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Abstract— This note investigates a basic enzymatic scheme,
with a substrate transforming into a product by means of the
catalytic action of an enzyme. The focus is in the role of a
feedback regulating the enzyme production. The novelty of the
paper is in the choice of the feedback, acting from substrate
accumulation differently from previous cases already studied in
the literature, where the feedback acts from the product or from
the enzyme. The feedback scheme is studied according to both
a deterministic and stochastic approach: the former providing
the existence of a unique meaningful asymptotically stable
equilibrium; the latter investigating how noise propagates with
or without the feedback. Regards to the stochastic approach,
the metabolic noise is evaluated in terms of the coefficient
of variation of the product of the enzymatic reaction, aiming
at measuring its fluctuations around the average steady-state.
Numerical results are carried out according to Chemical Master
Equations, showing a clear improvement, in terms of noise
reduction, when the negative feedback is applied. Linear Noise
Approximation has been as well exploited with the aim of
finding analytical solutions for the metabolic noise, relating it
to the model parameters.

I. INTRODUCTION

Synthetic biology is a novel and challenging field of
research, aiming at creating, characterizing and assembling
synthetic biological circuits to be exploited in a wide range of
applications, such as energy, environment and medicine [1].
In the Synthetic Biology framework, mathematical control
theory has recently played a crucial role in the building of
mathematical abstractions aiming at a better understanding
of complex biological systems, as well as in the proposal of
practical solutions, possibly taking inspiration from estab-
lished engineering paradigms (see, e.g. the results recently
achieved to isolate and characterise parts of engineered
biological circuits, in order to understand how the different
modules can be wired in more complex circuits, [2]-[4]). To
this end, the role of the feedback has been widely investi-
gated, especially in transcriptional and metabolic regulation
where gene products are required to control their homeostatic
levels robustly with respect to parameter or environmental
fluctuations [5]-[15].
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This note investigates the role of the feedback in the
enzymatic production rate for a basic (though rather general)
reaction scheme. Such a framework has gained a relevant
interest in the recent years (e.g. [5]-[8]) with the aim of
quantifying the impact of the feedback in noise propagation.
Differently from the aforementioned papers, this note inves-
tigates the case of a negative feedback from the substrate,
according to the scheme in Fig.1. The elementary reaction
scheme refers to a substrate S binding to an enzyme E in
order to form a complex C (reaction 1) which in turn can
reverse the binding (reaction 2) or can be transformed into
a product P (with the release of the enzyme E, reaction
3). The system under investigation accounts for enzyme
production (reaction 4) and degradation (reaction 5), product
elimination (reaction 6) and substrate production (reaction 7).

Fig. 1. Enzymatic reaction framework (Scheme 1)

The enzymatic reaction framework depicted in Fig. 1 will
be addressed to as Scheme 1, with the enzyme production
rate controlled in feedback by the susbtrate; on the other
hand, we will refer to Scheme 0 when addressing a scheme
similar to the one of Fig. 1, with the enzyme production rate
not controlled in feedback by the substrate.

The feedback from the substrate provides a couple of
positive steady-state equilibrium points for the deterministic
Ordinary Differential Equation (ODE) system associated to
the enzymatic reactions, though it is proven that only one
is asymptotically stable. Such a stable equilibrium point
corresponds to the steady-state solution coming from the
first-order moment equations, written in closed form after
standard moment closure techniques [16], [17]. As a matter
of fact, Scheme 0 and Scheme 1 share the existence of a
unique, positive, asymptotically stable equilibrium point.

The stochastic approach aims at quantifying the metabolic
noise in terms of the product fluctuations around its steady-
state average value. To this end, Chemical Master Equations
(CME) are exploited [18], providing numerical solutions
by means of the Gillespie Stochastic Simulation Algorithm



TABLE I
CHEMICAL REACTIONS.

