality conditions (4.10)) give
A(t) =T -1, Ao(t) =t —T;
the assumptions in (4.11]), taking into account that ca > ¢1, imply
1
T=T—-— in (1, 7). (4.12)
C2
Now, let us suppose that there exists 7/ € [0,7) such that

1 1
)\1(75) < —, )\2(75) < =, Vit € (T,,T) (4.13)
C1 C2
ie. a=1, §=0in (7/,7). The adjoint equation A = c2)2, Mg = 1, and the continuity of the multipliers
in the point t = 7 give
1

%y Xo(t) =t —T; in (7', 7].

the assumptions in (4.13]), taking into account that 2co > ¢o > ¢, imply

1 (205 —
P12 (4.14)
(&) C1

Now, let us suppose that there exists 7”7 € [0,7') such that

1 1
A(t) > —, Ao(t) < ——, vt e (7", 7) (4.15)
C1 Cc2

() = 2T -1+

ie. a =B =11in (7”,7"). The adjoint equation give
A = cadg and Ay = 1\ (4.16)
and hence
N —cread; =0 = A\ = AeV®! 4 Be—Vacet
= A= \/a (Aemt — Be‘mt>
C2

for some constants A and B. Using the continuity of the multipliers in the point ¢ = 7/ we have, taking into
account (4.14]),

Co 2cy Co 2¢1
269 — Verea (t—1") 20 — —y/ciea(t—T1")
Aa(t) = <1— @ Cl) ¢ 5 - <1+ @ Cl) ‘
Nt NG

Since A1 is a decreasing function and As is an increasing function, we obtain 7" = 0.

— ciea(t—1) — —yeicz(t—1")
M) = <1_ 2o cl> ev +<1+ 2o 01> eV

C2 2
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4 AF RN
! I
[ (
| P | &
| 4! f?—)
The pair (a*, 8*) candidate to be a Nash equilibrium is
o — 1 iftelo,7] g = 1 ifte|0,7]
|0 ifte(r,T] |0 ifte (7, T]

where 7 and 7’ is defined in (4.14) and (4.12)). Since (a*, 3*) is constant a.e., the dynamics is a.e. linear
in (z1,x2) with constant coefficients: hence there exists a unique solution (z7,x%) of such ODE with initial
data z;(0) = ;0 and hence the control (a*, 5*) is admissible.

Finally, let us note that the function (z1,z2,c, ) — H(x1,z2,®, 5,A],A5) is not concave in (z1,®)
variable and convex in (xg,[) variable: let us use Theorem in order to guarantee some sufficient
condition of optimality. First we consider the maximed Hamiltonian for the Player A:

HY (1,29, A1, X2) = maX]H(UEl,ﬁz,a?ﬁ*?)\la)\z)

ac|0,1
= xgﬁ*(l — Cl)\l) +x1 — 22+ ml)\l + mg)\g + .CEl[ Hl[%}i a(—l — 62)\2)]
ac|0,
It is easy to see that, for every fixed ¢, the function (z1,z2) — HY (21,22, A}, A}) is linear and hence concave
in (x1,x2): hence a* is really a optimal solution for the max problem of the First Player, with g* fixed. A
similar argument holds for the minimized Hamiltonian

HY(x1,29, M1, A2) = min H(z1, 9, a*, b, A1, \2),
be(0,1]

showing that, for every fixed ¢, the function (z1,z2) — H%(x1,22, A}, A}) is linear and hence convex in
(z1,x2). Hence (a*, 8*) is a Nash equilibrium.

4.2 General problems

We intend now to define value functions and to study the game using dynamic programming, since we know
that the variational approach is not useful in the class Arp (see subsection [2.2). In all that follows in this
section, let us assume that for the problem (4.1)) we have that

1. f:]0,T] xR"x Uy x Uy - Rand g:[0,7] x R" x Uy x Uy — R™ and ¢ : R™ — R are bounded and
uniformly continuous with

|t x,u1,u2)| < Cy |f(t, %, up,uz) — f(t, %, ug, ug)| < Cyflx — x|,
”g(tax7 111,112)“ <G ”g(t7X7 up, ug) — g(t7x/7u17u2)H < Cl”x - X/”,
[Y(x)] < C, [¥(x) — ()| < Cllx — x|,

for some constant C' and for every x,x’ € R, u; € Uy, uy € Us;

2. the control sets U; are compacts; more precisely we assume U; C Bgs, (0, R;) for some fixed and positive
R;.
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4.2.1 Upper and lower value functions

For the Player 1, let us introduce the set of controls at time 7, with 7 € [0, T fixed, as
Ui (1) ={uy : [1,T] — Uy, measurable}.
In a similar way, we define Us(7) = {uz : [7,T] — Uz, measurable}.

Remark 4.1. By the previous assumptions 1. on g and 2., for every (1,€) and (uy,ug) € Uy (1) x Usz(T),
then (ui,ug) is admissible, i.e. there exists a unique solution x of

{)'( =g(t,x,ui,uz) fora.e. t€[r,T|
X(1) = ¢

Let us introduce our notion of strategy:

Definition 4.2. Let us fix 7 € [0,T]. A map
(191 : UQ(T) — Ul(T)

is a nonanticipative strategy for the Player I at time 7 if, for any time t € [1,T] and any controls
ug, uhy € Us(T) such that uy = uby almost everywhere in [1,t], then we have ®1[ug] = ®1[u}] almost everywhere
in [1,t]. We denote by S1(7) the set of such nonanticipative strategies at time T for the Player I

In a symmetric way we denote by Sa(T) the set of Player II nonanticipative strategies, which are the
nonanticipative maps

(I)Q :ul(T) — UQ(T)

Note that for every (7,&) and for every u; € U;(7) we have, by remark [4.1| that (u;, ®1]u;]) is admissible.
The simplest example of nonanticipative strategy ®; for the Player I at time 7 is the constant one: more
precisely, let us fix u; € U;(7) and let us define the constant strategy ®; = @} by

Piug] =uwy,  Vug € Us(7)
For the problem in the assumptions 1.-2. let us define the two value functions as follows:

Definition 4.3. The lower value function V~ :[0,T] x R" — R is defined by

T
Ve =, il s / £t %, uy, Byfwy]) di + (x(T)),

D265 (T) uj €U (T

where x is the trajectory associated to the control (uy, Pa[uy]) € Uy (1) X Ua(T) with initial data x(7) = &.
The upper value function V' :[0,T] x R" — R is defined as

T
VH(r, &)= sup inf / f(t,x, ®1[ug], ug) dt + ¢ (x(T)).
D181 (1) uz€Ua(T) T

where X is the trajectory associated to the control (®1[us], us) € Uy (1) X Ua(T) with initial data x(7) = &.

Note that assumptions 1. on g and 2. imply that every pair (®;[usz], u2) and (ui, ®3]u;]) is admissible and
hence we are considering sup and inf on a nonempty sets; moreover, assumption 7. on f and v implies that
V+ and V'~ are bounded.

One of the two players announces his strategy in response to the other’s choice of control, the other
player chooses the control. The player who “plays second”, i.e., who chooses the strategy, has an advantage.
In the definition of V', the Player II choices its nonanticipative strategies ®; and “after” the Player I choices
its optimal u;. Hence we have thatl]

IThe rigorous proof of this remark follows by further considerations.
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Remark 4.2. For every (7,€&) we have

(1§ V(T ) (4.17)

In general V* and V'~ are different functions (as we will see in Example [4.2.1)). The next example is in [I]:
Ezample 4.2.1. Let us consider the problem
Player I: max J(u1,u2), Player II: min J(u1,u2)
|u111| <1 lug| <1 .
J(ui,u2) = /00 sgn(zx) (1 - e_m) e tdt

%
T = (u1 _UQ)

z(0) = o
By definition we have
V0, = inf / t, )
(0,6) oyl o) uleul(o) f(
vt(o, = sup inf / (t, =)
.0 3 651(0) ug €U2(0) 4

where f(t,x) = sgn(x) (1 — ei|zl> e~ ! and z is the trajectory associated with z(0) = £. We show that, for every £ > 0, we have

V7(0,6) < VT(0,¢€) (4.18)

Let us fix £ > 0. First we note that the dynamics gives x(t) > &, for every (u1,usz). Moreover, it is easy to see that the
function x — f(t,x) is increasing, for every fixed t.
For every u1 € U,(0), where U;(0) = {u : [0,00) — [—1,1], measurable}, let us consider the nonanticipative strategy
5 : Ui (0) = Us(0) defined by ®s[u1] = u1. Hence the trajectory = associated to such pair (u1, ®a[u1]) is the solution of

{a'c = (u1 — Pafua])> =0
z(0) =¢

hence z(t) = €. Clearly, since © — f(t,x) is increasing and x(t) > &, such particular strategy ®o for the second Player is the
best possible (remember that the second Player want to minimize). Hence we obtain

V7(0,¢) < sup / ft,x) (we choose ®y = By)
u1 €U (0)
= 1—ef)etdt
[
= 1-¢¢ (4.19)

Now for every uy € Uz(0) let us consider the nonanticipative strategy ®1 : Us (0) — U1 (0) defined by

41 ifua(t) <0
<I>1[U2]( )= {_1 ifuz(t) >0

Hence the trajectory x associated to such pair (51['@], u1) Is the solution of

{55 = (®1fuz] — uz)* = (1 + |uz|)’
z(0) =¢

Clearly, for such particular strategy ®, for the first Player, the optimal control for the second player is us = 0; in this case the
associated trajectory is xz(t) = € + t. Hence we obtain

vt,¢) > inf / ft,x) (we choose @1 = 51)
ugo €U (0)
= / (1 <§+t)) e (we choose uz = 0)
0
—£
e

= 1—-—— 4.2

5 (420)

Hence, by ([4.19) and (4.20), we obtain
+ 676 — —
VI, 21— —->1-e 2V7(0,), V20

i.e. relation (4.18).
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Definition 4.4. We say that the game has value function V' : [0,T] x R — R when 18 an
equality, for every (7,€), and in this case we set

V=vVt=Vv"

Clearly, the problem to guarantees that (4.1) has value function is very interesting and crucial. We will
discuss this problem in subsection

4.2.2 Isaacs’ condition
In the next subsections we are interested on giving the main ideas of Isaacs theory. Let us start:

Definition 4.5. Let us define the upper Hamiltonian of Dynamic Programming Hj, : [0, T] xR*" —
R defined by

HgP(t7X7 >‘> = min max <f<t7XaV17V2> +A- g(taX7V17V2))
vo€Usz vielU;

and the lower Hamiltonian of Dynamic Programming H,,: [0,T] x R?® — R defined by

H;.(t,x,A) = Inax vl;nei[rjl2 (f(t,x,vl,VQ) +A- g(t,x,vl,VQ)).

We note that in the definition of VT we have a “sup-inf”, while in the definition of H}}, we have a “min—

max”.

