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In the present paper, we consider a nonlinear financial market model in which, in order to decrease

the complexity of the dynamics and to achieve price stabilization, we introduce a price variation

limiter mechanism, which in each period bounds the price variation so that the current price is

forced to belong to a certain interval determined by the price realization in the previous period.

More precisely, we introduce such mechanism into a financial market model in which the price

dynamics are described by a sigmoidal price adjustment mechanism characterized by the presence

of two asymptotes that bound the price variation and thus the dynamics. We show that the presence

of our asymptotes prevents divergence and negativity issues. Moreover, we prove that the basins of

attraction are complicated only under suitable conditions on the parameters and that chaos arises

just when the price limiters are loose enough. On the other hand, for some suitable parameter

configurations, we detect multistability phenomena characterized by the presence of up to three

coexisting attractors. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927831]

Since the introduction of the OGY method in Ref. 28,

many papers have arisen in the literature on chaos con-

trol. Most of the employed methods are, however,

designed for physics systems, and thus they are not well

suited for economic models. Two exceptions are repre-

sented by the Delayed Feedback Control (DFC) method

by Pyragas
29

and by the limiter method by Wieland and

Westerhoff.40 The limiter technique, simply consisting in

setting constant upper and lower limiters to prices, is the

technique that bears a stronger resemblance to the

method we are going to employ in the present work. In

fact, we here introduce a price variation limiter mecha-

nism, which in each period bounds the price variation so

that the current price is forced to belong to a certain

interval determined by the price realization in the previ-

ous period. Our paper belongs indeed to the literature on

the search of mechanisms of control so as to reduce the

volatility of prices of commodities and of financial activ-

ities. Two are the main goals of our work. First, from a

formal viewpoint, we aim to avoid divergence and nega-

tivity issues. Second, from a normative viewpoint, we aim

to propose a method in view of reducing volatility and

controlling chaos, that is, of diminishing turbulence, as

well as of decreasing the number, the size, and the com-

plexity of the attractor in the phase space, in order to

achieve the convergence to a fixed point. To show the

effectiveness and the functioning of our mechanism, we

use as benchmark framework a special case of the model

in Tramontana et al.33

I. INTRODUCTION

In most of the papers that deal with speculative behavior

in financial markets and with the dynamics of relevant varia-

bles, such as prices and traded quantities, authors introduce a

mechanism that describes the disequilibrium price dynamics.

Such mechanism links the price variation to excess demand

and it is usually modeled as a linear relation (see, for

instance, Refs. 16 and 17). This means that the ratio between

the price variation and the excess demand is constant and in

turns this implies that, for instance, if the latter assumes large

values in absolute value, also the price variation will be

large. Hence, such a mechanism easily leads to negativity

issues and divergence of the dynamics because of an overre-

action: indeed considering too large starting values for the

stock price, the iterates may quickly limit towards minus

infinity.

On the other hand, in those stock market models in

which, even in the absence of stochastic shocks, the presence

of nonlinearities in deterministic frameworks accounts for

the dynamics of financial markets (see, e.g., Refs. 17, 37,

and 39), instabilities and strong irregularities often arise,

leading to the emergence of turbulence and chaotic

phenomena.

Two are then the main goals of our work. First, from a

formal viewpoint, we aim to avoid divergence and negativity

issues. Second, from a normative viewpoint, we aim to pro-

pose a method in view of reducing volatility and controlling

chaos, that is, of diminishing turbulence, as well as of

decreasing the number, the size, and the complexity of the

attractors in the phase space, in order to achieve the conver-

gence to a fixed point.

Since the introduction of the OGY method in Ref. 28,

many papers have arisen in the literature on chaos control.
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Most of the employed methods are however designed for

physics systems, and thus they are not well suited for eco-

nomic models. In addition, for instance, to the contributions

in Refs. 20, 27, and 31, two exceptions are represented by

the DFC method by Pyragas,29 used for example in Refs. 8,

13, and 21 and by the limiter method by Wieland and

Westerhoff,40 used, e.g., in Refs. 11, 30, and 12, where the

interested reader may find an introduction to both methods,

as well as a detailed survey of the literature on the topic. The

limiter technique has been also employed in Refs. 32 and 36

and simply consists in setting constant upper and lower limit-

ers to prices. This is the technique that bears a stronger re-

semblance to the method we are going to employ in the

present work. In fact, we here introduce a price variation

limiter mechanism, which in each period bounds the price

variation so that the current price is forced to belong to a cer-

tain interval determined by the price realization in the previ-

ous period. Our paper belongs indeed to the literature on the

search of mechanisms of control so as to reduce the volatility

of prices of commodities and of financial activities. As

regards the former strand of literature, we recall the papers

by Athanasiou et al.,2 Corron et al.,7 He and Westerhoff,15

and Mitra and Boussard.22 As regards the latter strand of lit-

erature, we recall instead the papers by Athanasiou and

Kotsios3 and Westerhoff.38 Making a comparison with such

works, we stress that we deal with a financial market model,

too, but that, differently from Refs. 3 and 38, we do not per-

form just a numerical analysis, but we also propose a formal

treatment of the dynamical features of our model.

More precisely, in the present paper, in order to avoid

overreaction phenomena and an excessive volatility in the

stock market, we assume that the market maker is forced by

a central authority to be more cautious in adjusting the stock

price when excess demand is large, i.e., when the system is

far from its equilibria, while he/she has more freedom when

excess demand is small, that is, when the system is close to

an equilibrium. This kind of diversified behavior may be rep-

resented by a nonlinear function only, which has also to be

increasing and to pass through the origin. In particular, our

price variation limiter mechanism is described by a sigmoi-

dal price adjustment rule characterized by the presence of

two asymptotes that bound the dynamics. In order to show

the effectiveness and the functioning of our mechanism, we

use as benchmark framework a special case of the model in

Tramontana et al.33—see the 1D case in Section III therein.

We make such a choice as we believe that context is interest-

ing, both because of the presence of heterogeneous agents,

i.e., chartists and fundamentalists, and due to the richness of

the generated dynamics.

We find similar results to those obtained in Ref. 33,

even if, as desired, the presence of our asymptotes prevents

the divergence and negativity issues therein. Moreover,

when dynamics are chaotic in Ref. 33, we can stabilize the

system through a suitable choice of the asymptotes. Finally,

when in Ref. 33 a unique attractor is present, we are able to

limit its size and complexity, as well as to reach a complete

stabilization of the system. On the other hand, for some inter-

mediate values for the asymptotes and particular configura-

tions of the other parameters, in addition to two coexisting

attractors similar to those detected in Ref. 33, we find (at

least) one more attractor, which may be periodic or chaotic,

independently of the nature of the other two attractors.

According to the considered parameter set, it may happen

that the third attractor persists, while the other two disappear,

or vice versa, that the third attractor disappears when the

other two are still present. From a normative viewpoint, this

means that just the imposition of our price variation limiter

mechanism in the financial market is not sufficient in view of

stabilizing the system. To such aim, we need the asymptotes

bounding the price variation to be sufficiently close, because

for intermediate distances between them, neither too large

nor too small, we find multistability phenomena character-

ized by the coexistence of attractors with disconnected

basins of attraction.

The specific results that we obtain can be summarized as

follows.

In Proposition 3.1, we show that our system has the

same steady states as the one studied in Ref. 33, i.e., a funda-

mental steady state, which is always unstable, and two steady

states symmetric with respect to it, for which we derive the

corresponding stability conditions. In Proposition 3.2, we

prove that under suitable conditions on the asymptotes the

map generating our dynamical system is increasing and we

describe the basins of attraction in this simple framework,

employing then similar arguments to exclude the presence of

negative trajectories, as well as of divergent trajectories

under any condition on the parameters. In Proposition 4.1,

we show that the non-fundamental steady states lose stability

via a flip bifurcation. By applying the method of the turbu-

lent maps by Block and Coppel,5 in Proposition 4.2, we

prove the presence of chaotic dynamics and, in particular,

the positivity of the topological entropy, when the price lim-

its are loose enough. Globally, we find that the destabiliza-

tion process implies multistability, i.e., the coexistence of

different kinds of attractors, as discussed above.

As regards the remainder of the paper, in Section II,

we introduce the model; in Section III, we derive the expres-

sion of the steady states and the stability conditions, compar-

ing them with the corresponding ones in Ref. 33, and

we show that our system admits no divergent trajectories; in

Section IV, we investigate the occurrence of the first flip

bifurcation for our steady states and we prove the existence

of complex dynamics when the asymptotes are sufficiently

distant; in Section V, we present some global scenarios with

multistability phenomena, characterized by the presence

of two or (at least) three coexisting attractors; finally, in

Section VI, we draw some conclusions and discuss our

results.

