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Abstract

In this work we study oligopoly models in which firms adopt decision mech-
anisms based on best response techniques with different rationality degrees.
Firms are also assumed to face resource or financial constraints in adjusting
their production levels, so that, from time to time, they can only increase or
decrease their strategy by a bounded quantity. We consider different families of
oligopolies of generic sizes, characterized by heterogeneous compositions with
respect to the rationality degrees of firms. We analytically study the local
stability of the equilibrium depending on the oligopoly size and composition
and through numerical simulations we investigate the possible dynamics arising
when trajectories do not converge toward the equilibrium. We show that in this
case complex dynamics can arise, and this is due to both the loss of stability
of the equilibrium and to the emergence of multiple attractors, with the stable
steady state coexisting with a different, periodic or chaotic, attractor. In par-
ticular, we show that multistability phenomena occur when the overall degree
of rationality of the oligopoly is increased. Finally, we investigate the effect of
non-convergent dynamics on the realized profits.

Keywords: Market games, bounded rationality, best response mechanisms,
bifurcation, chaos, multistability.

1. Introduction

Due to the complexity of an oligopolistic market setting, firms should be
more realistically assimilated to reduced rationality players, which only have a
partial knowledge of the market and of their competitors’ strategies. In clas-
sical market games, firms can compete with respect to the price of the good
(Bertrand oligopoly [1]) or to the quantity to produce (Cournot oligopoly [2]).
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In latter case, under the assumption of bounded rationality, firms can only try to
dynamically adapt their production levels toward the profit maximizing strat-
egy, in a sort of evolutionary approximation of the Nash equilibrium. In the
last twenty five years a very wide research strand has focused on the study of
the dynamical properties of models describing market games among boundedly
rational firms (for an in-depth review about possible decision mechanisms and
oligopoly modelling, we refer to the book of Bischi et al. [3]). In particular,
the dynamical adjustment of production levels may not converge toward the
Nash equilibrium [2], following periodic, quasi-periodic and chaotic dynamics.
Among the reasons for the occurrence of complex dynamics, we can mention
the boundedly rational nature of the firms, the presence of nonlinearities in the
market functions, behavioral or technological heterogeneities among firms and
the oligopoly size. Restricting to the most recent works, we can mention the
contributions about heterogeneous duopolies [4, 5, 6, 7, 8], oligopolies of fixed,
small sizes [9, 10, 11, 12] and oligopolies of generic sizes, with both fixed [13]
and variable compositions [14, 15, 13, 16, 17].

In the present work, we consider families of oligopolies of generic size N ob-
tained from heterogeneous combinations of three kinds of players, who have
in common the decision mechanism, which is based on best response tech-
niques, but who differ in their respective degrees of rationality. Firstly, for
each model, we study the local stability of the steady state, which coincides
with the Nash equilibrium. We analytically show for which oligopoly composi-
tions and sizes the equilibrium is locally asymptotically stable. In particular, we
prove that, for a suitably large fraction of rational players, we can have hetero-
geneous oligopolies whose equilibrium remains stable as their size increases. We
then investigate through simulations the occurrence of complex dynamics. We
show that when the equilibrium loses its stability, periodic and chaotic output
trajectories can arise. More significantly, we show that even if the equilibrium
is locally stable, we can have trajectories that converge toward a different at-
tractor. Usually, multistability in the oligopolistic literature is connected to the
technological heterogeneity of firms [5]. To the best of our knowledge, this is the
first example of coexistence between differently complex attractors in oligopolies
of generic sizes in which the only heterogeneity among firms concerns the ra-
tionality degree. In particular, we show that such level of complexity occurs
increasing the overall rationality degree of the oligopoly, namely the fraction of
rational players. This means that rational players can actually have a destabi-
lizing effect, in the sense that the globally stable equilibrium can become just
locally stable increasing their number.

Finally, we investigate the average profits achieved by each different kind of
firms, in particular when trajectories do not converge toward the equilibrium.
We show that, in such cases, realized profits are larger than equilibrium profits,
so that instability can end in an advantage for firms. Moreover, especially when
non-converging dynamics are due to multistability phenomena, it is no longer
true that more rationality means larger profits.

The remainder of the paper is organized as follows. In Section 2, after pre-
senting the economic setting, we introduce and describe LMA, Nash and rational
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players. In Section 3, we present four families of heterogeneous oligopolies and
we analytically study the local stability of the equilibrium. In Section 4, we
present numerical investigations. Conclusions and possible future researches
are reported in Section 5.

2. Cournot market games

Let us consider an industry consisting of N firms, indexed by i = 1, . . . , N,
which produce quantities qi of homogeneous goods and have linear cost functions
C(qi) = cqi, where c > 0 represents the identical, constant marginal cost of each
oligopolist. We assume that the price of the goods depends on the total output
Q through the isoelastic inverse demand function p(Q) = 1/Q (more details can
be found in [2]).

