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Abstract We show that a simple and accurate approach
to the computation of hadron collider processes involving
initial-state b quarks can be obtained by introducing an inde-
pendently parametrized b PDF. We use the so-called FONLL
method for the matching of a scheme in which the b quark is
treated as a massless parton to that in which it is treated as a
massive state, and extend it to the case in which the b quark
PDF is not necessarily determined by perturbative matching
conditions. This generalizes to hadronic collisions analogous
results previously obtained for deep-inelastic scattering. The
results corresponds to a “massive b” scheme, in which b mass
effects are retained, yet the b quark is endowed with a PDF.
We specifically study Higgs production in bottom fusion, and
show that our approach overcomes difficulties related to the
fact that in a standard massive four-flavor scheme b-quark
induced processes only start at high perturbative orders.

1 The treatment of heavy quark PDFs

It has been recently shown [1] that for accurate phenomenol-
ogy at the LHC it is advantageous to treat the charm parton
distribution (PDF) on the same footing as light-quark PDFs,
namely, to parametrize it and extract it from data, rather than
to take it as radiatively generated from the gluon using per-
turbative matching conditions. This is likely to be due to the
fact that matching conditions are only known to the lowest
nontrivial order, which may well be subject to large higher
order corrections, as revealed by the strong dependence of
results on the choice of matching scale. On top of this, of
course, the starting low-scale heavy quark PDFs could in
principle also have a non-perturbative “intrinsic” component
[2,3]. It is important to note that whether or not the heavy
quark PDF has a nonperturbative component, and whether
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it is advantageous to parametrize the heavy quark PDF are
separate issues: in fact in Ref. [1] it was shown that the main
phenomenological advantage in parametrizing and fitting the
charm PDF comes from a region in which any nonperturba-
tive contribution to charm is likely to be extremely small.

The case of the bottom quark PDF is, in this respect, par-
ticularly interesting. On the one hand, one may think that that
the problem of large higher order corrections to the match-
ing conditions is alleviated in this case by the larger value of
the mass. However, on the other hand, there is a more subtle
consideration. Namely, there are b-initiated hadron collider
processes – some of which are especially relevant for new
physics searches – such as Higgs production in bottom fusion,
for which b quark mass effects might be non-negligible [4–
6]. This suggests the use of a scheme in which the b quark is
treated as a massive final-state parton – hence not endowed
with a PDF. In such a scheme the b-induced process neces-
sarily starts at a higher perturbative order than in a scheme in
which there exists a b PDF, because the b production process
is included in the hard matrix element. As a consequence, the
computation of the b-induced process itself is more difficult
and it can typically only be performed with a lower pertur-
bative accuracy than in a scheme in which the b quark is a
massless parton.

The problem is somewhat alleviated if the massive-
scheme and massless-scheme computations are combined,
with the b-PDF in the massless scheme assumed to be pro-
duced by perturbative matching conditions. We henceforth
refer to such a computational framework as “matched-b”.
However, in a matched-b framework the massive computa-
tion is still beset by the need to start at high perturbative
order. As a possible way out, the use of a “massive five flavor
scheme” has been suggested recently [7,8], in which there
is a b PDF (hence five flavors), yet b quark mass effects are
included (possibly, at least in part, also in parton shower-
ing). The use of an independently parametrized b quark PDF
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within a framework in which massive and massless compu-
tations are combined offers a simpler way of dealing with the
same problem. We refer to this as a “parametrized b” com-
putational framework. Such an approach has been developed
for electroproduction in Refs. [9,10], and it has been used in
order to produce PDF sets with parametrized charm [1,11],
including the recent NNPDF3.1 set. Because the only data
currently used for PDF determination in which heavy quark
mass effects have a significant impact are deep-inelastic scat-
tering data close to the charm production threshold, in these
references only electroproduction was considered and only
the parametrization of the charm was studied.

In these previous studies, an independently parametrized
heavy quark PDF is included in the so-called FONLL method
[12], which allows for the matching of a scheme in which the
heavy quark mass is included but the heavy quark decouples
from QCD evolution equations, and a massless scheme in
which the heavy quark mass is neglected, but the heavy quark
PDF couples to perturbative evolution. In this parametrized
heavy quark version of the FONLL scheme, the heavy quark
PDF is present both in the massive and massless scheme,
though decoupled from evolution in the massive scheme;
unlike in conventional matched heavy quark computations
in which the number of PDFs is different, with one more
PDF in the massless scheme. The rationale for FONLL with a
parametrized heavy quark is to simultaneously include heavy
quark mass effects at lower scales and the resummation of
collinear mass logarithms in the heavy quark PDFs at higher
scales. This has the important byproduct that one ends up
with a computational framework in which there are heavy
quarks in the initial state even in the scheme in which mass
effects are retained.

Therefore, in a parametrized-b FONLL framework, prob-
lems related to the fact that the relevant processes in a massive
scheme start at higher order is thus completely evaded, since
the heavy quark PDF is always present. Mass effects are then
included to finite perturbative order, along with the resum-
mation of mass logarithms, though (unlike in some “massive
five-flavor scheme”) mass corrections to resummed pertur-
bative evolution are not included. On the other hand, any
possible nonperturbative corrections to the b PDF, including,
say, the effective value of the b mass at which the matching
should happen, are then included in the PDF itself and thus
extracted from the data.

