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BACKGROUND: Fatigue is a frequent symptom in multiple sclerosis (MS). The role of cholesterol
and lipids in MS fatigue has not been investigated.

OBJECTIVE: To investigate the associations of cholesterol biomarkers and serum neurofilament
light chain (sNfL) with fatigue in relapsing-remitting MS.

METHODS: This cross-sectional study included 75 relapsing-remitting MS patients (69% female,
mean age 6 SD: 49.6 6 11 years and median Expanded Disability Status Scale score: 2.0). Fatigue,
disability, and depression were assessed with Fatigue Severity Scale (FSS), Expanded Disability Status
Scale, and the Beck Depression Index–Fast Screen, respectively. sNfL was measured using single-
molecule array technology. Plasma total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-C), and an apolipoprotein panel data were obtained. Soluble intercellular adhesion molecule-
1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), chemokine (C-C motif) ligand 5
(CCL5 or RANTES), and CCL18 levels were measured to assess inflammation.

RESULTS: The mean FSS was 4.27 6 1.73, and 57% had severe fatigue status (SFS, FSS $ 4.0). In
regression analyses adjusted for age, sex, disability, and depression, lower FSS and SFS were associ-
ated with greater HDL-C (P 5 .006 for FSS, and P 5 .016 for SFS) and lower TC to HDL-C ratio
(P 5 .011 for FSS, and P 5 .009 for SFS). Apolipoprotein A-II was also associated with FSS
(P 5 .022). sNfL, CCL5, CCL18, sICAM-1, and sVCAM-1 levels were not associated with fatigue
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after adjusting for disability and depression.
CONCLUSIONS: TC to HDL-C ratio is associated with MS fatigue. Our results implicate a potential

role for the HDL-C pathway in MS fatigue and could provide possible targets for the treatment of MS
fatigue.
� 2019 National Lipid Association. All rights reserved.
Introduction

Multiple sclerosis (MS) is an inflammatory, demyelin-
ating disease that causes lesion formation and atrophy. MS
results in physical and cognitive disability. Fatigue is a very
frequent and debilitating symptom for patients with MS.1–3

It affects .75% of patients with MS, and it is associated
with diminished quality of life independently of disability.4

Operationally, fatigue is defined as ‘‘a subjective lack of
physical and/or mental energy that is perceived by the
individual or caregiver to interfere with usual or desired
activities.’’5 Patients with MS experience acute fatigue,
which results in ‘‘activity-limiting sluggishness’’ and also
‘‘lassitude, a chronic, persistent extreme feeling of tired-
ness’’ unrelated to overall activity level.6

MS fatigue is multifactorial and results from a combi-
nation of pathobiological and psychological factors7,8 and
is associated with disability,9 but not age or disease dura-
tion.9,10 Fatigue can be a consequence of depression,8,11

which is frequent in patients with MS. However, fatigue
also occurs in patients with MS who are not depressed7

and in patients with benign MS12 and may independently
influence disease progression.13,14 The pathophysiology of
fatigue in neurological disorders such as MS can involve
contributions from injury to the central, peripheral, and
autonomic nervous systems, to the neuromuscular junction
or muscle metabolism and function.15

Pharmacological options for treating MS-associated
fatigue are limited. The available treatment strategies are
symptomatic or rehabilitative.15 MS patients with fatigue
are commonly prescribed modafinil16 or amantadine.17

Pharmaceutical antifatigue agents have mostly a nonspe-
cific stimulant activity and are often associated with side ef-
fects. In addition, there is also support for the usefulness of
exercise and educational interventions such as physical
therapy with vestibular rehabilitation and cognitive behav-
ioral therapy in treating MS fatigue.18

Serum neurofilament light chain (sNfL) levels are a
novel and highly promising state-of-the-art biomarker for
active neurological disease and neurodegeneration that can
now be measured in blood using highly sensitive single-
molecule array technology.19 Neurofilaments are cytoskel-
etal proteins present in neurons that are released into cere-
brospinal fluid when neuronal cell damage occurs and
diffuse into blood. sNfL has been shown to be a highly spe-
cific biomarker for neuronal cell damage in MS in several
clinical studies. sNfL levels can distinguish patients with
MS from healthy controls and MS patients with contrast-
enhancing lesions from those without contrast-enhancing
lesions, and it is a predictor of brain atrophy and disease
worsening on the Expanded Disability Status Scale
(EDSS).20 However, it has not been investigated exten-
sively in the context of MS fatigue.

