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We analyze the recurrence zn,+1 = f(zn), where zy, is a weighted power mean of zg,...,Zn,
which has been proposed to model a class of non-linear forward-looking economic models
with bounded rationality. Under suitable hypotheses on weights, we prove the convergence
of the sequence z,. Then, to simulate a fading memory, we consider exponentially decreasing
weights. Since in this case the resulting recurrence does not fulfill the hypotheses of the previous
convergence theorem, it is studied by reducing it to an equivalent two-dimensional autonomous
map, which shares the asymptotic behaviors with a particular one-dimensional map. This allows
us to prove that a long memory with sufficiently large weights has a stabilizing effect. Finally,
we numerically investigate what happens when the memory ratio is not sufficiently large to
provide stability, showing that, depending on the power mean and the memory ratio, either
delayed or early cascade of flip bifurcations occur.

Keywords: Forward-looking models, Learning, Mann Iterations, Non-autonomous difference
equations.

1. Introduction

The canonical economic theory assumes that agents have perfect rationality: they
have both the skills to exploit information achieved in the economic system and
the ability to compute all actions needed to reach an optimal solution. Learning
characterizes models in which agents with bounded rationality try to reconstruct
key elements of the economic system using information available from the past
experience.

For example, if the economic agents have to make forecasts about future, e.g.
prices or taxes or incomes, in doing that they collect and analyze past data. In
the early literature, for instance in the cobweb and Cournot oligopoly models, the
static expectation hypothesis was widely used, with agents expecting that next pe-
riod price will be on the same level of the current price. The adaptive expectation
hypothesis became popular in the 1960s and 1970s. In this case, agents belief about
next period price corresponds to a linear convex combination of currently observed
price and predicted price. Based on the observation that static and adaptive expec-
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tations imply poor set of information and limited computational skills, in the 1980s
the rational expectation hypothesis played a prominent role in economic theory.
Under such assumption, agents are not supposed to make systematic forecasting
errors, as they are assumed to have full knowledge of the economic system and all
relevant information in order to make the optimal choice. The rational expectation
hypothesis has been criticized for the unrealistic informational and computational
requirements and for the contrast with the observed human behavior in laboratory
experiments, for example by Sargent [25] and Conlisk [12]. Recently, a more realis-
tic view about the forecasting activity has been proposed, in which agents act like
statisticians or econometricians, collecting a large set of data from the past observa-
tions and using sophisticated algorithms, like regressions, sample means, recursive
least squares, in order to form their expectations. Our contribution belongs to this
research strand and tries to study the evolution of the system when it is supposed
that economic agents have enough data and computational capabilities for forecast-
ing future prices using weighted power means. Our way of modelling forecasting
processes is intensely interweaved with the mathematical notion of Mann iteration,
namely an iterative scheme of the form

Tpyr = f(2n), (1)

where f: I — I,1 = [a,b] CR™, and z, is the arithmetic mean of all the previous
values z;, 0 < i <n

2y = Z AnkTE (2)
k=0

with

Z Ank = 1. (3)
k=0

Such an iteration scheme has been used to model economic and social systems with
agents who have not perfect foresight, so they learn from the past experiences using
all the available information (that is present and past data), in order to calculate
the expected values of future states. If n represents discrete time periods and x,, the
value of the state variable in period n, z, can be interpreted as the expected value
(see e.g. the contributions of Bray [11], Lucas [20], Balasko and Royer [3], Bischi
and Naimzada [9], Barucci [4], Foroni et al. [14]). Starting from the seminal paper of
Mann [21], iterations (1) have been studied by many authors, among others, Borwein
and Borwein [10], Rhoades [23], Aicardi and Invernizzi [1], Bischi and Gardini [7],
Bischi et al. [8]. For example, Bray in [11] proposed a recurrence of the form (1),
with z, given by a uniform arithmetic mean

1 n
Zn = n+1 Z$k>
k=0

as a learning mechanism. In this case, the Mann iteration coincides with the Cesaro
iteration, whose dynamics are very simple since for each xg € I the resulting se-
quence {x,} converges to a fixed point of f, as shown by Franks and Marzek in
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[15]. This suggests a strong stabilizing effect of a distributed uniform memory, since
any kind of dynamics more complex than convergence toward a fixed point of f
is excluded, being the existence of more than one fixed point of f in I the only
possibility of non trivial dynamics, as in such situation different basins of attraction
must be considered.

In this work, we propose a generalization of (2) expressed by the power mean

s

Zn = <z": ankxz> ,8#0. (4)
k=0

The arithmetic mean (2) is a special case of (4) when s = 1, but other commonly
used algebraic means can be obtained from (4), such as the weighted quadratic mean
for s = 2 and the weighted harmonic mean for s = —1. Furthermore, the weighted
geometric mean is obtained as a limiting case for s — 0, since

1
n s n
: S a
lim (E ank:ﬂk> = | | "k
s—0
k=0 k=0

Of course, if s < 0, the further condition x; > 0 for each i should be verified. For
a detailed description of the properties of such means, as well as their applications,
we refer to the book by Vajani [26], ch.6.

This study is motivated by the possibility that some learning mechanism can be
expressed by the iteration scheme (1) with algebraic means of the form (4) with
s # 1 (an example is given in Section 4).

The paper is organized as follows. In Section 2 the iteration scheme (1) with (4) is
reduced to a first order non autonomous recurrence, and some convergence results
are given, which generalize the results of Mann [21] and Borwein and Borwein [10],
where only the arithmetic mean (2) is considered. In Section 3, the power mean (4) is
considered with weights decreasing as terms of a geometric progression. In Section 4,
we study an example coming from the literature on overlapping generations’ models
with a learning mechanism based on power iteration means.