Remark 4.3. We have
HEP(tv X, )‘) < H;)_P(tv X, A) (4'21)

Proof. Let us fix (¢,x,A) and let us denote by h the function h(vy,va) = f(t,x,v1,ve) + A g(t,x,v1,V2).
Clearly

min h(Vl,Vg) < h(Vl,Vg), V(Vl,VQ) e Uy x Us.
vaeUsz
This implies
max min h(vy,ve) < max h(vy, va), Vvg € Uy
vieU; vaelUs viels
and hence the thesis. 0

The next example shows that inequality (4.21]) can be strict.
Example 4.2.2. Let us consider the problem in Example Clearly we have

Hp(t,z,\) = min max (sgn(;c) (1 - ef|1|> e "+ A1 — v2)2) = sgn(z) (1 — eflzl) e '+ min max A(vi — v2)?

[v2[<1 fvr]<1 [v2|<1 Jur[<1

Hpp(t,r,\) = max min (sgn(z) (1 - e_lzl) e+ Mo — v2)2) = sgn(z) (1 - e_lzl) e '+ max min A(vy — v2)°

[v1[<1 |va|<1 [v1]<1 Jvz|<1

First, let us fix A and vz € [1,—1]: we have

Mo —v2)? = {0 ifA<0
2 T T AN feal)? iEA> 0
and hence 0 <o
. 2 1
—w2)” = = 4.
g, max Ao —v2) {)\ ifA>0 (4.22)
Now, let us fix A and vy € [1,—1]: we have
2 .
min A(v; — v2)® = { AL+ |vz]) I.f)\ <0
[v2|<1 0 ifA>0
and hence N
in A(vi —v2)” = s 4.23
e, min Mo —v2)” = {5 43 5 (1.23

Inequalities (4.22) and (4.23) give that
Hpop(t,z,\) < Hbp(t,z,\), YA#£0
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The previous example suggests the following definition:

Definition 4.6. We say that the minimax condition, or Isaacs’ condition, is satisfied if
H;P(t7 X, >‘) = H;P(tv X, A)

for every (t,x,\). In this case we define by Hpp : [0,T] x R*® — R the Hamiltonian of Dynamic
Programming by
Hpp(t,x,A) = Hy (£, x,A) = H L (%, X).

4.2.3 Regular solutions of upper-lower Isaacs’ equations

In this subsections we discuss the case of regular value functions. In next subsection we will discuss all the
details and questions about the regularity.

Isaacs’ equation as necessary condition

A first necessary condition for the value functions V* and V™ is A result very similar to theorem is the
following;:

Theorem 4.3. Let us consider the problem with f, g and 1) continuous. Let V' and V'~ be the upper
and the lower value functions for the game and let us assume that V't and V=~ are C'. Then V't solves the
system

ov
{ S (%) A4 VRV (%) = 0 for (%) € [0,7]) x R” (4.24)
V(T,x) = 1(x) forx e R"

and V'~ solves the system
v Hp = T x R"
{ S (%) o6, VV (%)) = 0 for (%) € [0,7] % (425)
V(T,x) = (%) forx € R"

The system in (4.24)) is called upper Isaacs’ equation, while (4.25) is called lower Isaacs’ equation.
If the Isaacs’ condition is satisfied, clearly the systems (4.24) and (4.25) coincide, and we obtain

ov
{ E(t’x) + HDP(t7X7 VXV(t,X)) =0 for (tvx) € [OvT] x R" (4.26)
V(T,x) = 1(x) for x € R"

(4.26]) is called Isaacs’ equation. If exists the value function V', then Theorem gives

Theorem 4.4. Let us consider the problem with f and g continuous. Let us suppose that the Isaacs’
condition is satisfied and that V is the value function with V € C'. Then V solves the Isaacs’ equation
4.26).

A geometric proof of Isaacs’ equation as necessary condition

We are interested to give a geometric idea of Theorem In particular, let us consider the problem (4.1)
with f =0 and T free: more precisely let us consider

Player I: max J(uj,us), Player II: min J(uy, us)
ul u2
J(ur,ug) = o(T,x(T))
X = g(t,x, u17u2) (427)
x(0) =«

(T,x(T)) € OT
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where 7 C [0,00) x R" is a closed target set and G is the game set, i.e. that x transfers (7,€) € G in T.
Recall that 7 C G. As usual we define the exit time T for the trajectory x by (since T is closed)

Tx =inf{t > 0: (t,x(t)) € T} =inf{t > 0: (¢t,x(t)) € 0T }. (4.28)

Theorem 4.5. Let us consider the problem with g and ¥ continuous, with a closed target set T and
game set G. Let (0,a) € G\ T.
Let us suppose that

1. the Isaacs’ condition holds; in this case we have

DP (tv X, )‘) 5{12[}](1 ur2n€122 A g(ta X, Uy, u2) ur2nel32 J?ea()f(l A g(ta X, Uy, u2)a ( 9)
ii. the problem has value function V., with V.€ CY(G\ T) and VV (t,x) = (H—Y(t,x),VxV(t,x)) #0 for
all (t,x) € G\ T.
Let us consider a Nash equilibrium (uj,u3) for the problem and its optimal trajectory x* with exit
time T,

Then V satisfies the Isaacs’s equation along the optimal path; more precisely,

ov

{ DX (1) + Hoplt,X (1), VaV (X (1) = 0 fort € [0,T7) (430)
V(T x(T%)) = (1", x(T"))

Proof. Let us consider a Nash equilibrium (uj, u}) and its optimal trajectory x* with exit time 7™ for the

problem (4.27)): clearly we have
x*(0) = (T*,x*(T*)) € OT .
The final condition in (4.30)) is obvious. Moreover, for every 7 € [0, 7] fixed, if we consider the new problem
(4.27]) with the new initial data
x(7) = x*(7),
the new optimal trajectory coincides, by the Bellman’s principle, with x* (the idea of the proof coincides
with the classical situation of an optimal control problem). Hence, for every 7 € [0,T%],
V(r,x*(7)) = ¢(T",x*(T7)) = ¢

where c is a constant. Clearly we obtain

dV (t,x*(¢ oV :

WD) _ P (1 (1) + VeV (1, (1)) 50 (1) =0, (4.31)

dt ot

for every t € [0, ).
Let us consider the curve 7 : [0,7%] — G, defined by ~(t) = (¢,x*(¢)) is such that V(v(t)) = ¢ for every
t € [0,7%]. Since VV(t,x) # 0, the Dini’s theorem guarantees that locally the curve 7 divides the set G\ T
in two different regions where V(¢,x) > ¢ and V(¢,x) < c.

o NE

(5o vee)

>T
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Now fix t € [0,7*) and consider the point P = (¢,x*(t)). In such point P, the function V has the maximum
growth in the direction of the vector

W) = (G (x0T Ex o)

Since the Player I wants to maximizes, he wishes to move P in such direction; but he has some “constraints”
for the movements of the point P, i.e. on the trajectory, given by the dynamics and the choice of the Player
II. Hence, if the Player II choices u3(t), then Player I considers its strategy such that

wi(t) € arg max [(%‘t/(t,x*@)), VXV(t,X*(t))> -w] (4.32)

u el

the “best” direction w in the problem (4.32) is w = 4& = (1,x*(t)) (in the points ¢ where x*(t) exists);

using the dynamics we obtain

w(t) € arg max (Wa,x*(t»wxwt,x*(t»-g(t,x*<t>,u1,u;<t>>)

where w is a vector which depends on ¢, x*(¢) and u}(t). Since x* is the optimal trajectory, we know that
i

u el ot
— arg max (VXV(t,x*(t)) gt x* (), w1, u;(t))) (4.33)
u €Uy
Since the Player II wants to minimize, with similar arguments we obtain
u3(t) € arg min ViV (5, x"(1)) - g(t, X" (1), ui (1), uz) (4.34)
uz€ls
Now, by (4.31)) and the dynamics, we have
ov :
0 = S(LX" W)+ UV (67 (1) - x4 (1)
av * * * * *
= 5 (X)) + VRV (X (1)) - g(t,x7(1), ui(t), u3(t))
8V * * * *
(by @38)) = G (6" () + mas (VaV (6.7 (1) - (1" (1), w1, w3 (1))
(by @30) = S (6" () + min (VaV/ (6. (1)) - gt (1) wi (1), u2) ). (4:35)
Let us conclude the proof using the Isaacs condition; for every fixed t, let us introduce the function
Et(ul, ug) = ViV (t,x*(t)) - g(t,x*(t), us, uz). (4.36)
The previous equalities give that
he(wt(2), uh(t)) = max hy(ug,ub(t)) = min he(ul(t), ug). (4.37)
w1 €l uz€Us
If we show that N B B
hi(ui(t),u3(t)) = max min hi(ug,uz2) = min max h(ug, uz) (4.38)
ui€lU; usels uselUs ui €Uy

we obtain 0 = aa‘t/(t, x*(t)) + Hpp(t,x*(t), VxV(t,x*(t))) and the proof is finished (note that in (4.38) the

second equality is true by the Isaacs’ condition). Hence let us suppose, in order to obtain a contradiction,

that (4.38) is false: then

he(ui(0),u5(0) =gz max he(u,ui(0))

> (@39 false) Win max hi(uy,uz)

=@og) max min hy(ug, us
(@29 ui €U ugels ( ’ )

> min hy(a(t
_ur2n€182 t(ul( )7u2)

=@z he(ui(0), us(t)),



40 CHAPTER 4

which clearly is impossible. Hence holds: now using — we obtain . 0

Isaacs’ equation as sufficient condition
In the spirit of Theorem we have the following result (see for example [2]):

Theorem 4.6. Let us consider the problem with f, g and ¢ continuous, and let us suppose that the
Isaacs’ condition is satisfied.
Let V1 [0,T] x R* = R be a C* solution of the ([4.26).
Let (uj,u3) € App, where ul(t) = v} (t,x*(t)), with the corresponding trajectory x* with x(0) = a, be such
that

ov . . .

E(t,x (t)) + Hpp(t,x*(t), VxV(t,x*(t))) =0 (4.39)
for every t € [0,T]. Then (uj,u}) is a Nash equilibrium and V' is the value function for .
We remark that (4.39) implies that (uj, u3) are such that

[t x(t), a1 (1), u3(t) + V<V (£, x"(1)) - g(t,x" (1), uj(t), u3(t)) =

= min max (f(£,%(1),v1,v2) + VV (LX) - g(1, X (1), vi, v2) )
vaeUz viel;

= max min (f(t7 X*(t)v Vi, VQ) + va(t,X*(t)) ’ g(t7 X*(t)7 Vi, VQ))
vi1€U1 v2€U2

for every t € [0, 7.

4.2.4 Viscosity solutions of upper-lower Isaacs’ equations

Clearly, at this point, first we are interested to study the regularity of V* and V—:

Theorem 4.7. Let us consider the problem with the assumptions 1.-2. Then V~ s bounded and
uniformly Lipschitz continuous, i.e.

V= (r,&) -V (&) < C(r -7+ €= ¢,

for every 7,7 € [0,T] and €,& € R", for some constant C.
A similar results holds for V.

