Hindawi

Complexity

Volume 2018, Article ID 1591878, 12 pages
https://doi.org/10.1155/2018/1591878

WILEY

Hindawi

Research Article

Learning the Structure of Bayesian Networks: A Quantitative
Assessment of the Effect of Different Algorithmic Schemes

Stefano Beretta®,' Mauro Castelli®,> Ivo Gonqalves,3 Roberto Henriques,2
and Daniele Ramazzotti ©*

IDISCo, Universitd degli Studi di Milano-Bicocca, 20126 Milano, Italy

2NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide,
1070-312 Lisboa, Portugal

’INESC Coimbra, DEEC, University of Coimbra, Coimbra, Portugal

*Department of Pathology, Stanford University, Stanford, California, USA

Correspondence should be addressed to Daniele Ramazzotti; daniele.ramazzotti@stanford.edu
Received 7 June 2018; Revised 1 August 2018; Accepted 7 August 2018; Published 12 September 2018
Academic Editor: Eulalia Martinez

Copyright © 2018 Stefano Beretta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One of the most challenging tasks when adopting Bayesian networks (BNs) is the one of learning their structure from data. This task
is complicated by the huge search space of possible solutions and by the fact that the problem is NP-hard. Hence, a full enumeration
of all the possible solutions is not always feasible and approximations are often required. However, to the best of our knowledge, a
quantitative analysis of the performance and characteristics of the different heuristics to solve this problem has never been done
before. For this reason, in this work, we provide a detailed comparison of many different state-of-the-art methods for structural
learning on simulated data considering both BNs with discrete and continuous variables and with different rates of noise in the
data. In particular, we investigate the performance of different widespread scores and algorithmic approaches proposed for the

inference and the statistical pitfalls within them.

1. Introduction

Bayesian networks (BNs) have been applied to several differ-
ent fields, ranging from the water resource management [1]
to the discovery of gene regulatory networks [2, 3]. The task
of learning a BN can be divided into two subtasks: (1) struc-
tural learning, i.e., identification of the topology of the BN,
and (2) parametric learning, i.e., estimation of the numerical
parameters (conditional probabilities) for a given network
topology. In particular, the most challenging task of the two
is the one of learning the structure of a BN. Different
methods have been proposed to face this problem, and they
can be classified into two categories [4-6]: (1) methods based
on detecting conditional independences, also known as
constraint-based methods, and (2) score +search methods,
also known as score-based approaches. It must be noticed
that hybrid methods have also been proposed in [7] but, for

the sake of clarity, here, we limit our discussion to the two
mainstream approaches to tackle the task.

As discussed in [8], the input of the former algorithms is
a set of conditional independence relations between subsets
of variables, which are used to build a BN that represents a
large percentage (and, whenever possible, all) of these rela-
tions [9]. However, the number of conditional independence
tests that such methods should perform is exponential and,
thus, approximation techniques are required.

Although constraint-based learning is an interesting
approach, as it is close to the semantic of BNs, most of the
developed structure learning algorithms fall into the score-
based method category, given the possibility of formulating
such a task in terms of an optimization problem. As the name
implies, these methods have two major components: (1) a
scoring metric that measures the quality of every candidate
BN with respect to a dataset and (2) a search procedure to

http://orcid.org/0000-0003-4375-004X
http://orcid.org/0000-0002-8793-1451
http://orcid.org/0000-0002-6087-2666
https://doi.org/10.1155/2018/1591878

intelligently move through the space of possible networks, as
this space is enormous. More in detail, as shown in [10, 11],
searching this space for the optimal structure is an NP-hard
problem, even when the maximum number of parents for
each node is constrained.

Hence, regardless of the strategy to learn the structure,
one wishes to pursue, greedy local search techniques and
heuristic search approaches need to be adopted to tackle
the problem of inferring the structure of BNs. However, to
the best of our knowledge, a quantitative analysis of the per-
formance of these different techniques has never been done.
For this reason, here, we provide a detailed assessment of
the performance of different state-of-the-art methods for
structural learning on simulated data, considering both BNs
with discrete and continuous variables and with different
rates of noise in the data. More precisely, we investigate the
characteristics of different scores proposed for the inference
and the statistical pitfalls within both the constraint-based
and score-based techniques. Furthermore, we study the
impact of various heuristic search approaches, namely, hill
climbing, tabu search, and genetic algorithms.

We notice that, although we here aim to cover some of
the main ideas in the area of structure learning of BNs, sev-
eral interesting topics are beyond the scope of this work
[12]. In particular, we refer to a more general formulation
of the problem [6], and we do not consider, for example, con-
texts where it is possible to exploit prior knowledge in order
to make the tasks computationally affordable [13]. At the
same time, in this work, we do not investigate in detail per-
formance related to causal interpretations of the BNs [14].

This work extends previous investigation performed in
the same area [15, 16] and is structured as follows. In the next
two sections, we provide a background on both Bayesian net-
works and heuristic search techniques (see Section 2 and Sec-
tion 3). In Section 4, we describe the results of our study, and
in Section 5, we conclude the paper.

2. Bayesian Networks

BNs are graphical models representing the joint distribution
over a set of n random variables through a direct acyclic graph
(DAG) G=(V,E), where the n nodes in V represent the
variables, and the arcs E encode any statistical dependence
among them. Similarly, the lack of arcs among variables
subsumes statistical independence. In this DAG, the set of
variables with an arc toward a given node X € V is its set
nm(X) of “parents.” Formally, a Bayesian network [6] is
defined as a pair (G, 0) over the variable V, with arcs ECV
x V and real-valued parameter 6. When the structure of a
BN is known, it is possible to compute the joint distribution
of all the variables as the product of the conditional distribu-
tions on each variable given its parents.

p(Xyp .. X)) = ﬁp(xi |7(X;), p(Xi | 7(X5)) = Ox jn(x,)»
(1)

where Oy | (x,) is a probability density function.

