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Abstract: Artificial Pancreas (AP) is an expression referred to a set of techniques for the
closed-loop control of the plasma glucose concentration by means of exogenous insulin ad-
ministration in diabetic individuals. Diabetes comprises a group of metabolic disorders char-
acterized by high blood sugar levels over a prolonged period, due to pancreas failure to pro-
duce enough insulin and/or insulin resistance, so that higher amounts of insulin are usually
required in order to keep glycemia in a safe range. In this work, we face the problem of
glucose control for a class of Type-2 diabetic patients, in the presence of sampled glucose
measurements and without any information about the time course of insulinemia. A compact
physiological model of the glucose-insulin system is reviewed, then an observer (based on
this model) is designed to estimate the insulin trajectory from the glucose samples. Finally,
a feedback control law (based on the reconstructed state) is designed to deliver exogenous
intra-venous insulin to each individual. Simulations have been performed in-silico on models
of virtual patients, whose parameters are tuned according to real data, and aim at validating
the method in the presence of parameter variations and quantization errors.
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1 Introduction

Diabetes Mellitus (DM) is a widespread disease (affecting millions of people world-
wide) characterized by the lack of insulin production (Type-1 Diabetes Mellitus,
T1DM) or resistance to insulin action (Type-2 Diabetes Mellitus, T2DM). In insulin-
sensitive (non-diabetic) individuals, the insulin hormone, released when blood glu-
cose levels increase, normally promotes glucose utilization by enhancing glucose
uptake by peripheral tissues and by suppressing endogenous production. This mech-
anism progressively deteriorates in insulin-resistant people, so that, especially at
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early stages of the diabetic conditions, life-style modifications, dietary instructions
and metformin therapy try to offer a non-invasive solution to reduce the worsening
of the disease.

On top of that, especially when the conditions of diabetic people become critical,
it becomes more important to properly determine an additional quantity of exoge-
nous insulin to be supplied to maintain blood glucose levels within a normal range,
while avoiding dangerous hypoglycemic episodes. In this context, Artificial Pan-
creas (AP) is a general expression to describe a set of techniques for the closed-
loop control of the glucose behaviour by means of exogenous insulin administration
in diabetic people (see e.g. [1, 2]), usually via intravenous or subcutaneous infu-
sions. Several techniques have become available in the last few years for the au-
tomatic control of glucose levels, which need to manage the several non-idealities
of the underlying dynamics, among which we recall the delayed nonlinear insulin
response [3, 4] and the difficulty in obtaining precise and frequent measurements of
the current levels of insulinemia [5].

The approach followed in this work belongs to the field of model-based techniques,
according to which the controller is synthesized by explicitly exploiting the model
equations. In particular, we consider the DDE (Delay Differential Equation) com-
pact model introduced in [6, 7] and exploited e.g. in [8–11] in different clinical
settings. This model well represents the glucose and insulin concentrations ob-
served during an Intra-Venous Glucose Tolerance Test (IVGTT) [6, 12], it allows
to estimate the insulin sensitivity of a patient by fitting the patient’s glucose-insulin
dynamics, and it has been shown to admit mathematically consistent solutions with
physiologically feasible parameter values [7]. More generally, small-scale minimal
models are usually preferred since they allow to provide an analytical solution to the
control problem under investigation [13]. In this particular application, the use of
DDE models when seeking model-based glucose control laws applicable not only to
T1DM but also to T2DM patients is motivated by the need for modeling the pancre-
atic Insulin Delivery Rate (IDR), which is known to show irregular variations [4].
In this context, the results in [8] allowed to track plasma glycemia down to a safe
euglycemic level for a T2DM patient, while [9] performed a validation of the DDE
model closing the observer-based control loop on a population of virtual patients
modeled by a different maximal model [14], accepted by the Food and Drug Ad-
ministration (FDA) as an alternative to animal trials for the pre-clinical testing of
control strategies in AP.

In this paper, we investigate the design of model-based controllers that explicitly ac-
count for the discrete nature of the available glucose sampled measurements, usually
provided by Continuous Glucose Monitoring (CGM) devices [15]. Insulin measure-
ments are also unavailable. This setting is more realistic with respect to most of the
approaches available in the literature. Then, we consider the sampled-data observer
developed in [16, 17], and apply it to the problem of model-based reconstruction
of glucose and insulin trajectories from the glucose samples [18]. Again, a dif-
ference with respect to the approach followed in [8] consists in not assuming the
availability of glycemia at all times. On the other hand, the construction in [16, 17]
cannot be applied to DDE models, so we restrict our attention to the cases in which
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the apparent delay in the insulin response is negligible (less than 1 minute). As a
consequence, we consider a particular case of the glucose-insulin model developed
in [6, 7]. On top of that, a feedback algorithm (based on the reconstructed state) is
designed to continuously deliver exogenous intra-venous insulin to the patient. The
control law is a piecewise-constant function of time, where the insulin delivery rate
is also assumed to be changed at the sampling times.