We investigated the associations of lipid biomarkers
based on the working hypothesis that lipids might modulate
MS fatigue via effects on the MS disease process as well as
through effects on muscle metabolism and inflammation-
induced interactions between neurovascular cells and the
immune system. An emerging body of evidence has
demonstrated that metabolic changes21,22 underlie the im-
mune and neurodegenerative pathophysiological processes
of MS and cholesterol biomarkers are associated with mea-
sures of brain injury and disease progression in both estab-
lished MS and following the first demyelinating event.23–25

A more extensive understanding of the associations, if
any, of lipid pathways with MS fatigue could facilitate the
identification of targets for drug treatments and better
management strategies. Therefore, the purpose of this
research was to systematically assess the associations of
MS fatigue with blood biomarkers of nervous system injury
and lipid metabolism.
Methods

Study population

The study data were obtained from a prospective study of
clinical, genetic, and environmental risk factors in MS at the
MS Center of the State University of New York at Buffalo.26

Written informed consentwas collected from all participants,
and Human Subjects Institutional Review Board of the Uni-
versity at Buffalo approved the study protocol.

The enrolledpatients underwentneurological examinations.
Fatigue was assessed using the Fatigue Severity Scale (FSS).27

Disability was assessed using the EDSS.28 Depression was as-
sessed using the BeckDepression Index–Fast Screen (BDI-FS)
scale values.29,30 Body mass index (BMI) was computed as
weight (in kg) divided by height (in meters) squared. Blood
samples were collected for analyses of biomarkers.

This substudy included 75 relapsing-remitting MS
patients with available FSS scores, neurofilament measure-
ments, and serum cholesterol biomarkers.

Plasma samples for lipid, apolipoprotein, sNfL, cyto-
kine, and inflammatory biomarker analyses were drawn
from nonfasted patients into Vacutainer tubes containing
EDTA anticoagulant (Becton-Dickinson, Franklin Lakes,
NJ). Plasma samples were stored at 280�C until use. The
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median time from blood draw date to sNfL analysis was
2.7 years. All analysts were blinded to patients’ clinical
status.

Blood lipid and apolipoprotein profile

Plasma total cholesterol (TC) and high-density lipopro-
tein cholesterol (HDL-C) were measured using FDA-
approved diagnostic reagent kits and quality control
materials (Sekisui Diagnostics) on an ABX Pentra 400
automated chemistry analyzer. Low-density lipoprotein
cholesterol (LDL-C) was obtained with the Friedewald
equation.31 Assay coefficients of variation (CVs) are, 5%.

Apolipoproteins (ApoA-I, ApoA-II, ApoB, ApoC-II,
and ApoE) were analyzed by immunoturbidimetric meth-
odology using FDA-approved diagnostic kits and quality
control materials (Kamiya Biomedical). All assays were
done on the ABX Pentra 400 automated chemistry
analyzer. The assay CVs are ,5%.

Serum neurofilaments

Serum neurofilament light chain levels were obtained
using the highly sensitive state-of-the-art single molecule
array assay as previously described (analytical sensitivity
0.32 pg/mL).32 The between-run and within-run CVs are
,8%. The sNfL analyses were conducted at the University
Hospital, Basel, Switzerland.

Cytokines and inflammatory biomarkers

Soluble intercellular adhesion molecule-1 (sICAM-1),
soluble vascular adhesion molecule-1 (sVCAM-1) levels,
and chemokine (C-C motif) ligand 5 (CCL5, also known as
RANTES for activation, normal T cell expressed and
secreted, or RANTES) were assayed using Milliplex mag-
netic bead kits (human neurodegenerative disease panel 3,
HNDG3MAG-36K; Merck Millipore, Germany). Concen-
trations (ng/mL) were calculated from a target-specific
standard curve. The calculated interassay CVs for sICAM-
1, sVCAM-1, and CCL5 were 5.7%, 7.3%, and 4.7%,
respectively. CCL18 levels were measured using Luminex
Screening Assays magnetic bead kits (Luminex R&D
Systems Inc, Minneapolis, MN). Data were acquired using
the Luminex 100 system and analyzed using the Bio-Plex
Manager software, version 6.0 (both from Bio-Rad Labo-
ratories, Hercules, CA).