Complexity

However, even if we consider the simplest case of binary
variables, the number of parameters in each conditional
probability table is still exponential in size. For example, in
the case of binary variables, the total number of parameters
needed to compute the full joint distribution is of size
Y ey 2™ where |7(X)| is the cardinality of the parent
set of each node. Notice that, if a node does not have parents,
the total number of parameters to be computed is 1, which
corresponds to its marginal probability.

Moreover, the usage of the symmetrical notion of condi-
tional dependence poses further limitations to the task of
learning the structure of a BN: two arcs A - B and B— A
in a network can in fact equivalently denote dependence
between variables A and B; this leads to the fact that two
DAGs having a different structure can sometimes model
an identical set of independence and conditional indepen-
dence relations (I-equivalence). This yields to the concept
of Markov equivalence class as a partially directed acyclic
graph where the arcs that can take either orientation are
left undirected [6]. In this case, all the structures within
the Markov equivalence class are equivalently “good” in
representing the data, unless a causal interpretation of the
BN is given [17].

In the literature, there are two families of methods to
learn the structure of a BN from data. The idea behind the
first group of methods is the one of learning the conditional
independence relations of the BN from which, in turn, the
network is learned. These methods are often referred to as
constraint-based approaches. The second group of methods,
the so-called score-based approaches, formulates the task of
structure learning as an optimization problem, with scores
aimed at maximizing the likelihood of the data given the
model. However, both the approaches are known to lead to
NP-hard formulations and, because of this, heuristic methods
need to be used to find near optimal solutions with high
probability, in a reasonably small number of iterations.

2.1. Constraint-Based Approaches. We now briefly describe
the main idea behind this class of approaches. For a detailed
discussion of this topic, we refer to [9, 18].

This class of methods is aimed at building a graph struc-
ture to reflect the dependence and independence relations in
the data that match the empirical distribution. Notwith-
standing, the number of conditional independence tests that
such algorithms would have to perform among any pair of
nodes to test all possible relations is exponential and, because
of this, the introduction of some approximations is required.

We now provide some details on two constraint-based
algorithms that have been proven to be efficient and of wide-
spread usage: the PC algorithm [9] and the Incremental Asso-
ciation Markov Blanket (IAMB) [18].

2.1.1. The PC Algorithm. This algorithm [9] starts with a fully
connected graph and, on the basis of pairwise independence
tests, it iteratively removes all the extraneous edges. To avoid
an exhaustive search of separating sets, the edges are ordered
to consider the correct ones early in the search. Once a sepa-
rating set is found, the search for that pair ends. The PC algo-
rithm orders the separating sets by increasing values of size /,

Complexity

starting from 0 (the empty set) until / = n — 2 (where 7 is the
number of variables). The algorithm stops when every vari-
able has less than / — 1 neighbors since it can be proven that
all valid sets must have already been chosen. During the com-
putation, the bigger the value of is, the larger the number of
separating sets must be considered. However, as [gets big, the
number of nodes with degree / or higher must have dwindled
considerably. Thus, in practice, we only need to consider a
small subset of all the possible separating sets.

2.1.2. Incremental Association Markov Blanket Algorithm.
Another constraint-based learning algorithm uses the Mar-
kov blankets [6] to restrict the subset of variables to test for
independence. Thus, when this knowledge is available in
advance, we do not need to test a conditioning on all possible
variables. A widely used and efficient algorithm for Markov
blanket discovery is IAMB which, for each variable X, keeps
track of a hypothesis set % (X), which is the set of nodes that
may be parents of X. The goal is, for a given #'(X), to obtain
at the end of the algorithm, a Markov blanket of X equals to
%B(X). IAMB consists of a forward and a backward phase.
During the forward phase, it adds all the possible variables
into Z'(X) that could be in % (X), while in the backward
phase, it removes all the false positive variables from the
hypothesis set, leaving the true 9(X). The forward phase
begins with an empty % (X) for each X. Then, iteratively,
variables with a strong association with X (conditioned on
all the variables in (X)) are added to the hypothesis set.
This association can be measured by a variety of nonnegative
functions, such as mutual information. As ' (X) grows
large enough to include 9B(X), the other variables in the
network will have very little association with X, conditioned
on Z'(X). At this point, the forward phase is complete. The
backward phase starts with #°(X) that contains %(X) and
false positives, which will have small conditional associations,
while true positives will associate strongly. Using this test,
the backward phase is able to iteratively remove the false
positives, until all but the true negatives are eliminated.

2.2. Score-Based Approaches. These approaches is aimed at
maximizing the likelihood Z of a set of observed data D,
which can be computed as the product of the probability of
each observation. Since we want to infer a model G that best
explains the observed data, we define the likelihood of
observing the data given a specific model G as

Z2(G;D)=][P(d1G). 2)
deD

Practically, however, for any arbitrary set of data, the
most likely graph is always the fully connected one, since
adding an edge can only increase the likelihood of the data,
i.e., this approach overfits the data. To overcome this limita-
tion, the likelihood score is almost always combined with a
regularization term that penalizes the complexity of the
model in favor of sparser solutions [6].

As already mentioned, such an optimization problem
leads to intractability, due to the enormous search space of
the valid solutions. Because of this, the optimization task is

often solved with heuristic techniques. Before moving on to
describe the main heuristic methods employed to face such
complexity (see Section 3), we now give a short description
of a particularly relevant and known score, called Bayesian
Information Criterion (BIC) [19], as an example of scoring
function adopted by several the score-based methods.