Proof. (see Theorem 3.2 in [8]). Let us fix 7 < 7/ in [0, 7] and &,¢" € R™. It is immediate to see that
V=(r,8)| < CiT + Cs.

Now let us fix ¢ > 0. There exists ®y € Sy(7) such that

V7(r,&) > sup ) {/TT It x, u1,<f>2[u1]) dt + w(x(T))} — €. (4.40)

u) €Uy (T

Fix uy 4, € Uy. For every uy € Ui(7'), let us define u € Uy (1) by

o Wipig, forte[r,T)
aft) = {ul(t), for t € [7/, T (4.41)

Let us define &y € Sy(7') such that

our](t) = Ba[t1](t),  Vuy € Uy(7), t € [7,T]
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Clearly

V(' €) < sup {/ff(t’x,uh@[ul])dtJrw(X(T))}-

u; €U, (T/)

Now there exists u; € U;(7') such that
T ~
V) < [t Baff) e+ wlx(T)) + e (4.42)

And gives
T o~
Vo (r,€) > / £t Ty, Bafiiy]) dt + p(x(T)) — e, (4.43)

where 1, is defined by u; via relation (4.41). Note that the trajectories x that appear in (4.42) and in
(4.43) are different function; in particular, denoting by X and X such trajectories in (4.42) and in (4.43))

respectively, they solve N
{ X(t) = g(t, x(t), w1 (t), P2 [w](t)) a.e. in [, T]
x(r') = ¢
and . R
{Q(t) = g(t,x(t),ur(t), P2[ui](t)) a.e. in [7,T]
X(r)=¢
Clear we have, by the bounded assumption 2. on g,

/

/ g, R, Tir, Boffin]) dt]| < O (7 — 7). (4.44)

1€ = %(7)]| =

The Lipschitz assumption 2. on g and since t; = Uy and ®3[t;] = ®5[t1] on [/, T, we have that, for every
te[r,T],

d (x(t) — x(t), %A(t) - %i(t))
|%(t)

s gl

~

Joct. %), u1< ), Bl (1)) — 9(t. K1), W (1), Dol (1))
< Gl -%(0)]

The Gronwall’s inequality (see the appendix in [7]) implies, for every t € [7/,T],
t
IR(t) - X)) < |[R(+') — %(=')|| exp < / o ds> <clz)-¢|. (4.45)

Now, for every ¢ € [/, T], (4.44) and (4.45) give us
Ix() == < C (%) - &|| + ] =€) <C(Il€' — &l + (7' =) (4.46)
By (4.42)) and (4.43]), assumption 2. and 3. we obtain

T - ~
V_(T,aél) - V_(Tvs) < / (f(t>§7 ﬁl,q)Q[ﬁl]) - f(t>§7ﬁ17q)2[ﬁ1])) dt +

!

- / " HL % Ty, Balf]) A+ HR(T)) — B(R(T)) + 2¢

IN

T
Cq // |x(t) —x(t)|| dt + C1 (7" — 7) + C2||X(T) — X(T)]| + 2¢

C (g =&l + (7' = 7)) + 2e. (4.47)

IN
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This concludes the first part of the proof.
Let € again be fixed. Then there exists o € Sa(7’) such that

V=(r,¢)> sup | {/T,Tf(t,x, uy, zI\Dg[uﬂ) dt + w(x(T))} — €. (4.48)

uj €U, (T’
For every u; € U;(7), let us define u € U, (') by
u; (t) = uy(t), vt e [, T] (4.49)

Fix uyfi; € Us. Let us define dy € So(7) such that, for every u; € Uy (1)

B [ oz, for t € [7,7)
Do[wy|(t) = {2132[ﬁ1](t), for t € [/, T]

Clearly
T
V(rE) < sup ){ [ st u1,<’132[u11>dt+w<x<T>>}.

uj €Uy (7’

Now there exists u; € U (7) such that
T ~
V(1. €) < / ft,x,ay, ®ofw]) dt + 9 (x(T)) + €. (4.50)

Now gives
T —~
V(¢ > /, ft,x,ay, Pafuy)) dt + (x(T)) — €. (4.51)

where U is defined by u; via relation (4.49)). Denoting by X and X the trajectories in (4.50) and in (4.51))
respectively, they solve
{ﬁ(t) = g(t,X(t), w(t), Po[m](t)) in [r,T]

X(r)=§
and ) R

X(t) = g(t, x(t), ur(t), P2 [w](t)) in [, T]

X(r) =€
By assumption 2. and using the same arguments of before we obtain inequality (4.46]). By (4.50) and (4.51]),
assumption 2. and 3. we obtain

T

Vﬁ(Tlvgl) - Vﬁ(ﬂﬁ) < // (f(tai) ﬁl’ éQ[GI]) - f(t7§)ﬁ1’ (/132[ﬁ1])) dt +

- / " L% T, Baf]) d + (E(T)) — W(R(T)) + 2¢

IN

T
C / IR = RO dt + Cr(7 = 7) + ColK(T) = R(T)[| + 2€
< C(lg - €l + (' =) + 2

This inequality and l) conclude the proof. 0

The previous result implies that the lower value function admits the gradient VV ™~ (¢,x) for almost
everywhere (¢,x) € [0,T] x R™. Moreover, it gives the possibility to V'~ to be a viscosity solution, as we will
see in definition .71
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Definition 4.7. Let H : [0,T] x R" x R" — R be a continuous function and let V : [0,T] x R® — R be a
bounded and uniformly continuous function, with V(T,x) = 1¢(x) in R".
We say that V is a viscosity subsolution of the Hamilton—Jacobi equation

oV , n
{ 5 (LX) T H{E X, VV(t,x)) =0 in (0,T) xR (4.52)
V(T,x) = (x) mn R™

if whenever v is a test function in C*°((0,T) x R™) such that V — v has a local minimum in the point
(to,x0) € (0,T) x R™ we have

9
2 (t0,%0) + H(to, X0, Vulto, %)) 2 0.

(4.53)

We say that V' is a viscosity supersolution of the equation if v is a test function in C*°((0,T) x R™)
such that V- — v has a local mazimum in the point (tg,xg) € (0,7) x R™ we have

9
a—:(to,xo) + H(to, %0, Vo(to, Xo)) < 0. (4.54)

A function that is both a viscosity subsolution and a viscosity supersolution is called viscosity solution.
Let us start with the following Dynamic Programming optimality condition (see Theorem 3.1 in [§])

Theorem 4.8. Let us consider the problem with assumptions assumption 1. and 2.. Then

T+0o
V_(Taé) = inf sup {/ f(taxa ulaq>2[ul])dt+ V_(T +O-7X(T +U))}
D2€82(7) uy €U (1) T

for every T, T+ o0 € [0,T] and £ € R™.

Proof. Let us define the function W by

T+o
W(r, €)= inf — sup {/ f(t,x, u17‘1>2[111])dt+V(T+a,x(7+0))}
DreSo(T) wy €Uy (7) -

for every 7, €. Let us fix € > 0.
Then there exists a ®2 € Sa(7) such that

T+o .
W(r,&) > sup {/ flt,x,u, @ofuy))dt + V(7 + o, x(7 + U))} — €. (4.55)
ui €U (1) T

Also, for every n € R", by definition of V'~

T
V(r+o,m) = inf sup {/ f(t,x, ul,@g[ul])dt—i—w(x(T))}
P2€82(7+0) uy el (t+0) T+o

where x is the trajectory with initial data x(7 + o) = n. Thus exists a 5;’ € Sa(7 + o) such that

T ~
V7 (r+o,m) > sup {/ [t x,uy, ®J[u]) dt + w(x(T))} — €. (4.56)
ui €Uy (T+0) T+o

Now define @3 € Sy(7) in this way: for each uy € U () set

B IETO! for t € [, 7+ 0]
o[u|(?) = { X y)(t), fort e (r+0,T)
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Consequently for any uy € Uy (1), by (4.55)) and (4.56|) we have

T+o .
W(r, &) > / ft,x,u, @ofuy))dt +V (r+o,x(t+0)) —€

Y

T
= [ fttx Bafu]) e 4 v (x(1) 2
So that .
V7 (r,&) < sup {/ flt,x,uy, Po[uy]) dt + w(x(T))} < W(r, &) + 2e.
) T

u; €U (7’
Let us pass to the second part of the proof. Now, there exists </152 € Sa(7) such that
T
V_(T,E) > sup {/ f(t,X, ula(I)Q[ul])dt‘i‘w(X(T))} — €
uy €U (1) T
Then

T+0o R
W(r,§) < sup {/ f(t, %, u1,<1>2[u1])dt+V_(T—i—a,x(T—l—J))}
w1 €U (T) T

and there exists u; € U (1) such that

T+0o R
W(r, &) < / flt,x, a1, @afuy])dt + V- (7 + o, x(7 + 0)) + €.

T

For every u; € Ui (7 + o) we define ug € Uy (7) by

uf (1) = uy(t), forte[r,7+0]
! uy(t), forte (r+0,7T]

and we define @; € Sa(t+0) by
Oi[u](t) = Bo[uf](t),  Vu €U(T +0), t € [r+0,T]

Hence

Vi(r+o,x(t+0)) < sup ){/Tia f(t,x, ul,@g[ul])dt—i—qb(x(T))} :

w1 €Uy (T+0o

Clearly there exists uJ{ € Uy (T + o) such that
T
Voo < [ sl ohfull) i+ p(x(T) e
T+0o
Now we define u} € U;(7) by

o (1) = ﬁ%(t), for t € 1,7 + 0]
uy(t), forte (r+o,T]

Now by (4.59) and (4.60) we have

T+o .
W(r, &) < / flt,x,uy, ®au])dt +V (1 +o,x(7+0)) +e€
T+o R T
</ f(t,x,al,q>2[a1])dt+/ £t x,ul, 5 [ul]) dt + w(x(T)) + 2¢
T T+0o
T
— / £t Boful]) dt + p(x(T)) + 2

< sup ' f(t,x,uy, ‘52[111]) dt +(x(T)) ¢ + 2¢
i |

u; €U (7’

IN

V7(1,€) + 3e.

T+o . T .
/ ftx,uy, @ofuy]) dt + / £t %1, @57 [w]) dt + $(x(T)) — 2¢
T T+0

CHAPTER 4

(4.57)

(4.58)

(4.59)

(4.60)
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This last inequality and 1) conclude the proof. 0

Theorem 4.9. Let us consider the problem with the assumptions 1.— 2.. Then
A. V™ is a viscosity solution of the lower Isaacs’ equation ,'
B. V= is the unique viscosity solution of the lower Isaacs’ equation ;
A’ VT is a viscosity solution of the upper Isaacs’ equation ;
B’. VT is the unique viscosity solution of the upper Isaacs’ equation .

The proof of A’. is very similar to the proof of A. The proofs of B. and B’. are similar but they require
a comparison principle for BHJ equation: such very interesting argument is very difficult and long, and it
requires another course. Clearly Theorem [4.3|is a consequence of Theorem [4.9

Proof of 1. 1t is obvious, by definition, that V (T, x) = ¢(x), for every x € R™. So, let us fix (to,Xo) €
(0,T) x R™.

