Qualitative behavior of a coarse-grain growth model
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Abstract—The construction of comprehensive, integrative com-
putational models are of exceptional interest in Systems Biology,
since they could help researchers to understand the emergent cel-
lular functions and help physicians to treat diseases. Within this
framework, detailed molecular models are usually unmanageable
because, besides identifiability problems, even correct simulations
may not lead to understanding. On the other hand a multi-scaled,
modular flexibly-grained modeling approach would provide an
overview for the subsequent molecular details, trying to capture
the basic emergent properties associated to each module.

This note deals with a minimal model of cellular growth,
involving ribosome and protein content. A modified version of
the model has been recently implemented as a module of a
coarse-grain model combining growth, metabolism and cycle,
providing encouraging results for both single cell and population
simulations. Here we propose the qualitative behavior analysis
of the model, providing model parameters conditions that ensure
(or prevent) growth. This way known approximated results are
overcome and improved, allowing to infer information about
the model qualitative behavior without resorting to numerical
simulations.

Index Terms—Systems Biology, Qualitative behavior analysis

I. INTRODUCTION

Mathematical models describing cell growth and cell cycle
events provide a theoretical support for the analysis of the cell
life, from a single cell perspective to the cell population level,
as well as for the investigation of the mechanisms adopted
by the cell to control its size and cycle events (e.g. DNA
synthesis and mitosis). In this paper we review the growth
model originally published in [2]. Motivation for the proposed
mathematical analysis is twofold: from the one hand a slightly
modified version of such model has been employed as a
module of a coarse-grain model that interconnects three basic
cellular functions such as metabolism, growth and cycle [8],
paving the way for further whole-cell model developments
[9]; from the other hand formal mathematical analysis dates
back to the original publication and is constrained to a model
approximation that does not include any different growth
conditions.

Growth models are of paramount importance because
growth affects (and is influenced, in feedback, by) cell cycle
progression at many different levels (see, e.g. [1], [3], [7] and
references therein). The model here investigated is a minimal
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model for ribosome and protein accumulation, the informa-
tional macromolecules whose biosynthesis is accounted to
drain the large part of energy and building block exploited
in cellular processes. Experimental evidence suggests the
presence of a negative feedback that reduces the ribosome
biosynthesis in presence of ribosomes not engaged in protein
biosynthesis, for both bacteria and eukaryotic cells (see, e.g.
[4]-[6], [10]). This fact is modeled by means of a switching
mechanism that switches off the ribosome production rate any
time the ribosomes-over-protein ratio exceeds a given optimal
value.

A preliminary mathematical analysis of the qualitative be-
havior has been carried out in [2], where exponential growth
conditions are given according to a specific approximation.
Here we extend these results to any feasible setting of the
model parameters, without any approximations, showing the
mathematical coherence of the model and clearly stating
specific growth conditions for any model parameter setting.

II. THE GROWTH MODEL

The structure of the growth model proposed in the paper [2]
is the same for all cell types (e.g. mammalian cells, yeasts,
bacteria), while its parameter setting is cell-dependent. The
growth mechanism is represented by means of the two related
dynamics of proteins (P) and ribosomes (R). The protein
content P is expressed in terms of number of polymerized
amino acids and its temporal behaviour depends on the balance
between protein synthesis and degradation: the synthesis is
given by the product of the number of ribosomes multiplied by
their (average) efficiency K5 in ammino acids polymerizaton
during traslation, while the degradation follows a first-order
dynamics with the time constant 7o.

Regards to ribosomes dynamics, a negative feedback is
assumed to control the synthesis rate according to the level
of ribosomes (as well as of proteins) actually present in
the cell. More in details, there is no ribosome synthesis if
the ratio R/P overcomes a threshold p (i.e., if there are
too many ribosomes with respect to the actual quantity of
proteins); otherwise, the ribosome synthesis is proportional
to the (positive) difference pP(t) — R(t), by means of the
efficiency K. Such a compensatory mechanism based on the
ribosome level is supported by many experimental findings
[4]-[6], [10]. The threshold p is the ideal ratio of ribosomes
over proteins, and it represents the limit value of the actual



ratio R/ P after the transient period. Finally, concerning the
ribosome degradation, the clearance rate is assumed trivially
linear with a time constant 7.

