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Abstract: Synthetic Biology combines different branches of biology and engineering (spanning
from biotechnologies to mathematical modeling abstractions), aiming at properly designing syn-
thetic biological circuits, able to replicate emergent properties potentially useful for biotechnology
industry, human health and environment. In this note, we investigate the role of negative feedback
in noise propagation for a basic (though rather general) enzymatic reaction scheme. Two distinct
feedback control schemes on enzyme expression are here considered: one from the final product
of the pathway activity, the other from the enzyme accumulation (negative autoregulation). Both
the feedback schemes are designed to provide the same steady-state average values of the involved
players, in order to evaluate the feedback performances according to the same working mode.
Computations are carried out numerically (by means of the Stochastic Simulation Algorithm) and
analytically (via Stochastic Hybrid System modeling), the latter allowing to infer information on
which model parameter setting leads to a more efficient noise attenuation, according to the chosen
feedback scheme. In addition to highlighting the clear role of the feedback in providing a sub-
stantial noise reduction, our investigation concludes that the effect of the feedback is enhanced by
increasing the promoter sensitivity for both the feedback schemes. A further interesting biological
insight is that an increase in the promoter sensitivity provides more benefits to the feedback from
the product with respect to the feedback from the enzyme, in terms of enlarging the parameter
design space.

1. Introduction

Synthetic biology is a challenging branch of biological research, which aims at exploiting molec-
ular biological techniques, mathematical modeling and forward engineering to suggest the correct
wiring (and the proper tuning) to design a synthetic biological circuit, able to replicate emergent
properties potentially useful for biotechnology industry, human health and environment [1], [2].
Important results have been recently achieved to isolate and characterize parts of engineered bio-
logical circuits, in order to understand how the different modules can be wired in more complex
circuits [3]. Modeling takes a leading role in understanding and properly designing such systems,
and enables the capability to correctly predict the overall system behavior (see [4] and references
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therein).
In this framework, recent attention has been focused on understanding how circuit design may

affect metabolic performances, and a pivotal role seems to be played by feedback mechanisms reg-
ulating the enzymatic activity. The role of the feedback in systems and synthetic biology has been
widely investigated, especially in transcriptional and metabolic regulation where gene products
are required to control their homeostatic levels robustly with respect to parameter or environmen-
tal fluctuations [5, 6, 7, 8, 9, 10, 11]. Particular attention, in this context, has been devoted to
the analysis and the design of stochastic models, able to replicate random oscillations (also gener-
ally referred to as noise), highlighted by experimental evidence and which cannot be realized by
deterministic models [12, 13, 14, 15].

This note investigates the role of the feedback in the enzymatic production rate for a ba-
sic (though rather general) metabolic pathway, involving the classical substrate/enzyme bind-
ing/unbinding forming a complex that eventually provides a final product (with the release of
the enzyme). The feedback on the enzyme is exerted via a transcriptional repression from the
product or from the enzyme itself. Both substrate and enzyme productions occur by means of
noisy bursts, and the goal is to quantify the level of noise reduction (if any) with respect to the
fluctuations (around the steady-state average value) of the final product of the metabolic pathway.
A similar study has been proposed in [10] without accounting for noisy burst productions and ac-
cording to only one feedback scheme. Experimental literature has recently investigated the effects
that a negative feedback exerts on noise propagation, especially in gene transcription networks:
on the one hand, it is well established that negative autoregulation in gene expression provides
attenuation of the stochastic fluctuations of protein numbers [16, 17]; on the other hand, a more
intricate relation between feedback and noise propagation is expected, in general, when the neg-
ative feedback scheme is compared to the non-regulated control case, because different wirings
may vary the steady-state solutions and an amplification of the relative noise (in terms of squared
steady-state coefficient of variation of the product normalized to the one generated by a constitutive
promoter with the same strength) may occur in spite of a reduction of the fluctuations standard de-
viation (see, e.g., theoretical and experimental results in [10] and [13], respectively). To avoid this
ambiguity, here the comparison among the feedback schemes (and the constitutive case without
feedback) is performed by keeping fixed the steady-states average values of the players (which,
on the other hand, may well vary according to the strength and sensitivity of the feedback). To
this end, feedback parameters are tuned in order to provide the same stationary solutions for the
three schemes under investigation (two feedback schemes in addition to the constitutive one): from
a synthetic biology perspective we aim at investigating the noise propagation related to different
ways to provide the same metabolic working mode (related to the same steady-state solutions).