First part of the proof: V~ is a supersolution. Let v € C1((0,T) x R™) be a test function touching V'~ from
below at (g, o), i.e.

V= (to,x0) = v(to,x0) and V™~ (¢t,x) > v(t,x) in a neighborhood of (tg,xo). (4.61)
We have to prove that
ov _
a(to, X()) + HDP(t(), Xq, Vv(t(), X())) <0.
Let us assume that this is not true and that there exists # > 0 such that

0 _
af:(to,X()) + HDP(t(),X(), V’U(t(),X())) > 6. (4.62)

Defining the function I' in a compact neighborhood of (¢y,x¢) by

v

Y (t,x) + f(t,x,u1,u2) + Vo(t,x) - g(t,x,u1, uz)

F(t,X, u, 112) -

(4.62) is equivalent to

max min I'(¢g,xg,u1,uz) >0
u1 €U ugels

Hence there exists uj € Uy such that

min F(to,XO,uT,UQ) > 0
uzxclsz

Since I' is uniformly continuous in its domain and by assumption 2. on g, there exists 7 > 0 such that

~ 0
min T'(s,X(s),uj,ug) > —, Vs € [to, to + 7] (4.63)
uzels 2

where u; and up are generic controls in U (tg) and in Us(tg) respectively, and X solves

X =g(t, %, 0y, 02) in [to, T]
{>~<<t0> = xq (4.64)

Hence, choosing u; () = uj and for any ®3 € Sy(tp) we have that inequality (4.63]) implies

N D

[(s,x(s),a1(s), P2[ui](s)) > =, Vs € [to, to + 7]
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where now X is the trajectory in (4.64) associated to the controls u; = uj and ®3[u;]. If we integrate the
last inequality, we obtain that there exists u; € U (o) such that for every ®o € Sa(tg) we have

to+T1 _ _ _ 0
/ [(s,x(s),u1(s), P2[u1](s))ds > >
to
and hence
+T / Ju 70
i s [ (<s, %) + F(s,%, w1, Bafui]) + Vo(s, %) - (5, %, us, q’z[“ﬂ)) as> "0 (165)
@2632(150) ueul(to) to at 2
where x solves ) ‘
x = g(t,x,us, ®o[wy]) in [to, 7] (4.66)
X(to) = Xo
Now by Theorem [4.8] we know that
to+7
V™ (tg,x0) = inf sup {/ f(s,x,ug, Po[ug])ds + V7~ (tg + 7, x(to + 7'))} (4.67)
P2€82(to) uy €U (to) to

with x as before. For every such x, requirement (4.61)) and the lipschitz assumption 2. on g imply that, for
7 small enough

0=V"(to,x0) —v(to,x0) <V (to + 7, x(to + 7)) — v(to + 7, x(to + 7)) (4.68)
Since x is continuous and v is in C!, (4.66) implies

WFT du(s,x(s))

o(te + 7 x(to + 7)) — v(to, x0) = /t XD g
b+T oy O
/to <8t(5’x(8)) + Vo(s,x(s)) - g(s,x(s),ui(s), @g[ul](s))) ds (4.69)

Relations (4.67)—(4.69) give

to+71
0 > inf sSup {/ f(saxa u17¢2[u])d5+v(t0 +7-7X(t0 +T)) —U(to,Xo)}
D2€852(to) uy €U (to) to

to+T7 a

= inf sup / (f(s,x, ug, Poluy]) + —w(s,x) + Vou(s,x) - g(s,x,uy, <I>2[u1])> ds
D2€82(t0) uy ety (to) J to ot

This inequality contradicts (4.65)): hence (4.62)) is false and this concludes the first part of the proof.

Second part of the proof: V~ is a subsolution. Now, let v € C1((0,T) x R™) be a test function touching V'~
from above at (tg,xg), i.e.

V™ (to,x0) = v(to,x0) and V™ (t,x) <wv(t,x) in a neighborhood of (o, xp). (4.70)

We have to prove that
ov

ot

Let us assume that this is not true and that there exists 6 > 0 such that

(to,%0) + Hpp(to, o, Vo (to, X0)) > 0.

v

BN (to,Xo) + HBP(t(),X[), V’U(to,X())) > 0. (4.71)

This is equivalent to

max min I'(¢g,xg,uz, ug) < —6
u1 €U u2€lz
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Hence, for every u; € U; there exists uy' € U such that
F(tO) XOv u17 u1211) S _9

Since I' is uniformly continuous we have

- 36
[(to, xo, wr, uy") < == (4.72)

for every u; € Uy, u; € Bgk, (ug,7(u1)) N Uy and for some r(u;) > 0. Since U; is compact (see assumption

1.) there exist finitely many distinct points {ui}¥, c Uy, {ugz1 N | C Uy and rays {r(u?)}Y, such that

N

Uy C U By, (uf, r(u}))
i=1
and ' 30
(o, X, U1, uy') < R Yy € Bge(uf, r(u})) NU;

Let us define ¢ : Uy — Us by ¢(u;) = u;]1 with j = j(u;) such that
wi € By, (uf, r(u]) \ | Ba (uf, r(u})).
i=1

Hence (4.72]) implies
30

I'(to, %0, a1, ¢(uy)) < 1

for every u; € U;. Since I' is uniformly continuous there exists 7 > 0 such that we have
~ 0
['(s,%(s),u1,¢(uy)) < —5 Vs € [to, to + 7] (4.73)

for every u; € Uy and for every uy € Ui (to), 2 € Ua(to) where X is the associated trajectory as in (4.64).
Now let us define ®9 € Sa(tp) such that

Bo[ty](s) = d(Ui(s)),  Vay €Ui(to), s € [to, T

Using (&73)
~ o~ = 0
[(s,x(s),a1(s), P2[us](s)) < ——, Vs € [to, to + 7]

[\)

for every u; € Ui (to) and where X is as in (4.64) with ug = ®3[uy]. If we integrate the last inequality, we
obtain that there exists ®3 € Sa(tp) such that for every u; € U(ty) we have

to+7 _
/ I'(s,x(s),a1(s), P2[u1](s))ds < -5
to

and hence

to+7
inf sup / (v(s,x) + f(s,x,u1, P2[us]) + Vo(s,x) - g(s,x, a1, (1)2[111])) ds < 70 (4.74)
‘PQESQ(to) uleul(to) to 8t 2

where x is as in (4.66). For every such x, requirement (4.70) and the lipschitz assumption 2. on g imply
that, for 7 small enough

0= Vi(to, Xo) — U(to, Xo) > Vi(t() + T, X(to + T)) — U(to + T,X(to + 7’)) (4.75)
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Relations (4.67)), (4.69) and (4.75) give

to+7
0 < inf sup {/ f(s,x,up, @2lw]) ds +v(to + 7, x(to + 7)) _U(t()vXO)}
(I)ZGSQ(tO) U1€Z/{1(t0) to

to+71
= inf  sup / <f(s,x, uy, Pofuy]) + @(S,x) + V(s x) - g(s, %, ur, @2[111])) o
®2€852(t0) uy €lts (o) Jto ot

This inequality contradicts (4.74)): hence (4.71]) is false and this concludes the proof.

Isaacs’ condition and value function

The fundamental theorem on the value function is the following

Theorem 4.10. Let us consider the problem with the assumptions 1.-2. Let us suppose that the
Isaacs’ condition holds. Then

a. the problem has value function V, i.e. 1 always an equality;

b. V is the unique viscosity solution of ;

c. let (uj,ud) € App, where u}(t) = vi(t,x*(t)), with the corresponding trajectory x* with x(0) = o, be
such that

%‘;(t,x*(t)) + Hpp(t,x*(t), VXV (t,x*(t))) = 0 (4.76)

for almost every t € [0,T]; then (uf,u) is a Nash equilibrium for the problem .

The proof of a. and b. of this theorem is an easy consequence of Theorem with the Isaacs’s condition;
the proof of c. is classical as in the Dynamic Programming (see Theorem {4.6)).

4.2.5 Examples

Ezxample 4.2.3. (see [2]) Let us consider the two-person zero-sum game

Player I: max J(u1,u2), Player II: min J(u1,us2)
uq u2
L%, s Lo
J(ur,u2) = = [ (uz —ui)dt + =z(2)
2/, 2
if = \/E'LLQ — U1l
z(0) = mo

First, it is easy to show that the Isaacs’ condition holds:

Hpp(t,z,\) = max <f%u% — /\ul) + mgﬂl@ (%ug + \/ﬁAuz) = Hfp(t,x,\). (4.77)
ug

u1 €ER

Hence we can define the Hamiltonian of Dynamic Programming Hpp : in order to do that, note that

ul = =A%, uy = —V2\* (4.78)
realize the max and min in 1 respectively and hence Hpp(t,z,\) = 7%)\2. Hence there exists the value function V' that
solves the Isaacs’ equation

1 2
N ie) - (V) =0 for(t,2) € 0,2 xR
ot 2\ Oz (4.79)

1
V(2,z) = 5:152 for x € R
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Since we are considering an Affine-Quadratic problem, we looking for a value function of the type , ie. V(t,z) =
1Z(t)a” + W(t)z + Y (t) : replacing such V in (4.79) we obtain

Zz® + 2Wx +2Y — (Zz+W)* =0, V(t,z)€[0,2] xR

= Z=2° (4.80)
W =2zZw (4.81)
2y = W? (4.82)
1 1
V(2,z) = 5Z(z):z:2 +W(2)z+Y(2) = 5932, Vr € R
= Z(2)=1, W2)=Y(2)=0 (4.83)
1
FEasy computations give: by (4.80) and (4.83) Z(t) = 373 by (4.81) and (4.83), W (t) = 0; finally, by (4.82) and (4.83),
Y (t) = 0. Hence we obtain the value function
1 2
V(t,x) = ———=z".
()= 55 —5°
Now, relation gives \*(t) = 552" (t), where * is the optimal trajectory; 1 gives
* 1 * * ﬁ *
- = = . 4.84
Ui = —5at @), w) =) (489
Hence we are in the position to find a feedback strategy. Using this expression for the control (u1,u2), the dynamics gives
L
3=t

together with the initial condition x(0) = xo, we obtain x* = xo25%. This implies that (u},u3) in (4.84) is a feedback Nash
equilibrium.
AN

4.3 Pursuit-evasion games

Let

T=R"xTy CRT x R"
be a target set, with 7g closed. Let as denote by G C R™ x R™ the game set, i.e. the set where the trajectories
lie, (¢,x(t)) € G.

We investigate a situation in which the first player tries to maintain the state of the system as long as
possible outside to a target set T while the second player aims reaching 7 as soon as possible. For this
reasons, in all this section, the first player, who chooses uy, is called Pursuer, which we shall abbreviate buy
P; the second player, who chooses ug, is called Evader, which we shall abbreviate buy FE.