In this paper we explicitly construct the parametrized-b
FONLL method, by generalizing to hadronic processes the
construction of Refs. [9,10] of FONLL with parametrized
heavy quark PDF. We specifically consider the application
to Higgs production in bottom fusion. This process has been
computed at the matched level both using the FONLL method
[13,14] and EFT-based methods [15,16], with the respective
results benchmarked in Ref. [17] and found to be in good
agreement with each other. All these computations were per-

formed in a matched-b approach, in which the b PDF is
absent in the massive (four-flavor) scheme, and determined
by matching condition in the massless (five-flavor) scheme.
Here we take this process as a prototype for the use of a
parametrized-b scheme for hadron-collider processes.

First, we discuss how the counting of perturbative orders
changes in the presence of a parametrized-b PDF, and rede-
fine suitable matched schemes based on this new counting.
We then work out the generalization to hadronic processes of
FONLL with parametrized heavy quark PDF of Refs. [9,10],
we discuss in which sense it effectively provides an alterna-
tive to the massive five-flavor scheme, and then we work out
explicit expressions for Higgs production in bottom fusion to
the matched next-to-leading order-next-to leading log (NLO-
NLL) level and NLO-NNLL level. We finally compare pre-
dictions obtained within this approach with some plausible
choices of the b-quark PDF to those obtained in the approach
of Refs. [13,14], and argue that results with similar or bet-
ter phenomenological accuracy can be obtained in a much
simpler way within this new approach.

2 The FONLL scheme with parametrized heavy quark
PDF in hadronic collisions

Even though we have the general goal of constructing a
parametrized-b FONLL scheme for hadronic processes, we
always specifically refer to Higgs production in gluon fusion,
in order to have a concrete reference case, and test scenario.
We recall that the FONLL method matches two calculations
of the same process performed in two different renormaliza-
tion schemes: a massive scheme in which the heavy quark
mass is retained, but the heavy quark decouples from the run-
ning of αs and from QCD evolution equations, and a massless
scheme in which the heavy quark contributes to the running
of αs and QCD evolution equations, but the heavy quark
mass is neglected. In the computation of a hard process at

scale Q2, in the former scheme mass effects O

(
m2
b

Q2

)
are

retained, but mass logarithms ln Q2

m2
b

are only kept to finite

order in αs (where mb denotes generically the mass of the
heavy quark). In the latter scheme, mass effects are neglected
but mass logarithms are resummed to all orders in αs . Hence
by matching the two calculations one retains accuracy both
at low scales where quark mass effects are important, and at
high scales where mass logarithms are large.

The general idea of the FONLL method is to realize that
these are just two different renormalization schemes: the
massive scheme is a decoupling scheme, and the massless
scheme is a minimal subtraction scheme. So the two cal-
culations can be simply matched by re-expressing both in
the same renormalization scheme, and then subtracting com-
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Fig. 1 Feynman diagrams for the leading (left) and next-to-leading
order real emission contributions to Higgs production in bottom fusion
which are present in the massive scheme when the b quark PDF is
independently parametrized, but absent otherwise

mon contributions. In practice, this is done by expressing the
massive scheme computation in terms of the PDFs and αs of
the massless scheme, and then adding to it the difference σ d

between the massless calculation and the massless limit of
the massive one. Schematically

σ FONLL = σmassive + σ d (1)

σ d = σmassless − σmassive, 0. (2)

This corresponds to replacing all the terms in the massless
computation which are included to finite order in αs in the
massive computation with their massive counterpart.

In the simplest (original) version of FONLL, as discussed
in Ref. [12] for b production in hadronic collisions, and in
Ref. [18] for deep-inelastic scattering, in the massive scheme
there is no heavy quark PDF, and the heavy quark can only
appear as a final-state particle. In the massless scheme the
heavy quark PDF is determined by matching conditions in
terms of the light quarks and the gluon. These conditions
match the massless scheme at a scale μ such that the heavy
quark PDF only appears for scales above μ. Specifically,
at order O(αs), the heavy quark PDF just vanishes at the
scale μ = mb and it is generated by perturbative evolution
at higher scales, while at O(α2

s ) it has a nontrivial gluon-
induced matching condition at all scales.

When introducing a parametrized PDF both the massive
and massless scheme computations change. The massless
scheme changes, somewhat trivially, in that the heavy quark
PDF, at the matching scale, instead of being given by a match-
ing condition, is freely parametrized. The massive scheme
changes nontrivially in that there is now a heavy quark PDF
also in this scheme, only it does not evolve with the scale.
The consequences of this were worked out in Refs. [9,10]
in the case of electroproduction, and we study them here for
hadroproduction for the first time.

2.1 Perturbative ordering

Because there is now a b PDF also in the massive scheme,
the counting of perturbative orders in this scheme changes
substantially. Specifically, for Higgs production in bottom
fusion the diagrams of Fig. 1 are present only when the b

PDF is independently parametrized. This means that while in
the massive scheme the process in the matched-b approach of
Refs. [13,14] starts at O(α2

s ), in a parametrized-b approach it
starts at O(α0

s ). As discussed in detail in Refs. [13,14,18], the
FONLL method allows the consistent combination of com-
putations performed at different perturbative orders either in
the massive or massless scheme: various combinations were
defined and discussed in Refs. [13,14] for Higgs production
in bottom fusion.