The profit of the ith firm is then

πi(q
i, Q−i) =

qi

qi +Q−i
− cqi, (1)

where Q−i indicates the aggregate output level of all the oligopolists but the ith
one. Without loss of generality, from now on we can assume c = 1. We notice
that this means that all the analytical results presented in this section and the
qualitative behavior of the numerical simulations reported in Section 4 are inde-
pendent of c, which just rescales trajectories (setting c = 1 actually corresponds
to the change of variable qi := cqi.) The previous framework sets up a game, in
which players are the N oligopolists, the set of admissible strategies consists of
positive production levels qi > 0 and payoff functions are profit functions (1).
Ahmed and Agiza [20] and Matsumoto and Szidarovski [21] showed that such
game has only one Nash equilibrium (q∗, . . . , q∗) ∈ R

N with

q∗ =
N − 1

N2
, (2)

while the equilibrium aggregated quantity Q∗, profit π∗ and price p∗ are

Q∗ =
N − 1

N
, π∗ =

1

N2
, p∗ =

N

N − 1
. (3)

In the oligopolies we aim to study, all the agents, who make their production
choices at each discrete time t ∈ N, adopt decision mechanisms based on best
response techniques and differ in their rationality degrees, in particular with
respect to the informational endowment. This means that some kinds of players
have to adapt their production decisions at each time step, accordingly to an
adjustment mechanism which depends on their, possibly reduced, informational
endowment and on the, possibly variable, output levels of their competitors.
This means that the difference |q̃t+1 − qt| between the next period output level
q̃t+1 given by the adjustment rule they adopt and the current production deci-
sion qt may be very large. However, in real situations, firms can meet constraints
in trying to adapt their production levels. For example, they may be not able
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to immediately modify their output decision of any quantity. This is in general
due to capacity and financial constraints or shortage of manpower, which pre-
vent increasing the production level arbitrarily, as well as for economies of scale
and break-even considerations or the impossibility to dismiss labor force, which
do not allow firms to excessively decrease output decisions. A discussion about
firms’ behavior can be found in the book by Sterman [22]. For the reasons given
above, it is more suitable to assume that firms gradually adapt their strategies
toward the production level q̃t+1. This can be modeled through the following
adjustment mechanism

qt+1 = qt + σ(q̃t+1 − qt), (4)

where σ : R → R is a differentiable, strictly increasing and bounded function
which describes the feasible production variation. We assume σ(0) = 0, so that
steady states of the original adjustment mechanism are preserved and σ′(0) = 1.
As we will see, this last assumption ensures that the local stability of the steady
state is not affected by the particular choice of σ. Finally, we impose that σ(x)
is convex for x < 0 and concave for x > 0. This, together with the previous
requirements, means that the more q̃t+1 is different from qt, the more qt+1 is
different from q̃t+1. This allows mimicking that the output level adjustment is
increasingly more difficult to realize as |q̃t+1 − qt| becomes large. We notice
that similar gradual adjustment mechanisms have been proposed and used in
oligopoly modelling [23, 15, 13]. Finally, we stress that it is possible to show
that if no output limiter was considered, the players we are going to consider
would choose to produce constantly null production levels for any sufficiently
large oligopoly size (actually, approximatively N > 9), which would mean that
all firms would leave the market, which is indeed unrealistic.

To complete the description of the market game, we need to precise the as-
sumptions on each kind of player. Firstly, we assume that players characterized
by the same informational endowment are identical. In particular, this means
that the starting production choice of such players is the same, and, conse-
quently, production choices of such players coincide at each time. Moreover,
each firm is supposed to know the oligopoly composition and the oligopoly size
N, which are both constant in time. In what follows we consider three different
kinds of players: local monopolistic approximation (LMA), Nash and rational
players. LMA players adopts the so-called local monopolistic approximation,
which is a boundedly rational mechanism, proposed and studied by Bischi et
al. [19]. LMA firms are assumed to have a reduced informational endowment:
they only know the current market price, their own current production quan-
tity and they have a local knowledge of the demand function at the current
price, obtained, for example, through market experiments. Nash players have
complete information about the price function and the cost functions and make
the assumption that all the other players have perfect foresight and use a best
response mechanism. Moreover, they have enough computational capabilities to
compute the Nash equilibrium (2). Finally, rational players know the demand
function, the cost functions of each player and are able to compute the optimal
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output level which maximizes their profits with respect to the expected strate-
gies of the other players. In particular, we assume that rational players are able
to exactly foresight the production decisions that LMA and Nash players will
adopt for the next period.

The remainder of this Section is devoted to the description of the discrete
equations governing the adjustment mechanisms of each players. We notice that
each firm is assumed to know the oligopoly composition and the oligopoly size
N, which are both constant in time.

The adjustment mechanism of each LMA firm [24, 25] is given by

q̃Lt+1 =
1

2
qLt +

1

2
(1 −Qt)Qt, (5)

where Qt is the aggregated quantity of all firms.
For the above mentioned reasons, we suppose that LMA players gradu-

ally adjust their strategy toward q̃Lt+1, following (4). Introducing function
λ : (R+)2 → R, defined by

λ(qLt , Q
−L
t ) = qLt +σ

(1

2
qLt +

1

2
(1− (ωLNqLt +Q−L

t ))(ωLNqLt +Q−L
t )−qLt

)

(6)

where Q−L
t is the aggregated quantity of non-LMA players, we obtain the ad-

justment mechanism of LMA players

qLt+1 = λ(qLt , Q
−L
t ). (7)

We notice that we may have qLt+1 ≤ 0. Since we aim to investigate the eco-
nomically significant trajectories consisting of strictly positive output levels, we
implicitly restrict ourselves to those initial conditions that guarantee qLt > 0 for
any t > 0. Otherwise, in equation (7), we must take the maximum between the
r.h.s. and 0.