Data analysis

Statistical analyses were conducted with the SPSS
statistical program (version 24). sNfL, CCL5, and CCL18
values were logarithm (base 10) transformed to reduce
skew. A severe fatigue status (SFS) binary variable was
created based on FSS $ 4.0. This threshold was based on a
psychometric study of FSS.33 A depression status variable
was defined based on BDI-FS $ 4.0.29,34 The overweight
or obese status variable was defined based on BMI $
25 kg/m2, and the TC to HDL-C $ 3.5 status variable
was defined based on the thresholds established in cardio-
vascular disease.35,36 The binary interferon-beta treatment
status and statin treatment status variables were assigned
a value of 1 if the patient was receiving treatment with
any interferon-beta product or statin, respectively, and a
value 0 otherwise.

FSS and SFS were analyzed as the dependent variables
in linear regression and logistic regression, respectively. All
the linear and logistic regression analyses included age,
sex, EDSS and BDI-FS scores, and the individual blood
biomarker of interest (log-transformed sNfL level, TC,
HDL-C, LDL-C, ApoA-I, ApoA-II, ApoB, ApoC-II, or
ApoE) as predictors. BMI was also assessed using the same
regression framework. Subsequently, stepwise regression
with all these variables as input predictors was used to
identify the most parsimonious combination of variables
capable of explaining FSS and SFS. The P-values for var-
iable entry and variable removal were .05 and .10,
respectively.

To better delineate the role of sNfL in MS fatigue, we
conducted an additional set of linear and logistic regression
analyses of the FSS and SFS dependent variables with age,
sex, and log-transformed sNfL level as predictors. In these
analyses, EDSS and BDI-FS were excluded and then added
individually.

BMI, interferon-beta treatment,37,38 and statin treatment
can also affect cholesterol profiles. In secondary analyses,
FSS and SFS were analyzed as dependent variables in
linear regression and logistic regression analyses, respec-
tively, with age, sex, EDSS, BDI-FS score, BMI,
interferon-beta and statin treatment status, and the individ-
ual blood biomarker of interest (log-transformed sNfL
level, TC, HDL-C, LDL-C, ApoA-I, ApoA-II, ApoB,
ApoC-II, or ApoE) as predictors. Stepwise regression ana-
lyses as previously described were also conducted.

The associations of the cytokines and inflammatory
biomarkers with FSS and SFS as the dependent variables
were analyzed in linear regression and logistic regression,
respectively. All the linear and logistic regression analyses
included age, sex, EDSS and BDI-FS scores, and the
individual cytokine or inflammatory biomarker of interest
(log-transformed CCL5, log-transformed CCL18, ICAM-1,
or VCAM-1) as predictors.

We conducted receiver operating characteristic (ROC)
curve analyses of the log-transformed sNfL level, choles-
terol to HDL-C ratio, EDSS, and BDI-S variables to
identify the optimal thresholds at which they could be
used to predict SFS. The area under the curve (AUC) of the
ROC curve and its asymptotic significance under the null
hypothesis of AUC 5 0.5 were assessed. The point on the
ROC curve with maximum vertical distance from the
diagonal is typically considered the optimal threshold if
sensitivity and specificity are equally important.
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Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the
75 relapsing-remitting MS patients are summarized in
Table 1.

The majority of the patients with MS (57%) had severe
fatigue as indicated by FSS $ 4.0. The proportion of
patients with EDSS $ 4.0 was 15%. The proportion of
patients with MS who were overweight or obese was 70%
and 33%, respectively, had BDI-FS $ 4.0, which is
suggestive of depression. The percentage of statin-treated
patients was 15% (11/75).
Table 1 Demographic and clinical characteristics of the RR-
MS patients

Demographics RR-MS

Females:Males (% Female) 52:23 (69%)
Relapsing-remitting disease course 75 (100%)
Race/ethnicity (%)
Caucasian 71 (95%)
African-American 2 (3%)
Hispanic/Latino 1 (1%)
Asian 1 (1%)
Other –

Age, y 49.6 6 11
Disease duration, y 17.0 6 9.1
Disease-modifying treatments
No disease-modifying treatment 12%
Interferonsx 32%
Glatiramer acetate 28%
Natalizumab 7%
Other oral disease-modifying treatments‡ 15%
Other drugs 5%
Missing information 1%

FSS score
FSS Score $ 4.0

4.27 6 1.73
43/75 (57%)

Median EDSS (interquartile range)*
EDSS $ 4.0

2.0 (1.6)
11/74 (15%)

BDI-FS
BDI-FS $ 4.0

2.6 6 3.0
25/75 (33%)

BMI, kg/m2)*
BMI $ 25 kg/m2

28.2 6 6.2
59/73 (70%)

BDI-FS, Beck Depression Index–Fast Screen; BMI, body mass index;

EDSS, Expanded Disability Status Scale; FSS, Fatigue Severity Scale.