II. THE MODEL

We consider a stock market modeled in the sense of

Day and Huang:9 we deal in fact with the nonlinear interac-

tions between heterogeneous agents, i.e., technical traders

(or chartists) and fundamental traders (or fundamentalists).

The fractions of technical and fundamental traders are fixed.

Chartists may be either optimistic or pessimistic, depending

on the stock price performance: in a bull market chartists

083112-2 A. Naimzada and M. Pireddu Chaos 25, 083112 (2015)
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buy stocks, while in a bear market they sell stocks. For the

sake of simplicity, we assume that chartists rely on a linear

trading rule. Fundamentalists have an opposite behavior:

believing that stock prices will return to their fundamental

value, they buy stocks in undervalued markets and sell stocks

in overvalued markets. We suppose that fundamentalists rely

on a nonlinear trading rule.

The market maker determines excess demand and

adjusts the stock price for the next period: if aggregate

excess demand is positive (negative), production increases

(decreases). More precisely, price variation between price

Ptþ1 in period tþ 1 and price Pt in period t is defined in the

following way:

Ptþ1 � Pt ¼ d gðDt;PtÞ; (2.1)

where d is the market maker reactivity, Dt ¼ DC
t þ DF

t

reflects the orders placed by chartists and fundamentalists,

and g is a function increasing in Dt and vanishing for Dt ¼ 0:
As stressed by one of the reviewers, it is often assumed

that the adjustment coefficients belong to ð0; 1�; since the

framework with d> 1 may in general be interpreted as an

overshoot or an overreaction. Nonetheless, along the paper,

we shall consider d > 0; i.e., we will deal with the cases

d 2 ð0; 1� and d > 1; for both empirical and theoretical

reasons.

Indeed, starting with the crucial paper by De Bondt and

Thaler,10 where overshooting of asset returns with respect to

the fundamental value has been observed, a well-grounded

empirical literature has arisen to show the presence of over-

reaction phenomena in financial markets. Subsequently,

some authors have given further foundations to overreaction

events through the formulation and analysis of mathematical

models. To such strand of literature belong, for instance, the

works by Barberis et al.,4 by Hong and Stein,18 and by

Veronesi.35 More precisely, in Ref. 4, the authors present a

model of investor sentiment and find for stock prices under-

reaction to news such as earnings announcements and over-

reaction to a series of good or bad news. In Ref. 18, Hong

and Stein consider a market populated by two groups of

boundedly rational agents, i.e., “newswatchers” and

“momentum traders,” and observe for prices underreaction

in the short run and overreaction in the long run. In Ref. 35,

the author presents a dynamic, asset price equilibrium model

with rational expectations in which, among other features,

prices overreact to bad news in good times and underreact to

good news in bad times.

From a theoretical viewpoint, we need to have the possi-

bility of considering also d> 1 in order to strengthen the

nonlinearity in the stock price adjustment mechanism and in-

tensify the oscillations of the system, increasing (in modulus)

the maximum and minimum values it may reach. Indeed, we

are interested in investigating what happens if the price vari-

ation is limited, especially when the market maker reactivity

is high. Namely, from a normative perspective, we aim to

test the effectiveness of our price variation limiter mecha-

nism in stabilizing the system and, in the cases in which we

do not get a stabilization, to observe the arising dynamical

phenomena, which turn out to be particularly interesting

when sufficiently high values for d are taken into account.

We remark that we could make the assumption d 2 ð0; 1�
also in the present context since, as it is clear from the stabil-

ity condition in Proposition 3.1, instabilities and interesting

dynamics could be obtained for d � 1 as well, suitably

increasing a1; a2, or e. On the other hand, we prefer to deal

with d because, due to the multiplicative formulation of the

price variation in (2.1), it plays a more global role and is not

connected to a particular group of agents.

As concerns the price adjustment mechanism, we stress

that the majority of the existing literature on behavioral fi-

nancial market models deals with a “linear” formulation, that

is, with the case gðDt;PtÞ ¼ Dt; like in Ref. 33. Even when a

nonlinear price adjustment mechanism is considered, authors

usually deal with a multiplicative formulation for g, i.e.,

gðDt;PtÞ ¼ Dt � Pt (see, for instance, Refs. 26, 34, and 41),

which admits P¼ 0 as steady state. However, both the linear

and the multiplicative formulations do not impose any bound

on the price variation and thus may allow overreaction phe-

nomena and volatility, which in turn lead to instability and/

or divergence issues.

Differently from such approaches, we consider a nonlin-

ear price adjustment mechanism which determines a

bounded price variation in every time period. In particular,

we assume that the adjustment mechanism is S-shaped, and

thus we specify the function g as

g Dt;Ptð Þ ¼ a2

a1 þ a2

a1 exp �Dtð Þ þ a2

� 1

� �
; (2.2)

with a1 and a2 positive parameters. With this choice, g
depends on Dt only, it is increasing in such variable, and it

vanishes when Dt ¼ 0: Moreover, g is bounded from below

by �a2 and from above by a1 : hence, the price variations in

(2.1) are gradual and the presence of the two horizontal

asymptotes prevents the dynamics of the stock market from

diverging and helps avoiding negativity issues. The above

adjustment mechanism may be implemented assuming that

the market maker is forced by a central authority to behave

in a different manner according to the excess demand value.

In particular, in order to avoid overreaction phenomena, he/

she has to be more cautious in adjusting prices when excess

demand is large, while he/she has more freedom when excess

demand is small, i.e., when the system is close to an equilib-

rium. We recall that the adjustment mechanism in (2.2),

determining a bounded variation of a given variable, has

been already considered in Refs. 23–25. More precisely, in

those works, we imposed a bound on the variation of the out-

put variable in macroeconomic models, both without (see

Ref. 23) and with (see Refs. 24 and 25) the stock market

sector.

Adopting the nonlinear adjustment mechanism in (2.2),

we can rewrite the dynamical equation in (2.1) as follows:

Dtþ1 ¼ Ptþ1 � Pt ¼ da2

a1 þ a2

a1 exp �Dtð Þ þ a2

� 1

� �
;

where Dtþ1 represents the price variation. We depict such

relation in Figure 1.
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Let us now specify the chartists’ and fundamentalists’

demand. Similarly to Ref. 33, we assume chartists’ demand

is linear with respect to the stock price and given by

DC
t ¼ eðPt � FÞ; (2.3)

where e> 0 is the chartists’ reactivity parameter and F> 0

is the fundamental value. As mentioned above, again like

in Ref. 33, we suppose instead that the fundamentalists’

demand is nonlinear and formalized by

DF
t ¼ f ðF� PtÞ3; (2.4)

where f> 0 is the fundamentalists’ reactivity parameter.

Hence, as long as the price is close to its fundamental value,

fundamentalists are relatively cautious; however, the larger

the difference between fundamental value and price, the more

aggressive they become. As suggested by Day and Huang,9

such a behavior is justified by increasing profit opportunities.

Like in Ref. 33, total excess demand then reads as

Dt ¼ DC
t þ DF

t ¼ eðPt � FÞ þ f ðF� PtÞ3:

Inserting its expression into (2.1) and recalling the definition

of g in (2.2), we obtain the dynamic equation of the stock

price in our nonlinear framework

Ptþ1 ¼ Pt þ da2

� a1 þ a2

a1 expð�ðeðPt � FÞ þ f ðF� PtÞ3ÞÞ þ a2

� 1

� �
:

(2.5)

Notice that, introducing the variable Xt ¼ Pt � F; it is possible

to rewrite (2.5) in deviations from the fundamental value as

Xtþ1 ¼ Xt þ da2

a1 þ a2

a1 expð�ðeXt � fX3
t ÞÞ þ a2

� 1

� �
: (2.6)

The above equation generates the dynamical system we are

going to analyze in what follows. We stress that, by construc-

tion, (2.6) represents the nonlinear counterpart of the system

investigated in Ref. 33, obtained by implementing on the latter

our price variation limiter mechanism in (2.2). For such reason,

in order to test the effectiveness of our method, in Sections

III–VI, we shall compare our findings with those in Ref. 33.

III. LOCAL ANALYSIS

In this section, we first discuss the existence and local

stability of the steady states for our dynamical system and

then we show the existence of an absorbing interval, which

excludes the possibility of divergent dynamics.

