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a b s t r a c t

We propose an exchange economy evolutionary model with agents heterogeneous in the structure of
preferences. Assuming that the share updating mechanism is non-monotone in the calorie intake, we
find multistability phenomena involving equilibria characterized by the coexistence of heterogeneous
agents.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction1

Chang and Stauber (2009) propose a model on the evolution of2

the population shares in an exchange economy setting, in which3

it is assumed that there are two groups of agents characterized4

by a different structure of the preferences. Indeed, the weights5

assigned to the two consumption goods in the Cobb–Douglas6

utility functions do not coincide across groups. The mechanism7

according towhich shares are updated in Chang and Stauber (2009)8

ismonotone in the calorie intake: the larger such intake by a group,9

∗ Corresponding author. Tel.: +39 0264485767; fax: +39 0264485705.
E-mail addresses: ahmad.naimzada@unimib.it (A. Naimzada),

marina.pireddu@unimib.it (M. Pireddu).
1 Tel.: +39 0264485813; fax: +39 0264483085.

the more that group share increases. The results in that paper 10

concern the existence and local stability of trivial and nontrivial 11

market stationary equilibria, where we call equilibria trivial if they 12

are not characterized by the coexistence between the two groups 13

of agents, as one of the two groups totally prevails on the other 14

and remains alone. Chang and Stauber (2009) find at most one 15

nontrivial market stationary equilibrium, which when exists is 16

stable, and two trivial equilibria. 17

According to Chang and Stauber (2009), amonotone population 18

growth rate is suitable to represent the long-run centuries- 19

old trend, as the diet of a population group affects its long- 20

term survival. On the other hand, in that paper it is remarked 21

that it would be interesting to consider more general biological 22

payoff functions. In fact, supported by the empirical literature, 23

we believe that a biological payoff function monotonically 24

increasing in the calorie intake is not well suited to describe 25

http://dx.doi.org/10.1016/j.econlet.2016.02.018
0165-1765/© 2016 Elsevier B.V. All rights reserved.
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the framework of contemporary developed countries. Namely,1