A proper way to quantify the metabolic noise involving the product fluctuations around the
steady-state average value is to exploit the stochastic approach based on the Chemical Master
Equations (CME), providing a description of complex cellular processes much more accurate than
the deterministic one [18]. CMEs are capable of coping with fluctuations and chemical fluxes,
to fit experimental data in the currently widespread single cell experiments, and of capturing and
explaining the deviation from Gaussianity observed in various gene expression experiments (such
as stress or metabolic response, growth of the nuclear protein amount observed in senescent cells,
and so on). However, a major problem in dealing with CME is the curse of dimensionality which,
in many cases, prevents from explicitly computing the solutions and thus requires implementing
efficient algorithms [19] or Monte Carlo methods (e.g. the Gillespie Stochastic Simulation Al-
gorithm (SSA) [20]) to estimate the stationary distribution. Moreover, in the case of enzymatic
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reactions, the double time-scale of the reactions involved (binding/unbinding reactions occur on a
shorter time-scale than product formation and enzyme production) makes exact SSA computation-
ally demanding, since it gets stuck on thousands of binding/unbinding reactions for each birth of a
product molecule [10]. As a matter of fact, we adopt here the slow-scale Stochastic Simulation Al-
gorithm (ss-SSA) [21, 22], which is an approximate accelerated implementation of SSA, properly
exploiting the time scale separation to obtain reliable results within reasonable computation times.
These simulations will be considered as the baseline to validate any other level of abstraction pro-
posed in the paper, and confirm the unequivocal role of the feedback in providing a quantitative
noise reduction.

In addition to the numerical results provided by the ss-SSA, we aim at determining under which
setting of the model parameters one of the two feedback schemes provides better improvements
in noise reduction. To this end, analytical solutions should be pursued and proper approximation
schemes are invoked. Linear Noise Approximation (LNA) is one of the most adopted frameworks
[18] and is substantially derived from the CME after linearization of the nonlinear propensities.
Such an approach has been exploited in [11] to compute the stationary value of the product noise
variance, but the final formulas revealed to be still cumbersome to use and little informative. Dif-
ferently from [11], here a Stochastic Hybrid System (SHS) [23] is adopted to derive analytical so-
lutions, entailing both continuous and discrete events: the latter are provided by the noisy enzyme
and substrate production, whilst the players’ copy number is supposed to continuously vary be-
tween individual burst events, according to a deterministic Ordinary Differential Equation (ODE)
framework. This is a typical approach adopted whenever the contribution of the bursty produc-
tion is dominant with respect to the other reactions (e.g. because of a high average burst size)
[24]. A tool providing the noise variations around the steady state solutions is the moment equa-
tion approach for SHS [23], but it cannot be straightforwardly applied in presence of saturation
functions (a typical assumption in Systems Biology [8]) and, in any case, it requires linear propen-
sities for the involved reactions in order to obtain solvable closed-form equations (this drawback
can be overcome by means of moment closure techniques [25]). To cope with such problems, we
linearize the nonlinear propensities with respect to the average steady-state copy numbers of the
players, allowing to write the moment equations in a closed form and to obtain solutions which,
unfortunately, are still hard to handle and cannot be written in an easy analytical fashion. To this
end, a further approximation is considered, suitably exploiting the double time scale of the system,
typical of enzymatic reactions, which is finally able to provide simpler analytical expressions al-
lowing to explicitly correlate the metabolic noise of the product to the model parameters. These
solutions can be exploited to understand which model parameter setting leads to a more efficient
noise attenuation, according to the chosen feedback scheme.

2. Chemical reaction schemes

The chemical reaction scheme under investigation is the one reported in Fig. 1, and will be referred
to, in the sequel, as scheme 0. It consists of a substrate S binding to an enzyme E in order
to form a complex C (reaction 1), which in turn can reverse the binding (reaction 2) or can be
transformed into a product P with the release of the enzyme E (reaction 3). The reaction scheme
accounts for enzyme production (reaction 4) and degradation (reaction 5), product elimination
(for instance due to its final utilization, reaction 6) and substrate production (reaction 7). With
respect to the enzyme production, in addition to scheme 0 where there is no feedback regulation,
two different feedback schemes will be investigated: scheme 1, where the enzyme production
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Fig. 1. Scheme 0: general reaction framework without feedback on the enzyme production

involves a negative feedback regulation from the product P , and scheme 2, where the enzyme
production is negatively regulated in feedback by the enzyme E itself (Fig. 2). A similar reaction

Fig. 2. Feedback schemes: enzyme production is negatively regulated by a feedback from the
product (scheme 1) or from the enzyme itself (scheme 2)

scheme has been investigated also in [10], where only the feedback from the product on the enzyme
production had been considered (instead of the present two feedback schemes); moreover, here also
the substrate production has been taken into account (instead of keeping it constant in copy number,
as in [10]). Finally, substrate and enzyme production rates are here modeled by means of noisy
bursts of Be and Bs copy numbers, respectively, with the random variables Be and Bs indicating
the size (in terms of number of copies) of the bursts, occurring with probabilities IP(Be = i) and
IP(Bs = j), with i, j ∈ {0, 1, . . .}.

As in [26, 27] we assume geometric probability distributions:

IP(Bx = i) = (1− λx)
iλx, λx ∈ (0, 1], i = 0, 1, . . . , x = e, s (1)

providing an average burst size ⟨Bx⟩ = (1− λx)/λx.
According to the standard stochastic approach to chemical reaction modeling [18], the state of

the system is identified by the copy number of each involved species ns(t), ne(t), nc(t), np(t), and
the temporal evolution of a reaction network is described by a Continuous-Time Markov Process,
where a state-dependent propensity wj is associated to each reaction j. Table 1 summarizes the
players population resets associated to each reaction, and reports the associated propensities. All
propensities (except the ones related to the feedback schemes) are written according to the mass
action law, so the only nonlinearity is related to the binding reaction (proportional to the product
of the involved species).