In view of the subsequent analysis, it is expedient to

introduce the map U : R! R defined as

U Xð Þ ¼ X þ da2

a1 þ a2

a1 exp � eX � fX3ð Þð Þ þ a2

� 1

� �

¼ X þ da1a2

1� exp � eX � fX3
� �� �

a1 exp � eX � fX3ð Þð Þ þ a2

 !
; (3.1)

associated to the dynamic equation in (2.6). Notice that in

the case with a1 ¼ a2 ¼ a; the map U turns out to be odd

and thus its graph is symmetric with respect to the origin. In

fact, in such specific framework it holds that

U Xð Þ ¼ X þ da
1� exp � eX � fX3

� �� �
exp � eX � fX3ð Þð Þ þ 1

 !

¼ X þ da
exp eX � fX3
� �

� 1

1þ exp eX � fX3ð Þ

 !

¼ � �X þ da
1� exp eX � fX3

� �
1þ exp eX � fX3ð Þ

 ! !
¼ �U �Xð Þ:

In the next result, we show the existence of three steady

states for our system and we investigate their local stability.

Proposition 3.1. The dynamical system generated by the
map U in (3.1) has the following steady states:

X�1 ¼ �
ffiffiffi
e

f

r
; X�2 ¼ 0; X�3 ¼

ffiffiffi
e

f

r
: (3.2)

In particular, X�2 is always unstable, while X�1 and X�3
are locally asymptotically stable if de < 1

a1
þ 1

a2
:

Proof. The expression for X�i ; i 2 f1; 2; 3g; can be im-

mediately found by solving the fixed point equation

UðXÞ ¼ X:
As regards the local stability of the steady states, a

straightforward computation shows that

U0 Xð Þ ¼ 1� da1a2 a1 þ a2ð Þ 3fX2 � e
� �

a1 exp � eX � fX3ð Þð Þ þ a2ð Þ2 exp eX � fX3ð Þ
:

(3.3)

Hence, U0ðX�2Þ ¼ 1þ da1a2e
a1þa2

> 1; implying that the origin is

always unstable.

In regard to X�1 and X�3; it holds that U0ðX�1Þ ¼ U0ðX�3Þ
¼ 1� 2dea1a2

a1þa2
¼ 1� 2de

1
a1
þ 1

a2
ð Þ and therefore, in order to get the

local asymptotic stability of those steady states, we only

need to impose U0ðX�i Þ > �1; i 2 f1; 3g; which leads to the

condition de < 1
a1
þ 1

a2
: �

We observe that, according to Proposition 3.1, also in

the case of an overshoot, i.e., when d > 1; it always possible

to find a1; a2; and e large enough to guarantee that X�1 and X�3
are locally asymptotically stable.

Turning back for a while to the price variable P, we stress

that the steady states for the original formulation in (2.5) are

FIG. 1. The graph of Dtþ1 as a function of Dt:
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P�1 ¼ F�
ffiffi
e
f

q
; P�2 ¼ F and P�3 ¼ Fþ

ffiffi
e
f

q
; which are all posi-

tive when F >
ffiffi
e
f

q
: Along the paper, we shall then maintain

such assumption that, as it is easy to check, also guarantees a

positive Ptþ1 in correspondence to Pt ¼ 0: Actually, it is pos-

sible to prove that, when the fundamental value is large

enough, then all Ptþ1’s are positive, even the local minimum

values, and thus our model makes economic sense. This can

be shown by observing that for w : ½0;þ1Þ ! R;

w Pð Þ¼Pþda2

a1þa2

a1 expð�ðeðP�FÞþ f ðF�PÞ3ÞÞþa2

�1

� �
;

it holds that limP!þ1 wðPÞ ¼ þ1: Hence, w is positive for

all the sufficiently large values of P, no matter the value of F.

Let us then fix �P > 0 and show that wð �PÞ > 0 when F is large

enough. This follows by noticing that limF!þ1 wð �PÞ
¼ �P þ da1 > 0:

At the end of the present section, we will prove that in

our model negativity issues can be avoided also by suitably

tuning a1 and a2; via an argument based on Proposition 3.2.

In order to make a comparison with the results in

Ref. 33, we recall that those authors found for their dynami-

cal system, generated by the map

/ðXÞ ¼ X þ dðeX � fX3Þ; (3.4)

our same fixed points. Moreover, similarly to what we

obtain, the origin was always unstable in that framework,

too. On the other hand, in Ref. 33, only the parameters d and

e play a role in determining the stability condition of the

nonzero steady states, which reads as de < 1:
We stress instead that in our context also the parameters

a1 and a2 enter the stability condition for X�1 and X�3: In partic-

ular, according to Proposition 3.1, for any given value of d
and e, either smaller or larger than 1, it is possible to find a1

and a2 sufficiently small, so that our stability condition is sat-

isfied, even for those values of d and e that make the nonzero

steady states in Ref. 33 unstable. This fact is illustrated in

Figure 2(a), where we draw the bifurcation diagram for U
with respect to a1¼ a2 taking decreasing values in ½0:2; 2�;
and for d ¼ 0:35; e ¼ 5; f ¼ 0:7; i.e., for the parameter

values considered in the bifurcation diagram in Figure 6 of

Ref. 33 (except for e there varying in ½0; 6�). With such

choices, since de > 1; / is unstable at X�1 and X�3; while U
is locally asymptotically stable at X�1 and X�3 for a1 ¼ a2

< 1:142: This shows that we may reach a complete stabiliza-

tion of the system just by choosing a1 and a2 small enough,

that is, by sufficiently reducing the range where the price vari-

ation may vary.

Of course, vice versa, fixed d and e, it is always possible to

find a1 and a2 sufficiently large, so that our stability condition in

Proposition 3.1 is not satisfied, even for those values of d and e
that make the nonzero steady states in Ref. 33 locally asymptoti-

cally stable. We illustrate the latter phenomenon in Figure 2(b),

where we draw the bifurcation diagram for U with a1¼ a2 vary-

ing in ½3; 12�; and for d ¼ 0:35; e ¼ 1; f ¼ 0:7: With such

choices, / is locally asymptotically stable at X�1 and X�3; while

U is unstable at X�1 and X�3 for a1 ¼ a2 > 5:714 and for a1

¼ a2 > 7:5; U turns out to be even chaotic.

We now go on with the presentation of the analytical

results on the map U showing that, under suitable conditions

on a1 and a2; it can be strictly increasing and that in this case

the basin of attraction of the locally asymptotically stable

steady states X�1 and X�3 is connected. Notice indeed that

if U0ðXÞ > 0; 8X 2 R; then in particular, U0ðX�i Þ > �1;
i 2 f1; 3g; and, as we saw along the proof of Proposition 3.1,

this is sufficient for the nonzero steady states to be locally

asymptotically stable.

Proposition 3.2. When minfa1; a2g ! 0; then U in (3.1)

is strictly increasing. In this case the basin of attraction of
X�1 is given by ð�1; 0Þ; while the basin of attraction of X�3 is
given by ð0;þ1Þ:

Proof. Let us prove at first that U is strictly increasing

when minfa1; a2g is sufficiently small. When a1 � a2; we

put in evidence a2
1 and simplify it between numerator and de-

nominator in the expression in (3.3), which can then be

rewritten as

U0 Xð Þ ¼ 1�
da2 1þ a2

a1

� �
3fX2 � e
� �

exp � eX � fX3ð Þð Þ þ a2

a1

� �2

exp eX � fX3ð Þ
:

(3.5)

FIG. 2. In (a), the bifurcation diagram for U with respect to a1¼ a2 taking decreasing values in ½0:2; 2�: The green (light) dots refer to the initial condition

Xð0Þ ¼ �0:25; while the blue (dark) dots refer to the initial condition Xð0Þ ¼ 0:25: In (b), the bifurcation diagram for U with respect to a1 ¼ a2 2 ½3; 12�: The

green (light) dots refer to the initial condition Xð0Þ ¼ �0:5; while the blue (dark) dots refer to the initial condition Xð0Þ ¼ 0:5:
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Since 0 < a2

a1
� 1; by (3.5) it follows that U0ðXÞ ! 1 when

a2 ¼ minfa1; a2g ! 0: Similarly, when a2 � a1; we put in

evidence a2
2 and simplify it between numerator and denomi-

nator in the expression in (3.3), which can then be rewritten

as

U0 Xð Þ ¼ 1�
da1

a1

a2

þ 1

� �
3fX2 � e
� �

a1

a2

exp � eX� fX3
� �� �

þ 1

� �2

exp eX� fX3ð Þ
:

(3.6)

Since 0 < a1

a2
� 1; by (3.6) it follows that U0ðXÞ ! 1 when

a1 ¼ minfa1; a2g ! 0:
Hence, we have proved that when minfa1; a2g is small

enough, then U0ðXÞ > 0 and thus U is strictly increasing, as

desired.