All continuous variables are shown as mean 6 SD. The ordinal EDSS

is shown as median (interquartile range). Categorical variables are

shown as count/total count (%).

*EDSS was missing for 1 patient, and BMI was missing for 2

patients.

xInterferons include intramuscular, subcutaneous interferon-beta-

1a and peginterferon-beta-1a.

‡Other oral disease-modifying drugs include fingolimod, dimethyl

fumarate, and teriflunomide. Other drug categories include intravenous

immunoglobulin, methotrexate, and mitoxantrone.
Biomarker results

The sNfL, lipid profile (TC, HDL-C, LDL-C, TC to
HDL-C ratio), and apolipoprotein profile (ApoA-I, ApoA-
II, ApoB, ApoC-II, and ApoE) results are summarized in
Table 2.

FSS was associated with EDSS (partial correlation
rp 5 .28, P 5 .017) and BDI-FS (rp 5 .26, P 5 .030) in
linear regression analyses that were adjusted for age
(rp 5 20.027, P 5 .83) and sex (rp 5 20.18, P 5 .14).
These results are expected from prior research. However,
SFS was not associated with EDSS [Exp(B) 5 1.46,
P 5 .099] or BDI-FS [Exp(B) 5 1.11, P 5 .24] in logistic
regression analyses that were adjusted for age
[Exp(B)5 0.98, P5 .32] and sex [Exp(B)5 2.22, P5 .15].

Table 3 summarizes the regression results for the FSS
and SFS with sNfL, lipid profile and apolipoprotein profile
biomarkers in analyses that were adjusted for age, sex,
EDSS, and BDI-FS. Greater HDL-C values (P 5 .006 for
FSS and P 5 .016 for SFS) and lower TC to HDL-C ratio
values (P 5 .011 for FSS and P 5 .009 for SFS) were asso-
ciated with lower FSS and SFS. ApoA-II, an apolipoprotein
associated with HDL-C, was associated with FSS
(P 5 .022). The other lipid and apolipoprotein biomarkers
were not associated with FSS or SFS. sNfL was not associ-
ated with FSS or SFS.

Because disability and MS-related depression can be
caused by the MS disease process, we evaluated whether
these variables were masking the associations of sNfL with
fatigue in the regression analyses. We conducted additional
regression analyses of FSS and SFS with sex and age and
sNfL as predictors, ie, with EDSS and BDI-FS not
included. These regression analyses exposed sNfL associ-
ations with FSS (rp 5 .19, P 5 .007) and a nonsignificant
trend with SFS [Exp(B) 5 2.73, P 5 .055]. However,
when either EDSS or BDI-FS were present in the predictor
set, sNFL was not associated with FSS or SFS (data not
shown).

To identify the ‘‘best’’ subset of variables capable of
modeling FSS and SFS, we conducted stepwise linear
regression that included age, sex, EDSS, BDI-FS, and all
the biomarkers in Table 3. The final linear regression model
for FSS contained EDSS (rp 5 .28, P 5 .018), BDI-FS
(rp 5 .26, P 5 .031), and TC to HDL-C ratio (rp 5 .29,
P 5 .015). The final logistic regression model for SFS con-
tained EDSS [Exp(B) 5 1.47, P 5 .058] and TC to HDL-C
ratio [Exp(B) 5 2.57, P 5 .016].

Because BMI, interferon-beta treatment status, and
statin treatment status can affect lipid profiles, we conduct-
ed additional regression analyses with these predictors also
included. The results are summarized in Supplementary
Table 1. The associations of HDL-C and TC to HDL-C ra-
tio were significant. The final linear regression model for
FSS contained EDSS (rp 5 .29, P 5 .016), BDI-FS
(rp 5 .28, P 5 .022), TC to HDL-C ratio (rp 5 .34,
P 5 .006), and interferon-beta treatment status
(rp 5 20.25, P 5 .046). The final logistic regression model



Table 2 Summary of biomarkers

Biomarkers Mean 6 SD

Neurofilament levels (sNfL), pg/mL
Log10 transformed sNfL levels

18.3 (12.6)*
1.24 6 0.30

Total cholesterol (TC), mg/dL 228 6 36
Triglycerides, mg/dL* 159 6 91
High-density lipoprotein
cholesterol (HDL-C), mg/dL