2. Convergence of recurrences with power means

In what follows, we assume that the weights are obtained as

(n)
w n
Ank = Mk} 7w’(€ ) > 07

n

where, for each n > 0, the (n + 1)-dimensional vector of nonnegative weights

w = {w(gn),wgn), ...,w,(@”)}
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defines the relative influence of each state xy, k =0, ...,n, in the computation of the
average zp, and

W, = zn:w,(cn),
k=0

so that (3) is satisfied.

In this section we assume, as in [10, 23], that at each n the vector of relative
weights is obtained by adding the last component without any change of the previous
ones, that is, from w(™ = (wg, w1, ...,w,) we obtain W™D = (wy, w1, ..., W, Wnt1).
In this case we have

Wn+1 =W, + Wn+1- (5)

The iterative scheme (1) with a power mean (4) becomes

=

Tn+l = f(zn) with z, = (Z %ﬁ) >

k=0

n (6)
Wo=) wr, s#0,
k=0

where the continuous function f, mapping the compact set I into itself, has at least
one fixed point in I.

Recurrence (6) with s = 1 is a Mann iteration, for which the following classical
result holds.

THEOREM 2.1. Mann, 1953. Let s = 1 and W,, — oo. If either of the sequences
{z,} and {z,} converges then the other also converges to the same point and their
common limit is a fized point of f.

In [10, 23] a Mann iteration (1) is reduced to the following non autonomous
iteration, called segmenting Mann iteration

Zn+1 = (1 - tn)zn + tnf(zn)y (7)
where zg = x¢ € I, and
Wn+1
t, = . 8
Wn+1 ( )

From {z,}, the sequence of states {z,} can be easily obtained as the images of z,
under f

Tny1 = f(2n)- 9)
The following result is proved by Borwein and Borwein in [10].

THEOREM 2.2. Borwein and Borwein, 1991. Suppose that {t,} tends to zero. Then
the sequence {z,} converges.
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In this section we generalize these theorems to the case of power means with
s # 1. This can be easily done once the iterative scheme (6) is put into a recursive
form, for the expected variables z,, similar to (7). In fact, even provided that s # 1,
from (6) we get

o =

n B n
wk S wTL+1 S W’I’L wk S o‘]’I’LJ”]. S
il = o e | = T g e |
k—0 n+1 n+1 n+1 k—0 n n+1

from which, by using the definition (8) of ¢,, and the identity (5), we obtain what
we shall call generalized segmenting Mann iteration,

=

zne1 = F(n,zn) = (1 —tn)2, +talf(20)]°) (10)

Also in this case, the iterative process described by the non-autonomous first order
difference equation is equivalent to the iterative process (6), in the sense that given
an initial condition zp = xo the sequence of expected values obtained from (10) is
the same as that obtained from (6) (and the sequence of states is given by (9)).

We recall that a fixed point (or stationary state) of the iteration (6) is defined as
a value * € R such that if xg = 2* then (6) generates the sequence z, = z* for
each n > 0. The following results are straightforward.

PROPOSITION 2.3. Regarding iterations (6) and (10), we have that

(i) z* is a fized point of the iteration (6) if and only if it is a fized point of the
function f.
(ii) z* is a fixed point of (10) if and only if it is a fized point of f.

We recall that a fixed point (or stationary state) of the non-autonomous difference
equation (10) is defined as a value z* such that F(n,z*) = z* for each n.
The following proposition generalizes the above quoted theorems.

PROPOSITION 2.4. Considering (6) and (10), we have that

(i) If W,, — oo then the sequence {x,} defined in (6) converges if and only if
the sequence {z,} in (10) converges and the two sequences converge to a
common limit which is a fixed point of f.

(11) If in (10) {t,} is a positive sequence which tends to zero, then the sequence
{zn} is convergent.

Proof. (i) First we prove that, under the assumption W,, — oo, if z,, is convergent
then also z, converges to the same limit.

Let x, — ¢ > 0 (the case ¢ = 0 will be treated separately). Then, for each s,
x5 — q°, i.e. for each € > 0 an N > 0 exists such that

¢ —e<ux, <q’+eforn>N. (11)

Now we prove that (z5 —¢°) — 0, that is z5 — ¢° which implies z,, — ¢. For n > N
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we have
"W N "L w
k k k
(zn —¢°) = Z Wﬂfi —q¢° = Wﬂﬁi + Z Tk — 4
k=0 " k=0 " k=N+4+1 "
N n
1 s Wn - WN Wk s s
B
W k=0 W k=N+1 Wn =Wy

From the right inequality in (11) we have

& «—an+ ”W@Hwﬁ (12)

because

n

>
k=N+1 Wn =Wy

Similarly, from the left inequality in (11) we have

(2 %—an ”W@%wf (13)

Since W,, — oo and the wy, are bounded, from (12) follows that

: S __ S <
Jim (2, —¢%) <, (14)
and, from (13),
: S __ S > _
Jim (2, —¢%) > —e. (15)

s

z5 —q°) =0.

Consider now the case x, — 0. If s > 0 the previous arguments can be applied
with no substantial modifications. If s < 0, since the z,, are supposed to be positive,
we have that x] — +o00, i.e. for each M > 0 an N > 0 exists such that =7 > M for
n > N. For n > N we have

Since ¢ is arbitrarily small, (14) and (15) prove that le (

n

N
Z?S%:Z;/—sz—i_ Z ka>M Z wk

k=0 k=N+1 " k=N+1 Wa

and, since M can be arbitrarily large, this implies z; — +o0, from which, since
s < 0, we have z,, — 0.

To complete this part of the proof it remains to show that the common limit
is a fixed point of f. Indeed, since f is continuous, from z, — ¢ follows that

f(zn) = f(q). But 41 = f(2y) so that ¢ = f(q).
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We assume now that z, converges and we prove that also x, converges to the
same limit. If z, — r, then z,, — f(r) because f is continuous. From the previous
argument, it must also be z,, — f(r) which implies r = f(r).