Let us now show that, given a generic starting point �X > 0;
its forward U-orbit will tend to X�3: By Proposition 3.1, X�2
is always unstable. Moreover, when X!þ1 the graph of

U admits an oblique asymptote, whose expression reads as

Y ¼ X � da2: Then, since X�3 is the only positive fixed point for

U; by continuity, the graph of U lies above the 45	 line in the

interval ð0;X�3Þ; while the graph lies below the 45	 line in the

interval ðX�3;þ1Þ: Moreover, from the proof of Proposition

3.1, it follows that X�3 is locally asymptotically stable when

minfa1; a2g is sufficiently small and U is strictly increasing.

Hence, if �X 2 ð0;X�3Þ, its forward trajectory will tend to X�3 in

a strictly increasing manner, while if �X 2 ðX�3;þ1Þ, its

forward trajectory will tend to X�3 in a strictly decreasing way.

This shows that the basin of attraction of X�3 contains ð0;þ1Þ:
A completely symmetric argument, using the fact that when

X!�1 the graph of U admits an oblique asymptote, whose

expression reads as Y ¼ X þ da1; allows to show that the for-

ward trajectory of any point in ð�1; 0Þ will tend to X�1: Hence,

the basin of attraction of X�1 contains ð�1; 0Þ:
As the origin is a fixed point for U; we can infer that the

basin of attraction of X�1 is given by ð�1; 0Þ; while the basin

of attraction of X�3 is given by ð0;þ1Þ:
This concludes the proof. �

Hence, Proposition 3.2 prevents the existence of inter-

esting dynamics when a1 or a2 are sufficiently small, because

in this case the map U is strictly increasing. On the other

hand, for intermediate values of a1 or a2; neither too small

nor too large, it is possible that, although X�1 and X�3 are

locally asymptotically stable, they coexist with periodic or

chaotic attractors (see, for instance, Figures 12 and 18).

An argument similar to the one employed in the proof of

Proposition 3.2 allows to infer that the shape of the graph of

the map U prevents the existence of diverging trajectories,

even when U is no more monotone. In fact, since Uð0Þ ¼ 0

and U0ð0Þ > 1 (as shown in the proof of Proposition 3.1), U
is locally increasing at 0 and its graph lies below (above) the

45	 line in a left (right) neighborhood of 0. If the map is not

globally increasing, either Ujð�1;0Þ has a local maximum

point, we call M1; followed by a local minimum point, we

call m1; after which U monotonically grows towards the ori-

gin, or Ujð0;þ1Þ has a local maximum point, we call M2; fol-

lowed by a local minimum point, we call m2; and after that

U monotonically grows towards infinity.42 Of course, the

map can have all the four critical points as well, like in the

symmetric case in which a1¼ a2 are large enough and U is

odd, or for instance as in Figure 19(a).

For the sake of illustration, let us focus on the scenario

with four critical points because, as we shall see in Section

V, it is the most interesting from a dynamical viewpoint.

In such setting, even when the values of both a1 and a2 are

so large that43 Uðm2Þ < 0 < UðM1Þ, the position of the

asymptotes (Y ¼ X þ da1 for X! �1 and Y ¼ X � da2

for X! þ1) with respect to the 45	 line makes forward

trajectories, starting from an arbitrary point, eventually

bounce within the absorbing interval J ¼ ðminfUðm1Þ;
Uðm2Þg;maxfUðM1Þ;UðM2ÞgÞ: in fact, when the starting

point �X belongs to the interval ð�1;X�1Þ; either �X 2 J or its

forward trajectory monotonically grows to reach J and, sym-

metrically, when the starting point �X belongs to the interval

ðX�3;þ1Þ; either �X 2 J or its forward trajectory monotoni-

cally decreases to reach J, and then, by construction, the

orbit of �X does not leave J anymore. On the other hand, it

is easy to prove that ½X�1;X�3� 
 J: Indeed, if X 2 ½X�1; 0�;
then maxfUðM1Þ;UðM2Þg�UðM2Þ>0�X>UðXÞ�Uðm1Þ
�minfUðm1Þ;Uðm2Þg and thus X2 J: Similarly, if X
2ð0;X�3�; then maxfUðM1Þ;UðM2Þg�UðM2Þ�UðXÞ>X>0

>Uðm1Þ�minfUðm1Þ;Uðm2Þg and thus X2 J; again.

When comparing our framework to the one in Ref. 33 in

regard to the presence of divergence issues, we observe that,

differently from the present context in which the existence of

diverging orbits is prevented by a suitable choice of a1 and

a2; in Ref. 33, it is possible to observe divergent dynamics.

We illustrate such dissimilarity between the two papers in

Figure 3. In particular, in Figure 3(a), we depict a scenario in

which the map / considered in Ref. 33 admits diverging tra-

jectories; for the same parameter configuration, we show in

Figure 3(b) how an intermediate choice for a1 and a2 allows

instead our map U in (3.1) to display a periodic behavior

around the steady states, while for smaller values of a1 and

a2; which imply a further reduction of the range the price

variation may belong to, we observe in Figure 3(c) a mono-

tone convergence towards the steady states.

We finally observe that introducing our price variation

limiter mechanism we are able to prevent not only divergent

trajectories, but also negativity issues. In order to explore

this point, we need to turn back for a while to the original

formulation of our model in the price variable P (see (2.5)).

Since it makes sense to consider only P > 0; in the following

discussion, we shall restrict our attention to X ¼ P� F
> �F and show that in our model, no matter the value of the

other parameters, when a1 and a2 are sufficiently small it

holds that UðXÞ > �F; for any X > �F: In particular, we

illustrate such fact in Figure 4, where we consider a frame-

work in which for the map / in Ref. 33 there exist instead

trajectories along which prices are negative (that is, on which

X < �F). Indeed, we stress that, except for the case in which

de ¼ 1
2
; it is always possible to find values for F so that –F

lies between the minimum of / and X�1; i.e., so that in corre-

spondence to its minimum point / assumes a value lower

than �F: Namely, straightforward computations show that
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the minimum point for / is given by �X ¼ �
ffiffiffiffiffiffiffiffi
1þde
3df

q
and that

/ð �XÞ < X�1 is always satisfied, except when de ¼ 1
2
; case in

which the previous inequality becomes an equality. More

precisely, in Figure 4 we show that, suitably choosing the

fundamental value F, the map / in (3.4) assumes negative

P-values (look, for instance, at the minimum point)—

and there may possibly exist periodic cycles on which all

P-values are negative—while this does not happen for U;
which for the considered choice of a1 and a2 is increasing.

We claim that this is sufficient to avoid that the U-image of

some values for X larger than –F is lower than �F: Indeed,

since we imposed F >
ffiffi
e
f

q
in order for the steady states to be

positive in the original formulation of the model in terms of

prices (see the discussion after Proposition 3.1), it is easy to

show that Uð�FÞ > �F: Since U is increasing we can then

conclude that UðXÞ > Uð�FÞ > �F; for all X > �F; as

desired.

IV. BIFURCATIONS AND CHAOTIC DYNAMICS

We start the present section by investigating in the next

result which kind of bifurcation occurs for the map U at the

symmetric steady states X�1 and X�3 when they lose their

stability.

Proposition 4.1. For the map U in (3.1), a flip bifurca-
tion occurs at X�1 and X�3 when de ¼ 1

a1
þ 1

a2
:

Proof. According to the proof of Proposition 3.1, the

steady states X�1 and X�3 are locally asymptotically stable

when U0ðX�i Þ > �1; for i 2 f1; 3g: Then, the map U satisfies

the canonical conditions required for a (double) flip bifurca-

tion (see Ref. 14) and the desired conclusion follows. Indeed,

when U0ðX�i Þ ¼ �1; i 2 f1; 3g; i.e., for de ¼ 1
a1
þ 1

a2
; then X�1

and X�3 are non-hyperbolic fixed points; when de < 1
a1
þ 1

a2
;

they are attracting and, finally, when de > 1
a1
þ 1

a2
; they are

repelling. �

Notice that the above result is confirmed by Figure 2,

where the first flip bifurcation for U occurs at X�1 and X�3
in (a) for a1 ¼ a2 ¼ 2

de � 1:142 and in (b) for a1 ¼ a2 ¼ 2
de

� 5:714; respectively.