We consider an autonomous problem, i.e. a situation where f, g and % does not depend directly on t.
For every u; and us admissible controls, let us consider the trajectory x via

x = g(x,uy,uy), x(0) =«

such that (0,a) € G\ 7. In this situation, the exit time in (4.28) is
Tx = inf{t > 0:x(t) € To}; (4.85)

if the initial data on the trajectory x is x(7) = &, with (7,€) € G\ T,
then the definition of its exit time is Tx = inf{t > 7 : x(¢) € To}.
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We are interested in the game

Pursuer: min J(uy,ug), Evader: maxJ(uj,ug)
up u2
ul(t) e Uy, UQ(t) e U,
Tx
J(ul,u2) = / f(X, u1,u2) dt—l—’(/J(X(Tx)) (486)
0

X = g(x,u,ug)
x(0) = a, (0,) € G\T
(Tx,x(Tx)) € OT

where Ty is the exit time of the trajectory x. Note that in the Pursuit-Evasion games the first Player (P)
would like to have a min, while (E) wishes to have a max; this notation is in honor of Isaacs and it is
exactly as in his book [I0] (see page 201). Clearly, all the results of the previous sections hold with easy

modifications.
Here we have that H,, and H}, do not depend on t. For this type of problems we have the following

properties:
Proposition 4.1. Let us consider the game with f, g and Y continuous, and with To closed. Then

i. the lower V= walue function does not depend explicitly on t in the game set G, i.e.

V7= (t,x) =V~ (%), Y(t,x) € G; (4.87)

1. the game set G for the game 18
G=R" x Gy CcR" xR™;

iii. if V= is in O (int(Go \ To)), then the lower Isaacs’ equation is

{ H; . (x,VV7(x))=0 forxe€int(Gy\ 7o)
V= (x) = ¥(x) forx €Ty

Similar results in i. and iii. hold for V.

Proof. Let (1,€) € T; clearly V—(7,&) = ¢¥(&). Now, let (7,€§) € G\ T: by deﬁnitiorﬂ

Tx

Vo(r,§)= inf  sup f(x,, @1[ug], ug) dt + (x(71x))
®1€81(7) ugelha () J 7

where (®1[uz], u2) is such that x is the unique solution of of the ODE

{)’( = g(x,,P2[u;],uz) in [1,7T]
x(r) =€

For every ug € Us(7) and &1 € S1(7), let us consider ug € Usz(0) and P, ¢ S51(0), i.e. oy U(0) — U (0),
defined by B

us(s) = ua(7 + s), D [va(+)](s) = P1[va(- + 7)](s — 7), Vva € Uz(0)
Hence for every (®,u3) € S(7) x Us(7) we associate a unique (®1,Us) € S1(0) x Us(0): moreover such
correspondence is 1 to 1. Moreover, since g does not depends on ¢, the unique solution x of the ODE

{x = g(x, 1[s], Ua)
x(0) = ¢

2We recall that the First Player minimizes and the second Player maximizes, hence in the definition of V" and V™~ we have
to change 1 with 2 and viceversa.
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is X(s) = x(7 + 5). Since T = R" X Ty, it is easy to see that
Tz =Tx — .

Clearly we obtain

Tx Ty

; F(X @1[tia], W) dt + 9(X(Tx)) = | f(x, Pi[ua], wa) dt + b (x(T)),

for every ug, ®; as before. This implies V7 (7,&) = V7(0,&), for every 7 > 0. This proves i. and the
arguments of this proof imply easily 7.
The assumption V~ € C!(int(Go \ 7)) and relation 1) give a‘a/—;(t,x) = 0. Now, since the problem
is autonomous, Hp, does not depend explicitly by ¢ and we obtain, by the lower Isaacs’ equation (4.25)),
oV~ _ _ _ _
WG’X) + Hpp(t,x, ViV (t,%)) = Hpyp(x, VYV (x)) = 0,
i.e. our claim in ..
Now, let us consider a initial data (7, &) for our trajectory x in 7 it is clear that Tx = 7 and hence

Tx

V7 (r,§) = inf sup (x, ®1[uz],uz) dt + ¥(x(Tx)) = ¥ (&).
D1€851(7) upetty (1) S+

Taking into account that V'~ does not depend explicitly by ¢, we have ii.. 0
In our problem (|4.86|) the Isaacs’ condition is satisfied if

Hpp(x,A) = Vrlneiglglgé(f(x,vl,w)+>\~9(X7V1,VQ))

_ i Vi, A-g(x,v1, ) 4.88
max min (f(x Vi, Va) + A g(x,vi,v2) (4.88)

The next result is an easy consequence of the previous proposition.

Remark 4.4. Let us consider the game with f, g and ¥ continuous, and with Ty closed. If the Isaacs’
condition is satisfied and the value function V is in C1(int(Go \ To)), then V does not depend explicitly on t

and the Isaacs’ equation 18

{HDP(X, VV(x)) =0 forxe€int(Go\ 7o)

V(x) = ¥(x) forx €Ty (4.89)

Theorem [£.6] for our pursuit-evasion game has a new statement:

Theorem 4.11. Let us consider the game with f, g and v continuous, and with Ty closed. Let us
suppose that the Isaacs’ condition is satisfied. Let us suppose that there exists a continuous differentiable
function V' : (Go \ To) — R such that the Isaacs’ equation holds. Let (uj,u3) € App, where v} :
[0,Tx+] x R™ = U; and ul(t) = v} (x*(t)), with the corresponding trajectory x* with x(0) = a, be such that
such that (uj(t), us(t)) realizes the minmax for Hpp in along the optimal path, i.e.

FEE(8),ui(8), u3(t) + ViV (X (1)) - g(x7 (1), ui(8), us(t)) =0,

for every t € [0,Tx+]. Then (uj,ud) is a Nash equilibrium.
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4.3.1 The lady in the lake

The following games is in [2]. A lady (EF=Evader) is swimming in a circular lake (of radius R) with a
velocity ﬁ(t) such that vy (t) = vr is constant and vy, < 1; she can change the direction in which she swims
instantaneously. Hence the lady controls the direction of its velocity, i.e. she controls the angular velocity
ur, with respect to the radius CE, without any restriction.

A man (P=Pursuer) is not a swimmer and he wishes to intercept the lady when she reaches the shore;
he is in the beach of the lake and can run along the perimeter with maximum speed 1. He also can change
his direction instantaneously. Clearly the velocity w3/ of the man is tangent to the circumference: the man
controls the signed modulo uyy, i.e. |up(t)] < 1, where up; > 0 (ups < 0) implies that the man runs
clockwise (counter-clockwise) around the lake.

We assume that the lady and the man never get tired. £ doesn’t stay in
the lake forever and she wishes to come out without being caught by the
man; in the land, F can run faster than P. E’s goal is to maximize the
pay-off, which is the angular distance 6 viewed from the center C' of the
lake, at the time F reaches to the store. P obviously wants minimize
such pay-off.

In order to describe the system, we introduce the angular distance 6 = 6(t), i.e. the angle between P and
E with respect to the center C in a clockwise sense (with —7 < 6(t) < m). The E’s distance with respect to
the center of the lake is r = r(¢t). The dynamics of the game (we left to the reader the details) is

. VL, SinuL Un
i — _ 4.90
r R ( )

7 = v cosur (4.91)
The pay-off function is |6(T')|, where T' = T'(,r) is defined for every trajectory (¢,r), as in (4.85)), by
T=inf{t >0: (6(t),r(t) € To},

where T is the target set of the game, 7 = RT x Ty with 7o = R x [R, 00). Proposition implies that the
game set G for our problem is G = R™ x Gy: Let us note that for every (rg,0y) with ro > 0 and 6y € R the
pair (ups,ur) = (0,0) in the dynamics implies the trajectory r(t) = ro + tvy, and 6(t) = 0y for every ¢t > 0:
it is clear that for some ¢ the trajectory reaches in the target set: hence Gp = R x [0, 00).

Hence we have the pursuit-evasion game

Man (P): min|6(T)| Lady (E): max |0(T)|
UN ur,
lupr] <1

v sinur,  Ups

i T R
T = V[, COSUJ,

r(0)=0, r(T) =R

Let us looking for a Nash equilibrium for this problem. The Hamiltonian H = H (0, r, ups, ur, A1, A2) is

H=X\ (ULSIDUL — u;;) + Agup, cosur,.
r
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For the upper and lower Hamiltonians of Dynamic Programming we have

Hf (0,7, 01,A2) = min max H(0,r,uns, ur, A1, A2)
‘U/l\/[‘<1 ur

= min —&u + max

vy, sinug,
‘UA4‘<1 ur,

A1 + Aqvp, cos UL}

= max min H(0,r,up,ur, A1, A2)
uL Jup|<1

HDP(Ha r, )\17 AQ)

Hence the Isaacs’ condition is satisfied and we are in the position to looking for a value function V' that does
not depend on ¢, i.e. V- =V(0,r) (see Proposition [4.1)); the existence of such V' is not guaranteed since the
dynamics is not bounded and Lipschitz w.r.t. r (see Theorem [4.10). The Isaacs’ equation (4.89) is

. v sinu ov oV .
|urjgl|r§11 max [(L;L - UJ];) 50 —(0,7) + vp cosur—— o (0,r)| =0 for (0,r) € int(Go \ To) =R x (0, R)

V(6,R) = 0| for 0 € R

where the order of the min and the max is irrelevant. If (u};,u}) is our Nash equilibrium with associated
trajectory (0*,r*), let us set

Vi) = o @0, 0), V) = 00,5 (1),

Let us reorganize the Isaacs’ equation taking into account that (u},, u} ) realizes the min and the max along
the optimal path (6*,7%),

sinur,

0 = min (—U—MVJ(t)>+ULmaX (r*(t)

lunr|<1 R

uns(t)
i,

Vi (t) 4+ cosur V' (t )> (4.92)

() + o (Sm@f;g Dy (1) 1 cos(u (1)) V(¢ >)

for every t € [0, 7).
Remark 4.5. The previous equality guarantees that a Nash equilibrium in the family of the open—loop
equilibrium does not exist since (uy;(t),uy (t)) surely depends on r*(t) and V'V (0*(t),r*(t)).

However, we can apply the variational approach for the open—loop representation of the feedback Nash
equilibrium (see Theorem . Taking into account that (see ) Al =V, and A\ = VI along the optimal
trajectory (0*(t),r*(t)) and for the time ¢ such that V is sufficiently regulalﬁ in the point (6*(¢t),7*(t)), the
adjoint equation gives

. oH d vr sinu}, vr sinu},
A= ——— — V=V =k 4.94
2T T @ Ty ()2 (4.94)

where k is a constant.
e First, let us suppose that for some time ¢ on the optimal trajectory we have V(t) # 0 : (4.92)) implies
that the optimal control u}, is given by

wis(t) = sen(Vy (1), (4.95)
Consequently, is

max { S;D(U)LVQ (t) + cos uLv:(t)} - Wig’ (4.96)

3Relation (4.93) seems to give that ¢ — \j(t) = V' (t) is a constant in [0, T]: as we will see, this is not true since for t = T,
(see below for the definition of Tp) V' is not regular.




