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1. Introduction

Observing that it is not realistic for a monopolist to have complete knowledge of
the market and to be endowed with computational skills to solve the profits’ opti-
mization problem, a research strand investigated possible modelling approaches for
“ignorant monopolists” (Clower [9]), focusing on simple learning mechanisms. In the
studied decisional mechanisms, the agent, endowed with reduced rationality, tries
to modify output levels toward the profit maximizing output through rule-of-thumb
heuristics (see for example [4, 9]), so that the profit-maximizing equilibrium is not
reached in one shot, but on the basis of repeated choices, following a dynamical
adaptive process (see Colisnk [10]). These mechanisms, which are usually based on
gradient rules, just require a local knowledge of the demand function, which can
be for example obtained through periodical market experiments and surveys. More
precisely, the learning activity aims at obtaining an estimate of the marginal profit.
The monopolist modifies the production level depending on the realized marginal
profit, so that increasing (respectively decreasing) profits lead to an increase (respec-
tively decrease) of the production level, regulated by a reactivity parameter. Such
mechanism, also known as myopic adjustment process, is widely investigated in the
literature, see for example [12, 13, 29].

Starting from the work by Puu [27], the related literature of the last twenty years
can be roughly divided into two main families, depending on the approach based on
continuous differential rather than discrete difference equations.

In discrete difference models (see for instance |2, 3, 8, 14, 19-21, 25, 26, 28|) the
agent is assumed to collect data about the economic environment and to choose the
output level at each discrete time. In particular, in |14, 21|, authors assume that
the monopolistic firm, to decide the production level, uses an average of the current
and of one or two past output values, suitably weighted. For a particular weight
choice, for which the current output level is not taken into account, this means
that the learning process has effect on the choice of the production level only after
one or two lags. Conversely, in differential models, the time scale is continuous and
both information about the profitability of the production choices and the decision
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about the output level are continuously updated. In [18-20, 22-24] Matsumoto and
Szidarowski propose ways to introduce delays in the learning process and study the
destabilizing effect on the resulting dynamics. However, we notice that, also when
lags are considered, both the learning activity and the production decision occur at
each discrete/continuous time ¢.

In our contribution, in which we generalize the technique and the example con-
sidered in [7]|, we propose and study a new modelling approach to take the best of
both discrete and continuous monopoly modelling. The goal is to encompass into the
model the more realistic assumption that the timing of the learning activity and of
the output production activity are actually different. In fact, it is more reasonable to
suppose that the costly data collection and organization process periodically occurs
(for instance monthly or yearly), and it remains the basis of output decisions until
the next learning activity, while indeed the production level is more frequently up-
dated. To this end, we assume a continuous time scale for the production level and a
discrete one for the learning activity, considering a multiscale time model. From the
analytical viewpoint, this can be achieved using piecewise constant argument differ-
ential equations (DEPCA). Since the early 1980’s, such kind of dynamical systems
has been used to describe several real world phenomena, in engineering, physics,
chemistry and biomedicine contexts (see for example [1, 6, 11, 30| and the refer-
ences therein). Even if such modelling approach rests upon continuous differential
equations, it encompasses the presence of an underlying discrete time level, and the
resulting dynamical behavior can be studied by considering a nonlinear difference
equation which describes the evolution of the output level at the discrete times of
the learning activity. As noticed in [15], DEPCA provides a rich source for obtaining
nonlinear difference equations of interesting types.