We now prove the existence of complex dynamics for

our system via the method of the turbulent maps in Ref. 5.

Such technique, like similar ones in the literature on topolog-

ical dynamics (see, for instance, the more general covering

interval approach in Ref. 6), requires to find for a given con-

tinuous map f : J ! R; where ; 6¼ J 
 R is a compact

interval, two nonempty compact subintervals (if they exist)

J0 and J1 of J with at most one common point such that

J0 [ J1 � f ðJ0Þ \ f ðJ1Þ: (4.1)

If the latter property is fulfilled, then the map f is called tur-

bulent in Ref. 5 and it is therein shown to display some of

the typical features associated to the concept of chaos like,

e.g., existence of periodic points of each period, semi-

conjugacy to the Bernoulli shift and thus positive topological

entropy.

FIG. 3. For d ¼ 0:41; e ¼ 5, and f ¼ 0:7; we illustrate: in (a), a diverging trajectory, starting from Xð0Þ ¼ �1; for the map / in (3.4); in (b), a trajectory,

starting from Xð0Þ ¼ 0:15; for the map U in (3.1) with a1 ¼ a2 ¼ 2; which tends to a period-two cycle surrounding X�3 ; in (c), a trajectory, starting from

Xð0Þ ¼ 0:15; for the map U in (3.1) with a1 ¼ a2 ¼ 0:9; which converges to X�3 :

FIG. 4. The graphs of / (in cyan) and U (in red) with d ¼ 0:35; e ¼ 5; f ¼
0:7; and for U we also fix a1 ¼ a2 ¼ 0:5: For F ¼ 3:1; we show that the

map / assumes negative P-values (i.e., the /-image of some values for X
larger than �F is below �F: look, for instance, at the minimum point),

while this does not happen for U; which in particular, for the considered pa-

rameter configuration is increasing.
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We will use the just described methodology along the

proof of Proposition 4.2.

We notice that in the statement of the next result we

focus on a particular parameter configuration for which there

exists a unique chaotic attractor for our system. However,

the presence of a further external attractor similar to those

depicted in blue in Figures 12 and 13 would not affect the

argument in the next result and thus the applicability of the

method of the turbulent maps.

Proposition 4.2. Let us consider the map U in (3.1) for
the following parameter configuration: a1 ¼ a2 ¼ 1:1; d ¼ 3;
e ¼ 1:5; f ¼ 1:2: Setting J ¼ ½0; 1:336�; J0 ¼ ½0; 0:439� and
J1 ¼ ½1:056; 1:336�; it holds that

UðJiÞ ¼ J; i ¼ 0; 1: (4.2)

Hence, the map U is turbulent and, in particular, it follows
that htopðUÞ � logð2Þ; where we denoted by htopðUÞ the topo-
logical entropy of U:

Proof. The map U is turbulent because it is continuous

on R; and thus on J, and J0 and J1 are nonempty compact

disjoint subintervals of J for which (4.2) is satisfied. In fact,

the extreme points of J (coinciding with the left extreme

point of J0 and the right extreme point of J1; respectively)

are the smallest nonnegative solutions to the equation

UðXÞ ¼ 0 ¼ X�2; with X�2 as in (3.2). Hence, one solution is

the fixed point X�2; while we call �X the smallest positive

solution. Moreover, the right extreme point of J0 and the

left extreme point of J1 are the solutions to the equation

UðXÞj½0;X�
3
� ¼ �X: Thus, by construction, it holds that UðJiÞ

¼ J; i ¼ 0; 1; as desired. �

Notice that the construction in the proof of Proposition

4.2 is possible because, for the considered parameter config-

uration, the equation UðXÞ ¼ 0 admits the positive solution
�X and the maximum value of Uj½0;X�

3
� exceeds �X: If the latter

condition were not satisfied, the equation UðXÞ ¼ �X would

not admit solutions on ½0;X�3�: See Figure 5 for a graphical

illustration of the result.

Moreover, we stress that, although in the statement of

Proposition 4.2, we have fixed some particular parameter

values, the result is robust, as the same conclusions hold

for several different sets of parameter values, as well. For

instance, we do not need to assume that a1 ¼ a2; as another

possible configuration for which the same conclusions

hold is given by a1 ¼ 3:7; a2 ¼ 3:2; d ¼ 2; e ¼ 0:7; f
¼ 1:3: In this case, the intervals J; J0, and J1 that satisfy

(4.2) can be chosen as J ¼ ½0; 0:875�; J0 ¼ ½0; 0:287�, and

J1 ¼ ½0:692; 0:875�; respectively. In addition we remark that,

once that a result analogous to Proposition 4.2 is proven for

a certain parameter configuration, by continuity, the same

conclusions still hold, suitably modifying the intervals J; J0,

and J1; also for small variations in those parameters. Hence,

for instance, Proposition 4.2 actually allows to infer the exis-

tence of complex dynamics for the map U when a1 and a2

are possibly different and both lie in a neighborhood of 1:1;
and for some suitable values of the other parameters.

More generally, a simple computation suggests that the

map U is chaotic when a1 and a2 are large enough. Indeed,

when a1 and a2 increase, the positive maximum point M2

belongs to ½0;X�3� and the slope of U at X¼ 0 and X ¼ X�3
increases in absolute value. This implies that when a1 and

a2 are sufficiently large the map U on ½0;X�3� is steep enough

to allow the construction described along the proof of

Proposition 4.2 and depicted in Figure 5. Namely, U0ðX�2Þ
¼ 1þ da1a2e

a1þa2
> 1 and U0ðX�3Þ ¼ 1� 2de

1
a1
þ 1

a2
ð Þ < 0 for a1 and a2

sufficiently large, so that M2 2 ½0;X�3�: Moreover, it holds

that

@2U
@X@a1

0ð Þ ¼ de

a1

a2

þ 1

� �2
> 0;

@2U
@X@a1

X�3
� �

¼ �2de

a1

a2

þ 1

� �2
< 0;

@2U
@X@a2

0ð Þ ¼ de

1þ a2

a1

� �2
> 0;

@2U
@X@a2

X�3
� �

¼ �2de

1þ a2

a1

� �2
< 0:

Hence, the steepness of U at X¼ 0 and X ¼ X�3 increases

when a1 and a2 increase. Notice however that when the dif-

ference (and thus one of the ratios) between a1 and a2 is too

large in absolute value then some of the above derivatives

limit to zero. Thus, in order to have complex dynamics for

the map U we need both a1 and a2 to be large enough.

The latter conclusion may be interpreted from an eco-

nomic viewpoint by saying that the system displays a com-

plex behavior when the price limits are loose enough, that is,

when the admissible price variations are sufficiently large.

V. GLOBAL ANALYSIS

In Sections III and IV, we presented some theoretical

results about the dynamics of our system. We saw that differ-

ent types of behaviors can occur, such as the existence of

absorbing intervals, locally asymptotically stable steady

states, periodic cycles and chaotic regimes. In the present

FIG. 5. A pictorial illustration of Proposition 4.2. For the map U with a1

¼ 1:1; a2 ¼ 1:1; d ¼ 3; e ¼ 1:5; f ¼ 1:2; we draw with a ticker line the

interval J and its subintervals J0 and J1:
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section, we investigate, using bifurcation diagrams, the

global behavior of the system. In particular, we split our

analysis according to the number of coexisting attractors we

found, i.e., two or three.44 In fact, we chose not to deal with

the scenario with a unique attractor separately, as we find it

when there are two coexisting attractors that merge through

a homoclinic bifurcation or when there are three coexisting

attractors and two of them disappear and just one survives.

We recall that the coexistence of different kinds of

attractors is also known as multistability. This feature may

be considered as a source of richness for the framework

under analysis because, other parameters being equal, i.e.,

under the same institutional and economic conditions, it

allows explaining different trajectories and evolutionary

paths. The initial conditions, leading to the various attractors,

represent indeed a summary of the past history, which in the

presence of multistability phenomena does matter in deter-

mining the evolution of the system. Such property, in the lit-

erature on complex systems, is also called “path

dependence” (see Ref. 1).

A. Two coexisting attractors

In this first subsection about multistability, we analyze a

framework in which we have the coexistence of two attrac-

tors in the symmetric scenario with a1 ¼ a2 ¼ a: In particu-

lar, such setting allows us to describe some important steps

determined by the increase of a. In our explanation, we will

follow, as far as possible, the steps in Ref. 33. Indeed, under

the symmetry condition, the two systems behave in a similar

manner, except for the disappearance in Ref. 33 of the cha-

otic attractor due to divergence issues (see Figure 6 therein).