54 CHAPTER 4

This implies that the vector (cos(uj (t)),sin(uj (t))) has the same direction of the vector (VT* (1), %%"(t))
and hence

|0 i) |- i o)

ES
0
vL
An explicit calculation of the modulo gives

(V5 (1)

this last relation is true only in the case 7*(t) > v R.

e Let’s study the situation r*(t) < vz, R: in this case, the previous calculations imply V() = 0: hence

by (4.94) we obtain V*(¢) = k1 constant and (4.92)) becomes

max {kj cosur} = 0.
ur,

Such relation gives k1 = 0 = V;*(¢). Hence on the optimal trajectory (6*(¢),7*(t)) inside the circumference
of radius vy, R we have

V(07 (1), (1) = (Vo' (1), V,*()) = (0,0) :

the value function doesn’t change if F modifies her position, i.e. V is constant. In this situation the Lady
can achieve a large angular velocity wy, (with respect to the center C) than the angular velocity wys of the
Man P, and therefore she can always move herself into the position 6*(t) = 7, i.e. to a position diametrically
opposite from P. In fact we note that

v sinuy Uy
wy, = ——=, wy = (4.98)
and for |wg| > |wyy| implies
vy, v sinuy S Uy, 1
r* = r* “|R| R’

hence r*(t) < v R.

Clearly inside r*(t) < vp R, for every strategy uyy of the Man, the Lady can consider a strategy uj in order
to stay in a situation where §*(t) = 4m; hence §* = 0 and wy, = wy;. Relations (4.98) give the optimal
control

u}h(t)r*(t)>

(ups(t),uz(t)) = <u"j\/[(t), arcsin R

and the optimal trajectory is, again by the dynamics,
-
0" ()|, r*(t)) = W,RULM 4.99
u*

An example of the situation r(t) < v R:

Let us suppose that the Man starts at the North pole of the circumference and runs
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in the clockwise sense with mazimal velocity, i.e. uy; = 1. Let us denote
by M(t) the position of the Man at the time t, we have (see the blue curve

in the picture)
t t
M(t)=R <sin R C08 R) .

Note that M| = 1. Let us denote by L(t) the position of the Lady at time

t: gives

r* = Rugpsinu} = r* = Roupuj cosury,.

Since the dynamics is r* = v, cosuj,

55

we obtain Ru; = 1, i.e. ui(t) = t/R + a with a constant. The initial condition r*(0) = 0 with (4.99) give a = 0.
L L g

Hence we have the strategy for the Lady

uy =

ol

By using , we obtain (see the red curve in the picture)

.t .t t
L(t) = —Rwvg, sin = (sm R 008 R) .

It is easy to verify that the modulo of the velocity of the Lady is exactly vy,.
e Since the lady doesn’t stay in the lake forever, let us define Tj as

To = max{t > 0; r*(t) = v, R},
and let us study the situation 7*(¢) > vy R. The previous argument imply that

|0 (Tp)| =, r*(To) = RVL.

(4.100)

Taking into account that, by the final condition on the value function V (6, R) = |0|, we have V;(T) =

%—‘e/(ﬁ*(T),r*(T)) = sgn(6*(T)) : equation gives
Vo (t) =Vg(T),  tello,T]

Hencea by ‘ )
uyy (t) = sgn(0*(T)), t € [Ty, T.

Relation gives
cos(u¥ sin(u’} = vr it * Vo ()
(ostu () sin(ui (1) = o (V0,350 ).
Hence B
sinul () = :*L—(t)sgn(H*(T)).
The optimal control here is
(i (), (8) = <sgn(e*(T)),arcsm “RSED((S(T))) . te Ty, T)

(4.101)

(4.102)
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e Let us discuss the possibility of the lady and the man obtain their respectively pay off. In 7*(¢) > v R,
the dynamics (4.90)) and the optimal control (u},,u} ) in (4.101) and (4.102) give

i — v sinuy B @ _ Sgn(Q*(T))U%R2 _ (r*)Q'

4.103
o (4.103)

Now, taking into account the dynamics (4.91)) and the optimal control u} in (4.102)), we have

. vL,
= v cosuy, = —1/(r*)% — v? R?;

,r*

we consider only the case cosuj > 0 since the Lady cannot stay in the lake forever (see the dynamics).

Hence (4.103]) becomes

sen(en (1) V(") 0B ()2 e

o =
R r* r*
Csen(r(r) O R
a v, R r* '

Taking int account (4.100)), let us put 6*(Ty) = wsgn(6*(7")). Hence the last equality and (4.100|) imply

/9*(T) - /T*(T) sgu(6*(1)) \/r2 — v2R? .
0 (

.
*(To) r* TO) ULR T
_UQRQ
S (07(T) — 0% (T0))sen(6°(T)) = / A
vLR oL R T
o (T == — / VIZS 0 (with s = 2B
T

A e e

1 1
=——\/1- v% + (— arccos s]
v, vL
= —— 1—v%+arceova
v

Hence 1 50+
* _ 2 ]
|0*(T)| =7 — EHJF arccos vy,. 253
go .

A plot of the function, for z € (0, 1], e
1 -2.5§
r—=ylr)=m— . 1 — 22 + arccos z, y 507
775§
1 —r2 ]
comes from lim y(z) = —o0, y(1) =7 and ' = 1352:” > 0. 100

z—0t

Hence there exists a value v; € (0,1) such that for vy € (v}, 1) the Lady sure will not be caught by the
Man.
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4.4 Pursuit-evasion game of kind

We consider a situation similar to section [4.3] but now the functional J takes only a finite number of values:
these type of pursuit-evasion games are called games of kind. The theory of these type of games is very
wide and here we would like to give some ideas, in some particular situations (see for example [12] for more
details).

Let us consider the problem in . Here we consider a closed target set 7 = R x Tq C G, with
int(79) # 0, such that 97 is a (n — 1)-dimensional surface in C*, i.e.

070 ={x € Gy CR": h(x) =0},

where h : Go — R is a function in C1. For every x € 97y, let us denote by n(x) € R™ the outward normal
of 7o at x; clearly n(x) || Vh(x).

In this game, the evader (E) tries to prevent the state—trajectory from reaching into the interior of 7o,
whereas the pursuer (P) seeks the opposite. We assign numerical values to the outcomes J in for the
trajectory x associated to the controls (uj, usz):

e —1 for termination of the game or capture, i.e. the trajectory x arrives in int(7p);
e +1 for no termination of the game or escape, i.e. the trajectory x never arrives in int(7p).

Hence we are interested in the game

Pursuer: min J(ug,ug), Evader: max J(uy,uz)
up u2
u(t) € Uy uy(t) € Uy
J(uy, ) = —1 if 3¢ 2 0 s.t. x(t) € int(7p) (4.104)
+1 otherwise
x = g(x,ur,uz)
x(0) =«

with (0, @) € G fixed. For our game the Hamiltonian is
H(X, 111,112,)\) = )\-g(X, ul,u2). (4105)

Let us suppose for this problem that the Isaacs’ condition is satisfied.

It is clear that in this problem the regularity assumption in 7. does not hold and, despite the Isaacs’
assumption holds, it is not possible to guarantee that there exists the value function V. However we can
define V~ and V' and, exactly as in 4.—ii. of Proposition we have

Remark 4.6. For the game (4.104)) we have that:
i. the lower value functions V™~ and the upper value function V™ do not depend on t;
ii. the game set is G = RT x Gy.

Since the “solution” of the game does not depend on the time, the most interesting question is to study
which initial points of Gy lead to a termination of the game and which are not. In order to do that, let us
classify the points of the set Gy:

States of capture, states of escape in Gy \ int(7p).

Definition 4.8. Let x € Gy \ int(7p). We say that

e X is a state of termination (or to capture) if P has a strategy—control such that for every acts of E the
trajectory can be steered to the interior of the target set: we denote by Cqp the set of all the states of
capture;
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e X is a state of no—termination (or to escape) if E has a strategy-control such that for every acts of
P the trajectory can be steered outside to int(To) forever: we denote by Es. the set of all the states of
escape;

Let us prove the following:
Remark 4.7. If is x € Cqp, then V™~ (x) = VT (x) = —1. If is x € Es¢, then V™ (x) = VT (x) = +1.

Proof. Let € be a state of capture. Then there exists a control u; € U;(0) such that for every us € Us(0)
we have J(up,uz) = —1. This implies that

J(ﬁl,u2) = —1, Yuy € UQ(O).

Hence, by (4.17) and by deﬁnitiorﬁ,

1<V () <V (&) = sup inf  J(up, P2[wy]) < sup  J(ap, Poluy]) = -1
@2682(0) U1€Z/{1(O) @2682(0)

Now, let &€ be a state of escape. Then there exists a control uy € Us(0) such that for every u; € U;(0)
we have J(up,uz) = +1. This implies that

J(ul, ﬁg) =1, Yu; € Z/ll(O).
Hence, by (4.17) and by definition,

1>V () >V (&)= inf J(® > inf  J(®1[0s],Us) = 1.
>VT(E) =V (§) élégl(O)ugiZI:(o) ( 1[112]411)_@13;1(0) (@1[uz], uz)

Now we are in the position to define, with an abuse of language, a sort of value function
ViCopU&se — {—1,+1}.

The most interesting situation, of course, is the one in which Gy contains both capture and escape states.
It is clear that the value function V is discontinuous and the theory of the previous sections is not useful.

Usable part in 07j.

At this point a natural question is to investigate which points of the boundary of the target set are candidate
to be a state of termination for the game. We have the following:

Definition 4.9. We define the usable part, that we will denote by UP, as

= 0T : i . = i . <0,. 4.106
Uup {XE To urlnelrUlllgleaan(x) g(x,uy,ug) ur;lgéurlnelrUlln(x) g(x,uy,ug) < } ( )

The points of the usable part are candidate to be termination for the game. If strict inequality holds in
for some x, then it is a state of termination, i.e. x € C,)p, and it penetrates in 7p; to be clear, if for
some controls (uj, ug) and for some time ¢, the trajectory x associated to such controls arrives at time ¢ in
a point of this type, then %(t) = g(x(t),ui(t), ua(t)) gives the direction of the trajectory in the point x(t);
since n(x(t)) - x(t) < 0, then the trajectory enters in int(7p).

The points x for which equality holds in (4.106) may be only touching points.

4We recall that the First Player minimizes and the second Player maximizes, hence in the definition of V™ and V=~ we have
to change 1 with 2 and viceversa.
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The barrier and its construction.

We now are in the position to introduce the most important “object” that allows us to study our problem:
the barrier. It is the set that separates the state of capture to the state of escape:

Definition 4.10. We define the barrier By, the set in Gy \ int(7Ty) by
Bar = 0Cqp N O,

The boundary of the usable part, that we will denote by BUP, is the set
BUP =UP N Bg.

It is clear that the barrier can be a very irregular set. Let us introduce the following two assumptions:
Assumption. Let us assume that By, is non empty and

e (smoothness) the barrier is a C? surface, i.e. By = {x: b(x) = 0}, with b € C? and such that
X € By = X&CupUC&s;

e (naturality) the curve from which the barrier starts is BUP, i.e. the boundary of the usable part.