according to Ponthiere (2011), monotone survival functions do2

not fit aggregate data (cf. Fig. 1 therein); moreover, a broad3

epidemiological literature (see e.g. Adams et al., 2006; Bender et al.,4

1998; Fontaine et al., 2003 and Solomon and Manson, 1997) has5

shown the negative effects of overconsumption on health and6

survival, emphasizing a non-monotone relationship between the7

corpulence, measured by BMI (Body-Mass Index, i.e., the weight8

in kilograms divided by the square of the height in meters),9

and mortality risks. Such non-monotone relationship is clearly10

represented in the (BMI, mortality)-plane by Waaler (1984)’s U-11

shaped curves, which have been commented by Fogel (1994) from12

an intertemporal viewpoint. The relevance of those findings gave13

rise to the so-called ‘‘economics of obesity’’ (see the survey by14

Philipson and Posner, 2008).15

In light of the above observations, we then aim to reconsider16

the model in Chang and Stauber (2009), replacing the monotone17

population growth rate assumed therein with a bell-shaped map,18

increasing with the calorie intake up to a certain threshold19

value, above which it becomes decreasing. Even with such a20

crucial change, we still obtain a one-dimensional continuous-time21

dynamical system, for which, in addition to the three equilibria in22

Chang and Stauber (2009),we find (up to) two additional nontrivial23

market stationary equilibria. Moreover, the (possibly existing)24

nontrivial equilibrium found in Chang and Stauber (2009) may25

become unstable in our context, and also the two trivial equilibria26

may have different dynamic behaviors with respect to Chang and27

Stauber (2009). We perform a qualitative bifurcation analysis on28

varying the parameter describing the threshold value at which29

the growth rate becomes decreasing. In particular, differently30

from the framework in Chang and Stauber (2009), our setting31

displays multistability phenomena, characterized by the presence32

of multiple, trivial and nontrivial, locally stable market stationary33

equilibria.34

We remark that multistability may be considered as a source35

of richness for the framework under analysis because, other36

parameters being equal, i.e., under the same institutional, cultural37

and social conditions, it allows to explain different trajectories38

and evolutionary paths. The initial conditions, leading to the39

various attractors, represent indeed a summary of the past history,40

which in the presence of multistability phenomena does matter41

in determining the evolution of the system. Such property, in the42

literature on complex systems, is also called ‘‘path-dependence’’43

(see Arthur, 1994).44

Moreover, in the specific context we deal with, the presence45

of multiple equilibria well represents the variety of historical46

experiences across different countries in relation to the approach47

they adopt towards food, diet and consequently towards obesity48

(consider e.g., according to Philipson and Posner, 2008, the49

different scenarios in the US and in the Mediterranean countries).50

Finally, we stress that in ourmodel we also analyzed the setting51

in which the two groups of agentsmay differ in the threshold level,52

above which an increase in the calorie intake becomes harmful53

rather than beneficial. Such scenario can describe for instance54

the case in which the two groups of agents differ in the amount55

of sports they play: inactive people need a lower calorie intake56

than athletes. Since the possible dynamic scenarios we foundwere57

similar to those obtained in the setting in which the two threshold58

levels coincide, we preferred to confine ourselves to the simpler59

framework, which also allows a deeper analytical treatment.60

2. The model61

We start our discussion recalling the framework in Chang62

and Stauber (2009), where the authors consider a continuous-63

time model describing an exchange economy with a continuum64

of agents, which may be of type α or of type β . There are two 65

consumption goods, x and y, and agent preferences are described 66

by Cobb–Douglas utility functions, i.e., Ui(x, y) = xiy1−i, for i ∈ 67

{α, β}, with 0 < β < α < 1. Both kinds of agents have the 68

same endowments of the two goods, denoted respectively by wx 69

and wy. The analysis is performed in terms of the relative price 70

p(t) = py(t)/px(t), where px(t) and py(t) are the prices at time 71

t for goods x and y, respectively. The size of the population of kind 72

α (β) at time t is denoted by A(t) (B(t)). The calorie intake Ki(t) of 73

an agent of type i ∈ {α, β} at time t is given by a linear combination 74

of the units xi(t) and yi(t) of goods x and y he consumes, weighted 75

respectively with the calories that each agent derives from the 76

consumption of a unit of good x and of good y, i.e., Ki(t) = cxxi(t)+ 77

cyyi(t). In Chang and Stauber (2009), denoting by K the calorie 78

subsistence level, the growth rate of the population of type i is then 79

assumed to be 80

Ki(t) − K , (2.1) 81

so that the evolution of the two groups of consumers is described 82

by the following system 83
dA(t)
dt

= (Kα(t) − K)A(t)

dB(t)
dt

= (Kβ(t) − K)B(t).
(2.2) 84

Introducing the normalized variables a(t) = (A(t))/(A(t) + B(t)) 85

and b(t) = (B(t))/(A(t) + B(t)), describing the fractions of the 86

population composed by the agents of type α and β , respectively, 87

and noticing that b(t) = 1−a(t), System (2.2) becomes equivalent 88

to 89

da(t)
dt

= (Kα(t) − Kβ(t))a(t)(1 − a(t)). (2.3) 90

The (normalized) price at which agents exchange their endow- 91

ments is determined by solving the consumer maximization prob- 92

lem and using amarket clearing condition. According to Chang and 93

Stauber (2009), the market equilibrium price, i.e., the price that 94

clears the market, is then given by 95

p∗(t) =


1 −


a(t)α + (1 − a(t))β


wx

a(t)α + (1 − a(t))β

wy

(2.4) 96

and the consumer equilibrium quantities of the two goods for 97

agent of type i ∈ {α, β}, compatible with the market equilibrium, 98

are 99

x∗

i (t) = i(wx + p∗(t)wy) =
iwx

a(t)α + (1 − a(t))β
,

y∗

i (t) = (1 − i)


wx

p∗(t)
+ wy


=

(1 − i)wy

1 − (a(t)α + (1 − a(t))β)
.

(2.5) 100

Hence, (2.3) can be rewritten as 101

da(t)
dt

= (α − β)a(t)(1 − a(t)) 102

×


cxwx

a(t)α + (1 − a(t))β
−

cywy

1 − a(t)α − (1 − a(t))β


. (2.6) 103

The market stationary equilibria, at which for every t the 104

population shares, and thus also the market equilibrium price and 105

the consumer equilibrium quantities, are constant, will be called 106

trivial if they are not characterized by the coexistence between the 107

two groups of agents, and nontrivial otherwise. In addition to the 108

trivial market stationary equilibria a = 0 and a = 1, a nontrivial 109

market stationary equilibrium is given by a = a∗, with 110

a∗
=

(1 − β)cxwx − βcywy

(α − β)(cxwx + cywy)
, (2.7) 111

Please cite this article in press as: Naimzada, A., Pireddu, M., Endogenous evolution of heterogeneous consumers preferences: Multistability and coexistence between
groups. Economics Letters (2016), http://dx.doi.org/10.1016/j.econlet.2016.02.018
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as long as a∗
∈ (0, 1), i.e., for cxwx ∈ ((βcywy)/(1 − β), (αcywy)/1