Equations for R(t) and P(t) are below reported:

R(t) = [pP(t) - R()) " — T,

, ) n (1)
P(t) = KoR(t) — —P(t),
T2
where
o]t = z, forx >0,
“ 1 0, otherwise.

III. THE GROWTH MODEL AS A VARIABLE STRUCTURE
MODEL

The Ordinary Differential Equations (ODE) model (1) may
be thought of as a variable structure system (aka switching
system), with the two linear switching modes triggered by
the position of the state of the system in the phase plan. For
this reason, in order to characterize the dynamical behaviour
of R(t) and P(t), it is worthwhile to study the properties of
the two working modes, that is of the two linear dynamical
systems included in the compact formulation (1), and to
investigate the switching conditions from a working mode to
the other one.

The two working modes embedded into the hybrid system
(1) are given by the following linear systems:

iy = -1,
1: 1 2)
g (1) = Kur(t) — PO,

T2

w0 = - (Ki+ ) B + KapP(o)
o . m 3
P(t) = Ka2R(t) — —P(t).
T2

The working mode 1, described by system (2), represents
a cell that is not synthesizing ribosomes, while the working
mode g9, given by system (3), represents a cell that is
actually producing ribosomes. For each working mode it is
interesting to establish if cell growth is possible and under
which conditions on the model parameters. Let us so denote
by g and g the two opposite growing states of the cell, that
in principle can be obtained under each working mode: the
state g represents a growing cell, i.e. the number of ribosomes
and proteins is actually increasing; the state g represents a not
growing cell in which the number of ribosomes and proteins
is decreasing.

From the equations of system (2) it is easy to infer that
only the growing state g (no growth) can be obtained under
the working mode 1 (no ribosome synthesis), meaning that
the number of ribosomes and proteins decrease in the absence
of ribosome synthesis. Indeed, the eigenvalues of system (2)
are both negative, which implies that R(¢t) — 0, P(t) — 0 for
t — o0.

Conversely, under the working mode o (ribosome synthe-
sis) both growing states g and g are possible. Indeed, the

number of ribosomes and proteins can increase or decrease
depending on the sign of the related eigenvalues. So, being

1
- <K1 + > Kip
A == T 1 (4)
K> -
T2

the dynamical matrix of system (3) and

1 1 1\ 1
MM:V+GQ++»>A+GQ+)—KJW
T1 T2 T/ T2
&)

the related characteristic polynomial, the eigenvalues of system
(3) are given by

A :y(—l —\/1—|—a:),

where
1\ 1
K1 Ksp — (Kl + ) —

T1) T2

A=y (-1+/1+z), (6

r=4 5 , @)
(1a+5+3)
Ki+—+—
1 T2
1 1 1
y:@ﬁ++). (8)
2 1 T2

Due to the physical meaning of the model parameters (they
are strictly positive), then y > 0. So, based on the sign of
x, system (3) gives rise to different dynamical behaviours of
R(t), P(t). In particular, from Egs. (6)-(7) we have that:

o if z > 0 then system (3) produces the growth of its
variables (growth g). Indeed, A;, Ao are real and of
opposite sign, that is Ay < 0, Ay > 0. This means that,
after a transient period, both functions R(¢) and P(t) tend
to an exponential growth with rate constant Ay > 0.

o if x < 0, no growth of the state variables is produced (no
growth g). Indeed, we have:

— if x = 0 then Ay = 0 while \; is real and strictly
negative; so, R(t) and P(t) tend to constant values
while the natural mode e** approaches zero;

— if —1 < 2 < 0 then both eigenvalues are real and
negative; R(t) and P(t) monotonically converge to
ZEer0;

- if < —1 then Ay, Ao are complex conjugate
eigenvalues with Re{\;}, Re{A2} < 0; this means
that R(t), P(t) converge to zero with oscillations.

Remark 3.1: The linear system described by a non-trivial
ribosome synthesis (py working mode) with a no growth
condition (g) provided by z < —1 asymptotically converges
to zero with oscillations. This means that negative values
of both protein and ribosome amounts would be showed.
However, such negative, meaningless behavior is prevented by
the nonlinear fashion of the whole system (1). Indeed, if there
existed a time instant 7 such that R(f) = 0 with R(f) < 0,
then by substituting these values in the ribosome dynamics:

mazwma—mm+—%?=pmm+zo )



which is in contradiction with R(t_) < 0. Analogously it can
be proven that P(t) never becomes negative. Therefore, even
if starting from a non-trivial ribosome synthesis with z < —1,
there will come a time instant according to which a switch
from py to py occurs providing asymptotic convergence to
zero without oscillations.