For every point x € By, let us denote by p(x) € R" the outward normal of C,p, in the point x (and inward
Ese): clearly p(x) || Vb(x). Without loss of generality we assume

p(x) = Vb(x). (4.107)

& Csc Tne)

A natural barrier: for every point xo in BUP, we have p(x¢) = n(xo) (as we will see in ).

If we are able to construct the barrier, then we would also have found C,;, and &,. and, as a result, we solve
the game.
A first result in the direction to construct By, requires this definition

Definition 4.11. Let the Isaacs’ condition be satisfied. We say that a regular surface A in Gy, with

A={xe Gy CR": a(x) =0},

where a : Go — R is a function in C! such that a(x) € R" is the normal in the point x to A (clearly
a(x) || Va(x)). We say that A is a semipermeable surface if

min max a(x) - g(x,u;,u2) = max min a(x)-g(x,u;,us) =0.
u1€l1 uz2€lz uzelz u1€ls

The property of the barrier is the following:
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Proposition 4.2. If the Isaacs’ condition is satisfies, then the barrier is a semipermeable surface, i.e. for
every X € Bq we have

i : = i : = 0. 4.108
Jnin max p(x) - g(x,ur, uz) = max min p(x) - g(x, ur, uz) (4.108)

Proof. Let 8 be the value of the previous max — min that is equal to the min — max: we have to prove that
B = 0. Let us consider x¢ € B, and let us suppose that at time ¢y > 0 the trajectory x = x(t), associated
to the controls (uy,uy), arrives in the point xg € Bg,-.

Let us assume that 8 < 0, i.e.

max min p(xn) - g(xn. u1.us) = B :
U2€5(2u1€U1p( 0) g( 0, U1, 2) ﬁ

this implies that for every point uy € Us there exists a point uj? € U; such that
P(x0) - g(x0, u;*, u) < B. (4.109)

Now, for every point x € C,p, let us denote by uf the strategy of P such that for every acts of E the
trajectory can be steered from x to the target set (with exit time 7).

\\«\\ ‘\\\ h R \\\\ \\\
Pcfia’f R
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A trajectory X arrives at time to in the point xXog € Bg,. If for every point us € Uy there exists a point
u}? € U; such that holds, then for every choice of the second player (E) the first player (P) have a
control to move the trajectory from Bq, into Cqp following (locally) the direction X(to) = g(xo(to), uy?, ug).

Let us consider £ > 0 small. For every strategy uy of the second Player (E) in the time [to,to + €), let
us consider the strategy for the first Player (P)

() = uy2(0) for t € [to,to +¢)
! 0T (1) for te [to+ e, Ty)
where X is the trajectory associated to (u;” (to), uy) in [to,to + €), i.e. the solution of

{§(t) = g(R(t), ") uy(t)) in [to, to +¢)
i(fo) = X

This implies that xg € Cgp, which contradicts the smoothness assumption on the barrier. Hence 3 cannot
be negative. A similar proof shows that 5 cannot be positive. 0

The fact that B, gives the property that without P’s cooperation, E cannot make the state cross By,
passing from a region where V' = —1 to a region where V = 1; and vice versa, without E’s cooperation, P
cannot make the state cross B, passing from a region where V' = +1 to a region where V' = —1. However we
have to remark that the semipermeability condition in does not exclude a “tangential” penetration.

Let us emphasize that relation does not imply that, for every fixed x € B,,, there exists a pair
(uf,u3) € Uy x Uz, with uj and u} that depend on x, such that realizes the min-max in (4.108). The
following notion is a further requirement on the barrier:
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Definition 4.12. Let the Isaacs’ condition be satisfied. We say that a function (vi,v3) : Ber — Uy X U is
a barrier control for Bg, if for every x € By, we have that

Yuy € UQ, (4.110)
Yu; € Us. (4.111)

p(x) ’ 9<X7 VT(X)v u2) <0,
p(X) ’ g(X, up, V;(X)) > 0,
Let us notice that the barrier control, in general, is not unique.

Remark 4.8. (vi,v3) is a barrier control for Bg, if and only if, for every x € B, the pair (vi(x),vi(x))

realizes the min-max in , i.e.

. * ) = mi . — - . —0. (4.112
pP(x) - 9(x, V] (x), v5(x)) urflé&lﬁl?ép(x) g(x,uy, ug) 335‘;5}2311’(") g(x,u,ug) =0. )

Proof. Let (v],v5) be a barrier control for By, and fix x € By,. Clearly (4.110]) implies
p(x) - g(x,11(x),v3(x)) <0

while (4.111) implies
p(x) - g(x,v1(x),v3(x)) > 0.

Hence p(x) - g(x, Vi (x),v5(x)) = 0 and, using (4.108)), we have that (v](x),v35(x)) realizes the min-max in
(109,

Now let us suppose that, for x € B, fixed, the pair (v](x),r5(x)) realizes the min-max in (4.108)).
Moreover, let us suppose that (4.110]) is false, i.e. there exists Ty € Us such that

p(x) - g(x,v}(x),uz) > 0.

Since v3(x) realizes the min, we obtain

0 < p(x)-gxvi(x),u)

max p(x) - g(x, V](x), uz)
uz€els

— 1 . u;,.u
Jnin max p(x) - g(x,ur, uz)

IN

which contradicts (4.108]). This gives that (4.110)) is true. A similar proof gives (4.111]). 0

Let (v7,v%) be a barrier control for B, (sufficiently regular), let us consider a point x¢ € B, and the
curve x : [0, to] — R™, for some ty > 0, defined by

{k(t) = g(x(t), vi(x(t)), v5(x(t))) in [0, ] (4.113)

Since (v}, v3) is a barrier control and using the previous ODE we have

0 =p(x(t)) - g(x(t), v1(x(1)), v2(x(t))) = p(x(t)) - X(t),

i.e. the curve x lies on the semipermeable surface B, and does not leave it. Let us show how it is possible
to use this idea in order to construct the barrier: such construction is “formal”, i.e. we are not interested
to give the precise assumptions that the following arguments require.

Let x be a point in B,,. By (4.112)) we have

p(x) - 9(x,v1(x),v5(x)) = 0. (4.114)



62 CHAPTER 4

Set p(x) = (p1(%x),...,pn(%x)), w1 = (u1,1,...,u1 k) € U1 C R and uy = (u2,1,-..,u2p,) € Us C RF2. If
we consider the derivative w.r.t. x; of (4.114]), we obtain

—~ pi " "
0 = 3 G vils +Z (5 14,3 ) +
ky
" i} 8Uikk
Xl pix kz Gy VG0 300) <x>] +
i 8V§7k
3 [nix Z (3, 14 (), 13(0)) 2 ()| (4.115)
i=1 h— j
Since By, is a C? surface, by Schwarz and (4.107) we have
Op; B 0%b B 9%b Op;j
T%(X N O0x;0x; x) = O0x;0x; x) = Bxl( X)- (4.116)
Let us notice that the third addend in is
iy Lk S Jgi « . Wi
Z o} a 0 g0 = B[z vt vi)] 70
~_ 0 . " OVi g
= 2 Gy (P00 901005030 ) 5 2 60

since v} (x) realizes the min in (4.108]), i.e. the min for the function u; — p(u1) := p(x) - g(x, ur, vi(x))
(recall that x is fixed), then Vp(v;(x)) = 0 and we have that

0
8U17k

(p(x) g(x, u’;(x),u;(x))) -0, Vk=1,... k.

Hence the third addend in (4.115)) is zero; a similar argument proves that the fourth addend in (4.115) is
zero. Equation (4.115) becomes, using (4.116)),

21:( g, Vi (x +sz (x,1(x),v5(x)) = 0. (4.117)
=1

Now, let us move x along the barrier By, i.e. x = x(t) € B, as in (4.113). Relation (4.117) becomes, using
the ODE in (4.113)),

0 = 3 (0, v (xlt)) v +sz D2 e(0), w3 (x(), 3 x(0)
i=1 "
= pi(x(t) + gZ‘(X(ﬂ’ vi(x(t)), v3(x(1)), p(x(t)))

since for our game the Hamiltonian is as in (4.105)). Hence we have that the curve x = x(t) € B, satisfies

P(x(t)) = =ViH (x(t), v1(x(1)), v5(x(1)), p(x(1)))- (4.118)

Now let us consider in (4.113]) xo € BUP: the assumption that By, is natural, gives that the curve x = x(¢)
“starts” in xg, i.e. x(0) = xg. Recalling that BUP = UP N B,,, we have that xg € B, gives, see (4.108)),

min max p(xp) - g(Xp,u1,u2) = max min p(Xg) - g(xp, uz, uz) =0,
u; €Uy uz2€ls uzclUz u1 €l
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while xg € UP gives, by definition,

min max n(xg) - g(Xg, U1, u2) = max min n(xg) - g(xg, ug, us) < 0.

Jnin max n(xo) - g(xo, 1, uz) = max min n(xo) - g(xo, ur, U2) <

If the previous inequality is strictly, xg is a state of termination; this contradicts xg € Bg-. The regularity
of 9Ty and B, gives the condition

p(x0) = n(xo). (4.119)
Collecting the previous arguments in (4.113)), (4.118) and (4.119)), in order to construct the barrier we

have the following;

Proposition 4.3. The barrier x = x(t) for the pursuit-evasion game in (4.104}) solves the system

p(x) T —V*?h;(x; I({)(x), v5(x), p(x))
X = g(X,V](X), Vy(X

b(x) - 5(x, Vi(x), w(x)) = 0 (4.120)
p(x(0)) = n(x(0)) xo € BUP

where (V§,v3) is a control barrier (i.e., by Remark [4.8, (v;(x),v3(x)) realizes the min — max in ),
p(x) € R™ is the outward normal of Cap in the point x € By, as in .

4.4.1 Interception of a straight flying evader

When can an interceptor be successful against a faster attacking craft which travels a fixed straight course?
This model is in the book of Isaacs (see section 8.6 in [10]).

Here P moves in the plane with a motion and unit speed, while E is bound to a line moves with speed
w (w > 0 fixed), and merely can select for his strategy one of the two possible directions of travel. Capture
occurs when |PE| < [, where [ > 0 fixed. In view of P’s unquestioned ability to capture when w < 1, this
case is trivial (please, solve it ). Our interest is in the conditions which make possible the success of a slower
pursuer with w > 1.

Let us pass to the details. The Pursuer P is free to move itself in the half-plane y > 0: the velocity is
¥ (t) with modulo v = 1, the angle of the velocity w.r.t. the y-axis is ¢». The Evader E, constrained on the
x-axis, can only controls the direction ¢ € {£1} of the velocity is W (t) of modulo w > 0 fixed.

—l -

The dynamics is
T =wp —siny
9 = — Ccos

and the projection of the target set in the state is

To={(z,y) €Go:y >0, Va2 +42 <I}.
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It is easy to see that for every (zg,79) € R x Rt there exist a strategies (1, ) such that the associated
trajectory reaches into the interior of the target set: hence the game set is G = [0, 00) x Gy such that

Go = {(z,v) €R2:y20}.