Regarding Nash players, since they figure that all players behave similarly
to them, they compute the output level that each firm should play in order to
optimize its profits, namely the Nash equilibrium strategy (2). We then have

qNt+1 = q∗ =
N − 1

N2
. (8)

Finally, we need to specify the adjustment mechanism for rational players. In-
deed, if the oligopoly only consisted of rational players, they would choose the
Nash equilibrium strategy q∗ at any t. If there is at least a non-rational player,
the best response of rational players depends on the strategies of the reduced
rationality players. Such problem was studied by Cavalli et al. [13], who showed
that the optimal production level of a generic rational player can be expressed
in terms of the aggregated strategy Q−R

t+1 of non-rational players, and results

q̃Rt+1 =
1− 2Q−R

t+1

2ωRN
+

√

(ωRN − 1)2 + 4ωRNQ−R
t+1 − 1

2ω2
RN

2
. (9)
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As for LMA players, we assume that rational players are not able to arbitrarily
adapt their strategies from time t to time t + 1. In order to confine the het-
erogeneity among agents to their rationality degree, we suppose that rational
players adopt the same output limiter of LMA players, so that

qRt+1 = ρ(qRt , Q
−R
t+1) = qRt +σ

(1− 2Q−R
t+1

2ωRN
+

√

(ωRN − 1)2 + 4ωRNQ−R
t+1 − 1

2ω2
RN

2
−qRt

)

(10)
where we introduced function ρ : (R+)2 → R. We remark that also in this case
we only consider initial conditions that guarantee qRt > 0 for any t > 0.

3. Analysis

In this section we take into account families of oligopoly models which are
heterogeneous with respect to the composition, namely in which at least two
agents have different rationality degrees. We mainly focus on the analytical
investigation of the local stability of steady states, depending on oligopoly sizeN
and composition. In what follows, we respectively identify the fraction of LMA,
Nash and rational players with ωL, ωN and ωR, through which the oligopoly
composition is represented. We remark that, in the resulting models, both ωi

and N are economically significant only if ωi = k/N, k ∈ [0, N ] and if N ∈ N.

3.1. Nash versus rational

The first oligopoly family we consider is composed by heterogeneous com-
binations of Nash (8) and rational players (10). In what follows, we refer to it
as NR. Since we aim at studying heterogeneous oligopolies, we have to impose
that there are respectively at least a Nash and a rational firm, i.e.

N ≥ 2, ωR ∈
[

1

N
, 1− 1

N

]

,

so that the fraction of Nash firms ωN = 1− ωL belongs to [1/N, 1− 1/N ], too.
The resulting NR model can be obtained from (10), in which the aggregated
output level of non-rational players (namely, of Nash players) is Q−R

t = (1 −
ωR)(N − 1)/N. Inserting Q−R

t in (10) we obtain map fNR : R+ → R defined by

qRt+1 = fNR(q
R
t ) = ρ

(

qRt , (1− ωR)
N − 1

N

)

. (11)

A straightforward computation shows that the unique steady state of (11) is
q∗, which coincides with each component (2) of the Nash equilibrium. For NR
model, we can prove that the steady state is globally stable.

Proposition 1. Steady state q∗ of (11) is globally stable independently of the
oligopoly size N and composition ωR.
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Proof. It is easy to see that

f ′

NR(q) = 1− σ′

(

−qN2 −N + 1

N2

)

,

from which we have f ′

NR(q
∗) = 0, which guarantees local stability. Moreover,

since from the concavity/convexity assumptions on σ we have that σ′(q) attains
its maximum value 1 uniquely for q = 0, we have that f ′

NR ≥ 0. This allows
concluding.

We notice that if rational players were able to immediately adjust their
production level toward the best response strategy, in NR oligopolies each player
would choose quantity q∗ in one shot. The only effect of introducing σ is then
to replace the instantaneous choice of q∗ with a gradual adjustment toward it,
which however does not affect stability and convergence. Finally, we observe
that the more bounds of function σ are small (namely when rational firms can
adapt their production level by a reduced quantity), the more convergence speed
toward the equilibrium becomes slow.

3.2. LMA versus Nash

The second family of oligopolies we consider consists of heterogeneous com-
binations of LMA (7) and Nash (8) firms. We will refer to this model as LN. The
heterogeneity assumption requires that there are at least a Nash and a LMA
firm, namely

N ≥ 2, ωL ∈
[

1

N
, 1− 1

N

]

, (12)

so that the fraction of Nash firms ωN = 1− ωL belongs to [1/N, 1− 1/N ], too.
We have that the aggregated output level of non-LMA players is then Q−L

t =
(1− ωL)(N − 1)/N, which inserted into (7) allows defining map fLN : R+ → R

as

qLt+1 = fLN (qLt ) = λ

(

qLt , (1− ωL)
N − 1

N

)

, (13)

which represents LN model. It is easy to prove that the unique steady state of
(13) is q∗, which coincides with each component (2) of the Nash equilibrium.
The local stability of q∗ is studied in the next Proposition.