In the in-silico evaluation of the described techniques, we take account of further
non-idealities, by introducing quantization both in the measurement and in the con-
trol phases (modeling the possible lack of accuracy of the instrument as well as
the analog-to-digital and digital-to-analog conversion processes), and we consider
parameter variations for the sake of a preliminary robustness test of the control
law. The parameters of the virtual patients are identified from real data of non-
diabetic/pre-diabetic individuals, later modified to simulate a natural progression
towards diabetes. The chosen sampling rate mimics the utilization of a real CGM
device, with a sampling time of 5 minutes. The prescribed goal is to track some
desired good trajectories of glucose and insulin, reaching a prescribed “healthy” set
point of glycemia within a time horizon of a few hours.

The paper is structured as follows: in Section 2, we review some theoretical re-
sults about observer-based closed-loop control methods; in Section 3 we describe
the ODE model of the glucose-insulin system; in Section 4, we apply the methods
described in Section 2 to the glucose-insulin model to find a control law (in terms
of exogenous insulin rate) aiming at tracking desired glucose trajectories; Section 5
shows some simulations, based on data taken from real patients, in an experimental
setting; Section 6 offers concluding remarks.

2 Review of observer-based closed-loop control
design

Consider a system in compact form{
ẋ(t) = f (x(t))+g(x(t))u(t), t ≥ 0
y(t) = c(x(t −δ (t))), t ≥ ∆

(1)

where x(t) ∈Rn is the state vector, ẋ(t) := dx(t)
dt denotes its time derivative, u(t) ∈ IR

is the input function, y(t) ∈ IR is the measured output, δ (t) ∈ [0,∆] is the known
time-varying measurement delay of the output, x0 ∈ IRn is the initial state, g(x) and
f (x) are C∞ vector fields and c(x) is a C∞ function.

Generally speaking, the problem of asymptotic state observation consists in finding
a causal system (asymptotic observer), driven by the pair (u(t),y(t)), that produces a
vector variable x̂(t) (observed state) asymptotically converging to the state x(t) (i.e.,
∥x(t)− x̂(t)∥ → 0). Furthermore, an observer is said to be an exponential observer
if there exist µ > 0 and α > 0 such that

∥x(t)− x̂(t)∥ ≤ µ e−αt∥x(0)− x̂(0)∥, (2)
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for any x(0) and x̂(0) in Rn.

In order to design such an observer, we preliminarily define the drift-observability
map z = ϕ(x), stacking the first n Lie derivatives (from 0 to n− 1) of the output
function c(x) along the drift vector field f (x), and its Jacobian Q(x), as

z =


z1
z2
...

zn

= ϕ(x) :=


h(x)

L f c(x)
...

Ln−1
f c(x)

 , Q(x) :=
∂ϕ(x)

∂x
. (3)

The observer in [16, 17], also reviewed in [18], takes the following form:

˙̂x(t) = f (x̂(t))+g(x̂(t))u(t)+ e−ηδ (t)Q−1(x̂(t))K
{

y(t)− c(x̂(t −δ (t)))
}
, (4)

where K assigns the n eigenvalues of (A−KC) to obtain convergence to zero of the
estimation error x(t)− x̂(t), with

A :=
[

0(n−1)×1 I(n−1)×(n−1)
0 01×(n−1)

]
, C :=

[
1 01×(n−1)

]
, (5)

and η > 0 being a design parameter, giving more weight to recent measurements
with respect to the older ones.

Under some technical hypotheses (including, in particular, uniform Lipschitz drift-
observability and uniform input boundedness), it is possible to prove the following
result, establishing the exponential convergence to zero of the observation error.

Theorem 1. [17] Consider the system (1), with δ (t)∈ [0,∆]. Then, for any assigned
η > 0, there exists K and a positive ∆̄ such that, if ∆ < ∆̄, then the system in (4) is a
global exponential observer for the system in (1) such that η is the decay rate of the
estimation error (i.e., eq. (2) is verified for some µ > 0 and α = η).