2.2.1. The Bayesian Information Criterion. BIC uses a score
that consists of a log-likelihood term and a regularization
term that depend on a model G and data D:

BIC(G; D) = ZZ(G;D) — lo"%’” dim (G), (3)

where D denotes the data, m denotes the number of samples,
and dim (G) denotes the number of parameters in the model.
We recall that in this formulation, the BIC score should be
maximized. Since, in general, dim (-) depends on the number
of parents of each node, it is a good metric for model com-
plexity. Moreover, each edge added to G increases the com-
plexity of the model. Thus, the regularization term based on
dim (-) favors graphs with fewer edges and, more specifically,
fewer parents for each node. The term log m/2 essentially
weighs the regularization term. The effect is that the higher
the weight, the more sparsity will be favored over “explain-
ing” the data through maximum likelihood.

Notice that the likelihood is implicitly weighted by
the number of data points since each point contributes to
the score. As the sample size increases, both the weight of
the regularization term and the “weight” of the likelihood
increase. However, the weight of the likelihood increases fas-
ter than that of the regularization term. This means that, with
more data, the likelihood will contribute more to the score,
and we may trust our observations more and have less need
for regularization. Statistically speaking, BIC is a consistent
score [6]. Consequently, G contains the same independence
relations as those implied by the true structure.

3. Heuristic Search Techniques

We now describe some of the main state-of-the-art search
strategies that we took into account in this work. In particu-
lar, as stated in Section 1, we considered the following search
methods: hill climbing, tabu search, and genetic algorithms.

3.1. Hill Climbing. Hill climbing (HC) is one of the simplest
iterative techniques that have been proposed for solving opti-
mization problems. While HC consists of a simple and intu-
itive sequence of steps, it is a good search scheme to be used
as a baseline for comparing the performance of more
advanced optimization techniques.

Hill climbing shares with other techniques (like simu-
lated annealing [20] and tabu search [21]) the concept of
neighborhood. Search methods based on this latter concept
are iterative procedures in which a neighborhood N(i) is
defined for each feasible solution i, and the next solution
j is searched among the solutions in N(i). Hence, the neigh-
borhood is a function N : § — 25 that assigns to each solu-
tion in the search space S a (nonempty) subset of S.

The sequence of steps of the hill climbing algorithm, for a
maximization problem w.r.t. a given objective function f, are
the following:

(1) Choose an initial solution i in S

(2) Find the best solution j in N(i) (i.e., the solution j
such that f(j) > f(k) for every k in N(i))

(3) If f(j) < f(i), then stop; else, set i = j and go to step 2

As it is clear from the aforementioned algorithm, hill
climbing returns a solution that is a local maximum for
the problem at hand. This local maximum does not gener-
ally correspond to the global minimum for the problem
under exam, that is, hill climbing does not guarantee to
return the best possible solution for a given problem. To
counteract this limitation, more advanced neighborhood
search methods have been defined. One of these methods
is tabu search, an optimization technique that uses the con-
cept of “memory.”

3.2. Tabu Search. Tabu search (TS) is a metaheuristic that
guides a local heuristic search procedure to explore the solu-
tion space beyond local optimality. One of the main compo-
nents of this method is the use of an adaptive memory, which
creates a more flexible search behavior. Memory-based strat-
egies are therefore the main feature of TS approaches,
founded on a quest for “integrating principles,” by which
alternative forms of memory are appropriately combined
with effective strategies for exploiting them.

Tabus are one of the distinctive elements of TS when
compared to hill climbing or other local search methods.
The main idea in considering tabus is to prevent cycling
when moving away from local optima through nonimprov-
ing moves. When this situation occurs, something needs to
be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu
(disallowing) moves that reverse the effect of recent moves.
For instance, let us consider a problem where solutions are
binary strings of a prefixed length, and the neighborhood of
a solution i consists of the solutions that can be obtained
from i by flipping only one of its bits. In this scenario, if a
solution j has been obtained from a solution i by changing
one bit b, it is possible to declare a tabu to avoid to flip back
the same bit b of j for a certain number of iterations (this
number is called the tabu tenure of the move). Tabus are also
useful to help in moving the search away from previously vis-
ited portions of the search space and, thus, perform more
extensive exploration.

As reported in [22], tabus are stored in a short-term
memory of the search (the tabu list) and usually, only a
fixed limited quantity of information is recorded. It is pos-
sible to store complete solutions, but this has a negative
impact on the computational time required to check
whether a move is a tabu or not and, moreover, it requires
a vast amount of space. The second option (which is the
one commonly used) involves recording the last few transfor-
mations performed to obtain the current solution and prohi-
biting reverse transformations.

Complexity

While tabus represent the main distinguished feature of
TS, this feature can introduce other issues in the search pro-
cess. In particular, the use of tabus can prohibit attractive
moves, or it may lead to an overall stagnation of the search
process, with a lot of moves that are not allowed. Hence, sev-
eral methods for revoking a tabu have been defined [23], and
they are commonly known as aspiration criteria. The sim-
plest and most commonly used aspiration criterion consists
of allowing a move (even if it is tabu) if it results in a solution
with an objective value better than that of the current best-
known solution (since the new solution has obviously not
been previously visited).

The basic TS algorithm, considering the maximization of
the objective function f, works as follows:

(1) Randomly select an initial solution i in the search
space S, and set i* =i and k = 0, where i* is the best
solution so far, and k the iteration counter

(2) Set k=k+1 and generate the subset V of the admis-
sible neighborhood solutions of i (i.e., nontabu or
allowed by aspiration)

(3) Choose the best jin V and set i = j
(4) If f(i) > f(i*), then set i* =i
(5) Update the tabu and the aspiration conditions

(6) If a stopping condition is met, then stop; else, go to
step 2.