The model presented in this paper represents, to the best of our knowledge, the
first application of piecewise constant argument differential equations to economic
modelling, together with [7]. The resulting modelling approach belongs to the wide
family of the so-called hybrid models, in which both continuous and discrete time
levels are present. The application of hybrid models to economic problems, which are
widely used in several scientific contexts, is quite recent and to the best of our knowl-
edge we can only mention the contribution by Lamantia and Radi [16], in which a
continuous time resource growth coexists with impulsive, discrete time, changes of
strategies. After deriving the model for both a general economic context and agent’s
reactivity, we prove conditions under which the steady state, which coincides with
the profit maximizing output level, is stable. We show that differently from the
classical continuous argument differential model without lags, equilibrium is only
conditionally stable, for any parameters’ choices. The equilibrium stability depends
on the agent’s reaction function, on the sensitivity of the marginal profits at the
equilibrium ¢* and on the size o of the time interval between two consecutive learn-
ing activities. As usual, a reactive behavior is destabilizing, as well as an increase
in the marginal profit sensitivity 7”(¢*). More noteworthy is that o is destabiliz-
ing, namely stability interval is increasingly smaller as the learning activity is less
frequently carried out. We remark that, with the introduction of the discrete time
scale for the learning process, the equilibrium is never unconditionally stable, inde-
pendently of o, differently from the continuous argument differential models with
lags, in which there exists a threshold for the considered lag under which dynamics
are unconditionally stable. Finally we show that instability occurs through a flip
bifurcation and, focusing on a linear monopoly model, that the subsequent cascade
of period doublings can lead to chaotic dynamics.
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The remainder of the paper is organized as follows: in Section 2 we present the
canonical static monopoly model, in Section 3 we introduce and analyze the mul-
tiscale dynamical monopoly model, in Section 4 we consider the case of a linear
monopoly model and in Section 5 we present some possible generalization of the
proposed approach.

2. The Monopoly model

The setting we consider consists of a single seller, the monopolist, who faces price-
taking consumers in a market over one or several periods. Having market power, he
can either determine the price for the product or the supplied quantity (output level).
In what follows, we shall focus on the case of a monopolist that, in order to maximize
profits, sets the output level, represented by variable ¢ > 0. We assume that the
inverse demand curve is represented by a twice differentiable, strictly decreasing
function p : (0,§) — (0,400), while costs are described by the twice differentiable,
increasing function c¢: (0,g) — [0,400). We notice that we may also have § = +oc0.
As in the book by Bischi et al. [5, p. 52|, we suppose that functions p and ¢ fulfill
conditions

ap”(q) +9'(q) <0, p(q)—c"(q) <0 (1)

for all feasible values of ¢q. The first condition of (1), which is usually called the
decreasing marginal revenue condition, specifies that marginal revenue decreases as
output increases, while the second condition of (1) imposes a lower bound on the
convexity /concavity of the cost function with respect to the (negative) slope of the
inverse demand function. Thanks to (1), the profit function is strictly convex and
so optimization problem arg max,.,p(q)q — c(¢q) has at most one solution. We no-
tice that previous problem has no solution when p(q)q — c(q) is decreasing, which
corresponds to an optimum production level ¢ — 0. Since we aim at studying eco-
nomically interesting situations in which the optimal production level is not null,
we limit to those (inverse) demand and cost functions for which the optimization
problem has a solution, which equivalently corresponds to assume that p(q)g—c(q) is
increasing for ¢ — 07. The unique internal solution ¢* is then obtained by imposing
first and second order conditions

(") + ' (¢")g" — (¢") =0,
2p/(q*) +p/l(q*)q* _ C/l(q*) S 0

After finding the monopolist’s profit-maximizing output level, the correspondent
market price level is simply provided by p(¢*).

3. Piecewise constant argument monopoly model

The assumption of optimizing behavior requires that economic agents have high
computational capabilities and complete information about their environment. Ac-
tually, it is more realistic to assume that, for instance, monopolist has a limited and
local knowledge of the demand function ([4, 9]). The lack of information is due to
the costly and time consuming nature of the collecting information activity. The
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Figure 1. Time scales of learning and production activities.