(1 − α)). Such market stationary equilibrium, when it exists, is2

always stable for the model considered in Chang and Stauber3

(2009). In that paper no comments are made on the local stability4

of the dynamical system at a = 0 and a = 1. However, a simple5

continuity argument shows that, when a∗
∈ (0, 1), then a = 0 and6

a = 1 are always unstable. When instead a∗
∉ (0, 1), a = 0 may7

be unstable and a = 1 stable, or vice versa.8

The framework we are going to analyze differs from the one9

recalled above in a crucial aspect. Indeed, instead of dealing with10

the monotone growth rate in (2.1), we assume, in agreement with11

the quoted empirical literature, the existence for the growth rate12

of a threshold value, above which an increasing calorie intake13

becomes harmful, rather than beneficial. In symbols, as growth rate14

we consider15

1

1 + σ(Ki(t) −K)2
, (2.8)16

where σ is a positive parameter describing the intensity of the17

decrease in the growth rate due to an increase in the distance18

between the calorie intake Ki(t) and the threshold value K . In19

this mannerK is no more interpretable as the calorie subsistence20

level K in (2.1), but as the desirable calorie intake, which allows21

maximizing the growth rate.With suchmodification, the evolution22

of the two groups of consumers gets described by the following23

system24 
dA(t)
dt

=
A(t)

1 + σ(Kα(t) −K)2

dB(t)
dt

=
B(t)

1 + σ(Kβ(t) −K)2

(2.9)25

which, introducing the population fractions a(t) and b(t) = 1 −26

a(t), is equivalent toQ227

da(t)
dt

= a(t)(1 − a(t))28

×


1

1 + σ(Kα(t) −K)2
−

1

1 + σ(Kβ(t) −K)2


29

= a(t)(1 − a(t))(Kα(t) − Kβ(t))30

×


σ

2K − Kα(t) − Kβ(t)


1 + σ(Kα(t) −K)2

 
1 + σ(Kβ(t) −K)2

 . (2.10)31

Recalling the expressions for themarket equilibriumvalues in (2.4)32

and (2.5), then (2.10) can be rewritten as Eq. (2.11) (in Box I).Q3
Q4

33

Such equation admits, in addition to the trivial market station-34

ary equilibria a = 0 and a = 1, up to three nontrivial equilib-35

ria. As we shall see in Proposition 3.1, one of them is again given36

by a = a∗, with a∗ as in (2.7), for cxwx ∈ ((βcywy)/(1 − β),37

(αcywy)/(1 − α)), while the other two are a = a∗

1,2, with38

a∗

1,2 =
2K(1 − 2β) + cxwx(α + β) − cywy(2 − α − β) ±

√
∆

4K(α − β)
,39

(2.12)40

where41

∆ = 4K 2
+ (cxwx(α + β) − cywy(2 − α − β))242

− 4K(cxwx(α + β) + cywy(2 − α − β)),43

as long as they are real and belong to (0, 1). Due to the heavy ex-44

pressions of a∗

1,2 and in order to compare our results to those in45

Chang and Stauber (2009), in Proposition 3.2 we will analytically46

investigate the local stability of (2.11) just at a = 0, a = a∗ and47

a = 1.48

In view of the subsequent analysis, it is expedient to introduce 49

the one-dimensional maps f , g : [0, 1] → R related to (2.6) and 50

(2.11), respectively, and defined as Eqs. (2.13) and (2.14) (in Box II). 51

3. Stability, bifurcation analysis, and possible scenarios 52

As a first step in the study of our dynamical system, in the next 53

resultwe derive the expressions of themarket stationary equilibria 54

for (2.11). 55

Proposition 3.1. Eq. (2.11) admits a = 0, a = 1, a = a∗ in (2.7), 56

and a = a∗

1,2 in (2.12) as market stationary equilibria, as long as they 57

are real and belong to (0, 1). 58

Proof. The conclusion immediately follows by observing that a = 59

0, a = 1, a = a∗ in (2.7), and a = a∗

1,2 in (2.12) are all the solutions 60

to the equation g(a) = 0, with g as in (2.14). � 61

In the following proposition we investigate the stability 62

conditions for themarket stationary equilibria a = 0, a = a∗, a = 63

1, we have in common with Chang and Stauber (2009). 64

Proposition 3.2. Eq. (2.11) is locally asymptotically stable: 65

– at 0 if ((1 − β)cxwx − βcywy)

