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Abstract— This note deals with a basic (though rather general)
enzymatic reaction scheme, and investigates the role of a
negative feedback with respect to the noise reduction. To this
end, three distinct cases are considered: one with the enzyme
produced without feedback regulation, another with the enzyme
regulated in feedback by the product of the enzymatic reaction,
and a third one where the enzyme is self-regulated. Metabolic
noise is evaluated in terms of the coefficient of variation of
the product of the enzymatic reaction, aiming at measuring
its fluctuations around the average steady-state value. Due
to the high dimensionality and to the double time-scale of
the considered reaction network, which makes unfeasible the
classical theoretical/statistical computations of the equilibrium
distribution, the system is investigated by means of the Linear
Noise Approximation (LNA) approach and numerical results
are reported. Furthermore, the assumption of Quasi-Steady-
State Approximation (QSSA) is employed to obtain approx-
imate analytical expressions of the noise. The results show
the unmistakable role of the negative feedback, which always
manages to reduce the metabolic noise with respect to the
unregulated case.

Index Terms— Enzymatic reactions, Chemical Master Equa-
tion, Linear Noise Approximation, Negative Feedback

I. INTRODUCTION

Enzymatic reactions have been widely studied since the
beginning of the last century [1], [2], and nowadays many
fruitful approaches can be exploited to investigate their be-
havior according to deterministic (e.g. by means of Ordinary
Differential Equations, ODEs, aiming at catching the average
behavior) or stochastic approaches (e.g. detailing the random
molecular fluctuations by means of the Chemical Master
Equations, CMEs).

This note investigates the role of the feedback in the
enzymatic production rate for a basic (though rather general)
reaction scheme, aiming at quantifying the level of noise
reduction (if any) with respect to the fluctuations of the final
product of the enzymatic reaction. The role of the feedback in
Systems Biology has been widely investigated, especially in
transcriptional and metabolic regulation where gene products
are required to control their homeostatic levels robustly with
respect to parameter or environmental fluctuations [3], [4],
[5].
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The chemical reaction scheme under investigation is the
one reported in Fig. 1, and will be referred to in the sequel as
scheme 0. It consists of a substrate S binding to an enzyme E
in order to form a complex C (reaction 1) which in turn can
reverse the binding (reaction 2) or can be transformed into
a product P (with the release of the enzyme E, reaction
3). The reaction scheme accounts for enzyme production
(reaction 4) and degradation (reaction 5), product elimination
(for instance due to its final utilization, reaction 6) and
substrate production (reaction 7). With respect to the enzyme

Fig. 1. Scheme 0: general reaction framework without feedback on the
enzyme production

production, besides scheme 0 where there is no feedback reg-
ulation, two different schemes will be investigated: scheme
A, where the enzyme production involves a negative feedback
regulation from the product P (Fig. 2) and scheme B, where
the enzyme production is negatively regulated in feedback
by the enzyme E itself (Fig. 3). A similar reaction scheme

Fig. 2. Scheme A: enzyme production is negatively regulated by a feedback
from the product

has been investigated also in [6], where only the feedback
from the product had been considered (instead of the present
two feedback schemes); besides, here, also the substrate
production has been taken into account, with the molecule
production (both for the substrate and the enzyme) occurring
by means of bursts of molecules [7].

A proper way to quantify the metabolic noise involving
the product fluctuations around its steady-state average value



Fig. 3. Scheme B: enzyme production is negatively regulated by a feedback
from the enzyme itself

is to exploit the stochastic approach based on the Chemical
Master Equations (CME), providing a description of complex
cellular processes much more accurate than the deterministic
one [8]. The CME is capable to cope with fluctuations
and chemical fluxes, to fit experimental data in the today
widespread single cell experiments, and to capture and
explain the deviation from Gaussianity observed in various
gene expression experiments (such as stress or metabolic
response, growth of the nuclear protein amount observed in
senescent cells, and so on).