Figure 1 summarizes the combinations of all the possible
working modes (1, po) and growing states (g, g) of the
hybrid system (1), on the basis of the values of the variable
ratio R(t)/P(t) and of the quantity =. The figure shows that
the population of ribosomes and proteins can actually grow
only when z > 0, but it depends on the value of the ratio
R(t)/P(t): the growth state g is actually obtained only under
the working mode po, i.e. when R/P < p. Conversely, when
x < 0 the growth is not allowed, independently of the values
of the state variables (i.e. of the working mode).
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Fig. 1. Combinations of all possible working modes

IV. ANALYSIS OF THE RIBOSOME SYNTHESIS SWITCHES

The aim of this section is to study when, and under what
conditions, the working modes 11 and pio of system (1) remain
stable or switch to the other one, on the basis of considerations
on the dynamical behaviour of R(¢), P(t) (and in particular
of their ratio), starting from a particular value Ry/Pp in ¢t = 0.

Let us first note from the ODE system (1) that the functions
P(t), R(t), and then the ratio R(t)/P(t), are continuous
functions with continuous time derivative, for any time ¢ (even
at switching times). This means that the time derivative of
R(t)/P(t) is actually a continuous function, therefore if the
time derivative of R(t)/P(t) is not zero in a given time instant
t, there exist a small enough neighborhood of ¢ (namely I;)
such that R(t)/P(t) has a monotonic behaviour in I;.

A. Switch from pq to po

Let us now verify whether the ratio R(t)/P(t) remains
larger than, or at least equal to, p (no synthesis, 11;) or becomes
lower than p (synthesis, u3), when Ry/Py > p in t = 0 and
t increases from zero. To this end, let us first assume that

Ry/Py > p. Then, because of the continuity of R(t)/P(t),
there exists 7' > 0 such that R(t)/P(t) > p for any ¢ in the
interval [0, T, so that the dynamics of P(t), R(¢) is given by
system (2). Moreover, being

)\1:—1/T1<0, )\2:—1/7’2<0 (10)

the eigenvalues of system (2), we note that:
« the ribosome content is explicitly given by the exponen-

tial law
R(t) = Roe™?, (11)
that is positive for any Ry > 0 and trivially converges to
zero;
o for 7 # 75 the protein evolution is given by
KsR
P(t) = Poet + =20 (M=) (12)
A1 — A2
whilst for 71 = 7 the protein evolution is given by
P(t) = (Py + Kz Rot)e™". (13)

From both Egs. (12), (13) it follow that P(¢) > 0 for any
pair Ry, Py > 0 and P(t) — 0;

o if 71 # 79, the ratio of ribosomes over proteins is given
by:

R(t) 1
P(t) B & —at & _ ,—at
Roe + (67 (1 € )
1
= , a = A1 — Ag;
Py Ko\ a, Ko L
Ry « « a4
conversely, if 71 = 79 it is
R(t) 1
= . (15)
Pty R
— + Kot
R + Ko

Considering first the case 7 # T, according to equation (14)
we obtain the following results:

o if 7y < 7 (i.e. the ribosome clearance rate is faster than
the protein one) then « < 0 and the ratio R(t)/P(t)
monotonically decreases to zero. Therefore, there exists
a time instant ¢ such that R(t)/P(¢) = p. As soon as this
happens, the ribosome synthesis will activate, changing
the previous working mode (switch from pq to po);

e if 71 > 75 (i.e. the ribosome clearance rate is slower than
the protein one) then o > 0, from which it follows that
the ratio R(t)/P(t) converges to the value /Ky > 0
(limit value of function (14) for ¢ — o0). In order
to understand whether such convergence occurs in a
decreasing or increasing fashion, we compute the time
derivative of R(t)/P(t), i.e.