59.8 6 14

Low-density lipoprotein
cholesterol (LDL-C), mg/dL*

136 6 34

Total cholesterol to HDL-C ratio 3.91 6 0.76
Apolipoprotein A-I (ApoA-I), mg/dL 166 6 28
Apolipoprotein A-II (ApoA-II), mg/dL 43.5 6 7.0
Apolipoprotein B (ApoB), mg/dL 101 6 27
Apolipoprotein C-II (ApoC-II), mg/dL 4.82 6 1.8
Apolipoprotein E (ApoE), mg/dL 5.84 6 1.5

All values shown are mean 6 SD except for sNfL, which are median

(interquartile range).

*Low-density lipoprotein was calculated using the Friedewald

equation. One subject had triglycerides . 400 mg/dL. No additional

adjustment was made to the low-density lipoprotein cholesterol calcu-

lation for this individual.
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for SFS contained EDSS [Exp(B) 5 1.54, P 5 .04] and TC
to HDL-C ratio [Exp(B) 5 2.77, P 5 .011].

To assess the contributions, if any, of inflammatory
processes, we also examined the associations of FSS and
SFS with two cytokines from the chemokine family, CCL5
or RANTES and CCL18, and two adhesion molecules,
sICAM-1 and sVCAM-1. We did not find evidence for
associations of FSS and SFS with any of these biomarkers
(Supplementary Table 2).

Figure 1 shows the dependence of the proportion of pa-
tients with severe fatigue on TC to HDL-C ratio $ 3.5 sta-
tus. The proportion of patients with severe fatigue was
Table 3 Regression results for the FSS and SFS with sNfL, lipid profil

Biomarker

Log10 transformed sNfL levels
Body mass index (BMI), kg/m2

Total cholesterol (TC), mg/dL
High-density lipoprotein cholesterol (HDL-C), mg/dL
Low-density lipoprotein cholesterol (LDL-C), mg/dL
Apolipoprotein A-I (ApoA-I), mg/dL
Apolipoprotein A-II (ApoA-II), mg/dL
Apolipoprotein B (ApoB), mg/dL
Apolipoprotein C-II (ApoC-II), mg/dL
Apolipoprotein E (ApoE), mg/dL
Total cholesterol to HDL-C ratio

BDI-FS, Beck Depression Index–Fast Screen; BMI, body mass index; EDSS, E

All regression analyses adjusted for age, sex, and EDSS and BDI-FS scores.

The partial correlation (rp) values and the corresponding P-values are shown

SFS.
twice as high in the TC to HDL-C ratio $ 3.5 group
(72%) compared with the TC to HDL-C ratio , 3.5 group
(36%).

The AUC of the ROC curve for TC to HDL-C ratio was
0.67 6 SE 0.066 (P 5 .014), whereas the AUC (0.55 6 SE
0.069) for log-transformed sNFL was not (P 5 .48). The
ROC curves for log-transformed sNFL and TC to HDL-C
ratio are summarized in Figure 2. Based on the sum of
sensitivity and specificity (Fig. 2B), optimal threshold for
TC to HDL-C ratio for SFS status was 3.53, which is close
to the threshold used in cardiovascular disease.35,36 The
sensitivity and specificity at this value were 0.79 and
0.41, respectively. The AUC of the ROC curve for EDSS
was 0.66 6 SE 0.065 (P 5 .020), whereas the AUC
(0.61 6 SE 0.066) for BDI-FS was not significant
(P 5 .12).
Discussion

In this study of MS fatigue, we assessed whether sNfL
and several cholesterol pathway biomarkers were associ-
ated with MS fatigue. We considered sNfL because it is a
useful biomarker of neurodegeneration and nervous system
injury, whereas the cholesterol pathway biomarkers provide
clinically useful measures of metabolic dysregulation. MS
fatigue as measured by the FSS and SFS was associated
with specific cholesterol pathway biomarkers related to
HDL-C in regression analyses that were adjusted for
disability (as measured by the EDSS) and depression (as
measured by the BDI-FS). The TC to HDL-C ratio was the
most useful biomarker among the several cholesterol
pathway biomarkers investigated. sNfL was not associated
with fatigue on adjusting for disability and depression, but
associations with FSS were exposed when disability and
depression were not included.
e, apolipoprotein profile, cytokine, and inflammatory biomarkers