(i) Since, for zg € I = [a,b] C R, the whole sequence {z,} is contained in I, it
has at least one limit point. We show that it is unique. From (10), rewritten as

Zny1 — 2 =t ([f(2)]° = 23) (16)

we deduce that, since t,, — 0, z, and f(z,) are bounded, for each e >0 am > 0
exists such that

251 — 25| < e for n >m. (17)

Following the argument used by Borwein and Borwein [10], let us assume, for sake
of contradiction, that £ and 0, with a < & < n < b, are two distinct limit points. A
consequence of this assumption is that f(z) = z for each z € (£, 7). In fact let ¢ be
a point such that £ < ¢ < n. If f(¢) > ¢ then, by the continuity of f, a § € (0,c¢)
exists such that

f(2) > z whenever |z —¢| <. (18)

Since 7 is a limit point for {z,} a N > m exists such that |2y — 7| < (7 — ¢) which
implies zy > c. It follows that z, > ¢ for each n > N. To prove this we separately
analyze the cases of positive and of negative s. Consider first s > 0. If ¢ < 2y < ¢+,
from (18) follows f(zn) > zn which gives, since s > 0, [f(2n)]” > 23 . From (16)
follows 23 11> 2N (remember that ¢, > 0) and this implies zy11 > 2y because
s> 0.1If zy > ¢+ 6 we have 23, > (c+ J)° so that

a1 —C = Ay Ay Ay =t > e Ay H(e+0) = > —e+(c+8) = (19)
where (17) has been used. Since § < ¢ from the binomial series we have

s(s — 1)5265—2 + s(s —1)(s —2)

3 .s—3
5 a0 077+ ...

(c+0)* =c 4 s0c 1 +

so that (¢ +8)% — ¢® > s6c*~! for s > 1, and (c+6)* — ¢ > s6c*2(c — (1 — 8)6/2)
for 0 < s < 1. Thus, if for s > 1 we take 0 < ¢ < s6c* ! or, for 0 < s < 1,
0 < e < s0c52(c— 158 ), (19) gives 23, — ¢® > 0 which, for s > 0, implies
ZN41 > C.

Consider now s < 0. If ¢ < zy < ¢+ 9 from (18) follows f(zn) > zx which gives,
since s < 0, [f(2n)]® < 23 From (16) follows 23, ; < z} which implies zy11 > 2y
because s < 0. If zy > ¢+ ¢ we have 25 < (c+ §)° so that

N1 —C =Ny —Antan—c <2y —anyF(e+6)  —cf <e+4(c+d)" ¢, (20)

where (17) has been used. From the binomial series with s < 0, we have (¢+0)*—c*® <
s6c*1, so that if we take 0 < & < —sdc® ! (20) gives 23, — ¢® < 0 which, for
s < 0, implies again zny41 > c.

Hence, by induction, z, > ¢ for n > N against the assumption that £ < ¢ is a
limit point of {z,}.
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If f(¢) < ¢ a similar reasoning contradicts the assumption that 7 is a limit point.
Thus f(c) = ¢ for each £ < ¢ <.

Now, if for a given 7 we have £ < zp < n then 2511 = 25 and so z, = z5 for each
n > n which contradicts the fact that £ and n are both limit points. If this is not
the case, since {z,} cannot oscillate out of the interval (§,n) because of (17), taking
e < (n—¢&) it remains z, > n or z, < £ for each n, and again this excludes the
possibility that £ < n be both limit points. Therefore {z,} converges to its unique
limit point O

Of course, if f has a unique fixed point x* € I, then it is globally attracting in I,
ie. x, — x* for each zg € I.

A typical example in which these propositions can be applied is that of a uniform
power mean, that is with equal weights wy = w for any k. In fact in this case we have
tn, = 1/(n+1) — 0 and W,, — oo. This constitutes a generalization of the result
by Franks and Marzek [15] on the Cesdro iteration, since it includes the uniform
arithmetic mean for s = 1, the uniform harmonic mean for s = —1, the uniform
geometric mean for s — 0, and so on.

3. Asymptotic dynamics with exponentially decreasing weights

In this section we study the asymptotic dynamics arising when exponentially de-
creasing weights are assumed. These are often used in applications, since they de-
scribe, as suggested by Friedman in [16], agents which “form their expectations
according to a weighted estimation procedure which exponentially discounts older
observations”, that is, an ezponentially fading memory. In this case some assump-
tions of previous section propositions are not satisfied, and more complex asymp-
totic dynamics can be obtained. The results of this section generalize, to the case
of power means, the results given by Bischi and Gardini [6, 7] and by Bischi et al.
[8] on Mann iterations which can be reduced to two-dimensional maps.
Exponentially decreasing weights can be defined by setting, at each n, in the vector
of relative weights, a fixed value to the weight of the last state, say wén) = w(()o) =1,
while the values of the previous ones are obtained so that the ratio between two
successive weights is fixed, say w,(ﬁn)/w,(gi)l = p. So, from w™ = (p, p"~ 1, ..., p,1)
n+l n
)

we obtain w1 = (p p",...,p,1), or, more concisely,
w,(c") = p"_k,O <k<n.
With these weights the following relation holds
W1 =1+ pW,, (21)

and the recurrence with fading memory becomes

1
n ’I’L—k: s
: 3 P
" .- 1— pn+1
W =Dheo " = s # 0
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As already stressed in Section 1 these weights are often used in economic modelling
(see Gandolfo et al. [18], Aicardi and Invernizzi [1]) since, with a memory ratio
p € (0,1), they represent the realistic assumption of an exponentially fading memory
(see Friedman [16], Radner [22]). Let us first show that the relation (21) allows us to
obtain, also in this case, a generalized segmenting Mann iteration. In fact we have