The main problem in dealing with CME is the curse
of dimensionality which, in many cases, prevents from ex-
plicitly computing the solutions and thus requires imple-
menting Monte Carlo methods (e.g. the Gillespie Stochastic
Simulation Algorithm (SSA) [9]) to estimate the station-
ary distribution. Unfortunately, in the case of enzymatic
reactions, the double time-scale of the reactions involved
(binding/unbinding reactions occur on a shorter time-scale
than product formation and enzyme production) makes exact
SSA computationally demanding, since it gets stuck on
thousands of binding/unbinding reactions for each birth of
a product molecule [6].

In this paper, to cope with the high dimensionality of the
system and the intrinsic double time-scale of the reaction
network, which make practically unfeasible both the theo-
retical and the statistical computation of the CME solution,
we resort to the Linear Noise Approximation [8], according
to which the stationary distribution of the species’ copy
numbers is approximated by a multivariate Gaussian, with
the average provided by the deterministic ODEs associated
to the chemical reactions and the covariance matrix obtained
by means of the linear approximation of the nonlinear terms
of the ODE system. LNA is exploited to obtain a numerical
evaluation of the metabolic noise. On top of that, the Quasi-
Steady-State Approximation (QSSA) is introduced [10], [11],
which properly exploits the double time-scale of the system
to reduce the complexity of the slow dynamics. Its validity
is discussed by comparing the LNA numerical results for the
original system to those for the reduced system coming from
the QSSA. Moreover, the simplifications introduced by the
QSSA enable the analytic computation of the variances of the
species’ copy numbers, thus allowing to explicitly correlate
the metabolic noise of the product to the model parameters.
Theory and simulations agree in highlighting the effective
role of the negative feedback (in both schemes A and B)

in reducing the random fluctuations, independently of the
parameter setting. On the other hand, different choices of
the system parameters make it so that sometimes feedback
scheme A works better than feedback scheme B, while some
other times the opposite occurs.

The paper is organized as follows. Section 2 reviews the
stochastic approach adopted to model the three schemes
under investigation. Section 3 is devoted to derive the first-
order moment equations, providing useful (exact) informa-
tion on the steady-state average values of complex, enzyme
and product. Section 4 deals with the LNA approach and nu-
merical simulations are carried out. By exploiting the QSSA
assumption, Section 5 provides the analytical expressions
of the metabolic noise in the LNA framework. Conclusions
follow.

II. MATHEMATICAL MODEL OF
CHEMICAL REACTION SCHEMES

According to the standard stochastic approach to chemical
reaction modeling [8], the state of the system is identified by
the copy number of each involved species. Such quantities
(grouped in vector form) will be denoted by small letters
[s e c p]T , while we employ the capital letters S, E, C, P
to denote the corresponding chemical species. The temporal
evolution of a reaction network is described by a Continuous-
Time Markov Process, where a state-dependent propensity
wj is associated to each reaction j.

In the following, unless differently specified, the expected
value of a random variable x will be denoted by 〈x〉, while
the steady-state average value of a stochastic process x(t)
will be denoted by x? = limt7→+∞ 〈x(t)〉.

Scheme 0: no feedback
Reactions r1 and r2 refer to standard binding/unbinding,

formally defined as:
r1) S + E

1−→ C =⇒ s 7→ s− 1, e 7→ e− 1, c 7→ c+ 1

r2) C
2−→ S + E =⇒ s 7→ s+ 1, e 7→ e+ 1, c 7→ c− 1

with propensities given by w1(s, e) = k1se, w2(c) = k2c,
respectively.

Reaction r3 is formally similar to r2, since it allows the
disaggregation of complex C by means of the product P and
the free enzyme E:

r3) C
3−→ P + E

with propensity w3(c) = k3c.
Reactions r4 refer to the enzyme production:

r4) ∅ 4−→ E =⇒ e 7→ e+Ne
meaning that the production occurs in bursts of Ne ∈ N =
{1, 2, . . .} new molecules. As a matter of fact, the enzyme
production is modeled by a set of infinite burst reactions,
each referring to a different burst size in N. Like in [7],
[12] we assume that Ne is a random variable with geometric
distribution of mean 〈Ne〉 = µe and second order moment〈
N2
e

〉
= ξ2

e , so that the propensity of a reaction of type r4

producing ne ∈ N enzyme copies is given by w40

(
ne
)

=
k4IP(Ne = ne). The notation w40 stresses the fact that we
are dealing with reaction r4, scheme 0.