The most commonly adopted conditions to end the algo-
rithm are when the number of iterations (K) is larger than a
maximum number of allowed iterations or if no changes to
the best solution have been performed in the last N iterations
(as it is in our tests).

Specifically, in our experiments, we modeled for both HC
and TS the possible valid solutions in the search space as a
binary adjacency matrix describing acyclic directed graphs.
The starting point of the search is the empty graph (i.e., with-
out any edge), and the search is stopped when the current
best solution cannot be improved with any move in its
neighborhood.

The algorithms then consider a set of possible solutions
(i.e., all the directed acyclic graphs) and navigate among
them by means of 2 moves: insertion of a new edge or
removal of an edge currently in the structure. We also recall
that in the literature, many alternatives are proposed to nav-
igate the search space when learning the structure of Bayesian
network (see [24, 25]). But, for the purpose of this work, we
preferred to stick with the classical (and simpler) ones.

3.3. Genetic Algorithms. Genetic algorithms (GAs) [26] are a
class of computational models that mimic the process of nat-
ural evolution. GAs are often viewed as function optimizers
although the range of problems to which GAs have been
applied is quite broad. Their peculiarity is that potential solu-
tions that undergo evolution are represented as fixed length
strings of characters or numbers. Generation by generation,
GAs stochastically transform sets (also called populations)

Complexity

Randomly create
initial population

Apply genetic
operators to create
new individuals

Select individuals
based on fitness

Calculate fitness of
individuals

Maximum number
of generations
reached?

Return best
solution

FiGure 1: Typical workflow of a GA.

of candidate solutions into new, hopefully improved, popu-
lations of solutions, with the goal of finding one solution
that suitably solves the problem at hand. The quality of each
candidate solution is expressed by using a user-defined
objective function called fitness. The search process of GAs
is shown in Figure 1.

To transform a population of candidate solutions into
a new one, GAs make use of particular operators that
transform the candidate solutions, called genetic opera-
tors: crossover and mutation. Crossover is traditionally
used to combine the genetic material of two candidate
solutions (parents) by swapping a part of one individual
(substring) with a part of the other. On the other hand,
mutations introduce random changes in the strings repre-
senting candidate solutions. In order to be able to use
GAs to solve a given optimization problem, candidate solu-
tions must be encoded into strings and, often, also the genetic
operators (crossover and mutation) must be specialized for
the considered context.

GAs have been widely used to learn the BN structure con-
sidering the search space of the DAGs. In the large majority
of the works [27-32], the GA encodes the connectivity matrix
of the BN structure in its individuals. This is the same
approach used in our study. Our GA follows the common
structure:

(1) Generate the initial population

(2) Repeat the following operations until the total num-
ber of generations is reached:

(a) Select a population of parents by repeatedly
applying the parent selection method

(b) Create a population of offspring by applying the
crossover operator to each set of parents

(c) For each offspring, apply one of the mutation
operators with a given mutation probability

(d) Select the new population by applying the survi-
vor selection method

(3) Return the best performing individual

Unless stated otherwise, the following description is valid
for both GA variants (discrete and continuous). The initiali-
zation method and the variation operators used in our GA
ensure that every individual is valid, i.e., each individual is
guaranteed to be an acyclic graph. The initialization method
creates individuals with exactly N/2 connections between
variables, where N is the total number of variables. A con-
nection is only added if the graph remains acyclic. The
nodes being connected are selected with uniform probabil-
ity from the set of variables. In the continuous variant, since
the input data is normalized, the value associated with each
connection is randomly generated between 0.0 and 1.0, with
uniform probability. The crossover operates over two par-
ents and returns one offspring. The offspring is initially a
copy of the first parent. Afterward, a node with at least
one connection is selected from the second parent and all
the valid connections starting from this node are added to
the offspring.

Three mutation operators are considered in our GA
implementation: add connection mutation, remove con-
nection mutation, and perturbation mutation. The first
two are applied in both GA variants, while the perturba-
tion mutation is only applied in the continuous variant.
The offspring resulting from the add connection mutation
operator differs from the parent in having an additional
connection. The newly connected nodes are selected with
uniform probability. In the continuous variant, the value
associated with the new connection is randomly generated
between 0.0 and 1.0 with uniform probability. Similarly,
the offspring resulting from the remove connection muta-
tion operator differs from the parent in having one less
connection. The nodes to be disconnected are selected
with uniform probability. The perturbation mutation oper-
ator applies Gaussian perturbations to the values associ-
ated with at most N/2 connections. The total number of
perturbations may be less than N/2 if the individual being
mutated has less than N/2 connections. Each value is per-
turbed following a Gaussian distribution having mean 0.0

and standard deviation 1.0. Any resulting value below 0.0
or above 1.0 is bounded to 0.0 or 1.0, respectively. Regard-
less of the GA variant, mutation is applied with a proba-
bility of 0.25. When a mutation is being applied, the
specific mutation operator is selected with uniform proba-
bility from the available options (two in the discrete vari-
ant and three in the continuous variant). The mutation
operator of the GA works by applying the perturbation
to the existing values associated to each edge of the solu-
tions. Since such modification to the value should not be
highly disruptive, a common choice is to employ a Gauss-
ian probability distribution having mean 0 and standard
deviation 1.

In terms of parameters, a population of size 100 is
used, with the evolutionary process being able to perform
100 generations. Parents are selected by applying a tour-
nament of size 3. The survivor selection is elitist in the
sense that it ensures that the best individual survives to the
next generation.

4. Results and Discussion

We made use of a large set of simulations on randomly
generated datasets with the aim of assessing the charac-
teristics of the state-of-the-art techniques for structure
learning of BNs.