1
_ 1 - n—=k, .s s ’ _ an s 1 s
“n+1 = (WnJrl (Z PP Ly +xn+1>> - <Wn+1 Zn + Wn+1 [f(zn)] ) s

k=0

and defining

I 1-p
Wn+1 B 1—,0n+17

by = (23)

and making use of the identity (21), we get the required non-autonomous difference
equation (10). When p > 1 (non decreasing memory) the main results of Section 2
can be applied, without substantial changes, also to the case of geometric weights.
In what follows, we consider the more realistic case of memory ratio p € (0,1),
giving exponentially fading memory, for which the propositions of Section 2 do
not apply, because the sequence of partial sums W,, converges to W* = 1/(1 — p)
and, consequently, sequence t,, defined in (23), is not convergent to zero, being
tn—(1—p). For p = 0 (no memory of the past), the problem reduces to the study of
the dynamics of an ordinary one-dimensional map z,+1 = f(x,). Since, as it is well
known, the asymptotic dynamics of this iteration may be periodic of period k& > 1,
or even chaotic, depending on the shape of the function f, we can expect complex
dynamics also for p > 0.

We saw in Section 2 that the only possible fixed points of the generalized Mann
iteration are the fixed points of the function f. One may ask if also different asymp-
totic states, such as k-cycles, k > 2, are related to k-cycles of the map f. The answer
is no.

Indeed, if 0 < p < 1, and a k-cycle of (10) exists, then, in general, it is not a k-
cycle of map f. However, such cycles are related to those of another one-dimensional
(autonomous) map. This can be intuitively justified on the basis of the observation
that the sequences of the time-dependent coefficients in the right hand side of (23)
are convergent, since t, — (1 — p), so that the right hand side of (10) possesses an
autonomous limiting form

@ =

Znt1 = gp(2n), With gp(2) = (pz° + (1 = p)[f(2)]) (24)

It is natural to conjecture that the asymptotic behavior of (10) is related to
that of the map g,(z2), and this can be rigorously proved by making use of a two-
dimensional map. Let us note, in fact, that the sequence of the partial sums W,
of the geometric weights can be defined recursively by (21), and this allows us to
obtain a two dimensional map (2,41, Wy4+1) = T'(2n, W) defined as

o |=

_ 'OW” s 1 s
7. ) At = <1 +anZn + 1+ oW, [f (z0)] ) ) (25)
Wn+1 =1+ an
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This map is equivalent to (10) if the initial condition is taken with Wy =1, i.e.
(20, Wo) = (20, 1), 0 € 1. (26)

In fact, in such a case, the sequence {z,} given by (25) coincides with the sequence
obtained from the generalized segmenting Mann iteration (10) related to the same
initial condition zg. In other words, the projection on the z-axis of an orbit of the
map T (with initial condition as in (26)) is the orbit of the non-autonomous iterative
process (10).

The map (25) is triangular, that is a map with the structure T'(z, W) =
(Ty (2, W), To(W)). We notice that the map T is not defined on the points of the
line of equation W = —1/p, but, since the initial conditions have to be taken on
the line W = 1, we shall consider the restriction of T to the half-plane W > —1/p.
Moreover, this half-plane is mapped into itself by 7', because the second difference
equation in (25) gives an increasing sequence (the partial sums of the geometric
series starting from W = 1) always converging to the limit

This also implies that the line W = W* is mapped into itself by T (i.e. it is a
trapping set), and it is globally attracting for 7" in the half-space W > —1/p (which
means that for any point in the domain W > —1/p, the limit set of its orbit belongs
to the trapping line W = W*). In particular, any initial condition (26) has an orbit
which is bounded in the rectangle S = I x J, with J = [1, W*], and the limit set of
the orbit belongs to the segment of S on the line W = W*, which is an invariant
set of the restriction of T to the line W = W™*, namely of the one dimensional map
gp(2z) given in (24).
The considerations given above prove the following proposition.

PROPOSITION 3.1. Let f : I — 1,0 < p <1, g, defined in (24) and T defined in
(25). Then

(i) The orbits of the non-autonomous equation (10) are in one-to-one correspon-
dence with the orbits of the autonomous two-dimensional map T associated
with an initial condition on the line W = 1.

(i) The invariant sets of T belong to the line W = W*.

(111) The invariant sets of T and those of g, are in one-to-one correspondence.
(iv) An invariant set of T is attracting (resp. repelling) if and only if the corre-
sponding invariant set of g, is attracting (resp. repelling).

Now we investigate if the knowledge of stability/instability of the cycles of the
map g,, may be useful in order to decide on the existence and on the stability of
cycles for the non-autonomous recurrence (10).

An answer to this question can be obtained from an analysis of the global prop-
erties of 7. In fact, from the properties of the limiting map g, we know the local
properties of T near the asymptotic line W = W* but, since the initial conditions
for T" must be taken on the line W = 1, we need a global study of the map T in
order to obtain information on the properties of the non-autonomous equation (10).
The following proposition gives an answer to this question.

10



May 29, 2015

Journal of Difference Equations and Applications mann revised' BCN

PROPOSITION 3.2. Let A be a k-cycle, k > 1, of the map g,(2), 0 < p < 1. Then

(1) if A is attracting, or attracting from one side, for the limiting map g, then it
is an attracting cycle for the non-autonomous process (10), and hence f(A)
is an attracting set of the iteration (22);

(ii) the basin of attraction D of the attractor f(A) of (22) is given by the in-
tersection of the two-dimensional basin, say ﬁ, of the cycle A=Ax {w+*}
of the map T (located on the trapping line W = W* ) with the line of initial
conditions W =1, i.e. DN {W =1} = D x {1}.