—at

(16)



which is a monotonic function with the sign depending on
the initial condition (if positive, it is a positive decreasing
function, otherwise it is a negative increasing function).
So, based on the sign of Ry/Pp (and then on the sign of
the time derivative of R(t)/P(t)) we have that:

- if a/Ky > Ry/Py > p then the ratio R(t)/P(t) is
monotonically increasing and converges to the limit
a/ K. So, it will never reach the value of p and both
R(t) and P(t) will definitely converge to zero;

- if Ry/Py > a/Ky > p then the ratio R(¢t)/P(t) is
monotonically decreasing to «/ K5 > p. Therefore,
also in this case R(t)/P(t) will never fall below the
threshold p and both R(t) and P(t) will definitely
converge to zero;

- if Ry/Py = a/ Ky > p then the ratio R(¢t)/P(t) is
constant and equal to a/ K5 > p, that again prevents
the ratio to cross the theshold;

- if Ro/Py > p > o/ K5 then the ratio R(t)/P(t) is
monotonically decreasing to a/Ks < p. Therefore
there exists a time instant ¢ such that R(¢)/P(t) =
p according to which the ribosome synthesis will
activate, changing the working mode from i1 to pso.

From the above discussion we can summarize the result
holding for 7 > 79, which is actually independent of the
initial condition Ry/ Py, as follows:

- if pKy < 1/75—1/7 then the ratio R(t)/P(t) > p,
Vt > 0; this means there is no switch (stable working
mode 411);

- if pKy > 1/7 — 1/7 then the ratio R(t)/P(t)
sooner or later will go under the threshold p, switch-
ing the working mode from p; to po.

Regards to the case 7, = 7o, we have that R(t)/P(t)
monotonically decreases to zero (see Eq. (15)), guaranteeing
the crossing of the threshold and so the switching of the
working mode from puq to po.

The previous results given for Ry/Py > p are also valid in
case of Ry/Py = p: it is sufficient to evaluate the sign of the
time derivative of the ratio (14), for 71 # 7o, and of the ratio
(28), for 71 = 79, when the equality Ry/Py = p holds.

We are now able to provide the following result.

Proposition 4.1: Given the initial time ty, with the initial
condition R(tg)/P(to) > p, the ribosome synthesis of system
(1) is not active and the working mode i1 is going to change
or not for ¢ > 0, only depending on the model parameters. In
particular,

1) the working mode 1 sooner or later will switch to o,
if

71 < T2 17

or if
AND  pKy>1/m—1/7

T > To (18)

2) otherwise the working mode wq will not change.

Remark 4.1: Tt worths noticing that, in case condition z > 0
holds, then also pKs > 1/ — 1/71 holds true, since:

1 1 1 1
>0 — pK2><1+ >~>— (19)
Kim) m

T2 71
As a matter of fact, in case x > 0 holds true, then condition
1) of Proposition 4.1 is always valid, and the switch from
to pg will occur for a given time instant.

B. Switch from ps to 1y

Regards to the switch from o to 1, we limit the study to
the case z > 0 (i.e. when growth is ensured by the working
mode us). Indeed, in such a case the switch of the working
mode would produce a nontrivial switch of the qualitative
behavior changing from growing to not growing (i.e. ¢ — g).
In summary, it is interesting to investigate for the case x > 0,
if (and under what conditions) the transition ps+9g — 1+ g
can occur.

Let us assume that the model parameters are s.t. z > 0 (i.e.
KiKsp > (Kl + 1/7‘1)/7’2) and that Ro/Po < pint =0.
In order to study the behaviour of the ratio R(t)/P(t) when
t increases from zero (i.e. if it remains under or crosses the
threshold p), we need to compute the explicit solutions of
system (3). Such solutions can be given as linear combinations
of the natural modes e*it, i = 1, 2, where the eigenvalues \;
are provided by Eqgs. (6)-(7). In particular, we have:

[ ggg } = ulvlT { 1;3 } et —|—u2v2T { 1;8
where u; and v; are respectively the right and the left eigenvec-
tors associated to the eigenvalues A\;, ¢ = 1,2 (i.e. the solutions
of the systems (A — \;I)u; =0, vI (A —X\1)=0,i=1,2).
In particular, recalling the expression of the dynamical matrix
A in (4), we obtain the following matrices of eigenvectors

} et (20)

A1+ 712 A2 + 712
U=[w w]=| K K: |. @D
1 1
K, A2 + 712
T _ _
VT — { U1T } I RS BaP CRPY /\11 22)
V2 K2 )\1 + P
Ao — A1 A1 — X
Then, from Egs. (20)-(22), we obtain:
A1+ L Ao + L
R(t) = = | —R 2Py | et
(t) N\ < 0+ s 0]e
1 1
)\2+:2 R 1+EP hat
Ao — A\ K,
) (23)
K2 2+ = A
P(t -R 2 P, it
(t) )\2_)\1< o+ i, o)e
K2 1 + L A
R _ T2 P ot
+A2—A1< TR, °>e
(24)



Recalling the eigenvalue expressions (6)-(7), it is easy to verify
that the following inequalities hold under the growth condition
x> 0:

Xo— M =2yv/TF2 >0,

1 1
A+ — <0, Ao+ — >0, (25)
T2 T2

eMt <1, Vt>0, eMt > 1, Vt>0.