In performing our analysis, we start by drawing in

Figure 6 the bifurcation diagram with respect to a1 ¼ a2 ¼
a 2 ½0:2; 2� for the map U with d ¼ 3; e ¼ 1:5, and f ¼ 1:2:

We now better investigate the various transformations

undergone by the graph of the map U when a increases,

while keeping the other parameters fixed like in Figure 6. In

particular, recalling the name given to the critical points in

Section III, i.e., M1 < m1 < 0 < M2 < m2; where m1 and m2

are the minimum points and M1 and M2 are instead the

maximum points (see also Figure 7 for a graphical illustra-

tion), we will first focus on the position of UðM1Þ and Uðm2Þ
with respect to the X-axis and then on the position of Uðm1Þ
and UðM2Þ with respect to the “break-through intervals,” i.e.,

the sets of points around M1 and m2 whose U-iterate has al-

ready crossed the X-axis (see Figures 8(a) and 9).

At first, we draw in Figure 7 the framework with a1 ¼
a2 ¼ 0:5: In this case, UðM1Þ and Uðm2Þ have not crossed

the X-axis yet, the attractors around X�1 and X�3 are still dis-

tinct and the basins of attraction are connected, coinciding

respectively with ð�1; 0Þ and ð0;þ1Þ: In particular, for

such parameter configuration, the attractor around X�3 is a

period-two cycle assuming values close to 0.905 and 1.249.

In Figure 8, we represent instead the framework with

a1 ¼ a2 ¼ 0:69: In this case, UðM1Þ and Uðm2Þ have crossed

the X-axis (the crossing occurs indeed for a1 ¼ a2 � 0:608)

and we show in Figure 8(a) that the forward iterates of m2;
as well as (some of) its preimages, limit towards the chaotic

attractor around X�1: More generally, in Figure 8(b), we try to

give an idea of how complex and disconnected are the basins

of attraction of the chaotic attractors around X�1 and X�3 for

the same parameter values. Notice in particular, that the

open intervals I1 and J1 coincide with the “break-through

intervals” highlighted on the X-axis in Figure 8(a). With this

respect we observe that, since Uðm1Þ and UðM2Þ for a1 ¼
a2 ¼ 0:69 do not belong to such intervals, all forward iterates

of the points in I1 are negative and symmetrically all forward

iterates of the points in J1 are positive: hence, the attractors

around X�1 and X�3 are still distinct.

When increasing a1¼ a2 further, we obtain the frame-

work in Figure 9, where we set a1 ¼ a2 ¼ 0:8: In such case,

the chaotic attractors around X�1 and X�3 have disappeared and

in their place a new unique attractor has emerged surround-

ing both those two fixed points. As argued above, this change

is caused by the fact that Uðm1Þ and UðM2Þ now belong to

the “break-through intervals,” highlighted on the X-axis in

Figure 9, or, equivalently, by the fact that the homoclinic

bifurcation of X�2 has already occurred. Indeed, it takes place

FIG. 7. The graph of the first iterate of the map U with

a1 ¼ a2 ¼ 0:5; d ¼ 3; e ¼ 1:5, and f ¼ 1:2; together with the forward iter-

ates of Xð0Þ ¼ 0:905:

FIG. 6. The bifurcation diagram with respect to a1 ¼ a2 2 ½0:2; 2� for the

map U with d ¼ 3; e ¼ 1:5, and f ¼ 1:2: The green dots refer to the initial

condition Xð0Þ ¼ �0:83; while the blue dots refer to the initial condition

Xð0Þ ¼ 0:83:
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when a1¼ a2 are such that U2ðM2Þ ¼ U2ðm1Þ ¼ 0; that is,

for a1 ¼ a2 � 0:765; value for which the attractors around

X�1 and X�3 merge, with the consequent emergence of a unique

attractor, as in Figure 9.

We stress that, before the homoclinic bifurcation of X�2;
there have actually been other such bifurcations, i.e., the

homoclinic bifurcations of X�1 and X�3; which take place

when U3ðX�i Þ ¼ X�i ; for i ¼ 1; 3; that is, for a1 ¼ a2 � 0:627:
Before their occurrence, the chaotic attractors around such

steady states consist of two chaotic intervals each, like

shown in Figure 10(a) for X�3 for a1 ¼ a2 ¼ 0:605; while

from this moment on the chaotic intervals around X�1 and X�3
merge into two chaotic intervals, as shown in Figure 10(b)

for X�3 for a1 ¼ a2 ¼ 0:628: We remark that, by Li-Yorke

Theorem (see Ref. 19 (Theorem 1)), when the map U has a

period-three orbit, then it admits periodic orbits of all peri-

ods, while before that moment only even-period orbits are

allowed.

Finally, in Figure 11, we show that for a1 ¼ a2 � 1:216,

through a double fold bifurcation of U2 in correspondence to

the black squares in Figure 11(a), together with an unstable

period-two orbit, also a stable period-two cycle arises, whose

basin of attraction is internal to the pre-existing chaotic

attractor and which captures all the orbits previously

attracted by the chaotic set. In particular, in Figure 11(b), we

show that the forward iterates of M2 are attracted by the new

period-two cycle, thanks to the presence of M1 and m2; as

well as of our oblique asymptotes, which with their folding

help avoiding the divergence issues in Ref. 33. This makes

the old chaotic attractor disappear and just the new stable

period-two cycle persists, which becomes unstable for a1 ¼
a2 � 1:560; when two stable period-two cycles emerge

through a double pitchfork bifurcation of U2 (see Figure 6).

When comparing again our findings with the ones in

Ref. 33 (Proposition 3.1), we observe that both maps / and

U display a similar cascade of period-doubling bifurcations

at the non-fundamental, symmetric steady states, until there

homoclinic bifurcations occur, followed by a homoclinic

bifurcation of the fundamental steady state, i.e., the origin,

which unifies the previously separated chaotic attractors into

a unique attractor surrounding all the steady states. On the

other hand, after the chaotic regime, our system reaches a

stable period-two cycle, while in Ref. 33, after the final

bifurcation, no attractors exist anymore and the generic tra-

jectory is divergent. Another difference between the two

works concerns the features of the corresponding basins of

attraction, which in Ref. 33 are complex and disconnected

also for small values of the parameters, while in the present

context the complexity arises for intermediate values of the

FIG. 9. The graph of the first iterate of the map U with

a1 ¼ a2 ¼ 0:8; d ¼ 3; e ¼ 1:5, and f ¼ 1:2; together with the forward iter-

ates of Xð0Þ ¼ 0:83: For such parameter values, Uðm1Þ and UðM2Þ belong to

the “break-through intervals,” highlighted on the X-axis, causing the emer-

gence of a unique chaotic attractor surrounding both X�1 and X�3 :

FIG. 8. The graph of the first iterate of the map U with a1 ¼ a2 ¼ 0:69; d ¼ 3; e ¼ 1:5, and f ¼ 1:2: In (a), we also show the forward iterates of Xð0Þ ¼ 7:95

and the sets highlighted on the X-axis are what we called the “break-through intervals.” Notice that, for the considered parameter values, Uðm1Þ and UðM2Þ do

not belong to those intervals and thus the chaotic attractors around X�1 and X�3 are still separated. In fact, in (b), we highlight in cyan the open interval I1; as

well as some of its preimages, we called I2; I3, and I4; whose points limit towards the chaotic attractor around X�1 : Symmetrically, the points belonging to the

green open interval J1 limit towards the chaotic attractor around X�3 :
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parameters a1 and a2; i.e., when UðM1Þ and Uðm2Þ have al-

ready crossed the X-axis, but Uðm1Þ and UðM2Þ have not

entered the “break-through intervals,” yet. We stress how-

ever that for larger parameter values both in the present

framework and in Ref. 33 a unique attractor emerges and

thus the above mentioned complexity in the basins of attrac-

tion disappears.

