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a b s t r a c t

We introduce and study a family of discrete-time dynamical systems to model binary
choices based on the framework proposed by Schelling in 1973. The model we propose
uses a gradient-like adjustment mechanism by means of a family of smooth maps and
allows understanding and analytically studying the phenomena qualitatively described by
Schelling. In particular, we investigate existence of steady states and their relation to the
equilibria of the static model studied by Schelling, and we analyze local stability, linking
several examples and considerations provided by Schelling with bifurcation theory. We
provide examples to confirm the theoretical results and to numerically investigate the
possible destabilizations, as well as the emergence of coexisting attractors. We show the
existence of chaos for a particular example.

© 2015 Published by Elsevier B.V.

1. Introduction1

Q2

A binary choice is an either-or situation, in which agents have exactly two possible choices, which we will indicate in2

what follows by R and L. It is a very simple setting which, however, allows describing a wide variety of different situations,3

ranging from the decision to drive or not on certain days, to take or not an antibiotic, to take part in a collective action4

or to stay inactive and so on. The criteria according to which an agent makes a decision or its opposite may be different Q35

and related to both the decision itself and its consequences, and the influence exerted by the choices of the other agents6

on his own choice. In particular, in the latter case, we have that the choice of each individual can be influenced by social7

interactions. For instance, in the context of statistical physics, models with local interactions may be found in Refs. [1,2],8

while in Ref. [3] the authors study the binary choices of a set of agents through mean-field analytical methods.9
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A fundamental contribution about the effects of social interactions on binary choices is the seminal work by Schelling 1

in Ref. [4], in which a systematic discussion of several binary choice contexts is presented, together with their qualitative 2

study. A key assumption in Ref. [4] is that agents are supposed to be rational. The presence of rational agents is a fundamental 3

aspect, and rational choice models are an important class of mathematical sociologymodels (see Coleman [5], Sorensen and 4

Sorensen [6], and, more recently, Braun [7]). The work by Schelling in Ref. [4] provided a general framework suitable for the 5

development of a wide range of models and in fact it has been taken into account in several works during the past decades. 6

Without claiming to be complete, we can mention the influence of Ref. [4] on modeling resource management (Runge [8]), 7

corruption diffusion (Andvig and Moene [9]), public opinion formation (Dodds and Watts [10]) and also nature sciences, as 8

well as the diffusion of contagion (Dodds and Watts [11]). 9

Going back to the rationality assumption on agents, it allows studying possible equilibria in terms of the payoff functions 10

associated to the individual choices. The payoff functions are assumed to depend only on the number (and not on the 11

identity) of the agents that make a particular choice, so that those functions can be assumed to depend just on the fraction 12

x of agents making, for instance, choice R. The agents opt for a choice or its opposite on the basis of the payoff. However, 13

since, for each agent, the choice of the others influences his own payoff, he has to take into account also the effect of the 14

others choice. This is called externality, and in Ref. [4] it is also taken into account for the classification of the different binary 15

choices with respect to related payoffs. In the qualitative model by Schelling, equilibria correspond to the Nash equilibria 16

and occur 17

• at the internal fractions of agents for which the payoff functions intersect (or, equivalently, the payoff differential is null) 18

and no agents take advantage from changing its choice; 19

• in some extremal situations, in which all agents are making the same decision, provided that the payoff of such choice is 20

larger than that of the opposite one. 21

For example, Schelling formalizes the multiperson prisoner’s dilemma (MPD), for which the following conditions have 22

to be satisfied: 23

1. each individual faces the same binary choice and payoffs; 24

2. each individual has a dominant choice independently of what the others do; 25

3. any individual is better off the more numerous are the agents who make their dominated choice. 26

In this situation, the payoff functions do not intersect and the equilibrium is represented by the configuration in which each 27

agent chooses the dominated strategy. In this case, the externality is uniform, in the sense that when the fraction of agents 28

making a particular choice is increased, it has the same effects on the payoffs of agents choosing both R and L. For example, 29

imagine that both payoffs are described, as in the MPD, by increasing functions. If an agent chose R, then the payoffs of the 30

other agents, who chose both R and L, would increase, while if an agent chose L, both R and L payoffs would decrease. Then, 31

in the first case we speak of positive externality, while in the second one of negative externality. 32