Reactions r5 and r6 are degradation/export clearance rates:



r5) E
5−→ ∅ =⇒ e 7→ e− 1

r6) P
6−→ ∅ =⇒ p 7→ p− 1

with propensities w5(e) = k5e, w6(p) = k6p, respectively.
Reactions r7 refer to the substrate production:

r7) ∅ 7−→ S =⇒ s 7→ s+Ns
meaning that the production occurs in bursts of Ns ∈ N
new molecules. Like for the enzyme production, also the
substrate production is modeled by a set of infinite burst
reactions, and Ns is assumed to be a random variable with
geometric distribution of mean 〈Ns〉 = µs and second order
moment

〈
N2
s

〉
= ξ2

s , so that the propensity of a reaction
of type r7 producing ns ∈ N substrate copies is given by
w7(ns) = k7IP(Ns = ns).

Scheme A: feedback from the product P

In order to account for the negative feedback from the
product acting on the enzyme production, only the propensity
of a reaction of type r4 producing ne ∈ N enzyme copies is
modified into w4a(p, ne) = g(p)IP(Ne = ne), with

g(p) =
βp

1 + (p/θp)hp
(1)

where βp provides the maximal propensity, θp is the repres-
sion threshold, required to reduce the propensity of 50%, and
hp is the Hill coefficient, providing the steepness of the sig-
moidal Hill function g. Under the hypothesis of small noise
fluctuations around the average steady-state copy number p?,
the first-order approximation within the neighborhood of p?

will be considered [13], so that:

g(p) ' g(p∗) + g′(p∗)(p− p∗). (2)

Scheme B: feedback from the enzyme E

Also in this case, in order to account for the negative self-
regulation of the enzyme acting on its own production, only
the propensity of a reaction of type r4 producing ne ∈ N
enzyme copies is modified into w4b(e, ne) = f(e)IP(Ne =
ne), with

f(e) =
βe

1 + (e/θe)he
(3)

where βe, θe and he play the same role of the corresponding
parameters in (1). Also in this case, under the hypothesis
of small noise fluctuations around the average steady-state
copy number e?, the first-order approximation within the
neighborhood of e? will be considered [13], so that:

f(e) ' f(e∗) + f ′(e∗)(e− e∗). (4)

Metabolic noise estimation

Referring to the product P , we define the corresponding
metabolic noise by means of the square of the coefficient of
variation CV 2

P computed by the ratio:

CV 2
P = σ2

P /(p
?)2 (5)

where σ2
P and p? are the steady-state values for variance

and mean of the marginal distribution of the product P copy
number. The proper way to compute CV 2

P is by means of
the Chemical Master Equation (CME) [8]. Unfortunately, to

solve the CME is a hard nut to crack: different methods are
available to compute exact or approximate solutions (see, e.g.
[14], [15], [16]), as well as statistical approaches (such as the
Stochastic Simulation Algorithm, SSA, [9]). In the following
sections, the computation of the metabolic noise will be car-
ried out by means of the Linear Noise Approximation (LNA)
[8], which enables to obtain an analytical expression of the
variances of the species’ copy numbers. Such quantities will
be computed under the Quasi-Steady-State Approximation
(QSSA) assumption, in order to shorten the equations and to
highlight explicit correlations between the model parameters
and the metabolic noise.