Regarding the enzyme production for both the feedback schemes, sigmoidal Hill functions are
considered, whose value decreases with the product (function f1(np) in scheme 1) or with the
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Table 1 Table of reactions: the first column describes the reaction-based event, the second refers to the
corresponding reset on the players population, and the third reports the associated propensity function

Event Population reset Propensity function

substrate/enzyme binding
ns(t) 7→ ns(t)− 1
ne(t) 7→ ne(t)− 1
nc(t) 7→ nc(t) + 1

k1ns(t)ne(t)

substrate/enzyme unbinding
ns(t) 7→ ns(t) + 1
ne(t) 7→ ne(t) + 1
nc(t) 7→ nc(t)− 1

k2nc(t)

product production/enzyme release
ne(t) 7→ ne(t) + 1
nc(t) 7→ nc(t)− 1
np(t) 7→ np(t) + 1

k3nc(t)

burst enzyme production (scheme 0) ne(t) 7→ ne(t) + i, i = 0, 1, . . . k4IP(Be = i)
burst enzyme production (scheme 1) ne(t) 7→ ne(t) + i, i = 0, 1, . . . f1

(
np(t)

)
IP(Be = i)

burst enzyme production (scheme 2) ne(t) 7→ ne(t) + i, i = 0, 1, . . . f2
(
ne(t)

)
IP(Be = i)

enzyme degradation ne(t) 7→ ne(t)− 1 k5ne(t)
product export np(t) 7→ np(t)− 1 k6np(t)
burst substrate production ns(t) 7→ ns(t) + i, i = 0, 1, . . . k7IP(Bs = i)

enzyme (function f2(ne) in scheme 2):

f1(np) =
β1

1 + (np/θ1)h1
, f2(ne) =

β2

1 + (ne/θ2)h2
. (2)

Parameters β1 and β2 provide the maximal propensities (the promoter strengths), obtainable for
negligible values of their entries np and ne. The propensities reach half of their maximal values
in correspondence of the repression thresholds, θ1 and θ2, respectively. Parameters h1, h2 are the
promoter sensitivities, affecting the steepness of the sigmoidal functions.

Referring to the product P , we define the corresponding metabolic noise by means of the square
of the coefficient of variation CV 2

P computed by the ratio:

CV 2
P = σ2

P/(n
⋆
p)

2 (3)

where σ2
P and n⋆

p are the steady-state values for variance and mean of the marginal distribution of
the product P copy number [10].

In the following, unless differently specified, the expected value of a random variable x will be
denoted by ⟨x⟩, while the steady-state average value of a stochastic process x(t) will be denoted
by x⋆ = limt 7→+∞ ⟨x(t)⟩.

3. Average steady-state solutions

The computation of the average steady-state solution plays a central role in our investigation, since
we aim at quantifying the noise propagation for different wiring schemes, all sharing the same
average steady-state solution (i.e. the same stationary working modes). The first-order moment
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equations derive from the Chemical Master Equations according to [23]. Unfortunately, the non-
linearities involved in the complex formation, as well as in the enzyme production for the feedback
schemes, do not allow to achieve closed-form solutions. Indeed, the nonlinear terms provided by
the negative feedback schemes even prevent to use the moment closure techniques [25]. Therefore,
computations will be carried out according to the linearization of the nonlinear propensities around
the stationary average values n⋆

s, n
⋆
e, n

⋆
p:

k1ns(t)ne(t) ≃ k1

(
n⋆
sn

⋆
e + n⋆

e

(
ns(t)− n⋆

s

)
+ n⋆

s

(
ne(t)− n⋆

e

))
,

f1
(
np(t)

)
P(Be = i) ≃

(
f1(n

⋆
p) + f ′

1(n
⋆
p)
(
np(t)− n⋆

p

))
P(Be = i),

f2
(
ne(t)

)
P(Be = i) ≃

(
f2(n

⋆
e) + f ′

2(n
⋆
e)
(
ne(t)− n⋆

e

))
P(Be = i).

(4)

According to [23], the first order moment equations can be written in a unified fashion for the
three schemes, with the steady-state solutions obeying the following system:

−k1n
⋆
sn

⋆
e + k2n

⋆
c + k7 ⟨Bs⟩ = 0

−k1n
⋆
sn

⋆
e + (k2 + k3)n

⋆
c − k5n

⋆
e + χ(n⋆

p, n
⋆
e) ⟨Be⟩ = 0

k1n
⋆
sn

⋆
e − (k2 + k3)n

⋆
c = 0

k3n
⋆
c − k6n

⋆
p = 0

(5)

with

χ(n⋆
p, n

⋆
e) =

 k4, scheme 0,
f1(n

⋆
p), scheme 1,

f2(n
⋆
e), scheme 2.

(6)

From standard computations, the steady state solutions of (5) satisfy:

n⋆
p =

k7 ⟨Bs⟩
k6

, n⋆
c =

k6
k3

n⋆
p, n⋆

e =
χ(n⋆

p, n
⋆
e) ⟨Be⟩

k5
, n⋆

s =
(k2 + k3)n

⋆
c

k1n⋆
e

, (7)

for which existence and uniqueness of the solutions are clearly ensured whatever the chosen
scheme and the model parameters.