In this proposition the term attracting k—cycle, for the process with memory,
means that the process generated by (22) converges asymptotically to the cycle
starting from a set of initial conditions of measure greater than zero. It can be
noticed that the attracting sets are not, in general, invariant sets (as usual for the
non-autonomous processes). This means that, starting from a point of an attracting
k—cycle, the sequence {x,} generated by (22) may not converge to the k—cycle,
that is, the basin of a given attractor may not contain the points of the cycle itself
(see e.g. Bischi and Naimzada [9], Bischi and Gardini [7]).

If we consider (22) with z,, = x,, (no memory case), then its asymptotic behavior is
indeed given by the study of the map f(z). Conversely, if we consider exponentially
fading memory, limit sets of (22) must be searched among the invariant sets of
another one-dimensional autonomous map, the limiting map g, defined in (24).
However, we remark that their basins of attraction can only be determined through
a global study of the two-dimensional map 7T'. As we have already observed, only
the fixed points of the map g, coincide with the fixed points of the map f, whereas
the other invariant sets, k—cycles or chaotic sets, are in general different.

Of course, the shape of map g, depends on that of f. From the definition (24),
function g,(z) is a power mean of z and f(z), so for each z € I

min(z, f(2)) < g,(2) < max(z, f(2)). (27)

This means that the graph of g, always belongs to the area between the bisector
and the graph of f, and the graphs of f and g, intersect at the common fixed points.
The derivative of function g, is

1—s

9p(2) = (p2° + (L= p)[f()]") = (=" + (1= p)[f() 7' f(2)

and if z* is a positive fixed point of f it becomes
9p(z") =p+ (L =p)f'(z"), (28)
which implies
min (1, f'(2")) < g,(2") < max (1, f'(z7)). (29)

If 22 =0, ie. f(0) =0, g,(2*) is not defined. However, in this case

o |=

lim g, (z) = (p+ (1 = p)[f'(0)]°)

z—0t

so (29) holds even for z* = 0.

11
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If =1 < f'(2*) < 1, so that z* is an attracting fixed point of the map f, then (29)
implies —1 < g;,(2*) < 1, thus 2* is attracting for the map g, too. If [ f'(2*)| > 1, so
that 2* is a repelling fixed point of f, then z* may be attracting or repelling for g,.
In particular, if f’(2*) > 1 then z* is repelling also for g, since from (29) we have
1 < g,(2*) < f'(2*), while f'(z*) < —1 gives f'(2*) < g,(2*) < 1 and in this case
z* may be attracting for g,.

More exactly if f/(z*) < —1, let pe (0,1) be defined as

p=lF)72 (30)

Then the sufficient condition for the stability of the fixed point of the map g,,
‘g;(z*)‘ < 1, which, from (28), can be written as —(1 + p)/(1 — p) < f/(2*) <1, is
satisfied for p < p < 1, i.e. with a sufficiently strong memory. These arguments are
summarized in the following proposition, which also states the stabilizing effect of
a strong memory.

PROPOSITION 3.3. Let z* be a fixed point of f.

(i) If | f'(z*)| <1 then also ‘g;,(z*ﬂ <1 for each p € (0,1);
(ii) If f'(z*) < =1 a value p € (0,1) ezists, given by (30), such that |g},(z*)
forp<p<l;
(iii) If f'(2*) > 1 then also g,(z*) > 1.

<1

This proposition allows us to distinguish, among the fixed points of map f, those
attracting for the process with a sufficiently strong memory (in particular with a
uniform memory, obtained in the limiting case p — 1).

4. Power mean learning mechanism in an OLG model

In this section we apply the learning mechanisms studied in the previous sections
to an economic system modelled by a law expressed in the forward-looking form

w0 = f(@i)), (31)
where 377(31 represents the expected value of the state variable x for the next time
period. The example we consider belongs to the family of Overlapping Generations’
Models (OLG), which, among others, was studied by Samuelson [24], Diamond [13],
Gale [17], Benhabib and Day [5], Azariadis [2]. In the setting we consider, population
is constant in time and we assume that the economy is characterized by a single
perishable consumption good and an asset called money. In each period time n,
money is exchanged against good at a price p,,. Economic agents are consumers of
a single type, hence we will only consider one agent as representative of the whole
population. The representative agent lives two periods, in which she is referred to as
young (period 1) and old (period 2) respectively, and she possesses time-invariant
endowments w; and ws of the good for each period of the life. We suppose that
the preferences about current (¢,,) and future (¢, 1) consumptions are given by the
following additive lifetime utility function

U(z1,22) = u(cn) +v(cnt1),

12
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in which both u and v are assumed to be twice differentiable, increasing and strictly
concave real functions.

In the economy there is a nominal quantity of money, denoted by M, exogenously
determined by the government, which is used to transfer wealth from one period to
the next one in the following way: the young consumer saves part of her first period
endowment using money and then she consumes her second period endowment and
the saving when old. In this framework, it is supposed that all the money at the
beginning of each period is held by the old agent.

The young consumer, on the base of the expected price py, |, must choose the
level of consumption of the two periods of life and the nominal amount of money
mgq > 0 to save for the second period of life. This can be achieved by solving the
optimization problem

PnCpn + Mg = PpWny,

max[u(c,) + v(cnq1)] under constraints .

which straightforwardly leads to

pZJrlu’ <w1 _ @) = v’ <w2 + Tend > . (32)

Pn pn+1

If we introduce the demand optimal excess of the good
Zi = C; — Wy, i:172a

we can write the money demand as

€ _ pn __ e pn
md(pmpn+1) = —Pnz1 P = Pni172 pe— .

anrl n+1

The excess demand of the good by the old consumer during period n is M /p,,, so, in
any given period n, a competitive equilibrium is described by equating the demand
and the supply in both the good and the money market, namely

Pn M e
D ()4 M o a0
pn+1 p’I’L

Since by Walras’ Law the two previous equilibrium conditions are equivalent, we
can rewrite (32) as