III. FIRST ORDER MOMENT EQUATIONS

According to [17], we define η = [ηs ηe ηc ηp]
T :=

[〈s〉 〈e〉 〈c〉 〈p〉]T and we can write the first order moment
equations in the following fashion for the three schemes:

η̇(t) = A1η(t) + b1 + Γ1 〈se〉 (6)

with:

A1 =


0 0 k2 0
0 α22(e?)µe − k5 k2 + k3 α24(p?)µe
0 0 −(k2 + k3) 0
0 0 k3 −k6

 ,
b1 =

[
k7µs, δ(e

?, p?)µe, 0, 0
]T
, Γ1 =

[
−k1,−k1, k1, 0

]T
,

where

α22(e?) =

{
0 in scheme 0 and in scheme A,
f ′(e?) in scheme B,

α24(p?) =

{
0 in scheme 0 and in scheme B,
g′(p?) in scheme A,

δ(e?, p?) =

 k4 in scheme 0,
g(p?)− g′(p?)p? in scheme A,
f(e?)− f ′(e?)e? in scheme B.

It is worth noting that, although Eq.(6) is not in closed
form (and therefore it cannot be solved), it is useful to infer
information about the steady state without any approxima-
tion. Hence, solving (6) at the equilibrium (η̇(t) = 0) leads
to the following values for product and the complex steady
states:

c? = k7µs/k3 p? = k7µs/k6, (7)

while the enzyme steady state satisfies the following equa-
tion:

e? =

(
δ(e?, p?) + α24(p?)p?

)
µe

k5 − α22(e?)µe
. (8)

Eq.(8) provides an explicit expression for the average steady-
state copy number of the enzyme for schemes 0 and A:

e?0 = k4µe/k5 e?A = g(p?)µe/k5 (9)

whilst, for scheme B, it only ensures the existence of a unique
solution satisfying:

e?B = f(e?)µe/k5. (10)

It can be easily verified that, for any values of the parame-
ters, the product and the complex average steady state values



are independent of the chosen scheme, while the enzyme
average stationary value varies, in general, from scheme to
scheme. So, in order to make a fair comparison among the
three schemes, the following assumptions are adopted for the
setting of the Hill functions f, g defined in (1), (3), to obtain
the same enzyme average stationary value:

– the same Hill coefficient is chosen: he = hp = h;
– the thresholds are set equal to the corresponding steady

state values: θp = p?, θe = e?. This allows to easily find
the steady state value for the enzyme, since g(p?) =
(βp/2) and f(e?) = (βe/2):

e?A = βpµe/(2k5), e?B = βeµe/(2k5); (11)

– parameters βp, βe are chosen to obtain the same steady
state value for the enzyme: βe = βp = 2k4.

As a consequence, according to (2), (4) and to the aforemen-
tioned assumptions, we have:

w4a(p, ne) =
(
k4 + g′(p?)(p− p?)

)
IP(Ne = ne)

w4b(e, ne) =
(
k4 + f ′(e?)(e− e?)

)
IP(Ne = ne)

(12)

with:

g′(p?) = −hk4k6/(2k7µs), f ′(e?) = −hk5/(2µe). (13)

IV. LINEAR NOISE APPROXIMATION (LNA)
FOR ENZYMATIC KINETICS

The LNA approximating assumption is that molecular
fluctuations provide small deviations around the stationary
average values. According to this hypothesis, the LNA ap-
proximates the stationary distribution of the copy numbers
by a multivariate Gaussian with the average value computed
by means of the steady-state solution of the deterministic
ODE system associated with the chemical reactions, written
with respect to the concentrations (instead of copy numbers)
according to the mass action law [8]. To this end, define
γ = [γs γe γc γp]

T as the vector of concentrations
associated to the vector of copy numbers [s e c p]T ,
and let V be the (constant) distribution volume; the ODE
concentration system can be written in compact form as:

γ̇(t) = NV(γ(t)), (14)

with N being the stoichiometric matrix associated to the con-
sidered reactions and species, and with vector V collecting
the macroscopic reaction rates. In order to properly account
for the many (infinite) burst reactions of type r4 and r7

providing substrate and enzyme production, the following
notation is adopted:

V(γ)=
[
k1γsγeV k2γc k3γc vT4 (γe, γp) k5γe k6γp vT7

]T
with v4(γe, γp) = ρ(γe, γp)

[
IP(Ne = 1) IP(Ne = 2) · · ·

]T
and v7 = k7

[
IP(Ns = 1) IP(Ns = 2) · · ·

]T
being

vectors of infinite elements, and ρ(γe, γp) = α22(e?)γe +

α24(p?)γp + δ(e?,p?)
V . Matrix N is defined as:

N =


−1 1 0 0T 0 0 nT

−1 1 1 nT −1 0 0T

1 −1 −1 0T 0 0 0T

0 0 1 0T 0 −1 0T

 (15)

with 0T being an infinite row of all zero elements and nT =
[1 2 · · · ]T being a row vector aggregating the ordered
sequence of integers.