With the new counting of perturbative orders which is
relevant for a parametrized-b framework it is convenient to
define some new combinations. We consider in particular the
combination of the massive scheme O(αs) computation with
the standard five-flavor scheme next-to-leading log (NLL)
and next-to-next-to-leading log computations. We call these
combinations respectively FONLL-AP (hence correspond-
ing to NLO-NLL) and FONLL-BP (corresponding to NLO-
NNLL).

2.2 Parametrized-b FONLL

The construction of the parametrized-b FONLL for hadronic
processes closely follows the corresponding construction
for electroproduction, presented in Refs. [9,10], to which
we refer for more details. In comparison to the matched-b
FONLL of Refs. [13,14] the massive scheme contribution to
Eq. (1) includes an extra contribution:

σFONLLP = σFONLLM + δσP

δσP = σmassive
P − σ

massive,0
P , (3)

where σmassive
P is the massive-scheme contribution to the

given process with initial-state heavy quarks and σ
massive,0
P

its massless limit (which subtract its double counting with the
massless-scheme contribution). This massive scheme contri-
bution has to be re-expressed in terms of massless-scheme
PDFs, as explained in detail in Refs. [9,10,12–14,18].

For Higgs production in bottom fusion, up to NLO, this
extra contribution is given by the real diagrams of Fig. 1,
supplemented by the corresponding virtual correction and
thus it has the form

δσmassive
P

(
m2

H

m2
b

)
= 2

∫ 1

τ0

dx

x

∫ 1

τ0
x

dy

y2 f (4)
b (x) f (4)

b̄

(
τ0

xy

)

×
[
σ

(4),(0)

bb̄

(
y,

m2
H

m2
b

)
+ αs σ

(4),(1)

bb̄

(
y,

m2
H

m2
b

)]

+ 4 αs f (4)
b (x) f (4)

g

(
τ0

xy

)
σ

(4),(1)
bg

(
y,

m2
H

m2
b

)
,

(4)

where the subscript P denotes the fact that this contribution is
only present when the b PDF is independently parametrized,
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and the superscript (4) is used to denote the massive factor-
ization scheme, as in Refs. [13,14]. Note that even though,
with a parametrized b there are five flavors also in the mas-
sive scheme, only the four lightest ones contribute to the
running of αs and perturbative evolution. The massive cross-
sections σ

(4),(k)
i j were computed e.g. in Ref. [7] based on

corresponding QED results from Ref. [19] and are collected
in Appendix B after scheme change as we discuss below.

Note that in the matched-b computation of Ref. [13,14]
this process in the massive scheme starts at O(α2

s ), hence up
to NLO (with our new counting) the contribution given in
Eq. (4) is the only one to σmassive Eq. (1): so in actual fact in
this case

σmassive, NLO = σ
massive, NLO
P . (5)

The expression of σmassive, NLO suitable for use in the
FONLL formula Eq. (1) is obtained, as mentioned, by re-
expressing the massive scheme PDFs and αs in terms of
massless-scheme ones. For simplicity we assume that this
is done at a matching scale μb = mb. The matching condi-
tion for αs is, as well known,

α(4)
s (Q2) = α(5)

s (Q2)

[
1 − αs

TR
2 π

log
Q2

m2
b

+ O(α2
s )

]
(6)

while to O(αs) the only nontrivial matching condition is that
for the b PDF:

f (4)
b (x) = f (5)

b (x, Q2)−αs

∫ 1

x

dz

z

[
K (1)
bb

(
z, Q2

)
f (5)
b

(
x

z
, Q2

)

+K (1)
bg (z, Q2) f (5)

g

(
x

z
, Q2

)]
+ O(α2

s ), (7)

where again the superscripts (4) and (5) denote respectively
the massive- and massless-scheme expressions, and Ki j are
the matching coefficients

f (5)
i (Q2) =

∑
j

Ki j (Q
2) ⊗ f (4)

j (Q2), (8)

where the sum runs over all partons (including the heavy
quark), and

Ki j (Q
2) = δi jδ(1 − z) +

∑
n=1

αn
s (Q

2)K (n)
i j (Q2). (9)

Note that, of course, since there is a heavy quark PDF also in
the massive scheme, Ki j is a square matrix, so that, to O(αs),

K−1
i j (Q2) = δi j − αs(Q2)K (1)

i j (Q2). The matching function

K (1)
bb was calculated in Ref. [20]. Its explicit expression is

given for ease of reference in Appendix A together with that
of the splitting functions Pi j .

Substituting Eqs. (6–7) in Eq. (4) we get the desired
expression for the massive-scheme cross section:

σmassive
P

(
m2

H

m2
b

)
=

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
i j=b,g

f (5)
i (x, Q2) f (5)

j

×
(

τH

xy
, Q2

)
Bi j

(
y, α(5)

s (Q2),
Q2

m2
b

)
,

(10)

where to O(αs) the non-vanishing coefficients are

B(0)

bb̄

(
y,

m2
H

m2
b

)
= σ

(4),(0)

bb̄

(
y,

m2
H

m2
b

)
(11)

B(1)

bb̄

(
y,

m2
H

m2
b

)
= σ

(4),(1)

bb̄

(
y,

m2
H

m2
b

)

− 2 σ0

∫ 1

y
dz z δ(z−y) K (1)

bb

(
z, ln

m2
H

m2
b

)

(12)

B(1)
bg

(
y,

m2
H

m2
b

)
= σ

(4),(1)
bg

(
y,

m2
H

m2
b

)

−σ0

∫ 1

y
dz z δ(z − y) K (1)

bg

(
z, ln

m2
H

m2
b

)
,

(13)

whose explicit expressions are collected, as mentioned, in
Appendix B.