Event Population reset Propensity function
Substrate/enzyme ns(t) 7→ ns(t)− 1

binding ne(t) 7→ ne(t)− 1 w1 = k1ns(t)ne(t)
nc(t) 7→ nc(t) + 1

Substrate/enzyme ns(t) 7→ ns(t) + 1
unbinding ne(t) 7→ ne(t) + 1 w2 = k2nc(t)

nc(t) 7→ nc(t)− 1
Product production/ nc(t) 7→ nc(t)− 1

enzyme release/ ne(t) 7→ ne(t) + 1 w3 = k3nc(t)
np(t) 7→ np(t) + 1

Enzyme production ne(t) 7→ ne(t) + 1 w4 = k4
(no feedback)

Enzyme production ne(t) 7→ ne(t) + 1 w4 = f
(
ns(t)

)
(with feedback)

Enzyme clearance ne(t) 7→ ne(t)− 1 w5 = k5ne(t)
Product clearance np(t) 7→ np(t)− 1 w6 = k6np(t)

Substrate production ns(t) 7→ ns(t) + 1 w7 = k7

(SSA) [19]. To make a fair comparison between the two
schemes, the feedback parameters in Scheme 1 will be set
in order to provide the same equilibrium point of Scheme 0.
Similarly to other cases where the feedback is exerted by the
product or by the enzyme [5], [6], [7], [8], numerical results
show a clear improvement, in terms of noise reduction, when
the feedback is applied.

Analytical solutions of the CME would be required to
refer the metabolic noise to the model parameters; unfor-
tunately such a task is not affordable because of the curse
of dimensionality that prevents to estimate the stationary
distribution [18]. To cope with such a drawback different
levels of approximations are here exploited, like moment
equations applied after linearization of the CME propensities
[16], [17] and Linear Noise Approximation (LNA) [18].
Both cases allow to compute the second-order moments by
solving a 10th order linear system of algebraic equations
and do not allow to have an easy-to-handle analytical form
for the metabolic noise. Therefore, on top of LNA, the
Quasi-Steady-State Approximation (QSSA) is applied [20],
[21], which properly exploits the double time-scale of the
system, typical of enzymatic reactions frameworks, to reduce
the complexity of the slow dynamics. The correctness of
both approximations is validated by the comparison with the
numerical solutions provided by the SSA.

II. MATHEMATICAL MODEL OF THE CHEMICAL
REACTION SCHEME

Let [ns ne nc np]
T denote the copy number of substrate,

enzyme, complex and product, respectively. According to
the scheme of Fig. 1 the model accounts for 7 reactions,
{r1, . . . , r7}, each modeled by a random event occurring
probabilistically at exponentially distributed time instants,
with the temporal evolution of the reaction network de-
scribed by a Continuous-Time Markov Process, where a
state-dependent propensity wj is associated to reaction j,
[18]. The details of the chemical reactions are resumed
in the Table I including the resets on the players and the
propensities associated to each reaction.

Regards to Scheme 1, we model the propensity w4 by

means of the following Hill function:

w4(ns) = f(ns) =
β

1 + (ns/θ)M
(1)

Parameter β provides the maximal propensity (the promoter
strength), obtainable for negligible values of its entry ns.
Half of the maximal value of the propensity is reached in
correspondence of the repression thresholds, θ. Parameter
M is the promoter sensitivity, providing the steepness of the
sigmoidal function. Regards to Scheme 0, the propensity w4

is trivially given by a constant parameter k4.

A. Metabolic noise

Similarly to [5], [6], [7], [8], we define the metabolic
noise related to the product P in terms of the coefficient
of variation:

CV 2
p =

σ2
p

(n?p)
2

(2)

where σ2
p and n?p are the steady-state values for variance and

average of the marginal distribution of the product P ’s copy
number.

The comparison between the two schemes (with or without
feedback) is carried out by properly setting the feedback
parameters in order that the same steady-state average values
are provided. As a matter of fact, n?p does not vary in the
two schemes (actually n?p does not vary independently of the
feedback parameters, as it will be clearer in the next Section).

In the following, the expected value (average value) of a
random variable x is denoted by 〈x〉, while the steady-state
of the expected value of a stochastic process x(t) is denoted
by x? = limt7→+∞ 〈x(t)〉.

III. FIRST-ORDER MOMENTS

Consider the scheme with the feedback. By properly
exploiting the mass-action law, the following ODE system
can be associated to the set of chemical players, where the
state variables [〈ns〉 〈ne〉 〈nc〉 〈np〉]T indicate the average
values.
d〈ns〉
dt = −k1 〈ns〉 〈ne〉+ k2 〈nc〉+ k7 = 0

d〈ne〉
dt = −k1 〈ns〉 〈ne〉+ (k2 + k3) 〈nc〉 − k5 〈ne〉

+f(〈ns〉) = 0

d〈nc〉
dt = k1 〈ns〉 〈ne〉 − (k2 + k3) 〈nc〉 = 0

d〈np〉
dt = k3 〈nc〉 − k6 〈np〉 = 0

(3)
Due to the nonlinear propensities, the ODE system is an
approximation coming from the first-order moment equa-
tions, whose higher order terms are approximated by first-
order moments, by means of moment closure techniques
(see e.g. [17]).