M M
s qu <w1——>—pnv' <w2—|— e ):0
et Pn Pt

The previous relation can be expressed in compact form as G(py,p5, ;) = 0 from
which, assuming that 0G/0p,, # 0, we can obtain an equation of the form (31). In
order to run the dynamics of the model, we still have to specify how the agents form
expectations about next period price. A possible choice is given by a relation of the
form

p761+1 = w(pﬂfl7pn727 o 7p0)7 (33)

13
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Figure 1. Maps of OLG models obtained with utility functions (35), (37) and (39).
in which 1 is a prevision function which must satisfy
r=Y(z,x,... ). (34)

In particular, if we assume that the agents have long memory and the capabilities to
compute the power mean expressed in (4), we obtain the general iterative mechanism
of the power means. We remark that the no-memory case p = 0 actually corresponds
to the so-called myopic expectations.

In what follows, we will focus on three different examples of the previous OLG
model, obtained considering different utility functions, and we study through simu-
lations the effect of power means with fading memory. These three examples differ
for the monotonicity of the map (31), which is either increasing, decreasing or uni-
modal (see Figure 1). The main goal is to investigate the case of exponentially fading
memory.

In the first example, we consider Cobb-Douglas utility functions

u(en) = aqloge,, v(epy1) = aslogcnqiq, (35)

where o; > 0,7 = 1,2 and a1 + a9 = 1, which gives the linear temporary equilibrium
map

w2 . 2M

Pn = f1(Phi1) = w, Pt + o (36)

If we consider the Samuelson case (see [24]) and we assume wy > ws, the r.h.s. of
(36) is increasing with respect to pf ,; and, provided that pf,,, satisfies (33) with
(34), has the unique positive equilibrium

2M

wl_w2'

*_

The plot of map (36) for w; = 1,wy = 0.5 and M = 1 is reported in Figure 1.
Since we assume ws/w; < 1, we have that equilibrium is unconditionally stable for
both myopic and power mean expectations, i.e. for any p and s. As there is just
one equilibrium, the dynamics are always convergent to p* and they can only be
different with respect to how quickly they approach, up to a desired precision, the
equilibrium, namely their speed of convergence. Setting wy; = 1,ws = 0.5, M =1,
in the left plot of Figure 2 we compare the time series of p, obtained for p = 0

14
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Figure 2. Time series of (36) without memory (solid line) and with memory (dashed, dotted and dash-
dotted lines) for different exponents s (left plot) and memory ratios p (right plot). As s increases, convergence
becomes more and more fast, while increasing p reduces convergence speed.

and for p = 0.5 and s = —1,1,5. The fastest convergence is achieved by the process
without memory, and increasing the value of power s seems to improve the speed
of convergence. Similarly, if we set s = 1 and we compare the time series obtained
for different values of p, we can see that as the weight increases, convergence speed
becomes more and more slow (left plot of Figure 2).

The remaining examples are inspired by utility functions studied by Benhabib
and Day in [5]. Firstly, we consider
11—«
n+1
1-a’

u(en) =logen, v(epy1) = (37)
where o # 1. We remark that in (37) functions u and v are swapped with respect
to the example proposed in [5].

Assuming w; = w,ws = 0, the resulting temporary equilibrium function is given
by

M M«
Pn = fo(ps =— 4+ —.
2(Pnt1) wi - wi(pf )t

(38)
We notice that, for a > 1, the r.h.s. of (38) is decreasing with respect to py, | (see
the middle plot of Figure 1, obtained setting wy = 1, M =1 and «a = 1.6), so it has
a unique equilibrium p* the expression of which, however, can not be analytically
obtained. Moreover, if no memory is considered (p = 0), we have that (38) can only
converge to either the stable equilibrium or a period-2 cycle. If p < 1 is sufficiently
large, from Proposition 3.3 we have that the power mean iteration scheme allows
P, to converge for any value of s to the equilibrium. In Figure 3 we compare the
iterates obtained setting M = 1,w =1 and a = 50 for p = 0.6 and s = —1,1,5. We
remark that with myopic expectations, we would have a period-2 cycle, in which p,,
alternates between values respectively close to 1 and 2. Introducing a suitable weight
allows for converging prices, with more and more slow convergence as the power s
increases. Similarly, increasing p leads to a slow convergence, which, however, for
small values of p exhibits an oscillating behavior.

Now we investigate the effect on p,, of varying p, setting again M = 1,w = 1 and
o = 50. We already noticed that if p = 0, the price dynamic can exhibit at most a
period-2 cycle. However, introducing a positive memory ratio p > 0, we can have
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Figure 3. Time series of (38) for different exponents s (left plot) and memory ratios p (right plot). As s
and p increases, convergence is more and more slow, but, if p is sufficiently small, it can be oscillating.

Figure 4. Bifurcation diagrams for (38) on varying p, with power means prediction function, for powers
s = 2 (black) and s = —2 (red). Even if without memory at most a period-2 cycle is possible, when p > 0
both a qualitatively similar level of complexity (s = —2) or a complete sequence of period doubling/halving

(s = 2) are possible.

an initial sequence of period doublings leading to chaos, which, when p is further
increased, develops a sequence of period halvings leading to convergence toward the
equilibrium for p > 0.47, as shown in Figure 4 for s = 2. Such phenomena are known
as bubbling (see for example [19]). This means that for p < p, fading memory can
also introduce an initial, with respect to p, complexity increasing. We also remark
that such increasing of complexity does not occur for each power s, as the red
bifurcation diagram reported in Figure 4 shows. The simulations we performed
indicate that large s produces qualitatively more complex dynamic scenarios. If we
keep p fixed and we compare the behavior of p,, on varying «, we can notice that, if
p < p, even if, as predicted by Proposition 3.3, the loss of stability of the equilibrium
occurs for the same value of « for any power s, the subsequent route to chaos can be
different. For example, the second period doubling occurs for different values of «,
as shown in Figure 5, which once more suggests that qualitatively simpler behaviors
are induced by larger values of s (we point out that only one branch of the period-4
bifurcation is actually visible from Figure 5, as that arising from the value close to
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Figure 5. Bifurcation diagrams for (38) on varying « with power means prediction function, with myopic
expectations (p = 0, black) and for p = 0.1 and s = 2 (red) and s = —2 (blue). After the first simultaneous
period doubling, the subsequent ones occur for different values of a.
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Figure 6. Function é&4(s), obtained through simulations. For (38), as s increases, period-4 cycle earlier
occurs.