monopolistic firm is hence not able to reach the equilibrium in one shot and, con-
sequently, can only try to adapt production choices toward the profit maximizing
output level. This can be achieved by means of a local estimate of the marginal
profit 7/, obtained, for example, through market experiments ([25]). The adaptive
process amounts to a learning activity of revising decisions after considering past
decisions and outcomes. We suppose that the monopolist employs a rule-of-thumb
as a local (or myopic) profit maximizer. In particular, he looks at how a variation
of quantity affects the variation of profits. A positive (negative) variation of profits
will induce the monopolist to change the quantity in the same (opposite) direction
from that of the preceding period. If the profits are stationary, the production is not
changed. We suppose that the time evolution is continuous and that the firm takes
output decisions continuously. As we said, the firm must carry out a learning activ-
ity of collection and organization of information and data about the environment in
which it acts, in order to produce a formal representation of the profitability situa-
tion (marginal profit). Such demanding learning process is usually performed only
periodically, so it is not realistic to suppose that it takes place continuously, with
the same timing of the production activity. On the contrary, we can assume that it
regularly takes place, for example at discrete times n = 0,0, 20, ..., so that output
decisions, during each time period no <t < (n+ 1)o,n = 0,1,2..., are based on
the representation given by the learning activity carried out at time t = no. We
notice that o > 0 is the (constant) time interval between two consecutive learning
processes. For example, if 0 = 1, the learning activity occurs at each integer value
of t. A sketch of the two time scales is reported in Figure 1.

In other words, the decisional process has two different temporal scales, a first one,
in which output decisions are taken and updated and which is suitably described
in terms of a continuous time evolution, and a second one, in which the learning
activity takes place and which is better modeled through a discrete time evolution.
The whole decisional mechanism can be represented through the following nonlinear
equation with piecewise constant argument

d(fi—(tt) - k(q(t))‘;—g <F] a) , t2>0, q(0) =qo >0, (2)

g

where [] denotes the integer part of its argument and & : [0, +00) — [0, +00) is a
positive and increasing function with k(0) = 0, which represents the extent of pro-
duction variation of the monopolist following a certain profit signal and depends on
the current monopolistic firm dimension, given by the production volume. Problem
(2) is studied in the following proposition.

ProproSITION 3.1. If k is locally Lipschitz and sublinear for ¢ — +oo, then differ-
ential equation with piecewise argument (2) has a unique strictly positive solution
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given, fort € [no,(n+1)o), n € N by

a(t) = F~'(F(g(no)) + 7 (q(no) (¢ — o)) (3)

with q(0) = qo > 0 and F is an antiderivative of 1/k(q).

Proof. When o = 1, equation (2) belongs to the family of differential equations
with piecewise argument 2/(t) = f(x(t), z[t]), studied for example in [30, ch. 2]. We
notice that (2) satisfies assumptions of Theorem 2.1 in [30, p. 84|, since, for each
w, ' (t) = f(x(t), n) = k(z(t))7’' (1) has a unique solution on [0, +00) thanks to the
assumptions on k. With minor adjustments, such theorem still holds for o # 1, too.
Then we have that there exists a unique continuous function, differentiable for each
t € [0,400) \ no and with one-sided derivatives for ¢ = no which satisfies (2) on
each interval [no, (n+ 1)) with n € N. Such solution, thanks to the uniqueness and
since for ¢y = 0 we would have the null solution, is strictly positive since gy > 0. We
notice that, since k(q) is strictly positive on (0, +00), then F' is strictly increasing and
invertible. It is easy to see that (3) matches all the previous regularity requirements
and satisfy (2) on [no, (n + 1)o), so, thanks to uniqueness, it must be the solution

of (2). O

Firstly, Proposition (3.1) guarantees existence and uniqueness of the solution of
(2) provided that k(q) is sufficiently regular. In literature, it is usually assumed either
a constant or a linear expression for k(q), both fulfilling the regularity assumptions
of Theorem 3.1. Moreover, Proposition 3.1 also provides the explicit expression of
the solution of (2). We stress that (3) provides a strictly positive trajectory for any
q(0) > 0. Since however inverse demand function may be only defined on a bounded
subset (0,7) C R, trajectories are actually feasible and economically meaningful only
when the parameter configuration guarantees that ¢(t) € (0, q) for any t¢.