In order to construct the FONLL expression Eq. (1), the
massive scheme contribution must be combined with the dif-
ference term σ d Eq. (2). However, it is easy to check that,
just like in the case of electroproduction [9,10], this term,
which is subleading when using matched b, vanishes iden-
tically with parametrized b. This is due to the fact that the
massless limit of the massive-scheme calculation only dif-
fers from the massless-scheme calculation because of the
resummation of mass logarithms ln Q2

m2
b

beyond the accuracy

of the massive-scheme result (so at O(α2
s ) and beyond, in

our case). However, when re-expressing the massive-scheme
calculation in terms of massless-scheme PDFs the evolution
of the b-PDF is only removed up to the same accuracy as that
of the massive scheme calculation. This is seen explicitly in

Eq. (7), in which mass logarithms ln Q2

m2
b

are only removed

up to O(αs). Therefore, the higher order logarithms remain
unsubtracted in the expression of f (5)

b (x, Q2) and thus cancel
exactly between σmassless and σmassive, 0.

The FONLL result thus reduces to the expression Eq. (10):

σ FONLL-AP = σmassive
P

(
m2

H

m2
b

)
. (14)
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Fig. 2 Cancellation of the dependence on the matching scale in the
FONLL-AP and FONLL-BP schemes

We can thus write the FONLL result in the form

σ FONLL-AP =
∑
i, j

∑
l,m

σmassive
i j

(
m2

h

m2
b

)

⊗ K−1
il ⊗ f (5)

l

(
Q2

)
K−1

jm ⊗ f (5)
m

(
Q2

)
,

(15)

where K−1
il is the inverse of the matching matrix defined in

Eq. (6), perturbatively defined order by order according to
Eq. (9). This is of course well defined with a parametrized b
because Ki j is a square matrix. As discussed in detail in Refs.
[9,10] the effect of the inverse matching matrices in Eq. (15)
is to remove collinear logarithms related to the evolution of
the b PDF from the massless scheme PDFs f (5)

i , since these
are already included in the massive-scheme matrix cross-
section σmassive

i j , where they would appear as mass logarithms

ln Q2

m2
b

in the large Q2 limit (in actual fact here Q2 = m2
H ). As

a consequence, the result Eq. (15) is completely independent
of the matching scale mb (i.e. the scale at which the b PDF
is parametrized), as it must be, given that once the b PDF is
parametrized there is no matching scale left. We will check
this cancellation explicitly (see Fig. 2 below).

Equation (15) shows that FONLL effectively acts as a mas-
sive five-flavor scheme, in which standard five-flavor PDFs
are combined with the massive-scheme cross-section, with
massive quarks included in the initial state: it is in fact akin
to five-flavor scheme of Ref. [7], though in this reference
mass effects are also included in parton showering, which
we do not consider here. In FONLL as corrections are con-
sistently included to the order at which the massive-scheme
cross-section is computed, with collinear and mass loga-
rithms resummed to the logarithmic order to which PDFs
are used. The structure of the result Eq. (15) is universal, and
so are the PDFs which appear in it. Therefore, to the extent

that the PDF is correctly fitted, mass corrections (i.e. all terms
suppressed by powers of mb/Q) are then fully included up
to the order of the massive-scheme calculation: O(αs) for
FONLL-AP and FONLL-BP. Of course these latter correc-
tions are not universal and will have to be computed sepa-
rately for each process.

As mentioned, the FONLL framework allows for the com-
bination of massive- and massless-scheme computations per-
formed at arbitrary, independent accuracy. We discuss specif-
ically the two cases defined in Sect. 2.1, FONLL-AP and
FONLL-BP. In FONLL-AP, the massive-scheme partonic
cross sections σmassive

i j are computed up to NLO (i.e. O(αs)),
while the PDFs are evolved using NLO (more properly,
NLL) evolution equations. Hence, in this case Eq. (15), with
σmassive
i j computed up to O(αs) (i.e. including the diagrams

of Fig. 1), and NLO PDFs.
In FONLL-BP, the massive-scheme computation is still

performed up to NLO, but now the massless-scheme compu-
tation is performed up to NNLO. This has two consequences.
The first is that NNLO PDFs are now used. The other is
that hard cross-sections are now computed up to NNLO i.e.
up to O(α2

s ). Because massive terms are included only up
to O(αs), Eq. (15) must now be supplemented by a purely
massless O(α2

s ) contribution:

σ FONLL-BP = σ FONLL-AP

+
∑
l,m

σ
(5),(2)
lm ⊗ f (5)

l

(
Q2

)
f (5)
m

(
Q2

)
, (16)

where σ FONLL-AP is given by Eq. (15). Note that because the
matching functions K−1

i j are used to re-express the massive-
flavor scheme cross-section in the massless scheme, they are
accordingly computed to the same accuracy as the massive-
scheme partonic cross-section itself: so here to O(αs). The
difference term σ d Eq. (2) always vanishes identically. It
is clear that the computation is considerably streamlined
in comparison to the standard FONLL framework of Refs.
[13,14].