The adoption of infinite-dimensional vectors and matrices
is only a matter of convenience of notation, since the
product in (14) provides a finite-dimensional ODE system,
whose state vector γ could also be derived from the first
order moment equations (6) after: (i) closing the first-order
equations (see e.g. [15]) by approximating 〈se〉 = ηsηe, (ii)
accounting for the conversion from average copy number to
concentration γ = η/V :

γ̇(t) = A1γ(t) + b1/V + V Γ1γs(t)γe(t). (16)

It is worth noting that the steady-state solutions computed
from (16) in terms of enzyme, complex and product cor-
respond to the steady-state solutions coming from the first-
order moment equations (6), so they are not approximated
values. Moreover, (16) allows to compute the steady-state
(approximate) value also for the substrate, which could not
be computed from (6). This value will be denoted by s? (with
a little abuse of notation, since s? in the following equation
is an approximation of the average steady-state value):

s? = V γ?s = k5k7(k2 + k3)µs/(k1k3k4µe) ' lim
t7→+∞

〈s(t)〉 .

The covariance matrix Σ associated to the copy number
fluctuations around the equilibrium solution of (16) is the
positive-definite solution of the Lyapunov equation [8]:

JΣ + ΣJT + V BBT = 0 (17)

with

J = N · (dV/dγ)|γ? BBT = Ndiag {V(γ?)}NT .
(18)

Note that, when computing BBT , the second order mo-
ments ξ2

s , ξ2
e of the geometric distributions for the production

burst sizes are exploited. As a further remark, the volume V
affects neither the computation of the steady-state of (16) (in
terms of copy number), nor the computation of Σ in (17).

Simulations have been carried out by exploiting the fol-
lowing set of nominal model parameters (most of which
taken from [6]): k1 = 1s−1molecule−1, k2 = 28300s−1,
k3 = 3.2s−1, k4 = 0.01s−1, k5 = 10−3s−1, k6 = 0.02s−1,
k7 = 1.2s−1, µe = 3 molecule, µs = 5.67 molecule, ξ2

e =
21 molecule2, ξ2

s = 69.89 molecule2, he = hs = h = 5, with
βp = βe = 2k4 and θp = p?, θe = e? (see previous section).
Then, from (7), (9), (11), one gets e? = 30, c? = 2.125,
p? = 340, with e? sharing the same value for the three
schemes.

Results obtained from the LNA according to different
values of k4 and of hp = he = h (strength of the feedback)
are summarized in Tables I and II, respectively. Note that
the noise in scheme 0 is always higher than the one in
the feedback schemes A and B, but the type of feedback
providing the best performance depends on the particular
choice of the parameters.