Note that the previous result enables the use of the observer (4), provided that the
sampling interval is upper-bounded by ∆. Otherwise, a chain of sampled observer
is required (full details are given in [17]).

In order to close the control loop, we follow an input-output linearization approach,
assuming that the relative degree of the system is n (see, e.g., [20]). The dynamics
of the observability map in (3) is the following:

ż =
∂ϕ(x)

∂x
ẋ = Q(x)( f (x)+g(x)u). (6)

By imposing the virtual input v := żn = Ln
f c(x)+LgLn−1

f c(x)u, we get the linearizing
feedback law:

u =
v−Ln

f c(x)

LgLn−1
f c(x)

. (7)
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We now need to choose v in order to achieve a desirable behavior. Consider a smooth
reference output signal yre f (t). By defining the vector of its first n time derivatives

zre f (t) =


z1,re f (t)
z2,re f (t)

...
zn,re f (t)

=


yre f (t)
ẏre f (t)

...
y(n−1)

re f (t)

 ,

and defining e := z− zre f , the error dynamics is

ė = Ae+B(v− żn,re f ), with B :=
[

0(n−1)×1
1

]
.

Since the pair (A,B) is reachable, it suffices to impose

v = He+ żn,re f (8)

to obtain the convergence to zero of the linearized error dynamics, where H assigns
the n eigenvalues of matrix (A+BH).

Note that the control law given in Eq. (7)–(8) is a continuous state-feedback control
law, depending on the continuous state x(t), which is usually not available, since
we only know its estimate x̂(t) from (4). In the linear case, the separation principle
would guarantee the asymptotic convergence of the output y(t) to its reference value
yre f (t). This is not guaranteed in the non-linear case, in general (although local
convergence results exist), but it is still possible to restate the control law in (7)–(8)
in terms of a feedback from the reconstructed state. An example is given later in
Section 4.

3 A continuous-discrete model of the glucose-insulin
system

Continuous-discrete models refer to physical continuous-time systems with mea-
surements acquired at discrete sampling times. These models often appear in clin-
ical/medical applications like those related to the Artificial Pancreas, with control
design problems related to the lack of a continuous stream of output data. Accord-
ing to [17], discrete measurements can still be formalized by means of a continuous-
time output function. To this end, given the sampling sequence {ti} and assuming
to measure plasma glucose concentration G(ti), we define the piecewise-constant
output function y(t) as

y(t) = G(ti) t ∈ [ti, ti+1), i = 0,1, ...

which can be equivalently restated as a delayed output

y(t) = G(t −δ (t)) t ≥ 0 (9)
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with the time varying delay δ (t) defined within any two consecutive sampling in-
stants as

δ (t) = t − ti, t ∈ [ti, ti+1), i = 0,1, ... (10)

where we take t0 = 0. The upper bound on the sampling interval is given by ∆ :=
max

i
(ti+1 − ti).

As shown in the previous section, this formal setting of the model output function al-
lows to design exponential observers and observer-based control laws, which have
been recently exploited also in the context of the artificial pancreas [8, 9, 19]. To
this end, we consider a modified version of the DDE model presented in [6, 7] and
exploited in [8, 9], which contains an explicit delay characterizing the secondary
insulin release in response to varying plasma glucose concentration. Since we need
to restate into the form of Eq. (1), the delay of the glucose-stimulated insulin pro-
duction rate is neglected. This fact clearly limits the proposed feedback control law
applicability and refers to further developments of the mathematical theory possibly
including time-delay systems. Nonetheless, this works aims at showing the proof of
concept of an observer-based control law in such continuous-discrete systems.

In absence of delay, the equations of model [6, 7] are particularized as follows:{
dG(t)

dt =−KxgiG(t)I(t)+ Tgh
VG

,
dI(t)

dt =−KxiI(t)+
TiGmax

VI
h
(
G(t)

)
+u(t),

t ≥ 0 (11)

with initial conditions G(0) = G0, I(0) = I0, where:

• G(t) is the Plasma Glycemia at time t [mM];

• I(t) is the Plasma Insulinemia at time t [pM];

• Kxgi is the rate of (insulin-dependent) glucose uptake by tissues per unit of
plasma insulin concentration [min−1 pM−1];

• Tgh is the net balance between hepatic glucose output and insulin-independent
zero-order glucose tissue uptake [min−1(mmol/KgBW )];

• VG is the apparent distribution volume for glucose [L/kgBW ];