3 Higgs production in b fusion

We now present explicit results for Higgs production in b-
quark fusion within the FONLL-AP and FONLL-BP scheme,
and compare them to previous results of Refs. [13,14].
Results presented in this section are obtained using the fol-
lowing set-up. For the calculation of the 5F scheme coeffi-
cient functions, we use the interface to the bbh@nnlo code
[21] as implemented in the public bbhfonll code [22].
The subtraction terms needed for the FONLL-B calculation
of Refs. [13,14] is obtained using bbhfonll. The stan-
dard contributions to the 4F scheme are computed using the
MG5_aMC@NLO package [23,24], while we have imple-
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Fig. 3 Renormalization (left) and factorization (right) scale variation
of the cross-section for Higgs production in bottom fusion. The pure
five-flavor scheme computation is compared to the FONLL-AP and

FONLL-BP results presented here and to the FONLL-B result of Ref.
[13]. For the pure five flavor NNLO and the FONLL-BP three curves
are shown, corresponding to three choices of initial b PDF (see text)

mented the new terms δσmassive
P Eq. (4) and their massless

limit in a new version of bbhfonll, following the expres-
sions reported in Appendix B, and is available at

https://gitlab.com/dnapoletano/bbh-intrinsic-public.

Both codes use the LHAPDF [25] package.
We use the NNPDF3.1 NNLO set of parton distributions

with αs(Mz) = 0.118 [1]. For a first default comparison we
just use the vanilla NNPDF3.1 set, including the b PDF. From
the point of view of a computational framework in which the
b PDF is fitted, this can be thought of as the b PDF that one
would get if initial PDFs were parametrized at Q0 = mb, and
the fitted b PDF were to turn out to be exactly equal to that
given by the matching condition at this scale. Furthermore,
in order to get a feeling for effects related to the size of the
b-PDF we then consider, for the sake of argument, a b PDF
equal to that which would be obtained by using the matching
condition at μb = 2/3mb or μb = 1/2mb, and then evolving
up to Q = mb where the initial PDF is given.

First, as a consistency check, in Fig. 2 we verify that indeed
the dependence on μb cancels when constructing the FONLL
result with parametrized b according to Eq. (3). In this figure
the massive-scheme result has been constructed using a fixed
b PDF (that which corresponds to the standard matching con-
dition at μb = mb) and then re-expressing results in terms
of the massive scheme PDFs and αs in terms of massless-
scheme ones. This is done using Eq. (8), which contains the
matching coefficients Ki j which depend on the matching
scale μb, and thus the massive-scheme result becomes μb-
dependent. However, this dependence cancels exactly in the
final FONLL result.

In Fig. 3 we show the factorization and renormalization
scale dependence of the cross-section computed in various
schemes, with the other scale kept fixed at the preferred
[13,14] value μ = mH+2mb

4 . Specifically, we compare results
obtained using the FONLL-AP and FONLL-BP schemes dis-
cussed above, the pure five-flavor scheme , and the FONLL-B
result of Ref. [14], all using the same PDFs (including the b
PDF) as discussed above. For the pure five-flavor scheme and
for FONLL-BP we also show the three curves corresponding
to the three different choices for the b PDF discussed above,
with a corresponding band: the central, thick, solid line rep-
resents the default μb = mb choice, while the edges of the
band are drawn with dot-dash curves with decreasing thick-
ness, with the thicker of the two corresponding to μb = 2mb

3 ,
and the other two μb = mb

2 .
Note that the FONLL-BP computation Eq. (16) and

the FONLL-B result [14] are directly comparable: indeed,
they both include the five-flavor scheme computation up
to NNLO, and combine it with the first two orders of
the massive-scheme computation. The difference is that in
FONLL-B in the massive-scheme computation refers to
the process gg → bb̄H , while in FONLL-BP it refers to
bb̄ → H . If the b PDF is the same as given by perturba-
tive matching, the difference is then only that, in the latter
case, only mass effects related to the bb̄ which fuses into the
Higgs are included, while in the former, also those related to
the further unobserved bb̄ pair are present. In a realistic situ-
ation, in which FONLL-BP is used while parametrizing and
fitting the b PDF these mass effects should be reabsorbed in
the fitted b PDF. In our comparisons, they appear as a certain
enhancement of FONLL-BP in comparison to FONLL-B due
to the opening of phase space.
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Otherwise, the qualitative features of the comparison
between FONLL and the pure five-flavor scheme remain
essentially the same as discussed in Ref. [14]: FONLL is
quite close to the five-flavor scheme, with mass effects a non-
negligible, but small, positive correction. Indeed, the differ-
ence between FONLL-AP and FONLL-BP, i.e., the impact
of NNLO corrections in the five-flavor scheme, is much more
significant than that of mass corrections. The impact of vary-
ing the b PDF by an amount which is comparable to a rea-
sonable variation of the matching scale is clearly comparable
to that of the mass corrections. This provides evidence for
the fact that fitting the b PDF is likely to have a significant
impact on precision phenomenology.