TABLE I
METABOLIC NOISE FOR DIFFERENT VALUES OF PARAMETER k4

k4 = 10−3 k4 = 10−2 k4 = 10−1

CV 2
P e? = 3 e? = 30 e? = 300

0 5.64 · 10−1 2.86 · 10−2 1.35 · 10−2

A 1.99 · 10−1 1.92 · 10−2 1.27 · 10−2

B 1.86 · 10−1 1.87 · 10−2 1.35 · 10−2

TABLE II
METABOLIC NOISE FOR DIFFERENT VALUES OF PARAMETERS hp = he

CV 2
P hp = he = 1 hp = he = 5 hp = he = 10

0 2.86 · 10−2 2.86 · 10−2 2.86 · 10−2

A 2.60 · 10−2 1.92 · 10−2 1.47 · 10−2

B 2.58 · 10−2 1.87 · 10−2 1.43 · 10−2

V. COMPUTATIONS IN THE QSSA FRAMEWORK

In order to write an analytical expression for the metabolic
noise affecting the product P , the LNA will be applied to
the standard Quasi-Steady-State Approximation (QSSA) of
the deterministic equations given by (16). The QSSA is a
widespread approach adopted to reduce the computational
complexity in the presence of a typical fast/slow time-scale of
enzymatic reactions; see e.g. [11] and references therein for
an exhaustive review of advantages and limitations of such
an approach, which substantially exploits the faster dynamics
of complex C, supposed to be negligible (i.e. γ̇c = 0) with
respect to the other players’ dynamics. This approximation
clearly does not affect the steady-states of (16), but allows to
simplify the corresponding Lyapunov equation in (17)–(18)
where, after some computations, one gets:

J =

−k1k3e
?

k2+k3
−k1k3s

?

k2+k3
0

0 ρ?eµe − k5 ρ?pµe
k1k3e

?

k2+k3
k1k3s

?

k2+k3
−k6

 (19)

with ρ?e = ∂ρ
∂e

∣∣∣
(e?,p?)

= α22(e?), ρ?p = ∂ρ
∂p

∣∣∣
(e?,p?)

=

α24(p?), and

BBT =
1

V

k7(µs + ξ2
s ) 0 −k7µs

0 k5e
?(ξ2

e + µe)/µe 0
−k7µs 0 2k7µs


(20)

where the identities ρ(γ?e , γ
?
p) = k5e

?

V µe
= k4

V coming from
(8), (9) have been exploited.

By solving the Lyapunov equation (17), with J and BBT

given by (19) and (20), after some computations, we obtain
the following results:

σ2
P =

k7µs
k6

(
k6 +

µs+ξ
2
s

2µs
k1k3e

?

k2+k3
+

k6k7µs

(
k5

µe+ξ
2
e

2µe
−ρ?pµe

)
Ξ(e?)

)
k6 + k1k3e?

k2+k3
− ρ?pk7µsµe

(
k5+k6−ρ?eµe+

k1k3e
?

k2+k3

Ξ(e?)

)
(21)

with Ξ(e?) = e?
(
k5 + k6 − ρ?eµe

) (
k5 + k1k3e

?

k2+k3
− ρ?eµe

)
.

Note that (21) is valid for the three schemes under investi-
gation. In more details, accounting for the scheme without

feedback regulation, since ρ?e = ρ?p = 0, Eq.(21) reduces to:

σ2
P,0 =

k7µs
k6

(
k6 +

µs+ξ
2
s

2µs
k1k3e

?

k2+k3
+

k5k6k7µs(µe+ξ
2
e)

2µeΞ0(e?)

)
k6 + k1k3e?

k2+k3

(22)

with Ξ0(e?) = e?(k5 + k6)
(
k5 + k1k3e

?

k2+k3

)
. For the other

schemes, we obtain:

σ2
P,A=

k7µs
k6

(
k6+

µs+ξ
2
s

2µs
k1k3e

?

k2+k3
+
k6k7µs

(
k5

µe+ξ
2
e

2µe
−ρ?pµe

)
Ξa(e?)

)
k6 + k1k3e?

k2+k3
− ρ?pk7µsµe

(
k5+k6+

k1k3e
?

k2+k3

ΞA(e?)

)
(23)

with ρ?p = g′(p?) and ΞA(e?) = Ξ0(e?), and

σ2
P,B=

k7µs
k6

(
k6 +

µs+ξ
2
s

2µs
k1k3e

?

k2+k3
+

k5k6k7µs(µe+ξ
2
e)

2µeΞB(e?)

)
k6 + k1k3e?

k2+k3

(24)

with ρ?e = f ′(e?), and ΞB(e?) = e?
(
k5 + k6 −

f ′(e?)µe
)(
k5 + k1k3e

?

k2+k3
− f ′(e?)µe

)
.