We generated data for both the case of discrete (2 values,
i.e,, 0 or 1) and continuous (we used 4 levels, i.e., 1, 2, 3, and
4) random variables. Notice that, for computational reasons,
we discretized our continuous variables using only 4 catego-
ries. For each of them, we randomly generated both the struc-
ture (i.e, 100 weakly connected DAGs having 10 and 15
nodes) and the related parameters (we generated random
values in (0, 1) for each entry of the conditional probability
tables attached to the network structure) to build the simu-
lated BNs. We also considered 3 levels of density of the net-
works, namely, 0.4, 0.6, and 0.8, of the complete graph. For
each of these scenarios, we randomly sampled from the
BNs’ several datasets of different size, based on the number
of nodes. Specifically, for networks of 10 variables, we gener-
ated datasets of 10, 50, 100, and 500 samples, while for 15
variables, we considered datasets of 15, 75, 150, and 750 sam-
ples. Furthermore, we also considered additional noise in the
samples as a set of random entries (both false positives and
false negatives) in the dataset. We recall that, based on sam-
ple size, the probability distribution encoded in the generated
datasets may be different from the one subsumed by the
related BN. However, here, we also consider additional noise
(besides the one due to sample size) due, for example, to
errors in the observations. We call noise-free, the datasets in
which such an additional noise is not applied. To this extent,
we considered noise-free dataset (noise rate equals 0%) and
dataset with an error rate of 10% and 20%. In total, this led
us to a total number of 14400 random datasets.

For all of them, we considered both the constraint-based
and the score-based approaches to structural learning. From
the former category of methods, we considered the PC algo-
rithm [9] and the IAMB [18]. We recall that these methods
return a partially directed graph, leaving undirected the arcs

Complexity

that are not unequivocally directable. In order to have a fair
comparison with the score-based method which returns
DAGs, we randomly resolved the ambiguities, by generating
random solutions (i.e., DAGs) consistent with the statistical
constraints by PC and IAMB (that is, we select a random
direction for the undirected arcs).

Moreover, among the score-based approaches, we con-
sider 3 maximum likelihood scores, namely, log-likelihood
[6], BIC [19], and AIC [33] (for continuous variables we used
the corresponding Gaussian likelihood scores). For all of
them, we repeated the inference on each configuration by
using HC, TS, and GA as search strategies.

This led us to 11 different methods to be compared, for a
total of 158400 independent experiments. To evaluate the
obtained results, we considered both false positives (FP)
(i.e., arcs that are not in the generative BN but that are
inferred by the algorithm) and false negatives (FN) (i.e., arcs
that are in the generative BN but that are not inferred by the
algorithm). Also, with TP (true positives) being the arcs in
the generative model and TN (true negatives) the arcs that
are not in the generative model, for all the experiments, we
considered the following metrics:

- TP
Precision= —— |
TP + FP
TP
Recall= —— |
TP + EN (4)
Specificit N
pecificity = ———,
TN + FP
TP+ TN

A - .
Y = TP FP+ TN + Fn

4.1. Results of the Simulations. In this section, we com-
ment on the results of our simulations. As anticipated,
we computed precision, recall (sensitivity), and specificity,
as well as accuracy and Hamming distance, to assess the
performance and the underfit/overfit trade-off of the differ-
ent approaches. Overall, from the obtained results, it is
straightforward to notice that methods including more
edges in the inferred networks are also more subject to
errors in terms of accuracy, which may also resemble a bias
of this metric that tends to penalize solutions with false
positive edges rather than false negatives. On the other
hand, since a typical goal of the problems involving the
inference of BN is the identification of novel relations (that
is, proposing novel edges in the network), underfitting
approaches could be more effective in terms of accuracy,
but less useful in practice.

With a more careful look, the first evidence we obtained
from the simulations is that the two parameters with the
highest impact on the inferred networks are the density and
the number of nodes (i.e., network size). For this reason, we
first focused our attention on these two parameters, and we
analyzed how the different tested combinations of methods
and scores behave.

As shown in Figure 2, all the approaches seem to perform
better when dealing with low-density networks, in fact, for
almost all the methods, the accuracy is higher for density

Complexity

iamb loglik—ga |[loglik=hc |[Toglik—tb pc

Continuous

Accuracy

Discrete

Density
8 04
&8 0.6
82 0.8

F1GURE 2: Boxplots showing the accuracy of the results obtained by the 11 tests approaches on the discrete and continuous datasets. In the
figure, conditional boxplot in each subpanel reports results for structure of density 0.4, 0.6, and 0.8 from left to right.

equal to 0.4, while it is lower for density equal to 0.8. Since
each edge of the network is a parameter that has to be
“learned,” it is reasonable to think that the more edges are
present in the BN, the harder becomes the problem to be
solved when learning it. Moreover, we can also observe that
the results in terms of accuracy obtained for BN of discrete
variables are slightly better than those achieved on the con-
tinuous ones. To this extent, the only outlier is the loglik
score combined with hill climbing and with tabu search on
datasets with continuous variables, for which the trend is
the opposite, w.r.t. that of all the other approaches. In fact,
in both these cases, the accuracy is higher on high-density
datasets, and this is likely due to a very high overfit of the
approach. It is interesting to notice that genetic algorithms
(combined with the loglik score) is less affected by this prob-
lem, and this trend will also be shown in the next analyses.
In addition to the accuracy, we also computed the Ham-
ming distance between the reconstructed solutions and the
BNs used to generate the data, in order to quantify the errors
of the inference process. This analysis showed that, besides
the network density, also the number of nodes (parameters
to be learned) influences the results, as reported in Figure 3.
It is interesting to observe that, in the adopted experimental
setup, we set the number of samples to be proportional to
the number of nodes of the network, that is, for 10 nodes;
in the same configurations, we have a lower number of sam-
ples, compared to the ones for 15 nodes. From a statistical
point of view alone, we would expect the problem to be easier
when having more samples to build the BN, since this would
lead to more statistical power and, intuitively, should com-
pensate for the fact that with 15 nodes, we have more param-
eters to learn than the ones for the case of 10 nodes. While
this may be the case (in fact, we have similar accuracy for
both 10 and 15 nodes), we also observe a constantly higher

Hamming distance with more nodes. In fact, when dealing
with more variables, we observed a shift in the performance,
that is, even when the density is low, we observe more
errors manifesting with higher values in terms of Ham-
ming distance. This is due to the fact that, when increasing
the number of variables, we also increase the complexity
of the solutions.