It is readily seen that the feedback on the enzyme production (schemes 1 and 2) does not vary
the product and complex steady-state solutions with respect to the constitutive case (scheme 0). In
fact, product and complex steady-state solutions are not affected by the enzyme production at all.
Instead, the enzyme production rate influences the enzyme and substrate steady-state solutions. In
case of schemes 0 and 1, n⋆

e is achieved in closed form

n⋆
e(scheme 0) =

k4 ⟨Be⟩
k5

, n⋆
e(scheme 1) =

f1(n
⋆
p) ⟨Be⟩
k5

, (8)

whilst, in case of scheme 2, n⋆
e is numerically provided by the solution of the equation

n⋆
e =

f2(n
⋆
e) ⟨Be⟩
k5

. (9)

Therefore, if we want to achieve the same steady-state solution for the three different schemes, we
need to tune the feedback parameters in order to get:

f1(n
⋆
p) = f2(n

⋆
e) = k4, with n⋆

p =
k7 ⟨Bs⟩

k6
and n⋆

e =
k4 ⟨Be⟩

k5
. (10)
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Table 2 Model parameters. Measurement units: k1, [s−1molecule−1]; kx, x = 2, 3, . . . , 7, [s−1].

Parameter k1 k2 k3 k4 k5 k6 k7 λe λs

Value 1 28300 3.2 0.16 0.02 0.02 2.4 0.25 0.15

Note that, for fixed values of the promoter sensitivities h1, h2, and of the steady-states n⋆
p, n⋆

e,
promoter strengths β1, β2 and repression thresholds θ1, θ2 are constrained by (10) to given curves.
Some of these curves are reported in Fig. 3, according to parameters given by Table 2.
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Fig. 3. (β, θ)-curves ensuring fixed values of n⋆
e = k4 ⟨Be⟩ /k5 for different values of the promoter

sensitivity h. Left panel refers to function f1(np), right panel refers to function f2(ne).

It clearly appears that by making the value of the threshold θ1 much larger than n⋆
p for scheme 1

(and θ2 much larger than n⋆
e for scheme 2), the inhibitory action of the feedback becomes weaker

and weaker and the promoter strengths β1, β2, rapidly approach the value k4: for θ1 ≫ n⋆
p and

θ2 ≫ n⋆
e, both feedback schemes behave similarly to the constitutive case of scheme 0. Instead,

by making θ1 much smaller than n⋆
p for scheme 1 (and θ2 much smaller than n⋆

e for scheme 2),
the inhibitory action of the feedback becomes stronger and stronger, and the promoter strengths
β1, β2 are required to dramatically increase their value to guarantee the same enzyme production
rate (and the same enzyme stationary average value). By increasing the promoter sensitivities,
such biphasic behavior becomes more and more evident. Finally, note that, similarly to [10], here
we account for promoter sensitivities exceeding the typical bound values of 4 or 5. Motivation
for that stems from recent synthetic biology experimental work (see, e.g., [28]), where protein
sequestration mechanisms allow to produce a sharp ultrasensitive response with an apparent Hill
coefficient far beyond standard values.

4. Second-order moments and computation of the metabolic noise

4.1. Numerical solutions

As discussed in Section 1, the explicit computation of the exact steady-state distribution and av-
erage values of the three reaction schemes is unfeasible, due to the large number of molecules
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involved. Moreover, the standard Gillespie SSA [20] is inefficient in view of obtaining an equi-
librium statistical distribution due to the inherent double time scale of the reaction network. As
a consequence, the slow-scale Stochastic Simulation Algorithm (ss-SSA) [21] has been imple-
mented in Matlab and the following average steady-state solutions have been obtained (after 106

Monte Carlo runs of the algorithm), according to the parameter setting defined in Table 2:

n⋆
s = 5012, n⋆

e = 24, n⋆
c = 4.25, n⋆

p = 680. (11)

Feedback parameters have been set by varying the promoter sensitivities h1, h2 ∈ {1, 2, 4, 8}
and the repression thresholds θ1 ∈ [102, 104] and θ2 ∈ [100, 102], while the promoter strengths β1,
β2 are uniquely defined by (10) (see also Fig. 3). Simulations results are reported in Fig. 4 where
each circle comes out from a set of ss-SSA runs associated to a specific pair of (θ1, h1) for scheme
1 and of (θ2, h2) for scheme 2.
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Fig. 4. Metabolic noise for different values of pairs (θ, h), scheme 1 (left) and scheme 2 (right). The
solid lines are referred to the SHS formulation. The dotted line (scheme 0) and the circles (feedback
schemes 1 and 2) are obtained by means of the slow-scale Stochastic Simulation Algorithm.