From an analytical viewpoint, the dissimilarities

between our findings and the ones in Ref. 33 are motivated

by the different behavior at infinity of our map U in (3.1)

FIG. 10. The graph of the first iterate of the map U with d ¼ 3; e ¼ 1:5, and f ¼ 1:2; in (a) for a1 ¼ a2 ¼ 0:605 together with the forward iterates of Xð0Þ
¼ 0:69; in (b) for a1 ¼ a2 ¼ 0:628 together with the forward iterates of Xð0Þ ¼ 0:68:

FIG. 11. For the map U with d ¼ 3; e ¼ 1:5; f ¼ 1:2, and a1 ¼ a2 ¼ 1:216; we draw in (a) the graph of the second iterate and in (b) the graph of the first iter-

ate together with the forward iterates of Xð0Þ ¼ 0:76:

FIG. 12. The bifurcation diagram with respect to a1 2 ½1:3; 2:8� for the map

U with a2 ¼ 2; d ¼ 2:14; e ¼ 0:2; f ¼ 1; with initial conditions Xð0Þ ¼ 0:1
for the green dots, Xð0Þ ¼ �0:1 for the red dots, and Xð0Þ ¼ 1:26 for the

blue dots, respectively, which highlights a multistability scenario character-

ized by the coexistence of an external chaotic or periodic attractor with two

internal stable fixed points.

FIG. 13. The bifurcation diagram with respect to a1 2 ½1; 2:8� for the map U
with a2 ¼ 2; d ¼ 2:14; e ¼ 0:65; f ¼ 1; with initial conditions Xð0Þ ¼ 0:1
for the green dots, Xð0Þ ¼ �0:1 for the red dots, and Xð0Þ ¼ 1:45 for the

blue dots, respectively, which highlights a multistability framework charac-

terized by the coexistence of an external chaotic or periodic attractor with

two internal chaotic or periodic attractors.
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and the map / in (3.4) (see Figure 4). From an interpretative

point of view, the dissimilarities between the two works orig-

inate from the absence in Ref. 33 of our price-limiters, which

prevent sudden strong price variations and reduce the com-

plexity of the system.

B. Three coexisting attractors

In this second subsection about multistability, we ana-

lyze some frameworks with three coexisting attractors and

we look at their evolution when a1 or e increase. In fact,

unlike in Subsection V A, we here generally do not assume

that a1¼ a2 and thus the map U is possibly no more

symmetric.

In Figure 12, we show that there exists a range of values

for a1 for which two stable fixed points coexist with a third

attractor, which may be chaotic (in two or more pieces) or

periodic. In such framework, dynamics tend towards the

locally stable fixed points only for suitable past histories,

i.e., if the considered initial conditions are sufficiently close

to those steady states. Indeed, for intermediate values of a1

and a2; neither too small nor too large, X�1 and X�3 are locally

asymptotically stable, but they may coexist with other attrac-

tors. According to Proposition 3.2, this cannot happen when

a1 or a2 are small enough, because in that case the map U is

strictly increasing and thus X�1 and X�3 are globally stable and

no other attractors can exist.

In Figure 13, we illustrate instead a numerical example

where, for a value of parameter e larger than in the previous

picture, there exists a range of values for a1 for which we

have the coexistence of three chaotic or periodic attractors of

period greater than one. In Figure 14, zooming on a particu-

lar range of values for a1 while keeping the other parameters

fixed as in Figure 13, we actually show the presence of a

fourth chaotic attractor in four pieces. However, it exists

only for a small set of values for a1; and thus it is not visible

when considering the larger range in Figure 13. This is the

reason why we chose to classify such scenario under the

framework with three coexisting attractors, rather than deal-

ing with it in a separate subsection.

Focusing our attention on Figure 12, we try to explain

the crucial steps that lead to the emergence of the external

attractor, to its main transformations, and finally to its

disappearance.

For a1 � 1:386; a fold bifurcation of U2 occurs, through

which a stable and an unstable period-two cycles for U
emerge. Around the former we observe for increasing values

of a1 a cascade of period-doubling bifurcations, after which,

for a1 � 1:412; the iterates of M1 � �1:57 (corresponding

to the most negative minimum point of U2 in Figure 15(a))

go beyond the unstable period-two cycle, which acts as a

“separatrix” from the basin of attraction of X�1 (see Figure

19(b), where, for different parameter values, we represent

such unstable period-two cycle through black squares) and

limit towards such steady state. This makes the external

attractor disappear, since the orbits previously attracted to it,

tend now towards X�1 or X�3:

FIG. 14. A magnification of the bifurcation diagram in Figure 13,

zooming on a1 2 ½1:7600; 1:7660�; which highlights the presence for a1

2 ½1:7615; 1:7630� of a fourth attractor (in violet), which is chaotic and

composed by four pieces, coexisting with the external period-four cycle

and the two internal period-eight cycles. The initial conditions are Xð0Þ
¼ 0:1 for the green dots, Xð0Þ ¼ �0:1 for the red dots, Xð0Þ ¼ 1:9 for the

blue dots, and Xð0Þ ¼ 2:7 for the violet dots.

FIG. 15. In regard to the scenario depicted in Figure 12, through the graph of U2; in (a), we show for a1 ¼ 1:412 how the iterates of Xð0Þ ¼ �1:57 limit

towards X�1 ; while in (b) we show for a1 ¼ 1:695 how the iterates of Xð0Þ ¼ 1:24 generate a period-two cycle for U2:
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Increasing the value of a1 further, the rightmost maxi-

mum points of U2 raise, as well as its rightmost minimum

point, until for a1 � 1:695 a period-two cycle for U2; i.e., a

period-four cycle for U; emerges on the right on the separat-

ing unstable period-two cycle for U (see Figure 15(b)).

Notice that this is the global bifurcation, not preceded by

period-doubling bifurcations, through which the external

attractor in Figure 12 reappears.

For still larger values of a1; through a cascade of period

doubling bifurcations, we reach a chaotic regime, after

which, via period-halving bifurcations, the external attractor

becomes a period-two cycle, because the minimum point at

the right of the separating unstable period-two cycle for U
raises and the inclination of the increasing branch changes.

In particular, for a1 ¼ 2, we observe in Figure 12 two points

which look like “inflexion points” for the map U; at which

the values of the period-two cycle drastically change, as

illustrated in Figure 16, where we investigate what happens

to the period-two cycle when moving a1 from 1.9 to 2:1;
while keeping a2 ¼ 2: In particular, in Figure 16, we focus

on the graph of U2 and show how it intersects the 45	 line in

correspondence to the external stable period-two cycle,

which we denote by black squares. We observe that the

graph of U2 raises in a neighborhood of such intersection

points with the increase of a1 and that U2 is tangent to the

45	 line exactly when a1 ¼ a2 ¼ 2; i.e., when U is odd. Such

sensibility of the map for a1 and a2 in a neighborhood of the

symmetry condition determines the occurrence of the

“inflexion points.”

Further increasing a1; we observe again the emergence

of complex regimes for the external attractor in Figure 12,

which disappears for a1 � 2:355: The reason of such sudden

change is once more easy to find when looking at the behav-

ior of U2: Indeed, in Figure 17, we show that for a1 ¼ 2:36

the U2-iterates starting from the region previously attracted

by the external chaotic attractor now go beyond the separat-

ing unstable period-two cycle for U and tend towards X�1 (in

(a)) or towards X�3 (in (b)). Again, this leads to the disappear-

ance of the external attractor in Figure 12.

As concerns Figure 13, the external attractor therein is

similar to that in Figure 12 and evolves in an analogous man-

ner. Namely, it starts for a1 � 1:522 with a stable period-two

cycle born via a fold bifurcation of U2; at which also an

unstable period-two cycle arises. The former undergoes a

cascade of period-doubling bifurcations and disappears for

a1 � 1:540; when the iterates previously attracted by it go

FIG. 16. For the same parameter values considered in Figure 12, we show how the shape of U2 varies in correspondence to the stable external period-two

cycle, denoted by black squares, when increasing a1 from 1.9 in (a), to 2 in (b), and further to 2.1 in (c), while keeping a2 ¼ 2:

FIG. 17. In regard to the scenario depicted in Figure 12 for a1 ¼ 2:36; we show in (a) how the forward iterates of U2 starting from Xð0Þ ¼ 1:239 tend towards

X�1 ; and in (b) how the forward iterates of U2 starting from Xð0Þ ¼ 2:56 tend towards X�3 :
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beyond the unstable period-two cycle, which acts as a

“separatrix” from the basins of attraction of the internal

attractors. The external attractor reappears again for a1 �
1:751 with a chaotic band followed by a period-four cycle,

which undergoes some period-doubling bifurcations leading

to a period-sixteen orbit, followed by some period-halving

bifurcations leading to a period-two cycle. As in Figure 12,

we observe two “inflexion points” when a1 ¼ a2 ¼ 2 and

then the period-two cycle undergoes a cascade of period-

doubling bifurcations leading to the emergence of the chaotic

regime, interrupted by some periodicity windows, and finally

that attractor disappears for a1 � 2:295; when the iterates

previously attracted by it go beyond the separating unstable

period-two cycle.