2K −

(α+β)cxwx
β

−
(2−α−β)cywy

1−β


66

< 0; 67

– at a∗ in (2.7) if K > cxwx + cywy; 68

– at 1 if ((1 − α)cxwx − αcywy)

2K −

(α+β)cxwx
α

−
(2−α−β)cywy

1−α


69

> 0. 70

Proof. The stability conditions follow by direct computations, 71

imposing respectively g ′(0) < 0, g ′(a∗) < 0 and g ′(1) < 0, with 72

g as in (2.14). � 73

Hence, the local stability of a = 0, a = a∗ and a = 1, 74

being influenced in our framework also byK , is independent from 75

the stability of the same market stationary equilibria in Chang 76

and Stauber (2009). Indeed, if we wish to have the same dynamic 77

behavior at a = 0, a = a∗ and a = 1 as in Chang and Stauber 78

(2009), it suffices to takeK large enough, while, in order to modify 79

it, we just need to takeK sufficiently small.2 80

As already recalled in Section 2, in the framework by Chang 81

and Stauber (2009), when a∗
∈ (0, 1), then a = 0 and a = 1 82

are always unstable (see the graph of f in red in Fig. 1(A)–(D)); Q5 83

when instead a∗
∉ (0, 1), a = 0 may be unstable and a = 1 84

stable, or vice versa. Hence, in the monotone growth rate setting 85

no multistability phenomena, characterized by the presence of 86

multiple locally stable market stationary equilibria, may arise. On 87

the other hand, in the non-monotone growth rate framework, in 88

addition to reproducing all the scenarios arising from the setting in 89

Chang and Stauber (2009), we also find multistability phenomena, 90

involving both trivial and nontrivial equilibria (see the graph of g 91

in blue in Fig. 1(B)–(D)). 92

We shall now better analyze the mutual relationship between 93

the stability of the equilibria in the monotone and non-monotone 94

growth rate frameworks, performing a qualitative bifurcation 95

analysis, i.e., investigating the emergence/disappearance and 96

stability gain/loss of equilibria on varying K = K . Indeed, 97

although as seen in Section 2 the parameters K and K have a 98

different interpretation, an increase in either of the two produces 99

an analogous effect, i.e., a reduction of the population growth rate, 100

which in Chang and Stauber (2009)may also become negative. Due

2 Namely, it is easy to see that (2.6) is locally asymptotically stable at 0 if (1 −

β)cxwx < βcywy , at 1 if (1 − α)cxwx > αcywy , and always at a∗ .
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da(t)
dt

= (α − β)a(t)(1 − a(t))


cxwx

a(t)α + (1 − a(t))β
−

cywy

1 − a(t)α − (1 − a(t))β



·

σ

2K −

cxwx
a(t)α+(1−a(t))β (α + β) −

cywy
1−a(t)α−(1−a(t))β (2 − α − β)



1 + σ


cxwxα

a(t)α+(1−a(t))β +
cywy(1−α)

1−a(t)α−(1−a(t))β −K21 + σ


cxwxβ
a(t)α+(1−a(t))β +

cywy(1−β)

1−a(t)α−(1−a(t))β −K2 . (2.11)

Box I.

f (a) = (α − β)a(1 − a)


cxwx

aα + (1 − a)β
−

cywy

1 − aα − (1 − a)β


, (2.13)

g(a) = (α − β)a(1 − a)


cxwx

aα + (1 − a)β
−

cywy

1 − aα − (1 − a)β



·

σ

2K −

cxwx
aα+(1−a)β (α + β) −

cywy
1−aα−(1−a)β (2 − α − β)



1 + σ


cxwxα

aα+(1−a)β +
cywy(1−α)

1−aα−(1−a)β −K21 + σ


cxwxβ
aα+(1−a)β +

cywy(1−β)

1−aα−(1−a)β −K2 . (2.14)

Box II.