A further analysis we performed was devoted to assessing
the impact of both overfit and underfit. As it is possible to
observe from the plots in Figures 4 and 5, we obtain two
opposite behaviors, namely, the combinations of scores and
search strategies show evident different trends in terms of
sensitivity (recall), specificity, and precision. In detail, iamb
and pc tend to underfit, since they both produce networks
with consistently low density. While they achieve similar
(high) results in terms of accuracy (see Figure 2), their trend
toward underfit does not make them suited for the identifica-
tion of novel edges, rather being more indicated for descrip-
tive purposes. On the other hand, the loglik score, (mostly)
independently from the adopted search technique, consis-
tently overfits. Both these behaviors can be observed in the
violin plots of Figures 4 and 5: for each density, we can
observe that iamb/pc results have very low recall values, while
the distribution of the results of the loglik score is centered on
higher values.

The other two scores, i.e., AIC and BIC, present a better
trade-off between overfit and underfit, with BIC being less
affected by the overfit, while AIC reconstructing slightly
denser networks. Once again, this trade-oft between the
two regularizators is well known in the literature and points
to AIC being more suited for predictions while BIC for
descriptive purposes.

Another relevant result of our analysis is the characteri-
zation of the performance of genetic algorithms in terms of

8 Complexity
g || alehe || aieth || biega || biehe || bietth || amb j}loglicgn] logiche flloghlth | pC
300‘ B :‘h::““ ::‘[:::::: SRSEES | R | g | g
0 ‘ [|[} w‘ = é
100 W;::::::: !QH‘H %L q 5
: &0 0 o ﬁ E 5 (| e
E1) | R R | REHEEETE | ISHNEE | IS | T | ISHNEE | IS | ITEEE | ESHNE | AT |
Ak aiala talala bl Al dla
. m, V’HQN,@ Miﬂ, Hlﬂlu, $ Mjﬂh._ | R A .‘J{Vh; JHHM.
E ok A A A A A e
ke " S RRERE I SIREEEE | U
2001 ’ l i
3 R | S| SRR | A SRR | ARSI S B | I,IIILII“I,IIILI S
100 S M S J S S Ib S I: S }i S H o M o M Ll }’ A .
J8 8 R R R R R A A R R
o
201 ffff L | e O SSEE | ESUEs | RSeS| ST | Sy | R EE W |-
oof TEREY | ER 16N | ERETVY | BRI T T
Y YHEIEY YRR EREIS TREIE TEEEI TEEEIS TeE ﬁw, \\\\ Ll oAl
OMM M JMMHM'JW'”M’JMW'!“"M\‘w\ LM
SHRLeY mOass&Oa%momai:migadisi;mamoaamomamoaaﬁoaam
Density
m04
H0.6
m0.8

FIGURE 3: Bar plots showing the Hamming distances of the solutions obtained by the 11 tested approaches, grouped by type of dataset
(discrete and continuous) and number of nodes of the network (10 and 15), while colors represent densities (0.4, 0.6, and 0.8).

sensitivity (recall). Specifically, it must be noticed that for all
the three regularizators, genetic algorithms achieve similar
results of both precision and specificity if compared with both
hill climbing and tabu search, but in terms of senusitivity
(recall), it presents reduced overfit. In fact, as it is possible
to observe in the plots of Figures 4 and 5 for each score
(i.e., loglik, AIC, and BIC), the sensitivity results of genetic
algorithms are lower than those of both hill climbing and
tabu search, highlighting the reduced impact of overfit.
In summary, we can draw the following conclusions.

(i) Dense networks are harder to learn (see Figure 2)

(ii) The number of nodes affects the complexity of the
solutions, leading to higher Hamming distance
(number of errors) even if with similar accuracy
(see Figures 2 and 3)

(iii) Networks with continuous variables are harder to
learn compared to the binary ones (see Figure 2)

(iv) iamb and pc algorithms tend to underfit, while loglik
overfits (see Figures 4 and 5)

(v) Genetic algorithms tend to reduce underfit (see
Figures 4 and 5)

We conclude the section by providing p values by Mann-
Whitney U test [34] in support of such claims in Table 1. The
claim for greater and less values, i.e., accuracy, is performed
with the one-tail test alternatives.

The tests are performed on all the configurations of our
simulations.

5. Conclusions

Bayesian networks are a widespread technique to model
dependencies among random variables. A challenging prob-
lem when dealing with BN is the one of learning their struc-
tures, i.e,, the statistical dependencies in the data, which may
sometime pose a serious limit to the reliability of the results.