FSS
Linear regression

rp (P-value)

SFS
logistic regression
Exp(B) (P-value)

0.029 (.81) 0.75 (.78)
0.11 (.39) 1.06 (0.21)

20.10 (.40) 0.996 (.58)
20.32 (.006) 0.95 (.016)
20.088 (.48) 0.98 (.52)
20.23 (.056) 0.98 (.07)
20.27 (.022) 0.93 (.08)
0.056 (.65) 1.01 (.58)
0.11 (.36) 1.19 (.24)
0.096 (.43) 1.15 (.42)
0.31 (.011) 2.91 (.009)

xpanded Disability Status Scale; FSS, Fatigue Severity Scale.

for each biomarker for FSS, whereas Exp(B) and P-values are shown for the



Figure 1 The proportion of relapsing-remitting multiple scle-
rosis patients with severe fatigue as defined by Fatigue Severity
Scale score $ 4.0 on total cholesterol (TC) to high-density lipo-
protein cholesterol (HDL-C) ratio $ 3.5 status. The bars represent
the proportion, and the error bars represent the standard error of
the proportion.

Figure 2 (A) The ROC curves for the SFS variable with TC to
HDL-C ratio (green line) and log-transformed neurofilament
levels (blue line). The dashed line is the reference diagonal. (B)
Sensitivity 1 specificity values from the ROC curve analysis of
SFS for different values of TC to HDL-C ratio. The dashed arrow
represents the TC to HDL-C ratio value for which the
sensitivity 1 specificity is maximal. HDL-C, high-density lipo-
protein cholesterol; ROC, receiver operating characteristic; SFS,
severe fatigue status; TC, total cholesterol
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We found the expected associations with disability and
depression, but our results additionally identified key
associations between TC to HDL-C ratio and MS fatigue,
which we attribute primarily to the HDL-C pathway. The
TC to HDL-C ratio is considered to be a more effective
predictor of cardiovascular disease risk than other lipid
profile biomarkers such as TC or LDL-C alone.36

Based on the underlying causes, MS fatigue is some-
times categorized as central or primary fatigue and as
peripheral or secondary fatigue.39 Primary fatigue is viewed
as a result of the MS pathobiological process, which causes
blood-brain barrier breakdown, central nervous system
inflammation, demyelination, lesion formation, and neuro-
degeneration. The fatigue associated with heat sensitivity
in patients with MS is an example of primary fatigue. Sec-
ondary fatigue is often viewed as the result of comorbidities
such as depression, physical and emotional stress, and
external factors, eg, lack of sleep. In clinical practice, it
is not possible to distinguish between or measure the pri-
mary and secondary components of fatigue independently
in patients with MS.

Figure 3 is a schematic of the proposed pathophysiolog-
ical mechanisms via which the cholesterol pathway could
potentially modulate MS fatigue. The schematic highlights
the known effects of LDL-C and HDL-C on the inflamma-
tory, vascular, and neurodegenerative aspects of the MS dis-
ease process as well as its effects on muscle. We
hypothesize that skeletal muscle could be an important
but overlooked organ for potential interactions between
metabolism and fatigue because it is a key effector organ
at which MS physical disability, fatigue, and weakness
manifest to patients. Muscle cells, which have high mito-
chondrial density to support the energy demands of me-
chanical force production for physical activity, are
important endogenous sources of reactive oxygen species.46

Reactive oxygen species oxidatively modify cholesterol,
unsaturated fatty acids, and LDL to produce proinflamma-
tory mediators such as oxysterols, oxylipins, and oxidized-
LDL. HDL-C exerts antiinflammatory effects, and it pos-
sesses antioxidant activities that rapidly hydrolyze lipid
peroxides and protects lipoproteins from oxidative modifi-
cations.47,48 Furthermore, the critical role of cholesterol
in muscle function is emerging in recent research.49,50

HDL-C and its signature apolipoprotein, ApoA-I, stimulate
glucose uptake51 and increase respiration in muscle mito-
chondria.52 Muscle membrane cholesterol modulates the
insertion of the glucose transporter GLUT-4, which medi-
ates insulin-dependent glucose uptake into muscle.49

Among individuals 80 years of age and older, HDL-C is
a reliable marker of frailty, muscle strength, and functional