0
0.2 0.4 0.6 0.8 1

0
0.2 0.4 0.6 0.8 1

0
0.2 0.4 0.6 0.8 1

0
0.2 0.4 0.6 0.8 1

A B C D

Fig. 1. The graphs of f in red and of g in blue with K = 4.5 in (A), K = 3.8 in (B), K = 3.5 in (C), K = 3 in (D). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

to such similarity, inwhat followswewill investigate the dynamics1

obtained in the monotone and non-monotone settings on varying2

K = K = K .3

In Fig. 1 we plot the graphs of the first iterate of f in (2.13) in4

red and of g in (2.14) in blue for different values of K , while the5

other parameters are fixed as follows: cx = 1.5, wx = 1, cy =6

1.3, wy = 1.4, α = 0.7, β = 0.3, σ = 0.9.7

Fig. 1 shows that for large values of K maps f and g are8

analogous froma stability viewpoint (see (A) forK = 4.5), and thus9

we find for our model the same dynamic behavior as in Chang and10

Stauber (2009), while for small values of K maps f and g display an11

opposite behavior (see (D) for K = 3); for intermediate decreasing12

values of K , the behavior of f and g becomes less and less similar13

(see (B) for K = 3.8 and (C) for K = 3.5). We stress that, just by14

suitably modifying the values of wy and K , it is possible to obtain a15

framework symmetric to that in (B), in which there exists a unique16

zero for g which is not a zero for f , and that is close to 0, rather than17

to 1. For instance, such a framework can be achieved for wy = 0.818

and K = 3. In particular, still on varying K , it is possible to replicate19

the sequence of scenarios from (A) to (D), but passing through the20

framework symmetric to (B).21

As concerns multistability, we notice that the locally stable22

equilibria are a = a∗, a = 1 in (B); a = 0, a = a∗, a = 1 in23

(C); a = 0, a = 1 in (D). Hence, at most one of the multiple locally24

stable equilibria is characterized by the coexistence between the25

two groups of agents, while in the other one(s) a group completely26

prevails and remains alone. The unstable equilibria in (B)–(D) play27

the role of separating the basins of attraction of the locally stable28

equilibria: trajectories will be attracted by one or the other of29

the various locally stable equilibria according to the chosen initial30

condition.31

In regard to (A), since there the monotone and non-monotone 32

growth rate frameworks are dynamically equivalent and since in 33

Chang and Stauber (2009) no multistability phenomenamay arise, 34

the unique stable equilibrium we find is given by a = a∗. 35

We finally investigate what happens to the calorie intakes Kα 36

and Kβ in the stable equilibria. At first, we observe that, in general, 37

at a = a∗ it holds that Kα = Kβ ≠ K and that Kα = Kβ = K if 38

and only if K = cxwx + cywy, i.e., if K coincides with the stability 39

threshold level found in Proposition 3.2 for (2.11) at a = a∗. For the 40

sake of generality, we focus on the case in which Kα = Kβ ≠ K at 41

a = a∗, considering for instance the parameter setting in Fig. 1(C), 42

where, with respect to Chang and Stauber (2009), in addition to 43

a = a∗, also a = 0 and a = 1 are locally stable. In such framework 44

at a = a∗ we have Kα = Kβ = 3.32 < K = 3.5, at a = 0 45

we have Kα = 4.28, Kβ = 3.32 and at a = 1 we have Kα = 46

3.32, Kβ = 4.89. Hence, at a = 0 and at a = 1 the calorie intake of 47

the only surviving group coincideswith the calorie intake at a = a∗
48

and thus it is below the desirable calorie intake K , which allows 49

maximizing the growth rate, while both at a = 0 and at a = 1 50

for the extinguishing group we observe an excess calorie intake. 51

Actually, this is true not only at a = 0 and at a = 1, but also along 52

the trajectories tending towards them. 53

4. Conclusion 54

We believe the setting we proposed can be a starting point for 55

other research works. 56

For instance, from amodeling viewpoint, it could bemodified to 57

represent the fashion cycle. In such case, wewould still deal with a 58

bell-shaped map, describing, rather than the relationship between 59

calorie intake and population growth rate, the link between 60
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consumption and imitative behavior, below the saturation level,1

and between consumption and snob behavior, above such level.2

In order to interpret the fashion cycle, and in particular its3

multistability phenomena, we need to identify (at least) two4

lifestyles, described by different preference structures; for each5

lifestyle we shall introduce an attractivity degree, which depends6

in a nonlinear bell-shaped manner on the consumption of the7

representative agent belonging to the population sharewho adopts8

that particular preference structure. Then, the two attractivities9

jointly determine the population switching mechanism between10

the different lifestyles.11

From amathematical viewpoint, it would instead be interesting12

to study the model we presented considering time as discrete,13

rather than continuous, in order to investigate how the dynamics14

change and which new phenomena arise.15
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