Proposition 2. Steady state q∗ of (13) is locally asymptotically stable provided
that

(

N

2
− 1

)

wL <
3

2
. (14)

Proof. The proof is straightforward. It is sufficient to notice that q∗ is locally
asymptotically stable provided that |f ′

LN(q∗)| < 1. Since f ′

LN (q∗) = (1−N/2)ωL+
1/2, we indeed have that f ′

LN(q∗) < 1 is always fulfilled, while solving f ′

LN (q∗) >
−1 provides (14).
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We notice that, as N increases, condition (14) is fulfilled by increasingly
small values of ωL, namely the steady state is stable only if the fraction of
LMA players is suitably small. This also means that keeping (approximatively)
fixed the fraction ωL of LMA firms and increasing N, we always have a suffi-
ciently large number of firms for which the equilibrium becomes unstable. In
the next Corollary, we precise, depending on the oligopoly size, the oligopoly
compositions with locally stable steady state.

Corollary 1. Concerning LN oligopolies, for any size N there exists a het-
erogeneous composition consisting of a suitably large number of Nash firms for
which the steady state is locally asymptotically stable. In particular

1) if N = 2, 3, 4, 5 then q∗ is locally stable for any heterogeneous oligopoly
composition;

2) if N = 6, 7 then q∗ is locally stable provided that we have at most 4 LMA
firms;

3) if N ≥ 8 then q∗ is locally stable provided that we have no more than 3
LMA firms.

Proof. For the proof of case 1), we notice that (14) is fulfilled if N = 2. Con-
versely, we can write ωL < 3/(N − 2). Under assumption (12), such inequality
is satisfied by any ωL if

1− 1

N
<

3

N − 2

or equivalently if N2 − 6N + 2 < 0, which requires 0.35 ≈ 3 −
√
7 < N <

3 +
√
7 ≈ 5.64. Since 1/N < 3/(N + 2), we have unconditional stability with

respect to oligopoly composition ωL also for N = 3, 4, 5.
To prove cases 2) and 3), we need to find the largest integer n that solves

ωL =
n

N
<

3

N − 2
,

or, equivalently, n < 3+6/(N−2). For N = 5, 6 we have that 1 < 6/(N−2) < 2,
so 4 < 3+6/(N − 2) < 5 and this allows choosing n = 4. Conversely, for N ≥ 8
we have 3 < 3 + 6/(N − 2) ≤ 4, so n = 3.

The previous considerations also prove that for any N we can always find
n ≤ 3 for which the steady state is locally stable.

As N increases, the maximum number of LMA firms for which q∗ is locally
stable is reported in Figure 1. The results of the previous Corollary are quite
interesting, especially if compared to those about homogeneous oligopolies. As
proved by Bischi et al. [19], a homogeneous oligopoly consisting of LMA firms
has locally asymptotically stable equilibrium only if it consists of at most N = 4
LMA firms. However, Corollary 1 shows that even adding “unconditionally sta-
ble” Nash firms, the maximum number of LMA firms that preserve equilibrium
stability is reduced to 3 for any N ≥ 5. Moreover, even if for any N we can
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always find a heterogeneous combination of Nash and LMA firms that assures
local stability, the maximum fraction of LMA players that preserve it tends
toward zero as N increases.

3.3. LMA versus rational

The third family of heterogeneous oligopolies is composed by LMA (7) and
rational (10) firms, and we refer to it as LR. In this case we have

N ≥ 2, ωL ∈
[

1

N
, 1− 1

N

]

,

so ωR = 1 − ωL ∈ [1/N, 1 − 1/N ]. In the present setting non-LMA players are
rational players and then their aggregated production is Q−L

t = (1 − ωL)NqRt ,
while concerning the aggregated quantity Q−R

t+1 of non-rational players (i.e. of
LMA players) we can write

Q−R
t+1 = ωLNqLt+1 = ωLNλ(qLt , (1− ωL)NqRt ).

Using Q−L
t and Q−R

t+1 in (10) and in (7), we obtain map fLR : (R+)2 → R defined
by

{

qLt+1 = λ
(

qLt , (1− ωL)NqRt
)

,

qRt+1 = ρ
(

qRt , ωLNλ(qLt , (1− ωL)NqRt )
)

,
(15)

which describes model LR. It is easy to see that (q∗, q∗) is the only strictly
positive steady state for (15).

Local stability of (q∗, q∗) is studied in the next Proposition.

Proposition 3. Steady state (q∗, q∗) is locally asymptotically stable provided
that

4(N − 2)ωL − 3(N − 1) < 0. (16)

Proof. To prove stability, we evaluate at the steady state the Jacobian matrix
J(q∗, q∗) of system (15). Recalling that σ(0) = 0 and σ′(0) = 1, long but easy
computations show that we have J(q∗, q∗) = (aij)i,j=1,2 with

a11 =
ωL(N − 2)2(1 − ωL)

2N + 4ωL − 2NωL − 2
,

a12 = −ωL(N − 2)(2ωL −NωL + 1)

2N + 4ωL − 2NωL − 2
,

a21 =
(N − 2)(ωL − 1)

2
, a22 = 1− NωL − 2ωL + 1

2
,

from which we obtain det(J(q∗, q∗)) = 0 and

tr(J(q∗, q∗)) = 1− N − 1

2(N + 2ωL −NωL − 1)
.

Consequently, the eigenvalues of J(q∗, q∗) are λ1 = tr(J(q∗, q∗)) and λ2 = 0.
Stability condition then reduces to |λ1| < 1. Since 2(N + 2ωL −NωL − 1) > 0,
we have λ1 < 1, while imposing λ1 > −1 leads to (16).
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Condition (16) says that local stability is guaranteed only if the fraction of
LMA firms is sufficiently small. However, differently from condition (14), we do
not necessarily have that increasing N and keeping ωL (approximatively) fixed
leads to instability. The precise number of rational firms needed to guarantee
local stability is studied in the next Corollary. We recall that ⌈a⌉ stands for the
smallest integer greater or equal than a.