The game hence is

Pursuer: min J(¢, ¢), Evader: max J(,p)
P pe{-1,+1}
=1 i Ft>0 st [[(x(),y(@)]2 <
T 0) = {+1 otherwise
T =wyp —siny
Yy = — cos
\ (2(0),y(0)) = (z0,%0), ¥ =0

The Hamiltonian is H(x,y, 1, ¢, A1, A\2) = A1(wp —sin) — Ay costp and it is easy to verify that the Isaacs’
condition is satisfied.
The boundary of 7T is smooth and

0Ty = {X =l(sina,cosa): a € [—E, E] } ;
22
the outward normal of 7y in x € 97 is n(x) = (sin«, cos «). Let us looking for the usable part UP, i.e.
UP ={x=l(sina,cosa) € 9Tp: min max n(x)-g(x,v,p) <0};
P pe{—1,+1}

hence we have to find « € [ — 7, §] such that, since w is positive,

min(—sinasiny —cosacosy) +w max @sina <0.
P pe{-1,+1}

This is equivalent to —1 + w|sin | < 0. Hence
. . 1
UP = {X =l(sina,cosa) : |sina| < }
w
The boundary of the usable part is
BUP = {X =l(sina,cosa) : |sina| = } {x§ = I(sina™,cosa™), x; :=I(sina",cosa”)},

where —7/2 < o~ < 0 < ot < /2 such that [sina®| = 1.

Let us construct the barrier By, i.e. the curve x(t) = (z(t), y(t)) which is solution of the system (4.120)),

i.e.
.

B1(,) =~ o (0,07 (,9), " (@ 9), 1 (2,9), Pl 9) = 0
H
S

Pa(@,y) = — L (2, 9" (2, 9), 0" (@, 4), 1 (), P ) = O

& =we*(x,y) —siny™(x,y) (4.121)
§ = — cosy* (z,y)

p1(2, ) (W™ (2, ) — sin §*(2,)) — pa(e, ) cos $*(z, y) = 0

P((0),5(0)) = n(x(0),y(0)) (x(0),4(0)) € BUP
recalling that p(x) = (p1(x,y),p2(z,y)) is the outward normal of Cgp, in x = (x,y) € By, and denoting by
(vi(x),v5(x)) = (¥*(x,y), ¢*(z,y)) the control barrier who realizes the following min — max

min max p(z,y) - g(z,y,1,¢) = min (—p(z,y) sin g — pa(z,y) cos ) +w _max _pi(x,y)e,
P pe{—1,+1} P pe{—1,+1}
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i.e.

(cos ™ (x,y),siny™(z,y)) = m(pz(:v,y),pl(w,y)), @ (z,y) = sgn(pi(z,y))- (4.122)

Let us consider xg € BUP. The first two equations of the system (4.121)) give that p(z,y) is a constant;

hence the barrier is part of lines. Since B, starts from the point xar and it is tangent to 07g in such point

(see the last condition in the previous system), we have that the equation of the barrier is
x(t) = (z(t),y(t)) = th(—cosa™,sinat) + I(sinat,cosa™); (4.123)

for some non zero constant k. Now, by noticing that B,, divides the escape states . to the capture states
Cap and that UP \ BUP is inside Cyp, in (4.123) we have only to consider ¢ > 0 and k > 0.
The outward normal of Cq;, along B, in the point x(t) = (x(¢),y(t)) in (4.123)) isEl

P(x(t)) = (p(2(t), y(1)), pa(a(t), y(1))) = (sina™, cosa™) (4.124)

hence in (4.122)) we obtain
P y) = ot i (a,y) =1, (4.125)

Let us verify that the third, the fourth and the fifth equations in (4.121)) are satisfied: using (4.123[)—(4.124))
we obtain that the mentioned relations in (4.121])

—kcosaT =wl —sina™
ksinat = —cosa™
sinat(wl —sina™) —cosat cosat =0

are true, choosing k = —cotana™.
A similar argument holds for x; . Hence we obtain:

I\

/T

®Note that, by (4.123), x(t) = k(—cosa™,sina™) and by (4.124) we have %(t) L p(x(t)).
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Appendix A

Optimal control tools

Let us consider the problem

t1
Ju)= [ f(t.x,u)dt +(x(t1))
to
x=g(t,x,u)
X(to) = (Al)
max J(u),
C ={u:[to,t1] = U C R* u admissible}

where tg and t; are fixed.

A.1 Variational approach
We define the Hamiltonian function H : [ty,t1] x R™ x R* x R® — R for the problem 1' by
H(t,x,u, >‘) = f(t,X,U) +A- g(t,X,U).

The following result is fundamental:

Theorem A.1 (Pontryagin). Let us consider the problem with f € CY([to,t1] x R™*) and g €
Cl([to,tl] X Rn+k).

Let u* be an optimal control and x* be the associated trajectory.

Then there exists a continuous multiplier X* : [tg,t1] — R™ such that

i) (Pontryagin Maximum Principle) for all T € [to,t1] we have

u*(7) € arg ma(}( H(1,x*(1),v, Ay, A" (7));
ve

ii) (adjoint equation) in [to, 1] we have X* = —VyH (t,x*, u*, A*);
iii) (transversality condition) A*(t1) = Vx(x(t1));

A first sufficient condition is the following

Theorem A.2 (Mangasarian). Let us consider the maximum problem with f € C' and g € C'.
Let the control set U be convex. Let u* be a mormal extremal control, x* the associated trajectory and
X' = (M,..., \) the associated multiplier (as in theorem [A.1]).

Consider the Hamiltonian function H and let us suppose that

v) the function (x,u) — H(t,x,u,X*(t)) is, for every t € [to,t1], concave.

67
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Then u* is optimal.
Another and useful sufficient condition is due to Arrow.

Theorem A.3 (Arrow). Let us consider the mazimum problem with f € C' and g € C'. Let u* be a
normal extremal control, x* be the associated trajectory and N* be the associated multiplier.
Let us suppose that exists the mazimized Hamiltonian function HO : [tg,t1] x R® x R™ — R by

HO(t,x, ) = ma&cH(t,x, u, ), (A.2)
ue

where H(t,x,u,A) = f(t,x,u) + X - g(t,x,u) is the Hamiltonian.  Let us suppose that, for every t €
[to, t1] x R™, the function
x — HO(t,x, \*(t))

is concave. Then u* is optimal.

A.1.1 Infinite horizon problems

Let us consider the problem:

o0

max f(t,x,u)dt
UEC t()

x = g(t,x,u)

x(to) = o (A.3)
lim z;(t) = Bi, for 1 <i<n

t—00

lim z;(t) free forn' <i<n

t—00

C ={u: [tg,00) = U C R¥, u admissible}

where ae and B = (B4, ..., B,) are fixed in R™. We give a sufficient condition in the spirit of the theorem of
Mangasarian:

Theorem A.4. Let us consider the infinite horizon maximum problem with f € C' and g € C'.
Let the control set U be convex. Let u* be a normal extremal control, x* the associated trajectory and
A* = (A],..., A)) the associated multiplier, i.e. the tern (x*,u*,X*) satisfies the PMP and the adjoint
equation.

Suppose that

v) the function (x,u) — H(t,x,u,X") is, for every t € [ty, 00), concave,

vi) for all admissible trajectory x,
lim A*(¢) - (x(¢) — x*(¢)) > 0. (A.4)

t—o00
Then u* is optimal.

Remark A.1. Suppose that in the problem we have only a condition of the type lim;_,o0 () = B;.
Suppose that there exists a constant c such that

IA*(t)] <, Vt>T1 (A.5)
for some T, then the transversality condition in holds.

In many problems of economic interest, future values of income and of expenses are discounted: if » > 0
is the discount rate, we have the problem

o0

J(u) = /t e " f(t,x,u)dt
X = g(t,x?u) A6
x(ty) = (4.6)

el
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Let us define the current Hamiltonian H€ as
Hc(t7 X, u, AC) = f(ta X, u) + AC . g(t') X, u)7
where A, is the current multiplier. Clearly we obtain

He=¢"H (A7)
X ="t

A necessary condition for the problem (A.6) is
Remark A.2.

u® € argmax H(t,x*, v, X))
veU
Ao =P — Vi HO(t, x*, u*, A¥)

In order to use a necessary condition of optimality as in Theorem we note that (A.7)) implies that
the concavity of
(x,u) — H(t,x,u,X"(t)), vt

is equivalent to the concavity
(x,u) — H(t,x,u, A5(1)), Vi

A.2 Dynamic Programming

Let us consider the problem for the problem (A.1)); we define the Hamiltonian of Dynamic Programming
Hpp : [to, t1] x R?" — (—o0, +0o0] defined by

Hpp(t,x,A) = ryg&((f(t, x, V) + AX-g(t, x, v)) (A.8)

We have the following necessary condition

Theorem A.5. Let us consider the problem and let us suppose that for every (1,€) € [to,t1] X R”
there exists the optimal control u*; ¢ for the problem with initial data x(7) = &. Let V' be the value function
for the problem and let V' be differentiable. Then, for every (t,x) € [to,t1] x R™, we have

{ %‘t/(tax) + Hpp(t,x, ViV (£,x)) = 0 for (t,x) € [to,t1] x R" (A.9)
Vi, x) = () for x € R

We give a sufficient condition for a more general problem: let us consider the problem

T
J(u) = t f(t,x,u)dt + (T, x(T))
X = g(t,x?u)
X(to) =«
(T,x(T)) € S

max J(u
uely,o ( )7

(A.10)

with a control set U C R¥, with the target set S C (tp,00) x R™. Let us consider the reachable set for the
target set S defined by

R(S) ={(7.€) : Cre # 0},

i.e. as the set of the points (7,€) from which it is possible to reach the terminal target set S with some
trajectory.
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Theorem A.6. Let us consider the problem with S closed. Let W : [to,t1] x R™ — R be a C! solution
of the BHJ equation

ow
ﬁ(tv X) + I\I/lé%(}((f(t, X, V) + va(ta X) : g(tv X, V)) = Oa

for every (t,x) in the interior of the reachable set R(S). Suppose that the final condition
W(t,x) = ¥(t,x), V(t,x) e S (A.11)

holds. Let (to, cx) be in the interior of R(S) and let u* : [to, T*] — U be a control in Cy, o with corresponding
trajectory x* such that

aavf(tax*(t)) + [, x5 (1), u" (1) + VW (£, x7(1)) - g(t, x*(t), u"(t)) = 0,

for every € [to, T*]. Then u* is the optimal control with exit time T™.

e Multiplier as shadow price

Theorem A.7. Let x;, ., be the optimal trajectory, A;‘ma be the optimal multiplier and let V be the value
function for the problem with initial data x(tg) = a. If V is differentiable, then

ViV (1t X4 0 (t) = Ay (1), (A.12)

for every t € [to, t1].
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