It is interesting to focus on the evolution of output quantities at ¢ = no for n € N,
namely when the learning process is carried out and the new information about the
marginal profit is collected. Thanks to the continuity of the solution of (2), we can
write

a(n+ Do) = tim = F7(F(ano) +7(4(n0))). (4)

Setting q(no) = g, for n € N, from (4) we obtain the discrete difference equation

@1 = (@) = F7 (Flan) + 07 (a)), n > 0, (5)

which establishes a recurrence relation between on the discrete times no at which the
learning process occurs. Looking at the solution (3) of (2), we notice that since F'~1
is strictly increasing, q(t) is strictly increasing (resp. decreasing) on [no, (n + 1)o)
when 7’(¢(no)) > 0 (resp. 7’'(¢(no)) < 0), while it is constantly equal to ¢(no) if
and only if 7/(g(no)) = 0. This means that to study the steady state of (2) and its
stability, we can equivalently focus on the continuous time differential equation (2)
and on the discrete time difference equation (5), since no oscillating behaviors can
occur inside each interval (no, (n + 1)0).
In the following proposition we investigate discrete model (5).
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PROPOSITION 3.2. The only steady state of (5) is q*, which is stable provided that
ok(q")r"(q¢") > —2. (6)

Proof. Steady states are obtained by setting f(q) = q, i.e. ¢ = F~Y(F(q) + o7'(q))
which, thanks to the monotony of F is equivalent to F(q) = F(q) + on’'(q) and
hence to 7'(q) = 0. Under the assumptions of the previous section, it has the unique
solution ¢ = ¢*. Local asymptotic stability of a steady state x is obtained from

|f(x)] < 1. We have

o _ Pl £ or'(q) _ Plg) +or(q")
TO=FFEFe) = Pa) g

in which we used first order condition and invertibility of F. Since F'(¢*) = 1/k(¢*),
the last right hand side of equations (7) becomes 1 4 ok(q*)7"(¢*), which, since
k(q*) > 0 and thanks to the concavity of , is smaller than 1. Imposing f/(¢*) > —1
allows concluding. O

Stability condition (6) clarifies the role of the agent’s reactivity, of the sensitivity
of the marginal profit at the equilibrium (represented by 7”(¢*)) and of the learning
activity. Since 7 is concave, the stability constraint actually imposes an upper bound
on the size of o,k(¢*) and 7”(q*). Firstly we notice that the steady state is only
conditionally stable for any parameter configurations, in particular for any o > 0.
This is a different behavior with respect to continuous argument models with lags,
in which, as shown for example in [20], there exists a lower bound on time lags under
which the dynamics are unconditionally stable. We notice that, letting ¢ > 0, namely
letting the discrete time scale of the learning activity become continuous, we formally
recover the unconditional stability of the continuous argument model without lags.
This confirms that the conditional stability of the steady state is induced by the
presence of the two time scales. Actually, the presence of the discrete time scale also
affects the size of the stability interval, as it is easy to see that the steady state is
stable provided that

¥
o< o= (@)
Finally, as well established in the literature, the dynamics becomes more unstable as
agent’s reactivity increases, as well as the sensitivity of the marginal profit becomes
larger. We remark that when (6) is violated, instability generally occurs through a
period doubling bifurcation, provided that supplementary second order conditions
are fulfilled (see for example [17, p. 92|).

Typically, agent’s reactivity is represented by an exogenous positive constant or
through the endogenous linear mechanism k(q(t)) = vq(t), so that the the output
change rate is proportional to the size of the production, regulated by v > 0 which
gives the relative speed of adjustment. In this latter case, we can provide a more
explicit expression for the solution of (2).