Corollary 2. Concerning LR oligopolies, for any size N there exists a hetero-
geneous composition consisting of a suitably large number of rational firms for
which the steady state is locally asymptotically stable. In particular

1) if N ≤ 7 then (q∗, q∗) is locally stable for any heterogeneous oligopoly
composition;

2) if N ≥ 8 then (q∗, q∗) is locally stable provided that we have at least ⌈(N−
3)/4⌉ rational firms.

Proof. To prove case 1), we start noticing that (16) is indeed satisfied if N = 2,
while for N > 2 we can write

ωL <
3

4

(

1 +
1

N − 2

)

.

Observing that for 1 < N < 8 we have

1− 1

N
<

3

4

(

1 +
1

N − 2

)

allows concluding.
To prove case 2), let n be the number of rational firms, so that ωL = 1−n/N.

We need to find the smallest integer n that for N ≥ 8 solves

1− n/N <
3

4

(

1 +
1

N − 2

)

,

which is equivalent to

n > z(N) =
N − 3

4
− 3

2(N − 2)
.

We notice that for N = 8 we have z(N) = 1, so we need at least n = 2 =
⌈(N − 3)/4⌉. When N > 8, we can write N = 4m + r, where m ∈ N and
r = 0, 1, 2, 3. Since 3/(2(N − 2)) ≤ 3/14, we have

4m+ r − 3

4
− 3

2(N − 2)
> m+

r

4
− 3

4
− 3

14
> m− 1,

and
4m+ r − 3

4
− 3

2(N − 2)
< m+

r

4
− 3

4
≤ m.

Noticing that m = ⌈(N − 3)/4⌉ allows concluding.
The previous considerations guarantee that, for any N, there always exists a

sufficiently large number of rational firms such that the steady state is stable.
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The main consequence of the previous Corollary is that there are configu-
rations for which the steady state is locally stable independently of N. In fact,
if the oligopoly consists of at least a quarter of rational firms, the equilibrium
is stable for any N . Such result goes against the literature about homogeneous
oligopolies [26], in which the number of firms always has a destabilizing role.
To the best of our knowledge, this is the first example of oligopoly in which the
equilibrium remains locally stable for any N.1 The maximum number of LMA
firms for which the equilibrium is locally stable is shown in Figure 1.

3.4. LMA versus rational and Nash

In the last family of oligopolies each mechanism is adopted by at least one
agent, requiring

N ≥ 3, ωL ∈
[

1

N
, 1− 2

N

]

, ωR ∈
[

1

N
, 1− 2

N

]

, (17)

so that ωN = 1 − ωL − ωR ∈ [1/N, 1 − 2/N ]. This means that the aggregated
quantity of non-LMA players is given by

Q−L
t =

(1 − ωR − ωL)(N − 1)

N
+ ωRNqRt ,

while that of non-rational players is

Q−R
t+1 =

(1− ωR − ωL)(N − 1)

N

+ ωLNλ

(

qLt ,
(1− ωR − ωL)(N − 1)

N
+ ωRNqRt

)

.

Putting Q−L
t and Q−R

t+1 in (10) and in (7) we can introduce function fLRN :
(R+)2 → R defined by



















qLt+1 = λ
(

qLt ,
(1−ωR−ωL)(N−1)

N
+ ωRNqRt

)

,

qRt+1 = ρ
(

qRt ,
(1−ωR−ωL)(N−1)

N

+ωLNλ(qLt ,
(1−ωR−ωL)(N−1)

N
+ ωRNqRt )

)

.

(18)

System (18) represents the dynamical model of LMA versus rational and Nash
market game. It is easy to see that (q∗, q∗) is the only steady state for (18),
whose local stability is studied in the next Proposition.

Proposition 4. Steady state (q∗, q∗) is locally asymptotically stable provided
that

(N − 2)ωL − 3ωR(N − 2)− 3 < 0. (19)

1The only example of an oligopoly in which the steady state does not lose local stability
as the number of firms increases has been proposed by Puu [27] for a homogeneous oligopoly,
in which however capacity limits are incorporated in cost function.
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Proof. We proceed as in the proof of Proposition 3. We have that the Jacobian
matrix of system (18) evaluated at the steady state is J(q∗, q∗) = (aij)i,j=1,2,
where

a11 =
ωLωR(N − 2)2

2(NωR − 2ωR + 1)
,

a12 = −ωL(N − 2)(2ωL −NωL + 1)

2NωR − 4ωR + 2
,

a21 = −ωR(N − 2)

2
, a22 = ωL − NωL

2
+

1

2
.

From the expression of J(q∗, q∗) we have det(J(q∗, q∗)) = 0 and

tr(J(q∗, q∗)) =
1

2
− ωL(N − 2)

2(NωR − 2ωR + 1)
,

from which the eigenvalues of J(q∗, q∗) are λ1 = tr(J(q∗, q∗)) and λ2 = 0.
Imposing stability condition |λ1| < 1, after noticing that, under assumption
(17), we have λ1 ≤ 1/2 < 1, the only substantial stability condition is λ1 > −1,
which, after some simple algebraic manipulations, provides (19).