Inequalities (25) can be exploited to verify that the explicit
solutions of R(t) and P(¢) given by Eqs. (23)-(24) are strictly
positive for any pair Ro, Py > 0, and that, after the stable
mode associated to A; is over, their regime evolution is

A+ & A+ =
_ T2 o T2 Aot
h(t) = A2 — Ay (RO Ky Po e >0, o6
K2 )\1 + % Aot .
P(t) = NN (RO — e Py le > 0;

This implies that the limit of the ratio R(t)/P(t) is given by
the following expression
1
hm @ = 2 + T2 é
t—o0 P(t) K5
It can be verified that the growth condition z > 0 is
sufficient to guarantee vy < p. Thus, in order to prove that
R(t)/P(t) < p holds for any ¢ > 0, it is sufficient to prove
the monotonic behaviour of R(t)/P(t) by studying the sign of
its time derivative. Denoting by v; 2 — (A\; + 1/72) /K> and
recalling the expressions of R(¢) and P(t) given by (23)-(24),
the ratio R(t)/P(t) can be written as

R(1) _mn (Ro — y2Py) €M + 72 (Ro + 71 Po) e

Y5 > 0. Q7

28
P~ (Ro R+ (R + mPp) et * 2
from which, computing the time derivative, we obtain
i R(t)
dt | P(t)
B (- 3) (o) oo n
— -5 )5 +tmn)A2=A)
_ K Py Py cQatra)t
2 )
(— (Ro — 2 Po) eMt + (Ro + 71 Po) ek"‘t)
(29)

which is a monotonic function with the sign depending on
the initial condition Ry/Py. Indeed, from Egs. (6)-(7) and the
condition x > 0, we have the inequalities

()\1 + %)

M+ =2
1+ A2 y <0, s

Nn=- >0, (30
which imply that the function e(*1t*2)t is monotonically
decreasing V¢t > 0 and that the sign of (29) only depends
on the factor 75 — Ry/Py. In any case, such a sign cannot
change with time and the monotonic behaviour of R(t)/P(t)
is guaranteed for any value of the initial ratio Ry/Py. So, we
can conclude that R(t)/P(t) < p, ¥t > 0, when Ry/P < 0.

In other words, when the parameter setting is s.t. z > 0 and

the ribosome synthesis is active (working mode jo + growing
state g) the transition uo + g — pq + g is forbidden.

From the arguments above we provide the following result.

Theorem 4.1: Given the initial time ¢y and the initial
condition R(to)/P(to) < p with > 0 (growth condition),
the ribosome synthesis of system (1) is active and the state
variables show growing limit trends. Such working mode and
is maintained for any time.

Figure 2 represents, in the parameter space, all the possible
working modes and growing states of system (1), showing
when the transitions are forbidden or unavoidable (the transi-
tion pe + g — w1 + g is not detailed since no change in the
growing condition is implied).
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Fig. 2. Switching of the working modes

V. CONCLUSIONS

The coherence of a mathematical model (i.e. whether the
associated solutions are meaningful for the largest range of
the feasible model parameters) is an important feature a
good model is required to attain, especially when aiming
at describing a wide range of possible working modes. In
this work we have investigated the qualitative behavior of
a coarse-grain model of cellular growth, recently exploited
as a module of a larger interconnected model that integrates
metabolism, growth and cycle. More in details, we find a
specific, sufficient condition (xr > 0) for the growth of
ribosome and protein populations. In particular, when starting
the dynamic evolution with active ribosome synthesis such
condition guarantees to maintain synthesis and growth for any
time. Conversely, when starting with the ribosome synthesis
initially inactive, determining a temporary non-growing state,
the system approaches a state condition that allows the switch
for an active synthesis and, consequently, exponential growth.
On the other hands, if such condition is violated (x < 0), no
growth is possible, independently of the ribosome synthesis.
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