According to reported simulations, both feedback schemes seem to share the same significant
properties, summarized as follows:

– both feedback schemes 1 and 2 reduce noise propagation with respect to the constitutive case
of scheme 0, whatever the chosen feedback parameters constrained by (10);

– by noticeably increasing the repression thresholds with respect to the corresponding average
steady-states (θ1 ≫ n⋆

p, θ2 ≫ n⋆
e), the noise reduction attenuates and eventually vanishes: the

ss-SSA suggests that the two feedback schemes become indistinguishable with respect to the
constitutive case for much larger values of the repression threshold;

– by noticeably decreasing the repression thresholds with respect to the corresponding average
steady-states (θ1 ≪ n⋆

p, θ2 ≪ n⋆
e), the noise reduction strongly benefits of the feedback

scheme: the ss-SSA suggests that the CV 2
P eventually approaches an asymptotic value for

much smaller values of the repression threshold;

– by increasing the promoter sensitivities h1, h2, such a behavior is enhanced, making the CV 2
P -

vs-θ curves steeper and steeper.
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4.2. Analytical solutions

In order to infer information on which model parameter setting leads to a more efficient noise
attenuation according to the chosen feedback scheme, we need to relate the metabolic noise to the
feedback parameters. To this end, we exploit the linearization adopted for the binding reaction
propensity and for the feedback control functions on the enzyme production rate in (4), already
employed to provide the first-order steady-state solutions. First attempts in this direction have
been carried out in [11] by properly exploiting the Quasi Steady-State Approximation (QSSA) in
the Linear Noise Approximation (LNA) framework, according to a particular combination of the
feedback parameters. Unfortunately, the final formulas revealed to be still cumbersome to use and
little informative.

Instead, here we provide analytical solutions to the metabolic noise by means of a Stochastic
Hybrid System (SHS) model of the reaction network. At the SHS level of abstraction, the players’
copy numbers are modeled by means of continuous state variables, evolving according to determin-
istic ODEs involving all reactions with the exception of burst productions. According to the lin-
earized propensities in (4), the ODE system evolving between any two bursts of enzyme/substrate
production is

ṅs(t) = −k1
(
n⋆
sn

⋆
e + n⋆

e

(
ns(t)− n⋆

s

)
+ n⋆

s

(
ne(t)− n⋆

e

))
+ k2nc(t)

ṅe(t) = −k1
(
n⋆
sn

⋆
e + n⋆

e

(
ns(t)− n⋆

s

)
+ n⋆

s

(
ne(t)− n⋆

e

))
+ (k2 + k3)nc(t)− k5ne(t)

ṅc(t) = k1
(
n⋆
sn

⋆
e + n⋆

e

(
ns(t)− n⋆

s

)
+ n⋆

s

(
ne(t)− n⋆

e

))
− (k2 + k3)nc(t)

ṅp(t) = k3nc(t)− k6np(t).

(12)

Algebraic equations providing the first-order steady-state solutions coming from (12) (accounting
also for the burst production of substrate and enzyme, [23]) coincide with the ones provided by
the CME in (5). On the other hand, equations for second order moments vary. From a numerical
viewpoint, the use of the SHS dramatically simplifies the computational burden, and it is com-
putationally inexpensive to draw the continuous lines for CV 2

P as reported in Fig. 4. It can be
appreciated that the SHS approach nicely reproduces the qualitative behavior, keeping a satisfac-
tory quantitative correspondence with the ss-SSA numerical values.

Unfortunately, the use of an SHS model does not reduce the complexity of seeking the analytical
solutions, since the stationary second-order moments are related to the solutions of a 10th-order
system. To reduce such a complexity, the Quasi-Steady-State Approximation (QSSA) is adopted
and applied to the deterministic equations given by (12). The QSSA is a widespread approach
employed to reduce the computational complexity in the presence of a typical fast/slow time-
scale of enzymatic reactions: see e.g. [29, 30] and references therein for an exhaustive review of
advantages and limitations of such approach, which substantially exploits the faster dynamics of
complex C, supposed to be negligible (i.e. ṅc = 0) with respect to the other players’ dynamics.
By setting ṅc = 0 and substituting the expression of the complex nc in terms of the other three
players, the ODE system reduces to:

ṅs(t) = − k1k3
k2+k3

(
n⋆
sn

⋆
e + n⋆

e

(
ns(t)− n⋆

s

)
+ n⋆

s

(
ne(t)− n⋆

e

))
ṅe(t) = −k5ne(t)

ṅp(t) =
k1k3
k2+k3

(
n⋆
sn

⋆
e + n⋆

e

(
ns(t)− n⋆

s

)
+ n⋆

s

(
ne(t)− n⋆

e

))
− k6np(t).