It is readily seen that σ2
P,0 differs from σ2

P,B only for
Ξ0(e?) being replaced by ΞB(e?). Moreover, since f ′(e?) <
0 from the derivative of the inhibitory Hill function in (13),
one obtains, for any parameter setting:

Ξ0(e?) < ΞB(e?) =⇒ σ2
P,B < σ2

P,0 (25)

implying CVP,B < CVP,0. An analogous result occurs for
the comparison between the metabolic noise in scheme 0
and in scheme A, according to the following Lemma, whose
proof we omit for lack of space.

Lemma 1: CV 2
P,0 > CV 2

P,A for any parameter setting.
The use of analytical expressions for the variances in

(22), (23) and (24) allows to investigate how the metabolic
noise varies with respect to some crucial parameters, without
involving numerical simulations.

In Fig. 4 we report CV 2
P as a function of parameter k4

(keeping all the other parameters fixed at the nominal val-
ues). The analytical expressions are compared to numerical
samples (circles in the figure) taken by means of the LNA
of the original system (without QSSA), to show the correct
computations related to the QSSA and to validate the related
assumption. It clearly appears that by increasing the value
of k4, the three schemes converge to the same behavior. It
means that, the higher k4 is, the less effective the feedback
is in reducing the metabolic noise. Indeed:

lim
k4 7→+∞

CV 2
P,0 = lim

k4 7→+∞
CV 2

P,A= lim
k4 7→+∞

CV 2
P,B=

k6(µs + ξ2
s )

2k7µ2
s

.

(26)
On the other hand, by decreasing k4, the three curves detach
from each other, highlighting the noise reduction properties
of the feedback. Finally, Fig. 4 shows also that the two
different feedback schemes may be one more effective than
the other, according to a different setting of k4. This fact
is appreciable also by looking at data in Table I, where the
LNA is applied without QSSA.



Fig. 4. Metabolic noise as a function of parameter k4. The circles refer to
numerical values achieved by means of LNA on the original system (without
QSSA).

Fig. 5 reports CV 2
P as a function of the Hill coefficient

h of the sigmoidal functions (the strength of the negative
feedback). Two distinct scenarios have been accounted for
in Fig. 5: the continuous lines refer to the case k4 = 0.01,
whereas the dashed lines refer to the case k4 = 0.03. For

Fig. 5. Metabolic noise as a function of the Hill coefficient h. Continuous
lines refer to k4 = 0.01, whereas dashed lines refer to k4 = 0.03. Markers
(squares for k4 = 0.01 and circles for k4 = 0.03) refer to numerical values
achieved by means of LNA on the original system (without QSSA).

h 7→ 0, the strength of the feedback reduces more and more
and, as a matter of fact, both feedback schemes tend to
behave like the scheme without feedback (scheme 0) in both
scenarios. This fact can be easily anticipated by the analytic
expressions, since:

lim
h7→0+

ρ?p = lim
h7→0+

ρ?e = 0

lim
h7→0+

ΞB(e?) = lim
h 7→0+

Ξ0(e?)
=⇒ σ2

P,A 7→ σ2
P,0

σ2
P,B 7→ σ2

P,0.
(27)

On the other hand, by increasing h, the feedback schemes A
and B become more and more effective in noise reduction,
with respect to the scheme without feedback. What appears
from this figure is that different values of k4 may well
influence which of the two feedback schemes works better,
in conjunction with reasonable values of the Hill coefficient.

VI. CONCLUSIONS

In this work, we have presented a comparison between
different basic schemes for the noise reduction in enzymatic

reactions, where the noise is evaluated in terms of coefficient
of variation of the reaction product. The case where the
enzyme production is not regulated is outperformed by
the two regulation schemes (product-feedback and enzyme-
feedback), as shown by evaluating the noise by means of
numerical simulation in the Linear Noise Approximation
(LNA) framework. Exploiting the assumption of double
time-scale separation (QSSA), approximate analytical com-
putations provide theoretical evidence for the experimental
results. However, theory and simulations do not allow to
conclude with certainty about which feedback scheme is the
most effective, and further investigations are currently under
study.
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