Stability condition (19) depends on both the fractions of LMA players and
Nash players. As predictable, the l.h.s. of (19) increases as ωL increases, which
highlights the destabilizing role of LMA firms. Conversely, it decreases as ωR

increases, so that increasing the number of rational firms has a stabilizing effect
on the steady state. More precisely, we have the following Corollary.

Corollary 3. Let us consider LRN oligopolies and suppose that we have 1 ≤
n ≤ N − 2 LMA firms, 1 ≤ m ≤ N − n − 1 rational firms and, consequently,
1 ≤ N − n−m ≤ N − 2 Nash firms. Then for any oligopoly size, there exists a
heterogeneous composition consisting of a suitably large number of rational firm
for which the steady state is locally asymptotically stable. In particular

1) if N ≤ 8 then (q∗, q∗) is locally stable for any heterogeneous oligopoly
composition;

2) if N ≥ 9 and if there are no more than n = 6 LMA firms, then (q∗, q∗) is
locally stable independently of the number of rational and Nash firms;

3) if N ≥ 9 and there are n ≥ 7 LMA firms, then (q∗, q∗) is locally stable if
and only if the number of rational firms is m ≥ n/3− 1.

Proof. From (17) and (19), using ωL ≤ 1− 2/N and ωR ≥ 1/N we have

(N − 2)(ωL − 3ωR)− 3 <
N2 − 10N + 10

N
,

so that condition (19) is satisfied provided that N2−10N+10 < 0, which means
1.13 ≈ 5−

√
15 < N <

√
15 + 5 ≈ 8.88. This proves case 1).
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To prove case 2), we notice that since ωR ≥ 1/N we have

(N − 2)(ωL − 3ωR)− 3 < (N − 2)

(

ωL − 3

N

)

− 3,

and then a sufficient condition for stability is

ωL < 3

(

1

N
+

1

N − 2

)

. (20)

We notice that (20) guarantees local stability independently of the partition of
rational/Nash firms. Since ωL = n/N, we can rewrite (20) as

n < 3 +
3N

N − 2
= 6 +

6

N − 2
< 6.86

for N ≥ 9, which provides case 2).
To prove case 3), we notice that (19) can be rewritten as

ωR >
ωL

3
+

1

N − 2
,

which, using ωL = n/N and ωR = m/N, becomes

m >
n

3
− 1− 2

N − 2
.

Since 2/(N − 2) < 0.29 for N ≥ 9, the previous relation is satisfied if and only
if m ≥ n/3− 1. This concludes the proof.

The previous considerations show that for any N there is always a suitable
number of rational firms that guarantees steady state stability.

The steady state in LNR oligopoly is locally stable for a slightly reduced
number of LMA players than LR oligopoly, as shown in Figure 1. However,
a slightly reduced number of rational firms is sufficient to assure steady state
stability for any oligopoly size. In fact, from case 3) of Corollary 3, if we choose
n LMA firms and m ≥ n/3 − 1 rational firms, then equilibrium stability is
guaranteed. Assuming that there is only one Nash firm, we haveN = n+m+1 ≤
4m+4, so that m ≥ ⌈(N−4)/4⌉. We again have that a quarter of rational firms
is sufficient to guarantee local stability.

4. Complex dynamics and Multistability

We now investigate through simulations the possible dynamics arising in LN,
LR, LNR models. Firstly, in order to perform simulations, we need to specify
an explicit expression for function σ. We choose

σ(x) =







a1 tanh
(

x
a1

)

x ≥ 0,

a2 tanh
(

x
a2

)

x < 0,
(21)
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Figure 1: Plot of the maximum number of LMA firms for which we have a heterogeneous
composition with a locally stable equilibrium. Blue plot refers to LN model (13), black plot
refers to LR model (15) and red plot refers to LNR model (18).

where −a2 and a1 are respectively the lower and upper asymptotic bounds of
function σ. It is easy to see that (21) fulfills all the requirements imposed on
σ in Section 2. We notice that the particular choice of function σ does not
significantly affect the resulting dynamics, as we numerically checked.

In order to obtain bifurcation diagrams on varying the oligopoly composition
and size, we treat ωi and N as continuous variables. We also investigate the
performance of each kind of mechanism, comparing the average profits

m(π) =
1

tb − ta

tb
∑

t=ta

πt

achieved by each kind of firm in the different families of oligopolies. Indeed,
we are interested in investigating those situations in which output trajectories
do not converge toward the equilibrium, otherwise m(π) would coincide with
equilibrium profit π∗. In all the following simulations we set ta = 1000 and
tb = 1200, which provided a reliable and robust approximation for m(π). Fi-
nally, throughout this section, we set the lower and upper bounds of production
variation to a1 = 0.01 and a2 = 0.02 and, in bifurcation diagrams with respect
to ωi, we consider oligopolies consisting of N = 25 firms. In the following bi-
furcation diagrams we only report variable qL, since qR is qualitatively very
similar.

We start investigating LN model. In Figure 2 we show the possible behavior
of map (13), for some different oligopoly compositions, when the sigmoid func-
tion is (21). As we can see, the map, which lies between the two asymptotes
qL − a1 and qL + a2, can be either increasing or bimodal. In depth numerical
investigations suggest that, on varying N and ωL, those are the only possible
shapes of map (13).