Note that results for the FONLL-B scheme differ at the
percent level from those of Ref. [14] because there a different
PDF set and mb value were used, for the sake of benchmark-
ing with Refs. [15,16]. This further highlights the fact that
the size of effects due to the b PDF is comparable to that of
mass corrections.

4 Conclusions

In summary, we have shown how the FONLL matching
of massive- and massless-scheme treatment of computa-
tions involving heavy quarks can be generalized to the case
in which the heavy quark PDF is freely parametrized for
hadronic processes. We have show that this effectively pro-
vides us with a massive heavy quark scheme, in which the
heavy quark is endowed with a standard PDF satisfying QCD
evolution equations, yet it is treated as massive in hard matrix
elements. A first application to Higgs production in bottom
fusion shows that effects related to the b PDF are quite likely
to be comparable to mass corrections: both are small, but non-
negligible corrections to a purely massless NNLO calculation
in which the b PDF is obtained from perturbative matching
conditions. Determining the b PDF from data is thus likely to
be necessary for a description of b-induced hadron collider
processes at percent or sub-percent accuracy.

As a direction for further study, it should be noticed
that extending our results to NNLO – thereby allowing the
construction of a FONLL-CP result, in the terminology of
Sect. 2.1 (NNLO + NNLL) – is beyond current knowledge.
Indeed, starting at NNLO the cancellation between real and
virtual corrections is no longer trivial, and is spoiled by mas-
sive quarks in the initial state [26,27]. Hence, such an exten-
sion would require conceptual advances in the understand-
ing of QCD factorization in the presence of massive quarks,
which are left for future studies.
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A Matching coefficients

We collect for ease of reference the well-known matching
coefficients which relate the four and five scheme PDFs. Up
to O(αs)

Ki j (z, Q
2) = δi jδ(1−z)+αs(Q

2) K (1)
i j (z, Q2)+O(α2

s ).

(A.1)

so that

K−1
i j (z, Q2) = δi jδ(1−z)−αs(Q

2) K (1)
i j (z, Q2)+O(α2

s ).

(A.2)

The only non-zero contributions at order O(αs) are the
heavy quark-heavy quark and the heavy quark-gluon match-
ing functions, which are respectively given by

K (1)
bb

(
x,

Q2

μ2
b

)
=CF

2 π

{
Pqq(x)

[
ln

Q2

μ2
b

−2 ln(1−x)−1

]}
+

K (1)
bg

(
x,

Q2

μ2
b

)
= TR

2 π
Pqg(x) ln

Q2

μ2
b

(A.3)

where

Pqg(x) =
(

1 − 2 x + 2 x2
)

and

Pqq(x) = 2

1 − x
− (1 + x) . (A.4)

B Massive coefficient functions

In this Appendix we summarize the computation of the coef-
ficient functions in the massive scheme and of their massless
limit up to O(αs). The NLO corrections are computed using
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the extension of Catani-Seymour subtraction for massive ini-
tial states developed in Ref. [19] and extended to QCD in
Ref. [7]. This way of preforming the computation has the
main advantage of following closely that of the five-flavor
massive scheme, so that a direct comparison is much easier
to at the analytic level. Indeed, strictly speaking because of
Eq. (15) the massless limit is not needed. However, we have
computed it explicitly in order to check that it matches the
massless-scheme result (thereby verifying Eq. (14) explic-
itly), and also in order to produce Fig. 2, which provides a
further consistency check. Another advantage of this way of
performing the computation (though we do not use it here)
is that it allows for the computation of the fully differential
cross section in this scheme.

B.1 Leading order

The leading order partonic cross section for the production
of a Higgs boson, accounting for the mass of the initial state
b and b̄, is given by

σ̂0(xs)=
(
g2
bb̄H

β0 π

6

)
δ(xs − m2

H )=σ0 x δ

(
x−m2

H

s

)

(B.1)

where

σ0 = g2
bb̄H

β0 π

6m2
H

, and β0 =
√

1 − 4m2
b

m2
H

. (B.2)

where gbb̄H is the coupling of the b quark to the Higgs boson,
obtained as the mass of the quark divided by vacuum expec-
tation value of the Higgs sector:

gbb̄H = mb

v
. (B.3)

In the following we will also use the notation

B(x) ≡ σ̂0(xs), and B ≡ σ̂0(s). (B.4)

B.2 Next-to-leading order: bb̄-channel

The next to leading order corrections to the Higgs production
in bottom quark fusion consist in virtual corrections (V) to the
left diagram of Fig. 1, as well as of real emission corrections
(R) , represented by the central diagram of Fig. 1. Both this
contributions are separately divergent when the additional
gluon, real or virtual, becomes soft, though the final result
remains finite. In order to handle these soft divergences we
employ the subtraction scheme defined in [7]. This implies
that we need two more ingredients: a subtraction term, S,
and its integral over the gluon phase space, I = ∫

d�gS.
Our final result is then given by:

σ̂NLO =
∫

d�1B + V + I +
∫

d�2R − S. (B.5)

B.2.1 Real corrections, and subtraction term

The real emission partonic differential cross section, is given
by
∫

d�2R =
∫

d�2

∣∣∣Mbb̄Hg

∣∣∣ (s, t, u), (B.6)

where

d�2 = 1

32 π β s
d cos θ 
(1 + cos θ)
(1 − cos θ) , and

β =
√

1 − 4m2
b

s
, (B.7)

and

∣∣∣Mbb̄Hg

∣∣∣ (s, t, u)