1 is very flat).

To investigate this aspect, we numerically computed the value of o at which the
second period doubling occurs, giving rise to the period-4 cycle. To this end, we
define function &4 : R — (1,400] that, for any given s, provides the infimum of the
values of bifurcation parameter « for which a period-4 cycle occurs. If, for a given s,
a period-4 cycle never occurred, we would have éy4(s) = +oo. We computationally
estimate dy(s) and we report the results in Figure 6, in which we can see that dy
is a decreasing function, which implies that we have an increasingly retarded route
toward chaos for small values of s (we remark that the larger is éy, the later the
period-4 cycle and subsequent cascade of flip bifurcations occurs).
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Figure 7. Bifurcation diagrams of (40), in which both myopic expectations (black) and memory ratio with
two different values of s (red,blue) are considered.

In the last example we set
u(en) = ben,  v(cp41) = —ae” L, (39)

where a,b are positive constants. For any initial endowments wy, ws, the resulting
temporary equilibrium function is given by

. (Ph41)”
DPn = f3(pn+1) = Cwiﬁ’ (40)
which, for a > 1, has the unique equilibrium
. M
P " logla)’

Function f3 is unimodal, as shown in the right plot of Figure 1, obtained for a = 2
and M = 1. As predicted by Proposition 3.3, the dynamic with power means is
convergent for p > p defined by (30), which, since f'(p*) = 1 — log(a), is p =
(log(a) — 2)/(log(a)). As the bifurcation parameter a varies, differently from (38),
the dynamic generated by (40) with myopic expectations (p = 0) consists in a
complete cascade of flip bifurcations toward chaos. Introducing a non null memory
ratio, the power mean iteration scheme is able to stabilize the equilibrium for a €
(1,exp(2/(1 — p)), and so setting a = exp(2/(1 — p)), for any value of s a flip
bifurcation occurs. However, for (40) too, the subsequent behavior depends on s,
as qualitatively described by the bifurcation diagrams in Figure 7. As for (38), we
define function a4 : R — (1,+00] so that a4(s) represents the infimum of the set
of values of a for which a period-4 cycle occurs. We compute a4 numerically for
p = 0.1 and we report the results in Figures 8 and 9, distinguishing between s < 3
and s > § with § & —0.648. When s is sufficiently small, increasing s corresponds to
an increase of a4, as reported in Figure 8. Conversely, when s > —0.648, the behavior
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Figure 8. (Left plot) Function a4 (s) for s < —0.648, obtained through simulations. In this subdomain, the
function is increasing. (Right plot) Bifurcation diagrams for three different values of s.
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Figure 9. Function a4(s) for s > —0.648, obtained through simulations. For these values of s, G4(s) is non
monotonic.

seems more complicated, as reported in Figure 9, from which we can notice that,
when s lies in a right neighborhood of §, the threshold a4(s) is much smaller than
that for s — §7.

To better understand the discrepancy between the behaviors with s < § and s > §,
we refer to the bifurcation diagrams reported in Figure 10. Looking at the behavior
of a4 reported in Figure 8, we expect that a4 (s) be increasingly larger than 250 for
s > §. Indeed, if we look at bifurcation diagrams reported in the right column of
Figure 10, we can see that a period-4 indeed occurs for increasingly larger values of
a for s > § too. However, if we compute the same bifurcation diagrams for small
values of a (left column plots of Figure 10), we can see that a new, transient, increase
of complexity occurs, giving rise to a bubble. For values of s sufficiently close to 3,
we have only a couple of period doubling/halving appears, while slightly increasing
s, an increasingly complex sequence of period doublings and halvings occur. In
any case, it seems that function a4 attains its minimum value when (approximate)
geometric mean is considered (s =~ 0).

We found that a4 shows a behavior similar to those reported in Figures 8 and 9
also when different parameters setting or values of p are considered. However, we
remark that the discriminating value § seems to depend on p.

Even if the results we reported considering (36), (38), and (40) are only numerical,
we can indeed say that, when the more realistic case of fading memory p < 1 is
considered, the choice of a particular power mean is relevant. The value of s affects
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Figure 10. Bifurcation diagrams for model (40) for p = 0.1,s = —0.6 (first row) and s = —0.5 (second
row). Left column: for small values of a, after the first period doubling, a bubble develops, consisting of
either a period-4 cycle (top plot) or a complex sequence of period doubling/halving, leading to a period-2
cycle again. Right column: for large values of a, the period-2 cycle evolves through a sequence of period
doublings.

not only the number of iterations required to approach the equilibrium (and this
would indeed be true also for p > 1 and for the averaging processes considered in
Section 2), but can also give rise to very different behaviors when stability is lost.
In particular, the increasing in complexity can occur for very different values of the
parameters. Moreover, the most natural choice of arithmetic mean could not be the
most efficient one, as shown for instance by the last example, where the values close
to §~ allow for the most retarded route toward chaos.

An analytical investigation of the previous phenomena is beyond the purposes
of the present work, but it is indeed one of the research aim we want to focus on,
to better understand the behavior of the period-4 appearance and of the further
complexity increasing with respect to the shape of the recurrence function (mono-
tone, unimodal, multimodal) and to investigate the conditions under which bubbles
appear.