In Figure 3 (a) we report the bifurcation diagram on varying ωL ∈ [1/N, 10/N ].
Stability condition (14) is ωL < 3/23 ≈ 0.13 and after this threshold a flip bifur-
cation occurs, with a subsequent cascade of period doublings leading to chaos.
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Figure 2: Map (13) for different numbers n of LMA firms.

In particular, for n ≤ 3 LMA firms the steady state is stable, for n = 4, 5 LMA
firms we have a period-2 cycle, for n = 6 LMA firms we have a period-4 cycle
while for n = 7, 8, 9 LMA firms the resulting dynamics are chaotic. In Figure 3
(a), the highlighted parts of the bifurcation diagram correspond to n = 2, 5, 6
and 8 and display the increasing complexity. Finally, for n > 9 LMA firms’
dynamics are characterized by a period-3 cycle. In Figure 3 (b) we report the
average profits realized by LMA and Nash firms for the same values of ωL used
for the bifurcation diagram in Figure 3 (a). Interestingly, when stability is lost,
profits achieved by both kinds of firms are larger than equilibrium profits (3),
with Nash firms which always achieve larger average profits. We numerically
checked that both these results are robust with respect to the oligopoly size, and
to the bounds of the output limiters, provided that the upper bound is smaller
than that lower (a2 > a1). In the opposite situation (a2 < a1), profits achieved
when equilibrium loses stability are smaller than equilibrium profits. However,
Nash firms still achieve larger profits than LMA firms. In Figure 3 (c) we re-
port the bifurcation diagram on varying N ∈ [6, 16], setting ωL = 1/2. Also in
this case, when stability condition N < 8 is violated, we have a flip bifurcation
ending with chaos. In Figure 3 (c) the cases of convergent dynamics (N = 6),
of a 2-cycle (N = 10) and of chaotic dynamics (N = 16) are highlighted.

The next set of simulations concerns LR model. As we can see from the
bifurcation diagram in Figure 4 (a), in this case different attractors coexist.
While the simulations reported in Figure 3 were qualitatively independent of
the particular initial datum, in this case we have that the resulting dynam-
ics are strongly path-dependent. In Figure 4 (a), the black bifurcation dia-
gram is obtained with an initial datum which is very close to the steady state,
while the red diagram is obtained starting from (qL0 , q

R
0 ) = (0.1, 0.02). Stability

condition (16) is ωL < 18/23 ≈ 0.79, but when another attractor emerges at
ωL

∼= 0.562, at which a saddle node bifurcation of a 2-cycle occurs, leading an
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(a) (b)

(c)

Figure 3: (a): Bifurcation diagram for LN model (13) as ωL increases. Highlighted regions
correspond to n = 2, 5, 6, 8 LMA firms.(b): Average profits achieved by LMA (circle) and
Nash (diamond) firms, for the same values of ωL used in bifurcation diagram (a). Red marks
correspond to economically significant values of ωL. Equilibrium profits are represented by
a dotted line. (c): Bifurcation diagram for LN model (13) as N increases, for ωL = 0.5.
Highlighted regions correspond to oligopoly sizes N = 6, 10, 16.

attracting 2-cycle to coexist with the attracting equilibrium point in the in-
terval ωL ∈ (0.562, 0.71). In this case, as noticeable from the red bifurcation
diagram in Figure 4 (a), dynamics initially consist of a period-2 cycle, which, as
ωL increases, undergoes a cascade of period doublings. Basins of attraction for
ωL = 15/N, 16/N and 17/N, corresponding to the highlighted regions of Figure
4 (a), are reported in Figure 5, from which it is also evident that small pertur-
bations of the equilibrium production can easily drive trajectories toward the
coexisting attractor. If ωL is increased above 0.71 the chaotic attractor collides,
i.e. has a contact bifurcation, with the boundary of its basin, after which it
become a chaotic repellor, and the equilibrium point is left as unique attractor.
We stress that we thoroughly checked through numerical simulations that the
steady state attracts almost all the points of the plane for ωL ∈ (0.71, 0.79).
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(a) (b)
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Figure 4: (a): Bifurcation diagrams for LR model (15) as ωL increases. The black diagram is
obtained for (qL

0
, qR

0
) ≈ (q∗

0
, q∗

0
), while the red diagram for (qL

0
, qR

0
) = (0.1, 0.02). Highlighted

regions, in which different attractors coexist, correspond to n = 15, 16, 17, LMA firms (b,c):
Average profits, for ωL ∈ (0.60.77) (Figure (b)) and ωL ∈ (0.790.90) (Figure (c)), achieved by
LMA (circle) and rational (star) firms, for the same values of ωL used in bifurcation diagram
(a). Red marks correspond to economically significant values of ωL. Equilibrium profits are
represented by a dotted line. Plots (b) and (c) have different vertical scales.

When stability condition is violated, a flip bifurcation occurs, which however
very soon disappears, replaced by a new chaotic attractor in one piece.