= 4

3
πg2

bb̄H
CFαs

{(
s − m2

H

)[
1

m2
b − t

+ 1

m2
b − u

]

+(m2
H − 4m2

b)

[
2

(
s − 2m2

b

)
(m2

b − t)(m2
b − u)

− 2m2
b

(m2
b − t)2

− 2m2
b

(m2
b − u)2

]}
. (B.8)

The Mandelstam variables in terms of scalar products and
cos θ are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t = m2
b − s − m2

H

2
(1 − β cos θ)

u = m2
b − s − m2

H

2
(1 + β cos θ)

. (B.9)

In order to remove the soft divergence which appears in
the s → m2

H limit we need to construct a suitable subtraction
term. Using the relevant equations in Ref. [7] we find

S = 2

3
π αs CF g2

bb̄H
β2

0 m2
H

1

x̃

[
2

m2
b − t

(
Pqq (x̃) − 2 x̃ m2

b

m2
b − t

)

+ 2

m2
b − u

(
Pqq (x̃) − 2 x̃ m2

b

m2
b − u

)]
(B.10)

where

x̃ = m2
H − 2m2

b

s − 2m2
b

. (B.11)

Combining Eqs. (B.8) and (B.10) and factoring the trivial
αs CF σ0

π
dependence we get
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αs CF σ0

π

∫
d�2 [R − S]

= αs CF σ0

π

m2
b

2

∫ 1

−1
d cos θ

[
s (s − m2

H )2

(m2
H − 2m2

b)(m
2
b − t)(m2

b − u)

]

= −αs CF σ0

π

1

β0

(
1 − β2

β2

)
x(

1 − 2 x − β2
) ln d, (B.12)

where we defined

d ≡ 1 + β

1 − β
, and x ≡ m2

H

s
. (B.13)

B.2.2 Virtual corrections, and integrated subtraction term

QCD virtual corrections to the Born process in this simple
case completely factorize in a vertex form factor:

V = αs CF

π
B δg, (B.14)

with

δg = −1 − Lλ + (1 − β2
0 )

β0
ln d0

−1 + β2
0

2 β0

[
− ln d0 Lλ+ ln2 d0+Li2

(
1− 1

d0

)
−π2

2

]
,

(B.15)

where

Lλ ≡ 1

ε
+ ln

4 π μ2
R

m2
b

+ O(ε2). (B.16)

The integrated subtraction term I is obtained by integrat-
ing S, Eq. (B.10), over the phase space of the emitted gluon.
This term can be separated into two pieces: a term propor-
tional to δ(1 − x), which contains the singularity, and a plus
distribution:

I = δ(1 − x) I + {G(x)}+ , (B.17)

where

I =2 + Lλ − ln
(1 + β2

0 )2

1 − β2
0

+ 1 − 3 β2
0

4β0
ln d0

+ 1 + β2
0

2 β0

[
1

2
ln2 d0 − ln d0 ln

4 β2
0

(1 + β)2

−Lλ ln d0 − 1 + 2 Li2

(
1

d0

)
− π2

3

]
,

(B.18)

and

{G(x)}+ =
{
Pqq(x)

[
1 + β2

2β
ln d − 1

]
+ (1 − x)

}
+
.

(B.19)

B.2.3 Final formulae, mass and PDF renormalization

We now combine the various partial results obtained in the
previous subsections into the full expression for the bb̄-
channel coefficient functions. First, however, we need to
adjust b-quark mass and the PDFs. Renormalization of the b
mass leads to the replacement

g2
hbb̄

= g2
hbb̄

(μ2
R)

(
1 − αs CF

π

(
3

2
ln

m2
b

μ2
R

− 2

))
. (B.20)

in σ0, Eq. (B.2).
The massive b PDF is free of collinear singularities and

thus it does not have to undergo subtraction: indeed it is
scale independent. However, we must perform the change of
renormalization scheme Eq. (11) which relates the massive
and massless schemes. Up to O(αs) we get

Bbb̄

(
x, μ2

R, μ2
F , μ2

b

)

=
[
σ0(μ2

R)δ(1−x)+αs(μ
2
R)B(1)

bb̄

(
x, μ2

R, μ2
F , μ2

b

)]
+O(α2

s )

(B.21)

where

B(1)

bb̄

(
x, μ2

R, μ2
F , μ2

b

)

= σ0(μ2
R)CF

π

{[
3

2
ln

μ2
R

μ2
b

+ 2 + I + δg

]
δ(1 − x)

+
∫ 1

0
dz{G(z)−2 K (1)

bb̄
(z)}+z δ(z−x)+

∫
d�2 [R−S]

}
.