Figure 3 A schematic of the mechanisms via which the cholesterol pathway could modulate MS fatigue. The known effects of LDL-C
and HDL-C on the inflammatory, vascular, and neurodegenerative aspects of the MS disease process and effects on muscle are highlighted.
Muscle cells have high mitochondrial density to produce ATP to meet physiological energy demands of mechanical force production for
physical activity and are an important endogenous source of ROS. ROS can oxidatively modify fatty acids, cholesterol, and LDL-C to pro-
duce inflammatory mediators such as lipid peroxides, oxysterols, and oxidized-LDL.40 ROS induce the NF-kB and other pathways,41–43

which can directly promote protein catabolism that lead to muscle weakness and atrophy.44,45 HDL-C has antiinflammatory effects and
its antioxidant enzyme PON1 rapidly hydrolyzes lipid peroxides and protects lipoproteins from oxidative modifications. Higher HDL-C
levels are associated with lower levels of BBB breakdown and gray matter atrophy.25,37 Higher LDL-C levels are associated with the for-
mation of new T2 lesions.24,25 Serum neurofilaments (sNfL) are produced in response to active disease and neurodegeneration in MS. The
plus and minus signs indicate activating and inhibitory associations, respectively. ATP, adenosine triphosphate; BBB, blood-brain barrier;
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MS, multiple sclerosis; NF-kB, nuclear factor–
kappa B; PON1, paraoxonase-1; ROS, reactive oxygen species; sNFL, serum neurofilament light chain.

660 Journal of Clinical Lipidology, Vol 13, No 4, August 2019
status.53,54 We suggest that further study of muscle in MS
fatigue is warranted.

Serum neurofilament light chain is rapidly emerging as a
promising biomarker for nervous system injury in MS and
other neurological diseases.55 Figure 3 shows that sNfL is
associated with lesional injury and brain atrophy in MS.
We intended sNfL to be a biomarker of nervous system tis-
sue damage by MS disease processes,55 but the sNfL asso-
ciations with FSS were exposed only when disability and
depression were removed from the models. In contrast,
the TC to HDL-C ratio consistently emerged as a salient
fatigue-associated variable even when EDSS and BDI-FS
were included.

Currently, magnetic resonance imaging (MRI) provides
some of the best clinically useful biomarkers of MS
pathology and disease progression. However, it has been
challenging to identify conventional MRI biomarkers for
fatigue. Fatigue and fatigue changes were not associated
with contrast-enhancing lesion activity.56 Biberacher
et al.57 found that total and cortical gray matter were asso-
ciated with fatigue, but the associations were not significant
on adjusting for disability. However, Marrie et al.58 found
worsening fatigue associated with longitudinal changes in
brain atrophy as measured by the brain parenchymal frac-
tion. Using functional MRI, Filippi et al.59 demonstrated
altered patterns of activation in the cortical and subcortical
regions of the brain in fatigued MS patients. Fuchs et al.60

reported that disruption of white matter tracts between
brain regions was negatively associated with fatigue.

It has been suggested that fatigue results from the
ongoing inflammatory milieu, which results in higher levels
of proinflammatory cytokines in MS. Heesen et al. found
associations between whole blood–stimulated production of
the inflammatory cytokines, tumor necrosis factor–alpha
and interferon-gamma, and fatigue; cortisol and adreno-
corticotropic hormone were not associated. However,
Giavannoni et al.12 did not find any associations with
several inflammatory markers including urinary neopterin,
serum C-reactive protein, and soluble intercellular adhesion
molecule-1 levels. Recently, Hanken et al. reported associ-
ations between salivary interleukin-1-beta and MS fa-
tigue.61 It has generally been challenging to identify
clinically useful cytokine biomarkers of inflammation in
MS because cytokines are locally acting and short lived.