To the best of our knowledge, it is the first example of multistability with
attractors of different complexity in heterogeneous oligopolies in which agents
are homogeneous with respect to the technology. This is due to the presence
of the more realistic bounded adjustment mechanism. The most interesting
aspect is that in this scenario, rational players can actually have a destabilizing
role. In fact, looking again at the bifurcation diagram in Figure 4 (a), if we
consider oligopolies consisting of 18 and 19 LMA firms (i.e. ωL = 0.72, 0.76), the
equilibrium attracts almost all the points of the plane. Conversely, if we consider
17 LMA firms (i.e. a larger number of rational firms), another attracting set
with positive measure is present, and output decisions can follow a chaotic orbit.
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This means that replacing a reduced rationality firm with a rational firm can
further the emergence of complex dynamics. We checked that the previous result
is robust with respect to the oligopoly size, as we found a similar coexistence
between different attractors for any N ≥ 20.

We stress that LMA and rational firms only differ for the informational en-
dowment and are identical with respect to marginal costs and output limiter.
This result strengthens the findings of the work by Cavalli et al. [13], in which
it was shown that increasing the number of rational players can introduce in-
stability. However, in such paper, in which boundedly rational players adopted
a best response mechanism with myopic expectations, to obtain a destabilizing
effect for rationality, we had to take into account also technological hetero-
geneity, namely rational players had to face larger marginal costs than reduced
rationality players.

We underline that the occurrence of multistability makes more difficult to
understand the behavior of the profits achieved by each kind of firm. In Figure
4 (b) we report the average profits when production trajectories follow the
coexisting attractor, for compositions for which the steady state is stable. As
in LN model, when we are far from the steady state trajectory, firms achieve
profits which are larger than equilibrium profits when a2 > a1 (as in Figure 4
(b)) and which are smaller than equilibrium profits when a1 > a2. However,
in both cases, we also have situations in which the least rational firms (LMA)
achieve larger profits. In Figure 4 (c) we collect the profits realized by LMA
and rational firms when the steady state is unstable. In this case, rational firms’
profits are larger than those of LMA firms.

Finally, we consider the family of oligopolies in which LMA, Nash and ratio-
nal players are simultaneously present. In Figure 6 we show a two-dimensional
bifurcation diagram with respect to ωL and ωR, starting with initial condition
(qL0 , q

R
0 ) = (0.195, 0.195). The oligopoly compositions which provide a stable

equilibrium correspond to the region described by (19), below the black curve
of Figure 6. As we can see, we again have coexisting attractors, since in such re-
gion trajectories, which should actually converge toward the steady state (green
color), converge toward different attractors consisting of periodic points and
complex attractors (cyan region). This is also evident from the particular one-
dimensional bifurcation diagram reported in Figure 7 (a), obtained, as ωL varies,
for ωN = 3/N and ωR = 1− ωL − ωN . Red bifurcation diagram is obtained for
the same initial condition used for the two-dimensional bifurcation diagram re-
ported in Figure 6 while for the black diagram we set (qL0 , q

R
0 ) ≈ (q∗0 , q

∗

0). In the
two highlighted regions of Figure 7 (a), corresponding to oligopolies in which
n = 15 and 16 LMA firms are considered, we respectively have a 2-cycle and
a chaotic trajectory coexisting with the stable steady state. The previous ex-
ample shows the potentially destabilizing role of rational players once more, as
increasing their number opens the way for complex dynamics even in a context
in which Nash players are present.

We remark that basins of attraction are qualitatively similar to those of LR
model.

With respect to average profits, we can notice from Figures 7 (b) and (c) that
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(a) (b)

(c) (d)

Figure 5: Basins of attraction for LR model (15), for three compositions related to the bi-
furcation diagram reported in Figure 4. Yellow star represents the equilibrium point, while
black circles (Figures (a,b)) and dots (Figures (c,d)) represent the coexisting attractor. Blue
color is used for the basin of the steady state, green color for that of the coexisting attractor.
Figure (d) is an enlargement of Figure (c) in a neighborhood of the attractors.

we have both situations in which rational players realize the best performance
and in which their average profits are the smallest one, being those of Nash
players the largest ones.

5. Conclusions

In this work we studied oligopolies consisting of different heterogeneous com-
binations of players who adopt decision mechanisms based on best response
techniques with different degrees of rationality. Moreover, to encompass in the
model resource or financial constraints that prevent firms from being able to
arbitrarily increase or decrease their output level, we considered a bounded ad-
justment mechanism. If the rationality degree is suitably elevated, as in the
case of RN model, the presence of the output limiter does not affect stability
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Figure 6: Two dimensional bifurcation diagram for LNR model (18) with respect to ωL and
ωR. Different colors are used to identify the number of points of the attractor set. The black
line represents local stability threshold (19) below which the equilibrium is stable. At the
intersections of dotted lines we have economically meaningful compositions. Hatched region
consists of unfeasible compositions.

and convergence toward the equilibrium. However, we showed that it is pos-
sible that players with a high degree of rationality have a destabilizing effect,
as increasing their number can destroy the global stability of the equilibrium,
introducing the possibility of chaotic trajectories. As a consequence, we also
showed that the performance in terms of profits of the firms can be no longer
directly connected to their degree of rationality. This can make very difficult
for the agents to refine their adjustment mechanisms on the base, for example,
of the profits achieved by each kind of firm. The goal of the future research is to
investigate, from an evolutionary point of view, the effect of an evolutive com-
petition among the heuristics considered in the present work, in line with the
seminal work by Brock and Hommes [28]. Moreover, since the learning process,
which consists of the information collection about the economic environment,
is usually carried out less frequently than production choices, we aim to study
the effect of considering two different time scales for decision processes, as in
the monopoly model considered by Cavalli and Naimzada [29].
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