According to this setting, steady-state solutions for com-
plex and product are easily achieved as

n?c =
k7
k3
, n?p =

k7
k6
. (4)



Instead, steady-state solution for substrate has to be numer-
ically searched from the roots of the following polynomial:

ϕ(n?s)=K(n?s)
M−θMn?s+KθM , K=

k5k7(k2 + k3)

k1k3β
,

(5)
with steady-state solution for the enzyme coming straight-
forwardly from

n?e =
β

k5
· 1

1 + (n?s/θ)
M
. (6)

Theorem 1: The ODE system (3) admits a pair of pos-
itive real equilibrium points if, and only if, the following
inequality is satisfied.

θ > KM(M − 1)−
M−1
M . (7)

Otherwise, no positive real equilibrium points occur.
Proof: The problem of finding positive real equilibrium

points is that of finding positive real solutions to ϕ(n?s) = 0
in (5). To this end consider the derivative

ϕ′(n?s) = KM(n?s)
M−1 − θM > 0

=⇒ n?s > ns,min =
(
θM

KM

) 1
M−1 (8)

stating the existence of a unique positive minimum at ns,min.
Since ϕ(0) = KθM > 0, then there can be only 2 scenarios:
one that prevents real roots, provided that ϕ(ns,min) > 0,
and the other providing 2 real positive roots, provided that
ϕ(ns,min) < 0. This last condition is shown to provide
condition (7) after some computations.

In order to investigate the stability of the equilibrium
points (occurring when condition (7) is satisfied), we con-
sider the Jacobian J associated to (3) providing the following
characteristic polynomial:

d(λ) = det(λI − J) = λ3 + a2λ
2 + a1λ+ a0, (9)

where

a2 = k1(n?s + n?e) + k2 + k3 + k5

a1 = k1
(
k5n

?
e + n?sf

′(n?s)
)

+ k1k3n
?
e + k5(k2 + k3)

a0 = k1k3
(
k5n

?
e + n?sf

′(n?s)
)

(10)
By applying the Routh criterion, d(λ) admits roots with
negative real part (thus ensuring asymptotic stability) if, and
only if

a0 > 0 and a1a2 − a0 > 0. (11)

However, the second of (11) becomes

a1a2−a0 = a2
(
k1k3n

?
e+k5(k2 +k3)

)
+a0

(
a2
k3
− 1

)
> 0.

(12)
After computations, it can be shown that

a2
k3
− 1 =

k1(n?s + n?e) + k2 + k5
k3

> 0, (13)

therefore

a0 > 0 =⇒ a1a2 − a0 > 0, (14)

with condition

a0 > 0 ⇐⇒ n?s < ñs = θ(M − 1)−
1
M . (15)

achieved by properly exploiting the steady-state condition (6)
and the derivative of f(·).

Remark 2: It is worthwhile to notice that, differently from
(7), condition (15) requires to be numerically verified for
both the equilibrium points, since it involves the computation
of the substrate steady-state. The following theorem allows to
overcome such a drawback, and simplifies the investigation
of steady-state stability.

Theorem 3: Assume that condition (7) is satisfied, so
that system (3) admits a pair of positive real steady-state
solutions. Then, the steady-state associated to the smaller
value of n?s is asymptotically stable, whilst the one associated
to the greater value of n?s is unstable.

Proof: Denote with 0 < n?s,1 < n?s,2 the pair of
positive real equilibrium points. According to (5), the pair
of solutions are given by the intersections of a Hill function
with a hyperbola as

1

1 + (n?s,i/θ)
M

=
K

n?s,i
, i = 1, 2, (16)

with the positive n?s-semi-axis that can be partitioned in three
regions of

[0,+∞) = [0, n?s,1) ∪ [n?s,1, n
?
s,2) ∪ [n?s,2,+∞) (17)

In the first and third regions the hyperbola is over the Hill
function; the opposite occurs in the intermediate region. Now,
consider ñs defined in (15) and assume that ñs ∈ [n?s,1, n

?
s,2),

that means:
1

1 + (ñs/θ)M
>
K

ñs
. (18)

If condition (18) is satisfied, then

n?s,1 < ñs < n?s,2, (19)

from which, by virtue of (15), the smaller n?s,1 is asymptot-
ically stable, whilst the larger n?s,2 is unstable.