(13)

The QSSA does not affect the stationary mean values; instead it modifies the steady-state second-
order moments, which are the solutions of a 6th-order linear system. After some computations, we
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find the following expressions for the CV 2
P for the basic scheme 0:

CV 2
P =

1

2
(
1 +

n⋆
p

n⋆
s

)
 ⟨B2

s ⟩
⟨Bs⟩n⋆

s

+
⟨B2

e ⟩
⟨Be⟩n⋆

e

· k5k6

(k5 + k6)
(
k5 + k6

n⋆
p

n⋆
s

)
 . (14)

Because of the geometric distribution of Bx, x = s, e, the following equality holds:

⟨B2
x⟩

⟨Bx⟩
= 1 + 2 ⟨Bx⟩ , x = s, e (15)

so that (14) reduces to:

CV 2
P =

1

2
(
1 +

n⋆
p

n⋆
s

)
1 + 2 ⟨Bs⟩

n⋆
s

+
1 + 2 ⟨Be⟩

n⋆
e

· k5k6

(k5 + k6)
(
k5 + k6

n⋆
p

n⋆
s

)
 (16)

from which it is apparent that (16) is constituted by the sum of two contributes in the square
brackets:

– the former depends on both the noise sources since, according to (7), one has:

1 + 2 ⟨Bs⟩
n⋆
s

=
k1k3n

⋆
e

k7(k2 + k3)
· 1 + 2 ⟨Bs⟩

⟨Bs⟩
=

k1k3k4 ⟨Be⟩
k5k7(k2 + k3)

· 1 + 2 ⟨Bs⟩
⟨Bs⟩

; (17)

– the latter depends of only the enzyme production noise source, since:

1 + 2 ⟨Be⟩
n⋆
e

=
k5
k4

· 1 + 2 ⟨Be⟩
⟨Be⟩

and
n⋆
p

n⋆
s

=
k1k3k4

k5k6(k2 + k3)
⟨Be⟩ . (18)

The shape of (16)-(18) allows to investigate the role of the burst sizes ⟨Bs⟩ and ⟨Be⟩ in metabolic
noise. Small values of ⟨Bs⟩ proportionally reduce n⋆

s, thus making the former contribute (17) pre-
ponderant with respect to the latter, which does not depend of ⟨Bs⟩; moreover by making ⟨Bs⟩
smaller and smaller, CV 2

P becomes larger and larger because of (17). Instead, by increasing ⟨Bs⟩,
n⋆
s proportionally increases allowing (17) to eventually reach an asymptotic value, which may well

be comparable with the latter contribute. Regarding the role of ⟨Be⟩, it works on both the addends
in the square brackets. Then, small values of ⟨Be⟩ proportionally reduce n⋆

e, thus making the latter
contribute preponderant with respect to the former, which, on the contrary, reduces proportionally
with ⟨Be⟩; moreover, similarly to the case of ⟨Bs⟩, by making ⟨Be⟩ smaller and smaller, CV 2

P

becomes larger and larger because of (18). Instead, by increasing ⟨Be⟩, then n⋆
p/n

⋆
s 7→ +∞, so

the latter contribute vanishes, whilst (17) becomes arbitrarily large: the former contribute becomes
preponderant but the CV 2

P definitely reaches an asymptotic value, which depends of ⟨Bs⟩:

lim
⟨Be⟩7→+∞

CV 2
P =

k6
2k7

· 1 + 2 ⟨Bs⟩
⟨Bs⟩

=
1 + 2 ⟨Bs⟩

2n⋆
p

. (19)

A further simplification exploits again the double time scale property in metabolic reactions,
characterized by very small values of the ratio ϵ = k3/k2 ≪ 1 (see, e.g., [22]). According to the
steady-state solutions (7), this straightforwardly leads to

n⋆
p

n⋆
s

≃ ϵ1 = ϵ
k1k4 ⟨Be⟩

k5k6

n⋆
e

n⋆
s

≃ ϵ2 = ϵ
k1k

2
4 ⟨Be⟩2

k2
5k7 ⟨Bs⟩

(20)
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so that CV 2
P can be written as:

CV 2
P =

1

2n⋆
e

(
1 + ϵ1

)[ϵ2 (1 + 2 ⟨Bs⟩) +
k5k6 (1 + 2 ⟨Be⟩)

(k5 + k6)(k5 + k6ϵ1)

]
. (21)

In summary, whenever the double time scale property is apparent (ϵ 7→ 0), the noise coming
from the substrate burst production becomes more and more negligible (since it is multiplied by
ϵ2 7→ 0), thus assigning to the enzyme burst noisy production a major role in noise propagation.
Furthermore, according to (21), when ϵ 7→ 0, the CV 2

P simplifies into:

CV 2
P ≃ k6 (1 + 2 ⟨Be⟩)

2n⋆
e(k5 + k6)

=
1 + 2 ⟨Be⟩
2 ⟨Be⟩

· k5k6
k4(k5 + k6)

. (22)

Hence, small values of the burst size of the enzyme production provide an increase in the metabolic
noise, because of the corresponding reduction in the steady-state enzyme average value. Instead,
for large values of ⟨Be⟩, the approximated formula in (22) is no longer valid, in general, since ϵ2
is proportional to ⟨Be⟩, and we need to exploit (19).

4.3. Noise reduction due to a feedback from the product (scheme 1)

According to the QSSA applied to the SHS model, the CV 2
P of scheme 1 can be written (after some

computations) as follows:

CV 2
P (scheme 1) =

CV 2
P (scheme 0)

Γ
, (23)

with

Γ = 1 +
h1(n

⋆
p)

h1

θh1
1 + (n⋆

p)
h1

· 1

1 +
n⋆
p

n⋆
s

·
k5 + k6

(
1 +

n⋆
p

n⋆
s

)
k5 + k6

n⋆
p

n⋆
s

· k5
k5 + k6

. (24)

As a matter of fact, it clearly comes that CV 2
P (scheme 1) < CV 2

P (scheme 0) because Γ > 1
for any choice of the model parameters: the feedback from the product on the enzyme production
reduces the noise in the product fluctuations. These results are qualitatively and quantitatively in
agreement with those provided by the SHS without QSSA.