• Kxi is the apparent first-order disappearance rate constant for insulin [min−1];

• TiGmax is the maximal rate of second-phase insulin release [min−1(pmol/kgBW )];

• VI is the apparent distribution volume for insulin [L/kgBW ];

• h(·) is a nonlinear map modeling the endogenous pancreatic Insulin Delivery
Rate (IDR) as

h(G) =
(G/G∗)γ

1+(G/G∗)γ ,

where γ (dimensionless) is the progressivity with which the pancreas reacts
to circulating glucose concentrations and G∗ [mM] is the glycemia at which
the insulin release reaches half of its maximal rate;

– 6 –



Acta Polytechnica Hungarica Vol. XX, No. Y, 20XX

• u(t) is the exogenous intra-venous insulin delivery rate at time t, i.e. the
control input [pM/min].

The model in (11) enjoys some interesting properties:

• it is statistically robust, in that its parameters are statistically identifiable with
very good precision by means of standard perturbation experiments, such as
the Intra-Venous Glucose Tolerance Test (IVGTT) [6, 12];

• it is a compact model, in the sense that according to a “minimal” set of in-
dependent parameters, it allows to very well resemble the physiology of the
glucose/insulin kinetics [6];

• it is mathematically consistent, in that exhibits satisfactory properties of the
solutions [7]; in particular: positivity, boundedness, and a unique positive
stable equilibrium.

The interested reader is referred to [6] for further identification issues and statistical
robustness of this model and to [7] for details on its mathematical properties and
qualitative behavior.

4 The artificial pancreas

We now apply the control design methodology illustrated in Section 2 to the glucose-
insulin model described in Section 3. By collecting the state variables within the
state vector x(t) = [x1(t),x2(t)]T = [G(t), I(t)]T , equations (10)–(11) can be rewrit-
ten in the compact form (1):

ẋ(t) = f (x(t))+Bu(t), t ≥ 0
y(t) =Cx(t −δ (t)), t ≥ ∆
δ (t) = t − ti, t ∈ [ti, ti+1), i = 0,1, ...

(12)

with

f (x) =
[

f1(x)
f2(x)

]
=

[
−Kxgix1x2 +

Tgh
VG

−Kxix2 +
TiGmax

VI
h(x1)

]
,

δ (t) ∈ [0,∆], B = [0 1]T , C = [1 0].

The drift-observability map z = ϕ(x) is

z =
[

z1
z2

]
= ϕ(x) :=

[
Cx

C f (x)

]
=

[
x1

f1(x)

]
=

[
x1

−Kxgix1x2 +
Tgh
VG

]
(13)

and its Jacobian

Q(x) :=
∂ϕ(x)

∂x
=

[
1 0

−Kxgix2 −Kxgix1

]
(14)
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is non-singular for x1 ̸= 0.

The observer in (4) takes the following form:

˙̂x(t) = f (x̂(t))+Bu(t)+ e−ηδ (t)Q−1(x̂(t))K
{

y(t)−Cx̂(t −δ (t))
}
, (15)

where K =

[
−(λ1 +λ2)

λ1λ2

]
assigns the eigenvalues λ1 < 0, λ2 < 0 of (A−KC) to

obtain convergence to zero of the estimation error x(t)− x̂(t), with A =

[
0 1
0 0

]
.

By recalling x̂(t) = [x̂1(t), x̂2(t)]T = [Ĝ(t), Î(t)]T , the explicit form of the observer
(4), for t ∈ [ti, ti+1), for i = 0,1, ..., is the following:

dĜ(t)
dt =−KxgiĜ(t)Î(t)+ Tgh

VG
+ e−ηδ (t)(λ1 +λ2)(G(ti)− Ĝ(ti)),

dÎ(t)
dt =−Kxi Î(t)+

TiGmax
VI

h
(
Ĝ(t)

)
+u(t)+ e−ηδ (t) Kxgi(λ1+λ2)Î(t)−λ1λ2

KxgiĜ(t)
(G(ti)− Ĝ(ti))

(16)

The technical hypotheses of Theorem 1 hold for the glucose-insulin system in (10)–
(11) (see also the assumptions in [8] for the more general DDE case), guaranteeing
the exponential convergence to zero of the observation error.