Inequality (18) becomes (7) by trivially substituting ñs.
In summary, provided condition (7) is satisfied, there exists

a unique real positive, asymptotically stable equilibrium
point, provided by (4), (6) and the smaller of the positive
real solutions of ϕ(n?s) = 0 in (5). Therefore, the presence
of the feedback modifies the values of n?s and n?e , but
not the ones related to n?c and n?p. In order to make fair
comparisons between the two schemes (with or without
feedback), similarly to [5], the feedback parameters will
be tuned in order to provide the same average steady-state
solution for the non-feedback case, namely

n?c =
k7
k3
, n?p =

k7
k6
, n?e =

k4
k5
, n?s =

k5k7(k2 + k3)

k1k3k4
.

(20)
For instance, imaging to fix all the other parameters, as well
as the feedback sensitivity M , the pair (β, θ) must satisfy
the identity

k4 =
β

1 + (n?s/θ)
M

(21)



TABLE II
THE PARAMETERS OF THE ENZYMATIC MODEL.

Parameter Value Unit
k1 1 s−1molecule−1

k2 28 s−1

k3 3.2 s−1

k4 0.16 molecule/s
k5 0.02 s−1

k6 0.1 s−1

k7 2.4 molecule/s

with n?s as in (20). Fig. 2 shows some of these curves, for
different values of the promoter sensitivities M . Other model
parameters are given in Table II.

Fig. 2. (β vs θ)-curves ensuring fixed values of n?
s for different values of

the promoter sensitivity M . The vertical dashed line depicts θ = n?
s .

Remark 4: As it can be seen from Fig. 2, given n?s from
Scheme 0, all (β, θ)-curves satisfying (21) pass through the
point (2k4, n

?
s) for any promoter sensitivity M . Moreover,

by increasing the value of the threshold θ � n?s , the effect
of the feedback becomes weaker and the promoter strength
β approaches k4: a feedback with a threshold very large
with respect to the steady-state n?s requires the minimum
value for its strength to provide the same steady-state n?e as
without feedback, see (6). Instead, by decreasing the value
of the threshold θ � n?s , the effect of the feedback becomes
stronger and the promoter strength β should be increased to
have the same enzyme stationary mean value, see (6).

IV. COMPUTATION OF THE METABOLIC NOISE

The proper way to compute the metabolic noise defined
in (2) is by means of the steady-state probability distribution
provided by the solution of the CME associated to the set
of chemical reactions. However, to find such a solution
for a CME is a hard nut to crack because of the curse
of dimensionality which, unless simple cases involving few
copy numbers of the involved species, prevents from ex-
plicitly computing the stationary distribution, in favor of
efficient algorithms [22], [23] or Monte Carlo methods (e.g.
the Gillespie SSA [19]) providing affordable estimates of
the CME solution. For these reasons, CME solutions are
here provided numerically from SSA. However, in the case

of enzymatic reactions, model parameters use to be set in
order to show a double time-scale of the reactions involved
(reactions of binding/unbinding occur on a shorter time-
scale than the other reactions), and this makes exact SSA
computationally demanding, since it gets stuck on thousands
of binding/unbinding reactions for each birth of a product
molecule [8]. In this note, model parameters (see Table II)
have been modified from usual data coming from literature
[5], [6], [7], [8] in order to weaken such a double-time scale
property, and allow affordable results from the standard SSA:
as a matter of fact, the present scheme should be considered
as a toy model providing qualitative suggestions for further
research based on a more meaningful parameter setting.

Simulation results are reported in Fig. 3, where the
metabolic noise is pictured for the cases with and without
feedback according to different values of the threshold θ and
of the feedback sensitivity M . The SSA results are denoted
by circles and refer only to the feedback case (Scheme 1).
As previously stated, they are achieved by arbitrarily varying
θ and then constraining β to θ according to (21).