We examined CCL5 (also known as RANTES) and
CCL18, which are cytokines from the chemokine family,
and two adhesionmolecules ICAM-1 and VCAM-1 to assess
the role of inflammation. CCL5 is considered to be an
inflammatory chemokine, whereas CCL18 is antiinflamma-
tory; both have been implicated in MS lesions62–64; ICAM-1
and VCAM-1 are induced on immune cells and vascular
endothelial cells of the blood-brain barrier by
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proinflammatory cytokines such tumor necrosis factor-alpha
and interferon-gamma and facilitate the extravasation of in-
flammatory cells in MS; ICAM-1 has been implicated in MS
progression.65 We did not find any associations of these cy-
tokines and inflammatory biomarkers. To further address
the role of inflammation, we conducted linear regression an-
alyses of FSS with T2-lesion volume (T2-LV) and gadolin-
ium contrast-enhancing lesion number (CE-LN), which are
widely used MRI measures of inflammatory disease burden
and blood-brain breakdown in MS with age, sex, and the in-
dividual blood biomarker of interest as predictors. Neither
T2-LV nor CE-LN was associated with the FSS dependent
variable in these models (data not shown). The associations
of HDL-C and TC to HDL-C ratio with FSS (rp 5 20.36,
P 5 .006 for HDL-C, and rp 5 .29, P 5 .032 for TC to
HDL-C ratio) and SFS [Exp(B) 5 0.95 and P 5 .015 for
HDL-C, and Exp(B) 5 2.68 and P 5 .025 for TC to HDL-
C ratio] remained significant on adjustments for T2-LV and
CE-LN (data not shown).

Additional limitations of this study include its cross-
sectional study design. A longitudinal study design would
enable assessment of whether changes in HDL-C to TC
ratio precede the fatigue changes. We also did not have an
independent validation cohort, which would further
strengthen the study findings.

In conclusion, our results indicate that cholesterol
pathway biomarkers are associated with MS fatigue. Our
research findings highlight a contribution of metabolic
pathways in fatigue and raise the intriguing prospect that
it may be possible to ameliorate MS fatigue via metabolic
pathways independently of the MS disease process.
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Appendix
Supplementary Table 1 Regression results for the FSS and SFS with sNfL, lipid profile and apolipoprotein profile biomarkers

Biomarker

FSS
Linear Regression

rp (P-value)

SFS
Logistic Regression
Exp(B) (P-value)

Log10 transformed sNfL levels 0.13 (.31) 2.16 (.51)
Total cholesterol (TC), mg/dL 20.078 (.54) 0.996 (0.67)
High density lipoprotein cholesterol (HDL-C), mg/dL 20.34 (.006) 0.95 (.030)
Low density lipoprotein cholesterol (LDL-C), mg/dL 20.063 (.63) 0.996 (.67)
Apolipoprotein A-I (ApoA-I), mg/dL 20.24 (.058) 0.98 (.099)
Apolipoprotein A-II (ApoA-II), mg/dL 20.19 (.12) 0.96 (.31)
Apolipoprotein B (ApoB), mg/dL 0.16 (.22) 1.02 (.25)
Apolipoprotein C-II (ApoC-II), mg/dL 0.17 (.17) 1.29 (.17)
Apolipoprotein E (ApoE), mg/dL 0.14 (.26) 1.19 (.36)
Total cholesterol to HDL-C ratio 0.36 (.004) 3.55 (.011)

All regression analyses adjusted for age, sex, EDSS and BDI-FS score, BMI, interferon-beta treatment status and statin treatment status.

The partial correlation (rp) values and the corresponding P-values are shown for each biomarker for FSS whereas Exp(B) and P-values are shown for the

SFS.
Supplementary Table 2 Regression results for the FSS and SFS with cytokine and inflammatory biomarkers. All regression analyses
adjusted for age, sex, EDSS and BDI-FS score

Biomarker

FSS
Linear regression

rp (P-value)

SFS
Logistic regression
Exp(B) (P-value)

Log10 transformed CCL5 levels 20.12 (.34) 0.56 (.42)
Log10 transformed CCL18 levels 0.08 (.52) 3.02 (.47)
sICAM-1, ng/ml 0.18 (.14) 1.006 (.38)
sVCAM-1, ng/ml 0.032 (.80) 1.000 (.99)

CCL5: Chemokine (C-C motif) ligand 5; CCL18: Chemokine (C-C motif) ligand 18 (CCL18), sICAM-1: Soluble intercellular adhesion molecule-1; sVCAM-1:

Soluble vascular adhesion molecule-1.

The partial correlation (rp) values and the corresponding P-values are shown for each biomarker for FSS whereas Exp(B) and P-values are shown for

the SFS.


	High-density lipoprotein cholesterol is associated with multiple sclerosis fatigue: A fatigue-metabolism nexus?
	Introduction
	Methods
	Study population
	Blood lipid and apolipoprotein profile
	Serum neurofilaments
	Cytokines and inflammatory biomarkers
	Data analysis

	Results
	Demographic and clinical characteristics
	Biomarker results

	Discussion
	Acknowledgements
	Disclosures
	References
	Appendix