(B.22)

Performing the z integration gives the final result

B(1)

bb̄

(
x, μ2

R, μ2
F , μ2

b

)
= σ0(μ

2
R)CF

π

{
δ(1 − x)

[
ξ − 2 + 3

2

(
γ0 ln

(1 + β)2

4
− γ0 ln

m2
H

m2
b

+ ln
μ2
R

μ2
F

)]

+ 4D1(1 − x)+2

[
γ ln

(1 + β)2

4
+γ ln

m2
H

m2
b

+ ln
μ2
b

μ2
F

]

×D0(1 − x) − (2 + x + x2)

[
γ ln

(1 + β)2

4
+ γ ln

m2
H

m2
b

−γ ln x + ln
μ2
b

μ2
F

+ 2 ln(1 − x)

]
+ x (1 − x)

− 2 γ ln x

1 − x
− 1

β0

(
1 − β2

β2

)
x(

1 − 2 x − β2
) ln d

}
,

(B.23)
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where

ξ = 1 + ln

(
1 − β2

0

(1 + β0)2

)
+

(
5 − 7β2

0

)
4 β0

ln d0 +
(
β2

0 + 1
)

β0

(
2 Li2

(
1

d0

)
+ π2

6
− ln d0 ln

4β2
0

(1 + β2
0 )(1 + β0)

)
,

(B.24)

and

γ = 1 + β2

2 β
, γ0 = 1 + β2

0

2β0
and Dn(x) =

(
lnn(1 − x)

1 − x

)
+
.

(B.25)

B.2.4 Massless limit

The massless limit of the bb̄-channel can be computed
directly from Eq. (B.23), by setting β = 1 everywhere except
in the logarithms, where one can use the simple expansion

β ∼ 1 − 2 x m2
b

m2
H

+ O
(
m4

b

m4
H

)
. (B.26)

We get

B(1),(0)

bb̄

(
x, μ2

R, μ2
F , μ2

b

)
= αs CF σ0(μ

2
R)

π

{
δ(1 − x)

[
−1 + π2

3
+ 3

2
ln

μ2
R

μ2
F

]
+ 4D1(1 − x)

+ 2

(
ln

m2
H

μ2
F

+ ln
μ2
b

m2
b

)
D0(1 − x) − 2 ln x

1 − x

−(2+x+x2)

[
ln

m2
H

μ2
F

+ ln
μ2
b

m2
b

+ ln
(1−x)2

x

]
+x (1−x)

}
.

(B.27)

As it can be easily verified, this exactly corresponds to its
massless scheme equivalent, which can be found in Eq. (A6)
of Ref. [28].

B.3 Next-to-leading order: bg-channel

In the presence of initial-state massive quarks, the cross-
section for the bg-channel is free of soft or collinear diver-
gences, and no subtraction is accordingly necessary. Also
in this case, however, we must perform the scheme change
Eq. (11). We get

B(1)
bg (x, μ2

R, μ2
F , μ2

b)

= σ̂bg(x, μ
2
R) − αs

∫ 1

0
dz K (1)

bg (z, μ2
F )σ (zs)

= σ̂bg(x, μ
2
R) − αs TR σ0

π

[
x

2
Pqg(x) ln

μ2
F

μ2
b

] ∣∣∣∣∣
x=m2

H
s

,

(B.28)

where

σ̂bg(x, μ
2
R) =

∫
d�

(b)
2

∣∣MbgHb
∣∣2

(s, t, u), (B.29)

and the subscript (b) in �
(b)
2 denotes the fact that now the

phase-space has a massive b instead of a massless gluon, in
the final state. The color- and helicity-averaged square matrix
element, can be obtained from Eq. (B.8) using crossing sym-
metry. In addition, we have to take into account that the gluon
can have 8 possible colors (as opposed to 3 for a quark),

∣∣MbgHb
∣∣2

(s, t, u) = −3

8

∣∣∣Mbb̄Hg

∣∣∣2
(t, s, u), (B.30)

where now the Mandelstam invariants are given by

{
t = 2m2

b + s
32

(
(5 − β2)(β2 + 4 x − 5) − (3 + β2)� cos θ

)
u = m2

b + s
32

(
(5 − β2)(β2 + 4 x − 5) + (3 + β2)� cos θ

)
,

(B.31)

where

� =
√(

3 + β2
)2 + 16x2 − 8 x

(
5 − β2

)
, (B.32)

while the phase-space d�
(b)
2 is given by

d�
(b)
2 = � x

32 π
(
3+β2

)
m2

H

d cos θ 
(1+ cos θ) 
(1− cos θ).

(B.33)

Performing the cos θ integration gives

σ̂bg(x, μ
2
R) = αs TR σ0(μ

2
R)

π

x

16β0
(
β2 + 3

)3

×
{
−64

(
9β4 + (40x − 42)β2 + 8x(4x − 9) + 49

)

arctanh

(
�

β2 + 4x − 5

)

4096 �
(
1 − β2

) (
β2 + x − 1

)
(−� + β2 + 4x − 5

) (
� + β2 + 4x − 5

)

+ �
(

5 − β2
) (

β4 + (4x + 22)β2 + 44x − 71
)}

.

(B.34)
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B.3.1 Massless limit

As in the case of the bb̄ channel, taking the massless limit
requires setting β = 1 everywhere except in the logarithms
where one can use Eq. (B.26), which gives

B(1),(0)
bg (x, μ2

R, μ2
F , μ2

b)

= TR
π

{
x

2
Pqg(x)

[
ln

(
(1 − x)2

x

)
+ ln

m2
H

μ2
F

+ ln
μ2
b

m2
b

]

− x

4
(1 − x)(3 − 7 x)

}
. (B.35)

Once again, one can explicitly check that this exactly cor-
responds to its massless scheme counterpart, which can be
found in Eq. (A9) of Ref. [28].
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