A. Analytical solution by means of 2nd order moment equa-
tions

Instead of looking for the whole stationary distribution
(and, then, provide from it the first and second order mo-
ments required to compute the metabolic noise), one may
think at achieving only first and second order moments.
However, these moment equations are not in closed form,
because of the nonlinear propensities w1 and w4, this last
in the feedback case (see Table I). To avoid moment closure
techniques [16], [17], similarly to [10] under the hypothesis
of small noise fluctuations around the average steady state
copy numbers, the nonlinear propensities are linearized by
means of the first order approximation, which enables to
obtain closed moment equations:

k1ns(t)ne(t) 'k1
(
n?sn

?
e+n?e(ns(t)−n?s)+n?s(ne(t)−n?e)

)
f(ns(t)) 'f(n?s) + f ′(n?s)(ns(t)− n?s) (22)

The second order moment equations now provide a linear
10-th order algebraic system with respect to the unknown

〈ninj〉 , i, j = s, e, c, p. (23)

From
〈
n2p
〉?

and p?n the metabolic noise is then computed
for Scheme 1 and is reported in Fig. 3 under the label
2nd order moment, according to different setting of the
threshold θ. If compared to the corresponding metabolic
noise of the non feedback case (Scheme 0), it is apparent
the improvement in terms of noise reduction.

The use of the adopted approximation for the nonlinear
propensities is validated by the SSA simulations, that appear
to be close to the approximated ones (besides the fact that
the two methods share the same qualitative behavior for
varying θ). Differently to the SSA case, these solutions
can be achieved in a faster way and provide richer sets of
simulated data but, unfortunately, they do not provide an
easy-to-handle analytical formula for CV 2

p . To this end, a
different approximation is exploited in the next Section.



Fig. 3. The metabolic noise for different values of M and θ. Comparison of
the results without feedback and with feedback obtained from the solution
of the second order moment equations, LNA framework, and Gillespie
simulations. The vertical dashed line shows θ = n?

s .

B. Analytical solution by means of LNA

The LNA provides the stationary distribution of the copy
numbers in terms of a multivariate Gaussian, according to the
simplifying assumption that molecular fluctuations produce
small deviations around the stationary average values. Mean
values of the LNA distribution are computed from the steady-
state solution of the deterministic ODE system associated
to the chemical reactions (3), written with respect to the
concentrations (instead of copy numbers). The covariance
matrix comes out as the positive definite solution of a
properly stated Lyapunov equation, written according to the
linearization of the ODE.

From a computational viewpoint, LNA provides second-
order moments as the solution of a linear 10th order algebraic
system (the unknowns are the 10 independent entries of
the covariance matrix in the Lyapunov equation). These
solutions are, in general, different from the ones achieved by
moment equations discussed in Section IV-A although they
share the same computational burden. However, similarly to
[8], [7], the Quasi Steady-State Approximation (QSSA) can
be applied on top of LNA to further reduce computations.
The QSSA is widely exploited to lighten the computational
complexity in presence of the typical fast/slow time-scale
of enzymatic reactions [20], [21]. It substantially neglects
the highly reactive species (in this system, complex C),
whose dynamics is supposed to be over with respect to
the others: as a matter of fact the complex C dynamic
equation is substituted by the algebraic equation coming from
dnc/dt = 0. This approximation clearly does not affect the
steady-states, instead it allows to simplify the corresponding
Lyapunov equation from a 10th order to a 6th order system.

To apply the LNA+QSSA, define γ = [γs γe γc γp]
T as

the vector of concentrations associated to the vector of copy
numbers [ns ne nc np]

T in a constant distribution volume V .
Then, exploit the algebraic equation provided by dγc/dt = 0
to compute γc as a function of other concentrations, and
substitute it into the other dynamic equations. The new
3rd order ODE system can be restated in the following
more compact form with respect to a new definition of

γ = [γs γe γp]
T :

γ̇(t) = NV
(
γ(t)

)
(24)

where N is the stoichiometric matrix

N =

−1 0 0 0 1
0 1 −1 0 0
1 0 0 −1 0

 (25)

associated to vector V collecting the macroscopic reaction
rates:

V =

[
k1k3
k2 + k3

γsγeV,
δ(γs)

V
, k5γe, k6γp,

k7
V

]T
(26)

where δ(γs) = k4 for the case without feedback (Scheme 0),
and δ(γs) = f(γsV ) for the case with the feedback (Scheme
1).