Complexity

aic-ga

loglik—tb

1.00 |-
0751
0501 -
0251

0.00 1

Continuous

1.00
0751
0501 -
0251
0.001

Continuous

1.00 {~
0751
0501 |
0254
0.00 1

Continuous

1.00 1~

0.751 « - -

Recall (sensitivity)

0501]
0.251/

0.00 1

Discrete

1.00 {
0754
0501 -
0251 4
0.00 "

Discrete

1.00 {77
0751
0501 -
0251

0.00 4

Discrete

0.00
0.25 1
0.50 1
0.75 1"
0.00 T~
0251
0.50 1€
0.75 1
0.00 T~
0251
0.50 1§
0.75 1"
0.00
0.25 1
0.50 1
0.75 1
0.00
0.25 1
0.50 1
0.75 1
0.00
0.25 1

0.50 1

0.75 1)
0.00 -

0254 o
0.50 { p——""
075 1|

0.00

0.25 -

0.50 1=

0.75 1

0.00 T

0.25 -

050 { <<
0.75 -

0.00 T

0.25 1

050 { ==
0.75 -

0.00 77

0.25 1|

0.50 -

0.751f

Precision

Density
do4
00.6
008

FIGURE 4: Violin plots showing precision and recall of the solutions obtained by the 11 tested approaches, grouped by the type of dataset

(discrete and continuous) and density values (0.4, 0.6, and 0.8).

Despite their extensive use in a vast set of fields, to the
best of our knowledge, a quantitative assessment of the per-
formance of different state-of-the-art methods to learn the
structure of BNs has never been performed. In this work,
we aim to go in the direction of filling this gap and we pre-
sented a study of different state-of-the-art approaches for
structural learning of Bayesian networks on simulated data,
considering both discrete and continuous variables.

To this extent, we investigated the characteristics of 3 dif-
ferent likelihood scores, combined with 3 commonly used
search strategy schemes (namely, genetic algorithms, hill
climbing, and tabu search), as well as 2 constraint-based tech-
niques for the BN inference (i.e., iamb and pc algorithms).

Our analysis identified the factors having the highest
impact on the performance, that is, density, number of vari-
ables, and variable type (discrete vs continuous). In fact, as

10

Complexity

loglik—tb

1.00
0.75
0.50
0.25
0.00

Continuous

1.00
0.75
0.50
0.25

0.00

Continuous

1.00
0.75
0.50
0.25
0.00

Continuous

1.00
0.75

Sensitivity (recall)

0.50
0.25
0.00

Discrete

1.00
0.75
0.50
0.25

0.00

Discrete

1.00
0.75
0.50
0.25

0.00

Discrete

Specificity

F1GuRre 5: Violin plots showing specificity and sensitivity of the solutions obtained by the 11 tested approaches, grouped by the type of dataset

(discrete and continuous) and density values (0.4, 0.6, and 0.8).

shown here, these settings affect the number of parameters to
be learned, hence complicating the optimization task. Fur-
thermore, we also discussed the overfit/underfit trade-off of
the different tested techniques with the constraint-based
approaches showing trends toward underfitting and the
loglik score showing high overfit. Interestingly, in all the con-
figurations, genetic algorithms showed evidence of reducing
the overfit, leading to denser structures.

Overall, we place our work as a starting effort to better
characterize the task of learning the structure of Bayesian
networks from data, which may lead in the future to a more
effective application of this approach. In particular, we
focused on the more general task of learning the structure
of a BN [6], and we did not dwell on several interesting
domain-specific topics, which we leave for future investiga-
tions [12-14].

Complexity

TaBLE 1: Summary of the major findings. The results of the Mann-
Whitney U test [34] (one-tail test alternatives) in support of the
results of our simulations are shown. The tests are performed on
all the settings, with the comparisons as described in the first
column of the table. We also show the considered metric, the
adopted alternative of the one-tail test, the obtained p value, and
the mean of the two compared distributions of the results.

Comparison Metric Test pvalue Mean1 Mean 2
Density 0.4/0.8 Accuracy Greater <2.2e-16 0.68 0.55
Nodes 10/15 Accuracy — Less <2.2e-16 0.61 0.62
Nodes 10/15 Hamming Less <22e-16 17.40 39.54
Discr./contin. Accuracy Greater <2.2e-16 0.62 0.61
iamb/hc loglik Sensitivity =~ Less <2.2e—-16 0.02 0.59
iamb/hc loglik Specificity Greater <2.2e —16 0.98 0.38
ga/hc Sensitivity ~Less <22e-16 0.24 0.32
ga/hc Specificity Greater <2.2e —16 0.79 0.71
Data Availability

The datasets used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was also financed through the Regional Opera-
tional Programme CENTRO2020 within the scope of the
project CENTRO-01-0145-FEDER-000006.

References

(1]

(2]

S.-S. Leu and Q.-N. Bui, “Leak prediction model for water
distribution networks created using a Bayesian network
learning approach,” Water Resources Management, vol. 30,
no. 8, pp. 2719-2733, 2016.

F. Dondelinger, S. Lébre, and D. Husmeier, “Non-homoge-
neous dynamic Bayesian networks with Bayesian regulariza-
tion for inferring gene regulatory networks with gradually
time-varying structure,” Machine Learning, vol. 90, no. 2,
pp. 191-230, 2013.

W. Young, A. E. Raftery, and K. Yeung, “Fast Bayesian
inference for gene regulatory networks using ScanBMA,”
BMC Systems Biology, vol. 8, no. 1, p. 47, 2014.

W. Buntine, “A guide to the literature on learning probabilistic
networks from data,” IEEE Transactions on Knowledge and
Data Engineering, vol. 8, no. 2, pp. 195-210, 1996.

R. Daly, Q. Shen, and S. Aitken, “Learning Bayesian networks:
approaches and issues,” The Knowledge Engineering Review,
vol. 26, no. 02, pp. 99-157, 2011.

D. Koller and N. Friedman, Probabilistic Graphical Models:
Principles and Techniques, MIT Press, 2009.

G. A. P. Saptawati and B. Sitohang, “Hybrid algorithm for
learning structure of Bayesian network from incomplete data-
bases,” in IEEE International Symposium on Communications
and Information Technology, 2005. ISCIT 2005, pp. 741-744,
Beijing, China, 2005, IEEE.