The two internal attractors emerge instead in the form of

stable fixed points, losing their stability through period-

doubling bifurcations, after which, through a classical

cascade of period-doubling bifurcations, they become two

chaotic attractors, which then merge into a unique chaotic

attractor through a homoclinic bifurcation of X�2:
45 Notice

that, as long as the external attractor does not exist yet, the in-

ternal attractors are not chaotic, and the maximum degree of

complexity they both reach is given by a period-four orbit.

Finally, in Figure 18, we depict a framework in which,

letting e vary and keeping the other parameters fixed, we

find symmetric conclusions with respect to Figures 12 and

13. Indeed, in Figure 18, we still have up to three coexisting

attractors, but now the two central ones, which become cha-

otic after a cascade of period-doubling bifurcations and

merge for e � 0:754 via a homoclinic bifurcation of X�2; dis-

appear for e � 1:006 and only the external attractor (i.e., the

period-two cycle) survives. This happens because the iterates

of m1 and M2 fall within the basin of attraction of the exter-

nal period-two cycle. We illustrate such phenomenon in

Figure 19 for e ¼ 1:009; where in (a) we show that the for-

ward iterates of M2 converge towards the external stable

period-two cycle, as they enter the basin of attraction of such

cycle, we paint in light blue in (b).

We stress that the external (periodic or chaotic) attractor

was not present in Ref. 33, where in fact the only possible

attractors were the two central ones which, like in the present

paper, could be given by fixed points, periodic orbits, or cha-

otic sets. The emergence of those attractors, their nature, and

the way they merged bear a remarkable resemblance to our

corresponding phenomena: on the other hand, as just men-

tioned, we have in addition the external attractor for suitable

parameter configurations. Moreover, as argued in the

Subsection V A, in our framework, the presence of the price-

limiters reduces the complexity of the basins of attraction

and prevents negativity and divergence issues.

VI. CONCLUSIONS

In our paper, we presented a stock market modeled in

the sense of Day and Huang,9 describing the nonlinear inter-

actions between heterogeneous agents, i.e., chartists and

fundamentalists.

FIG. 18. The bifurcation diagram with respect to e 2 ½0:4; 1:3� for the map

U with a1 ¼ a2 ¼ 2; d ¼ 2:14; f ¼ 1; with initial conditions Xð0Þ ¼ 0:1 for

the green dots, Xð0Þ ¼ �0:1 for the red dots, and Xð0Þ ¼ 2:25 for the blue

dots, respectively, which highlights a multistability framework in which at

e � 1:006 the internal attractor disappears and only the external one persists.

FIG. 19. In regard to the scenario depicted in Figure 18 for e ¼ 1:009; we draw in (a) the graph of U; together with the forward iterates of M2; that is, of

Xð0Þ ¼ 0:71; which converge towards the external stable period-two cycle, and in (b) the graph of U2; in which we put in evidence through black squares the

unstable period-two cycle, that bounds the basin of attraction of the stable period-two cycle, we paint in light blue.
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We chose a simple context in order to show how to fix

some issues typical of those works dealing with speculative

behavior in financial markets and with the dynamics of rele-

vant variables, such as prices and traded quantities. First,

from a formal viewpoint, we aimed to avoid the divergence

and negativity issues caused by an overreaction when model-

ing the mechanism that describes disequilibrium price dy-

namics as a linear relation. Second, from a normative

viewpoint, we aimed to propose a method in view of control-

ling the instabilities and strong irregularities that often arise

when introducing nonlinearities into deterministic frame-

works, so as to reduce turbulence, as well as to decrease the

size of the attractors in the phase space and their complexity,

in order to achieve the convergence to a fixed point.

In order to reach our goals, we exploited a technique for

the chaos control, which bears resemblance to the limiter

method by Wieland and Westerhoff.40 In fact, to avoid over-

reaction phenomena and an excessive volatility in the stock

market, we assumed a market maker forced by a central

authority to be more cautious in adjusting the stock price

when excess demand is large. This kind of diversified behav-

ior can be represented by a nonlinear function only, which

has also to be increasing and to pass through the origin. In

particular, our price variation limiter mechanism was

described by a sigmoidal adjustment rule characterized by

the presence of two asymptotes that bound the price variation

and thus the dynamics.

In view of showing the functioning of our mechanism

and its effectiveness in achieving price stabilization, we

chose as benchmark framework a special case of the model

in Ref. 33, in which the presence of a cubic demand function

for fundamentalists leads to multistability phenomena char-

acterized by the coexistence of different attractors, which

merge through a homoclinic bifurcation.

We found similar results to those obtained in Ref. 33,

even if, as desired, the presence of our asymptotes prevents

the divergence and negativity issues therein. Moreover,

when dynamics are chaotic in Ref. 33, we can stabilize the

system through a suitable choice of the asymptotes. Finally,

when in Ref. 33 a unique attractor is present, we are able to

limit its size and complexity, as well as to reach again a com-

plete stabilization.

On the other hand, for some intermediate values of the

asymptotes and particular configurations of the remaining

parameters, in addition to two coexisting attractors similar to

those in Ref. 33, we found a third attractor, which may be

periodic or chaotic, independently of the nature of the other

two attractors. Moreover, according to the considered param-

eter set, it may happen that the third attractor persists, while

the other two disappear, or vice versa, that the third attractor

disappears when the other two are still present. From a nor-

mative viewpoint, this means that just the imposition of our

price variation limiter mechanism in the financial market is

not sufficient in view of stabilizing the system. To such aim

we need the asymptotes bounding the dynamics to be suffi-

ciently close, because for intermediate distances between

them, neither too large nor too small, we find multistability

phenomena characterized by the coexistence of attractors

with disconnected basins of attraction.

In the present paper, we proposed a simple financial

model, in order to show the efficacy of the price variation

limiter mechanism in decreasing the complexity of the dy-

namics and in achieving price stabilization. Of course, the

same technique may be applied to commodity market models

such as the cobweb and the oligopoly models.
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43In order to show that Uðm2Þ < 0 < UðM1Þ when a1 and a2 are large

enough, we can proceed as follows. First of all, let us observe that when a1

and a2 are sufficiently large, then U0ðX�1Þ ¼ U0ðX�3Þ ¼ 1� 2ed
1

a1
þ 1

a2
ð Þ < 0 and

thus M1 < X�1 < m1 < 0 < M2 < X�3 < m2: Let us now consider sepa-

rately the cases a1 � a2 and a1 � a2: If a1 � a2; we rewrite U as follows:

UðXÞ ¼ X þ da1
1�expð�ðeX�fX3ÞÞ

a1
a2

expð�ðeX�fX3ÞÞþ1

� �
; observing that 0 < a1

a2
� 1 and that

1�expð�ðeX� fX3ÞÞ>0 for X<�
ffiffi
e
f

q
¼X�1; while 1�expð�ðeX� fX3ÞÞ

<0 for X>
ffiffi
e
f

q
¼X�3 : Hence, since M1<X�1 and X�3 <m2; when a1�a2

and a1 is large enough we have that Uðm2Þ<0<UðM1Þ; as desired. A

very similar argument can be employed for the case in which a1�a2; suit-

ably rewriting U:
44We stress that, when drawing a bifurcation diagram, we chose the starting

points by looking closely at the modifications in the shape of the graph of

the first iterates of the map U and also at the time series of the state vari-

able, on varying the value of the parameter under consideration. Hence,

we do believe our choices being well pondered and thus preventing loss of

information, such as the existence of further branches not considered in

the paper, because their presence is excluded by the shape of U and of its

iterates. Moreover, because of the way we selected the initial conditions

for our bifurcation diagrams, our choices about the number of decimals

cannot have a deep influence on the obtained results. Nonetheless, in order

to make the discussion more consistent, we tried to homogenize the num-

ber of utilized decimals along the paper, setting it equal to three, especially

in the descriptions of the bifurcation diagrams. We remark that when the

number of decimals is less than three is because those are exact numbers

and thus we do not need to round or truncate them.
45We stress that there are two cases in which we end up with a unique attrac-

tor: the first one is when, like in the present framework, there are no

(more) external attractors and the internal ones merge through a homo-

clinic bifurcation; the second possibility, which we observe in Figure 18,

is instead that the internal attractor disappears and all orbits are attracted

by the external one.
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