COROLLARY 3.3. Assuming k(q(t)) = vq(t), differential equation with piecewise ar-
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gument (2) is solved by
q(t) = q(no) exp (mr'(q(na))(t - na)), t €no,(n+1)o), n €N, (8)

where q(0) = qo. Setting q(no) = q, for n € N, from (8) we have the discrete
difference equation

Gn+1 = qn €XP (Uﬂ'/(Qn)>7 n = 07

which has the only steady state q*, which is stable provided that vog*n"(¢*) > —2.

4. The case of linear monopoly

In this section we focus on the particular example of a monopoly model characterized
by linear demand, cost and agent’s reactivity functions, i.e. k(q) = vq and

p(q) =a—bgq, a >0,b>0,
and
c(q) =dgq, d > 0.

Profit function is 7(q) = (a—d)g—bg?, so that the first order condition is a—d—2bg =
0 and second order condition 2b > 0 is always satisfied. Assuming that a > d,
the maximizing output level and the corresponding optimal price are given by the
positive values ¢* = (a — d)/(2b), and p* = a — (a — d)/2. Equation (2) becomes

d(il—(tt) = vq(t) (a —d — 2bg [g] J) ,t>0,q(0) >0, (9)

to which correspond the nonlinear difference equation
Gn+1 = qnexp [vo(a —d —2(b+e)g,)] . (10)

We want to compare the classical smooth argument differential model for the
boundedly rational monopolist with the present one. In the classical framework, the
differential equation which governs the dynamics is

W) _ gty a —d — 2bq(8)], ¢ >0, q(0) >0, (11)

which has the unique solution

a0 (@-bespwa-bn o 1)

q(t) = a—0b—2q(0)b+2q(0)bexp (v(a—0)t)  —

In order to compare the classical and the piecewise constant argument models, from
(12) we derive a recurrence relation defined for ¢ at discrete times no,n € N, which,
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(a) (b) (c)

Figure 2. (a,b) Plots of maps (10) (red color) and (13) (blue color) for different values of o. (c) Bifurcation
diagram for (10) on varying o

setting q(no) = ¢y, results

qn (a — b) exp (vo (a — b))

. 13
a—b—2q,b+ 2gybexp (vo (a — b)) (13)

dn+1 =

In Figures 2 (a) and (b) we report maps (10) and (13) for a = v =1,b=d = 0.5
and for two different time interval sizes ¢ = 0.5 and 0 = 1. As we can notice, in the
continuous argument model the steady state ¢* is stable for both parameter config-
urations, while in the piecewise argument model it is stable for o = 0.5 and unstable
for o = 1. Finally in Figure 2 (c¢) we report a bifurcation diagram on varying o, in
which it is evident how increasing the time interval between two consecutive learn-
ing processes can induce instability though a cascade of period doubling bifurcations
which lead to chaos.

5. Conclusions

We presented a dynamical model of a boundedly rational monopolistic firm in which
the production decisions and the learning activity take place at different time scales.
We showed that if production levels are updated continuously, while the collection of
data about the economic environment is only periodically carried out, instabilities
can arise in the resulting dynamics. The proposed approach is based on a piece-
wise continuous differential equation which leads to a nonlinear difference equation,
describing the evolution of output levels at the discrete time level of the learning ac-
tivity. The resulting model exhibits a multiscale time structure in which the discrete
time scale, at which the learning process takes place, is the cause of the possible
destabilization of the equilibrium. We showed, considering generic demand, cost and
agent’s reactivity functions, that increasing the size of the time interval between
two consecutive learning processes can lead the dynamics to become unstable, and,
considering a linear monopoly, we showed that this can occur through a cascade of
period doublings leading to chaos. Future generalizations of the proposed approach
include the study of the effect of endogenizing the times at which the learning ac-
tivity occurs. In this way, the agent is allowed to decide, on the basis of some fitness
measure, when the learning activity has to be carried out. Moreover, we aim to inves-
tigate the possible applications of the proposed approach and of piecewise continuous
argument differential equations to oligopolistic competitions and, more generally, to
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game theory.
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