We now detail the glucose control algorithm. The dynamics of the observability
map in (13) is the following:

ż =
[

ż1
ż2

]
=

∂ϕ(x)
∂x

ẋ = Q(x)( f (x)+Bu)

=

[
1 0

−Kxgix2 −Kxgix1

][
f1(x)

f2(x)+u

]
(17)

=

[
1 0

−Kxgix2 −Kxgix1

][
z2

−Kxix2 +
TiGmax

VI
h(x1)+u

]
,

from which one gets{
ż1 = z2,

ż2 =−Kxgix2

(
−Kxgix1x2 +

Tgh
VG

)
+Kxgix1

(
Kxix2 − TiGmax

VI
h(x1)

)
−Kxgix1u.

(18)

By imposing ż2 := v, we get the linearizing feedback as

u = Kxix2 −
TiGmax

VI
h(x1)−

v+Kxgix2(−Kxgix1x2 +
Tgh
VG

)

Kxgix1
(19)

which is computable for positive values of the glycemia x1, consistently with the
fact that in those cases the Jacobian matrix Q(x) in (14) is non-singular.
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The reference signal for the glucose is chosen as

yre f (t) = Gre f (t) = Gd +(Gb −Gd)e−λ t ,

with λ > 0, which aims at driving the basal glycemia Gb of a subject to a desired
value Gd . By setting

zre f =

[
z1,re f
z2,re f

]
:=

[
yre f
ẏre f

]
,

one easily obtains

żre f (t) =
[

ż1,re f (t)
ż2,re f (t)

]
=

[
z2,re f (t)
ż2,re f (t)

]
=

[
−λ (Gb −Gd)e−λ t

λ 2(Gb −Gd)e−λ t

]
.

The error dynamics e := z− zre f is

ė =
[

ż1 − ż1,re f
ż2 − ż2,re f

]
=

[
z2 − z2,re f
v− ż2,re f

]
= Ae+B(v− ż2,re f ).

We finally impose

v = He+ ż2,re f (20)

to obtain the convergence to zero of the linearized error dynamics, where H =[
−λ3λ4

(λ3 +λ4)

]T

assigns the eigenvalues λ3 < 0, λ4 < 0 of matrix (A+BH).

As discussed at the end of Section 2, in the spirit of separation principle, we restate
the control law in (19)–(20) in terms of a feedback from the reconstructed state,
which leads to the following continuous control law

u = max

0,Kxix̂2 −
TiGmax

VI
h(x̂1)−

H(ẑ− zre f )+ ż2,re f +Kxgix̂2(−Kxgix̂1x̂2 +
Tgh
VG

)

Kxgix̂1


(21)

where ẑ :=
[

x̂1
f1(x̂)

]
, and x̂ =

[
x̂1
x̂2

]
=

[
Ĝ
Î

]
is the observer output in (16). Note that

in (21) we explicitly prevent the possibility of a negative exogenous insulin rate.

5 In-silico evaluation

We here evaluate the performance of the algorithm developed in the previous sec-
tions in a non-ideal experimental setting. We start from the data coming from 3
healthy subjects, whose glucose and insulin samples are a subset of the data col-
lected in [6]. Such patients underwent an Intra-Venous Glucose Tolerance Test
(IVGTT), which is a perturbation experiment consisting in administering intra-venously
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Parameter Patient 1 Patient 2 Patient 3
Gb 8.96 8.78 8.44
Ib 27.82 24.04 7.04

Kxgi 7.45 ·10−5 9.96 ·10−5 5.39 ·10−5

Tgh 0.0025 0.0027 0.0003
VG 0.13 0.13 0.10
Kxi 0.10 0.06 0.25

TiGmax 1.39 0.75 0.94
VI 0.24 0.25 0.25
γ 2.30 2.52 1.52

G∗ 9 9 9

Table 1
Numerical values of the model parameters (in the respective units of measurement) for the 3 patients
considered.

a glucose bolus after an overnight fasting period and then sampling plasma glucose
and serum insulin concentration during the following 3 hours, with varying sam-
pling time. IVGTT is also considered among the most affordable and commonly
used perturbation procedures used to estimate insulin sensitivity. Glucose and in-
sulin measurements from this experiment are used to identify the parameters of the
ODE model (11), which is coincident with the DDE model in [6], [7] in the partic-
ular case τg = 0. In fact, as already mentioned at the beginning of Section 3, we
consider the subjects for which the delay in the glucose action on pancreatic IDR is
negligible, since the sample-based observer illustrated in Section 2 follows the ap-
proach in [17] and, unfortunately, there are no theoretical results on such a method
applied to systems with state delays.