(8]

©
2

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]
(20]
(21]
(22]
(23]

[24]

(25]

(26]

[27]

(28]

11

P. Larranaga, H. Karshenas, C. Bielza, and R. Santana, “A
review on evolutionary algorithms in Bayesian network learn-
ing and inference tasks,” Information Sciences, vol. 233,
pp. 109-125, 2013.

P. Spirtes, C. N. Glymour, and R. Scheines, Causation, Predic-
tion, and Search, MIT press, 2000.

D. M. Chickering, “Learning Bayesian networks is NP-com-
plete,” in Learning from Data, pp. 121-130, Springer, 1996.
D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample
learning of Bayesian networks is NP-hard,” Journal of Machine
Learning Research, vol. 5, pp. 1287-1330, 2004.

M. Drton and M. H. Maathuis, “Structure learning in graphical
modeling,” Annual Review of Statistics and Its Application,
vol. 4, no. 1, pp. 365-393, 2017.

F. M. Stefanini, “Chain graph models to elicit the structure of a
Bayesian network,” The Scientific World Journal, vol. 2014,
Article ID 749150, 12 pages, 2014.

C. Heinze-Deml, M. H. Maathuis, and N. Meinshausen,
“Causal structure learning,” Annual Review of Statistics and
Its Application, vol. 5, no. 1, pp. 371-391, 2018.

S. Beretta, M. Castelli, I Gongalves, I. Merelli and
D. Ramazzotti, “Combining Bayesian approaches and evolu-
tionary techniques for the inference of breast cancer networks,”
in Proceedings of the 8th International Joint Conference on Com-
putational Intelligence, pp. 217-224, Porto, Portugal, 2016.

S. Beretta, M. Castelli, and R. Dondji, “Parameterized tractabil-
ity of the maximum-duo preservation string mapping prob-
lem,” Theoretical Computer Science, vol. 646, pp. 16-25, 2016.
T. S. Verma and J. Pearl, “Equivalence and synthesis of causal
models,” in Proceedings of the Sixth Annual Conference on
Uncertainty in Artificial Intelligence (UAI '90), pp. 220-227,
Cambridge, MA, USA, 1991.

I. Tsamardinos, C. F. Aliferis, A. R. Statnikov, and E. Statnikov,
“Algorithms for large scale Markov blanket discovery,” in
FLAIRS Conference, vol. 2, pp. 376-380, St. Augustine, FL,
USA, 2003.

G. Schwarz, “Estimating the dimension of a model,” The
Annals of Statistics, vol. 6, no. 2, pp. 461-464, 1978.

C.-R. Hwang, “Simulated annealing: theory and applications,”
Acta Applicandae Mathematicae, vol. 12, pp. 108-111, 1988.
F. Glover, “Tabu search—part I,” ORSA Journal on Computing,
vol. 1, no. 3, pp. 190-206, 1989.

M. Gendreau and J.-Y. Potvin, Eds., Handbook of Metaheuris-
tics, Springer, 2010.

F. Glover, “Tabu search: a tutorial,” Interfaces, vol. 20, no. 4,
pp. 74-94, 1990.

D. M. Chickering, “Learning equivalence classes of Bayesian-
network structures,” Journal of Machine Learning Research,
vol. 2, pp. 445-498, 2002.

M. Teyssier and D. Koller, “Ordering-based search: a simple
and effective algorithm for learning Bayesian networks,”
2012, https://arxiv.org/abs/1207.1429.

D. E. Goldberg and J. H. Holland, “Genetic algorithms and
machine learning,” Machine Learning, vol. 3, no. 2/3, pp. 95-
99, 1988.

C. Cotta and J. Muruzabal, “Towards a more E.cient evolu-
tionary induction of Bayesian networks,” in International
Conference on Parallel Problem Solving from Nature,
pp- 730-739, Granada, Spain, 2002.

S. van Dijk, D. Thierens, and L. C. van der Gaag, “Building a
GA from design principles for learning Bayesian networks,”

https://arxiv.org/abs/1207.1429

12

[29]

(30]

(31]

(32]

(33]

(34]

in Genetic and Evolutionary Computation Conference,
pp. 886-897, Chicago, IL, USA, 2003.

R. Etxeberria, P. Larranaga, and J. M. Picaza, “Analysis of the
behaviour of genetic algorithms when learning Bayesian net-
work structure from data,” Pattern Recognition Letters,
vol. 18, no. 11-13, pp. 1269-1273, 1997.

K.-J. Kim, J.-O. Yoo, and S.-B. Cho, “Robust inference of
Bayesian networks using speciated evolution and ensemble,”
in International Symposium on Methodologies for Intelligent
Systems, pp. 92-101, Saratoga Springs, NY, USA, 2005.

M. Mascherini and F. M. Stefanini, “M-GA: a genetic
algorithm to search for the best conditional Gaussian Bayesian
network,” in International Conference on Computational
Intelligence for Modelling, Control and Automation and Inter-
national Conference on Intelligent Agents, Web Technologies
and Internet Commerce (CIMCA-IAWTIC'06), pp. 61-67,
Vienna, Austria, 2005.

P. Larraiaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M.
H. Kuijpers, “Structure learning of Bayesian networks by
genetic algorithms: a performance analysis of control parame-
ters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, no. 9, pp. 912-926, 1996.

H. Akaike, “Information theory and an extension of the max-
imum likelihood principle,” in Selected Papers of Hirotugu
Akaike, pp. 199-213, Springer, 1998.

H. B. Mann and D. R. Whitney, “On a test of whether one of
two random variables is stochastically larger than the other,”
The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50—
60, 1947.

Complexity

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