Getting in the details of (23)–(24), it comes that:

– by increasing θ1 with respect to n⋆
p (θ1 ≫ n⋆

p), the effect of the feedback on the noise re-
duction attenuates, since Γ 7→ 1 and, straightforwardly, CV 2

P (scheme 1) 7→ CV 2
P (scheme 0);

instead, by decreasing θ1 with respect to n⋆
p (θ1 ≪ n⋆

p), the effect of the feedback on the noise
reduction is enhanced and, by accounting for the simplifying assumptions provided by (20),
when θ1/n

⋆
p 7→ 0 and ϵ ≃ 0, one gets:

Γ 7→ 1 + h1 =⇒ CV 2
P (scheme 1) 7→ CV 2

P (scheme 0)

1 + h1

. (25)

Such a qualitative behavior for varying values of θ1 is coherent with data shown in Fig.4, left
panel, according to the ss-SSA and SHS without QSSA;
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– lower and lower values of the substrate average burst size ⟨Bs⟩ proportionally decrease n⋆
p

(keeping unchanged the ratio n⋆
p/n

⋆
s) thus making it so that Γ 7→ 1; higher and higher values

of the enzyme average burst size ⟨Be⟩ proportionally increase the ratio n⋆
p/n

⋆
s making it so

that Γ 7→ 1: too low values of ⟨Bs⟩ or too high values of ⟨Be⟩ may vanish the feedback effect
in terms of noise reduction;

– the approximation in (20), provided that k3/k2 ≪ 1, further simplifies the equation for Γ:

Γ = 1 +
h1(n

⋆
p)

h1

θh1
1 + (n⋆

p)
h1
, (26)

hence making the feedback dependent only of the substrate burst noise source.

– the promoter sensitivity h1 enhances the effect of the feedback, especially for low values of
the repression threshold θ1.

4.4. Noise reduction due to a feedback from the enzyme (Scheme 2)

According to the QSSA applied to the SHS model, the CV 2
P of scheme 2 can be written (after

computations) as follows:

CV 2
P =

1

2
(
1 +

n⋆
p

n⋆
s

)[1 + 2 ⟨Bs⟩
n⋆
s

+
1 + 2 ⟨Be⟩

n⋆
e

· k5k6(
k5 + k6 − ⟨Be⟩ f ′

2(n
⋆
e)
)(
k5 + k6

n⋆
p

n⋆
s
− ⟨Be⟩ f ′

2(n
⋆
e)
)].

(27)
Also for scheme 2 it is evident that CV 2

P (scheme 2) < CV 2
P (scheme 0) for any choice of the

model parameters. Indeed, CV 2
P (scheme 0) and CV 2

P (scheme 2) only differ in the denominator of
the second addend in the square brackets (27), always larger than the corresponding contribute in
(16) because, according to (9):

−⟨Be⟩ f ′
2(n

⋆
e) = ⟨Be⟩ β2h2θ

h2
2

(n⋆
e)

h2−1

(θh2
2 + (n⋆

e)
h2)2

= h2 ⟨Be⟩ β2
θh2
2

θh2
2 + (n⋆

e)
h2

· (n⋆
e)

h2−1

θh2
2 + (n⋆

e)
h2

= h2 ⟨Be⟩ f2(n⋆
e) ·

(n⋆
e)

h2−1

θh2
2 + (n⋆

e)
h2

= h2k5
(n⋆

e)
h2

θh2
2 + (n⋆

e)
h2

> 0.

(28)

Thus, similarly to scheme 1, also for scheme 2 the feedback on the enzyme production reduces the
noise in the product fluctuations, and these results are qualitatively and quantitatively in agreement
with those provided by the SHS without QSSA.

Getting in the details of (27), it comes that:

– by increasing θ2 with respect to n⋆
e (θ2 ≫ n⋆

e), the effect of the feedback on the noise
reduction is attenuated since, according to (28), ⟨Be⟩ f ′

2(n
⋆
e) 7→ 0 and, straightforwardly,

CV 2
P (scheme 2) 7→ CV 2

P (scheme 0); instead, by decreasing θ2 with respect to n⋆
e (θ2 ≪ n⋆

e),
the effect of the feedback on the noise reduction is enhanced, with −⟨Be⟩ f ′

2(n
⋆
e) approaching

the value of h2k5. Such a qualitative behavior for varying values of θ2 is coherent with data
shown in Fig.4, right panel, according to the ss-SSA and SHS without QSSA;

– the substrate average burst size ⟨Bs⟩ does not influence ⟨Be⟩ f ′
2(n

⋆
e), which is, instead, in-

fluenced by the enzyme average burst size: high values of ⟨Be⟩ proportionally provide high
values of n⋆

e making it so that −⟨Be⟩ f ′
2(n

⋆
e) 7→ h2k5; on the other hand, low values of ⟨Be⟩

may vanish the feedback effect in terms of noise reduction, since −⟨Be⟩ f ′
2(n

⋆
e) 7→ 0;
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– the promoter sensitivity h2 enhances the effect of the feedback, especially for low values of
the repression threshold θ2.