After the preliminary identification, since the considered subjects are not diabetic
(but some of them are pre-diabetic), we consider a perturbation of the parameters
that simulates a natural progression of the disease towards diabetes (see also [8]).
In particular, we reduced the insulin resistance (up to values Kxgi < 104) as well as
the pancreatic glucose sensitivity TiGmax, and then recomputed consistently (via the
algebraic steady-state conditions obtained from the model in Eq. (11)) some of the
other parameters, in particular the basal values of glycemia Gb and insulinemia Ib,
which constitute the equilibria of (11) in absence of exogenous insulin administra-
tion (u = 0):{

KxgiVGGbIb = Tgh,

KxiVIIb = TiGmaxh
(
Gb

)
.

The values of the parameters for the three individuals are summarized in Table 1. In
the spirit of personalized medicine, the parameters of each model are assumed to be
known (up to some uncertainty) in the design of the artificial pancreas tailored to
the particular subject.

On top of the assumptions considered so far, we build a more realistic simulation
setup by imposing a quantization error both in the sampling and in the actuation,
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accounting for the processes of analog-to-digital and digital-to-analog conversion
in digital devices. We consider a quantization step of 0.1 mM for the glycemia
measurements and 20pM/min for the exogenous Insulin Delivery Rate (IDR). As a
consequence, the observer-based controller is initialized with quantization errors.

Regarding the sampling time of the glucose measurements, we impose a constant
sampling time ti+1 − ti = ∆, for all i. So we can write more simply ti = i ·∆, with
∆ = 5 [min]. This choice is consistent with many Continuous-Glucose-Monitoring
(CGM) devices currently on the market [21]. We assume that each control sample
is held for the same interval.

Simulations have been carried out by designing the AP for each of the three subjects,
but considering an additional random uncertainty (up to ±5%) with respect to the
correct model parameters in Table 1. The observer gain K in (4) and the control
gain H in (21) are set to obtain the same closed-loop eigenvalues for all patients:
λ1 = −0.8, λ2 = −1.6, λ3 = −1, λ4 = −0.5. The parameter η in (16) is set equal
to 5, the target glycemia is equal to Gd = 5 mM, the decay rate is λ = 1/30.

The results are shown in Figures 1–2 in terms of glucose-insulin behavior, glucose
percent error and IDR input. We note that the glucose trajectory (Fig. 1, top panel)
monotonically decreases towards the target value Gd , which is approached in the
three subjects within the considered time horizon of 3 hours. Correspondingly, the
insulinemia trajectory (Fig. 1, bottom panel) shows an initial peak (exceeding 150
pM for the three patients), to then recover towards levels below the 50-pM value.
Higher values of insulinemia (patient 3) correspond to higher exogenous insulin
infusions (Fig. 2, bottom panel). In spite of the different parameters and initial
conditions, the error falls below 10% (with respect to the target glycemia Gd) within
about 1 hour for all the patients (Fig. 2, top panel), due to the common choice of the
closed-loop eigenvalues.

6 Discussion and further work

In this work, we addressed a glucose control problem with incomplete/inaccurate
information, in the direction of the development of the so-called Artificial Pancreas.
Starting from a compact ODE model, well representing the dynamic behavior of
the glucose-insulin system in the individuals showing a negligible delay in the pan-
creatic second-phase insulin secretion, we first designed an observer reconstructing
the full glucose-insulin dynamics from sparse glucose samples. Then, the loop was
closed by designing a feedback control law in terms of exogenous insulin delivery
(based on the reconstructed state), with the goal of tracking a desired behavior of
glycemia. A preliminary in-silico evaluation of the proposed methods has been per-
formed on virtual patients whose parameters have been computed starting from real
data, in a non-ideal simulation setting including quantization and parameter varia-
tions. The obtained results show that the approach can constitute a promising tool
for studying the Artificial Pancreas in more realistic scenarios. In view of this goal,
future research effort will be devoted to the validation of the techniques illustrated
in this paper in the context of more comprehensive models (such as [14]), to better
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Figure 1
Time course of glucose concentration (top panel) and insulin concentration (bottom panel) for the 3
virtual patients considered. The dash-dotted lines represent the basal values of glycemia and insulinemia,
while the solid lines are obtained by closing the loop by means of the Artificial Pancreas.
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Figure 2
Glycemia percent error (top panel) and applied control input in terms of exogenous Insulin Delivery Rate
(bottom panel) for the 3 virtual patients considered.
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understand the way a real patient would react to the proposed treatment. In addition,
formal extensions of the observer-based control to the more general cases of state
delays and quantized inputs and outputs are under investigation.
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