5. Conclusions

In this paper we studied an iterative scheme of the form z, 1 = f(z,), where z,
is a weighted power mean of all the previous state variables zq, ..., z,,. Our results
extend, to a general class of commonly used algebraic means (including arithmetic,
quadratic, harmonic, and geometric means) some existing results about arithmetic
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mean only.

These iterative schemes can be used to model learning mechanisms in economic
and social systems, where the agents use all available past data to compute expected
values by some averaging method.

A particular distribution of weights, exponentially decreasing like the terms of
a geometric series of ratio p has been used to investigate the effects of a fading
memory on the asymptotic properties of the discrete process. This has been obtained
through the reduction of the problem to the study of an equivalent two-dimensional
triangular map whose asymptotic behavior is governed by a one-dimensional map.

This allows us to state that the presence of a strong memory, that is, with a
memory ratio suitably close to 1, has a stabilizing effect. Conversely, if memory
ratio is too small, we may not have convergence. In this case, we numerically inves-
tigated the route toward chaos, focusing on three particular examples arising from
OLG models. The computational analysis suggests that the choice of the particular
exponent s and memory ratio p conditions the (retarded or early) appearance of
period-4 cycles and subsequent cascades of flip bifurcations. We aim to analyze such
aspects in future researches.

Funding

This work has been performed within the framework of COST Action IS1104 ”The
EU in the new economic complex geography: models, tools and policy evaluation”
and under the auspices of GNFM, Gruppo Nazionale di Fisica Matematica (Italy).

References

[1] F. Aicardi and S. Invernizzi, Memory effects in discrete dynamical systems, Int. J. Bif.
Chaos 2 (1992), pp. 815 — 830.
[2] C. Azariadis, Intertemporal Macroeconomics, Oxford: Blackwell Publishers, 1993.
[3] Y. Balasko and D. Royer, Stability of competitive equilibrium with respect to recursive
and learning processes, J. Econ. Th. 68 (1996), pp. 319 — 348.
[4] E. Barucci, Exponentially fading memory learning in forward looking economic models,
J. Econ. Dyn. Control 24 (2000), pp. 1027-1046.
[5] J. Benhabib and R. Day, A characterization of erratic dynamics in, the overlapping
generations model, Journal of Economic Dynamics and Control 4 (1982), pp. 37-55.
[6] G.I. Bischi and L. Gardini, Mann iterations reducible to plane endomorphism, Tech.
Rep. 36, Quaderni di Economia, Matematica e Statistica, Facolta di Economia, Urbino,
1996.
[7] G.I Bischi and L. Gardini, Basin fractalization due to focal points in a class of trian-
gular maps, Int. J. Bif. Chaos 7 (1997), pp. 1555-1577.
[8] G.I. Bischi, L. Gardini, and C. Mira, Plane maps with denominator. Part 1: some
generic properties, Int. J. Bif. Chaos 9 (1999), pp. 119-153.
[9] G.I Bischi and A. Naimzada, Global analysis of a nonlinear model with learning, Econ.
Notes 26 (1997), pp. 143-174.
[10] D. Borwein and J. Borwein, Fized point iterations for real functions, J. Math. Anal.
Appl. 157 (1991), pp. 112 — 126.
[11] M. Bray, Convergence to rational expectation equilibrium, in Individual forecasting and
aggregate outcomes, Cambridge University Press, 1983.
[12] J. Conlisk, Why bounded rationality?, Journal of Economic Literature 34 (1996), pp.
669-700.

21



May 29, 2015

Journal of Difference Equations and Applications mann revised' BCN

[13]
[14]
[15]
[16]
[17]
[18]

[19]

[25]
[26]

P.A. Diamond, National debt in a neoclassical growth model, Am. Econ. Rev. 55 (1965),
pp. 1126-1150.

I. Foroni, L. Gardini, and J.B. Rosser, Adaptive and statistical expectations in a re-
newable resource market, Math. Comp. Simulat. 63 (2003), pp. 541-567.

R. Franks and R. Marzek, A theorem on mean-value iterations, in Proceedings of the
American Mathematical Society, Vol. 30, 1971, pp. 324 — 326.

B. Friedman, Optimal expectations and the extreme information assumptions of rational
expectations macromodels, J. Monetary. Econ. 5 (1979), pp. 23-41.

D. Gale, Pure exchange equilibrium of dynamic economic models, J. Econ. Th. 6 (1973),
pp. 12 — 36.

G. Gandolfo, G. Martinengo, and P. Padoan, Qualitative analysis and econometric
estimation of continuous time dynamic models, North-Holland, Amsterdam, 1981.

M. Li, Point bifurcations and bubbles for a cubic family, J. Diff. Eq. Appl. 9 (2003),
pp. 553-558.

R. Lucas, Adaptive behavior and economic theory, J. Bus. 5 (1986), pp. 401-426.

W. Mann, Mean Value methods in iteration, in Proceedings of the American Mathe-
matical Society, Vol. 4, 1953, pp. 506 — 510.

R. Radner, Comment to convergence to rational expectation equilibrium by M.Bray,
individual forecasting and aggregate outcomes, in R. Friedman and E.S. Phelps (eds.)
(1983), cambridge University Press.

B. Rhoades, Fized point iterations using infinite matrices, Trans. Am. Math. Soc. 196
(1974), pp. 161 — 176.

P.A. Samuelson, An exact consumption-loan model of interest with or without the social
contrivance of money, J. Pol. Econ. 66 (1958), pp. 467-482.

T.J. Sargent, Bounded rationality in macroeconomics, Oxford University Press, 1993.
L. Vajani, Statistica descrittiva, 2nd ed., 1981.

22