4.5. Comparison between the two feedback schemes

According to (9), the approximation in (20), provided that k3/k2 ≪ 1, simplifies the equation for
CV 2

P into:

CV 2
P ≃ 1 + 2 ⟨Be⟩

2n⋆
e

· k6

k5
(
1 + h2αh2(n

⋆
e/θ2)

)
+ k6

· 1

1 + h2αh2(n
⋆
e/θ2)

, αh(x) =
xh

1 + xh
(29)

so that, by exploiting (22), the CV 2
P for the two feedback schemes can be related as follows:

CV 2
P (scheme 2) = CV 2

P (scheme 1) · k5 + k6

k5
(
1 + h2αh2(n

⋆
e/θ2)

)
+ k6

·
1 + h1αh1(n

⋆
p/θ1)

1 + h2αh2(n
⋆
e/θ2)

. (30)

This equation helps us to understand which of the two feedback schemes works better in view of
the metabolic noise reduction. For instance, if we assume to set the feedback parameters in order
to have the same ratios n⋆

p/θ1 = n⋆
e/θ2 and the same promoter sensitivities h = h1 = h2, then it

straightforwardly comes that scheme 2 becomes always preferable to scheme 1, since:

CV 2
P (scheme 2) = CV 2

P (scheme 1) · k5 + k6

k5
(
1 + hαh(n⋆

e/θ2)
)
+ k6

≤ CV 2
P (scheme 1). (31)

According to such a behavior, the improvements in the metabolic noise reduction coming from
scheme 2 become more and more evident with respect to those coming from scheme 1 by increas-
ing the promoter sensitivity h: Fig. 5 shows how the metabolic noise varies as a function of h,
according to the setting θ1 = n⋆

p, θ2 = n⋆
e.

On the other hand, if one keeps the general setting of eq.(30), the following condition must be
fulfilled in order to have CV 2

P (scheme 2) < CV 2
P (scheme 1):

(k5 + k6)
(
1 + h1αh1(n

⋆
p/θ1)

)
<

(
k5
(
1 + h2αh2(n

⋆
e/θ2)

)
+ k6

)
(1 + h2αh2(n

⋆
e/θ2)) . (32)

Under the hypothesis of a common promoter sensitivity h1 = h2 = h, we can easily find the
domain on the parameter space (n⋆

p/θ1, n
⋆
e/θ2) where feedback scheme 1 is to be preferred to

feedback scheme 2. In Fig. 6 such a domain for h = 1 is given by the purple region (and outside
the opposite). By increasing the value of h, such a domain enlarges: for instance, when h =
8, the region where feedback scheme 1 is to be preferred to feedback scheme 2 includes both
the purple and the pink regions. For a further increment of the parameter h, the enlargement
progressively reduces, with the domain boundary eventually approaching the black line for h 7→
+∞. In summary, an increase in the promoter sensitivity provides more benefits to the feedback
from the product with respect to the feedback from the enzyme, in terms of enlarging the parameter
design space.

5. Conclusions

In this work, we presented a comparison between two feedback schemes applied to a basic enzy-
matic reaction network. Performances have been evaluated in terms of metabolic noise reduction,
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Fig. 5. Metabolic noise for different values of the promoter sensitivity, according to constraints
θ1 = n⋆

p, θ2 = n⋆
e and h1 = h2 = h. The solid lines are referred to the SHS formulation. The

dotted line (scheme 0) and the circles (feedback schemes 1 and 2) are obtained by means of the
slow-scale Stochastic Simulation Algorithm.

Fig. 6. Domain of (n⋆
p/θ1, n

⋆
e/θ2) where feedback scheme 1 provides a CV 2

P smaller than scheme
2. The purple region refers to the case h = 1. By increasing h, the boundary of such a region
moves according to the arrows, eventually approaching the black line. The red line refers to such
a boundary for the case h = 8.

where the noise is measured in terms of coefficient of variation of the reaction product around its
steady-state average value. The obtained simulations confirm general experimental results, includ-
ing an overall noise reduction effect for both feedback schemes [16, 17], with a pivotal role played
by the promoter sensitivity, which enhances the noise reduction. The latter effect (known also as

14



ultrasensitive regulation) has been experimentally shown to hold also in different systems biology
frameworks, e.g. improving flux adaptation in unbranched metabolic pathways [31] and noise
rejection in signaling cascades [32]. The case where the enzyme production is not regulated is
outperformed by the two regulation schemes (product-feedback and enzyme-feedback), as shown
by evaluating the noise by means of numerical simulation (ss-SSA) and by analytical computations
exploiting the Stochastic Hybrid Systems (SHS) framework combined with the Quasi Steady-State
Approximation (QSSA). Analytical results suggest the parameter settings according to which one
of the two feedback schemes provides the best results with respect to metabolic noise reduction.
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