The covariance matrix Σ associated to the copy number
fluctuations around the equilibrium solution of (24) is the
positive definite solution of the Lyapunov equation

JΣ + ΣJ + V BBT = 0 (27)

with

J=N · dV
dγ

∣∣∣∣
γ?

=

−
k1k3

(k2+k3)
γ?eV − k1k3

(k2+k3)
γ?sV 0

δ′(γs) −k5 0
k1k3

(k2+k3)
γ?eV

k1k3
(k2+k3)

γ?sV −k6

,
(28)

and

BBT = Ndiag
(
V(γ?)

)
NT =

 2k7
V 0 −k7V
0 2k5γ

?
e 0

−k7V 0 2k7
V

 .
(29)

By solving the Lyapunov equation, we find for Scheme 0
(without feedback) and Scheme 1 (with feedback) the fol-
lowing analytic expression for the variance of the product,
σ2
p,0 and σ2

p,1 respectively:

σ2
p,0 =

k7
k6

+
k5k

2
7

Ξ0(n?e)
(
k6 +

k1k3n?
e

k2+k3

) , (30)

σ2
p,1 =

k7
k6

+
k5k

2
7

(
1−A

)
Ξ1(n?e)

(
k6 +

k1k3n?
e

k2+k3

) , (31)

where

Ξ0(n?e) = n?e

(
k5 +

k1k3n
?
e

k2 + k3

)
(k5 + k6), (32)

Ξ1(n?e) = Ξ0(n?e)(1− B) (33)

and A,B > 0 are defined by:

A = −f
′(n?s)

k5
, B = − k7f

′(n?s)

n?e

(
k6 +

k1k3n?
e

k2+k3

)
(k5 + k6)

. (34)

Fig. 3 shows the results obtained by LNA+QSSA in com-
parison to the results of the solution of the 2nd-order moment
equation and the SSA. As it can be seen, the LNA+QSSA



solutions agree with the 2nd order moments and with the
samples from the numerical Gillespie SSA. As an overall
comment on Fig. 3, according to the chosen set of model
parameters (see Table II), the results show the effectiveness
of the negative feedback from the substrate in reducing
the random fluctuations. Fig. 3 shows that by increasing
the repression threshold θ, the reduction of metabolic noise
attenuates, definitely approaching no reduction at all for
θ 7→ +∞. Indeed, by increasing θ for values of θ � n?s ,
the feedback function approximates with β = k4, in order
to ensure the same steady-states, and Scheme 1 collapses
to Scheme 0. On the other hand, when θ reduces so that
θ � n?s then the Hill function provides a stronger attenuation
of β, that is required to dramatically increase (according to
Fig. 2) in order to keep fixed the steady-states. In this case,
numerical simulations suggest a plateau for θ 7→ 0+. Indeed,
such a plateau can be computed from analytical solutions
(30)-(34) since, taking into account also (21):

lim
θ 7→0+

f ′(n?s) = −Mk4
n?s

(35)

and this value can substituted in A and B providing the limit
point (that depends of the feedback sensitivity M ) for σ2

p,1

as θ 7→ 0+.
To better appreciate the improvements in noise reduction

provided by the substrate feedback, Fig. 4 shows the vari-
ations of the ratio

CV 2
p,1

CV 2
p,0

with different parameters M by
varying the threshold θ of the feedback function.

Fig. 4. The ratio of the metabolic noises CV 2
p,1 over CV 2

p,0 for different
values of the feedback parameters M and θ.

V. CONCLUSIONS

The role of a negative feedback from the substrate in a
basic enzymatic scheme has been investigated, with respect
to the occurrence of asymptotically stable equilibrium points
and noise propagation. Noise propagation has been studied
according to different stochastic approaches. From one hand,
the general framework of Chemical Master Equations has
been exploited to run the Gillespie Stochastic Simulation
Algorithm providing numerical solutions for a chosen set
of model parameters. From the other hand, analytical results
have been searched according to linear approximations of

the original nonlinear propensities. To this end, second order
moment equations and Linear Noise + Quasi Steady-State
Approximations have been reported, these last providing an
easy-to-handle analytical solution for the metabolic noise.
Results achieved by approximation agree with the numerical
ones provided by SSA and show a decisive role in the
negative feedback to attenuate noise.
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