Another framework that can be classified by means of the concept of externality is that of common goods. A concrete 33

example of such situation is described by Schelling when he examines the decision to use or not a car with respect to the 34

issue of traffic congestion. In this case, the two payoff functions have opposite monotonicity, intersect once and we have 35

an internal stable equilibrium, different from the extremal situations in which all agents make the same decision. In such 36

context, externality is contingent, as the effects of a given choice are not the same on both payoffs. For example, if the payoff 37

of choice R is decreasing and that of choice L is increasing, choosing R increases the payoff of L and decreases that of R, while 38

choosing L has an opposite effect. 39

A further example concerning externalities is given by the so-called network goods, in which the users of a good gain 40

when additional users adopt it. This is somehow the opposite of the common goods example, since now the internal 41

intersection for the payoff functions is no more a stable steady state, but it rather acts as a discriminating level between 42

the extremal states in which all players make the same choice. 43

Such examples show that externalities are essentially connectedwith themonotonicity of the payoff functions. However, 44

the monotonicity of the payoff functions alone is not sufficient to catch all the possible dynamic behaviors originating with 45

binary choices. Schelling notices, for instance, that also the steepness of the payoff functions is relevant: ‘‘. . . classification has 46

to consider . . . whether or not the externality favors more the choice that yields the externality. That is, with a Right choice yielding 47

the positive externality, does it yield a greater externality to a Right choice or to the Left? Which curve is steeper?’’ [4, p. 403]. 48

In Ref. [4], it is also marginally considered the problem of how the situation changes when one of the payoff functions is 49

kept fixed and the other is changed, for example rotated (see Ref. [4, p. 404]). Clearly, the static qualitative analysis of Ref. [4] 50

does not allow to study what happens to the fractions dynamics when the payoff curves are varied, for example depending 51

on a parameter that regulates their slope or position. 52

The aim of this work consists in providing a modeling framework based on a discrete dynamic model in order to 53

analytically study the dynamics underlying the qualitative and essentially static setting in Schelling [4]. Taking into account 54

a time-dependent model, we want to provide an explicit dynamic adjustment mechanism to validate and deepen the 55

analysis by Schelling, focusing on the local properties of the equilibria, on their stability and on the causes of stability loss, 56

together with the possible scenarios arising when equilibria become unstable. In our contribution we focus on social and 57

economic issues that can be modeled by means of discrete-time processes, i.e., processes in which decisions do not change 58

continuously in time, but rather require some time to be modified (for related examples, see for instance Ref. [12]). We also 59
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mention that in Ref. [4] a deep investigation of features such as the threshold rule and the critical mass, or of the effects of1

coalition formation, is present. These further aspects are not considered and studied in the present paper.2

Amodel based on discrete dynamical systems for Ref. [4] was recently proposed by Bischi and Merlone in Ref. [13].3 The3

model describes the evolution of agent fractions of a normalized population. The dynamic nature of themodel is represented4

by the fact that, at time t + 1, the fraction xt of population that chose strategy R during the previous time period t can vary5

to xt+1. Moreover, it is assumed that each agent makes its decision choosing at each time a strategy which is based on the6

payoffs of the last period only. The model proposed in Ref. [13] is given by7

xt+1 = r (xt) =


xt + δRg


λ (R (xt) − L (xt))


(1 − xt) , for R (xt) ≥ L (xt) ,

xt − δLg

λ (L (xt) − R (xt))


xt , for R (xt) < L (xt) ,

(1.1)8

where R(x), L(x) are the payoff functions, for i ∈ {R, L}, δi ∈ [0, 1]
∧
represent respectively howmany agents decide to switch9

from R to L and vice versa, λ ≥ 0 is the speed of reaction of the agents and g : R+ → [0, 1] is a continuous increasing real10

function.11

In Ref. [13], payoff functionswith both one and two intersections are considered, and some results about the steady states12

of (1.1) are provided. Then, the investigation is mainly focused on the study of the possible global dynamics, by means of13

several examples which refer to Ref. [4]. Convergence, chaotic behaviors, changes in the basins of attraction are considered,14

especially looking at the effects on stability of reaction speed variations. The main drawback of model (1.1) is that, being15

the map r not differentiable at its fixed points, most of the analytical results about stability in the literature on dynamical16

systems cannot be used and a general study becomes difficult to perform.17

In this workwe study a general family of adapting strategies, in order to investigate under which conditions it represents18

a modelization of Schelling qualitative framework. Our goal consists in providing a setting which allows explaining several19

aspects shown by Schelling in terms of the analytical properties of the resulting discrete dynamical systems. In particular,20

we shall focus on two aspects.21

(A) We wish to study the effects on the dynamics of subjective aspects, focusing on what happens when the reaction of the22

agents to a particular payoff differential changes.23

(B) We investigate the effects on the dynamics of changes in the economic and social context, which are represented by24

payoff differential variations.25

To this end, differently fromRef. [13], we assume that the involvedmaps are sufficiently regular. In particular, since in our26

proofs we will need to compute up to the third derivatives, wemay assume our maps to be of class C3. The models we focus27

on are based on a gradient-like dynamical adjustment mechanism bymeans of functions, depending on the previous period28

population fractions and on the payoff differential, which assess the (positive or negative) fraction of agents that, having29

chosen L at time t , decide to switch to R at time t + 1. Such functions also depend on a parameter describing the speed of30

reaction of the agents to the payoff differential. To pursue goal (A), we will study the effect of varying the reaction speed γ ,31

whilewewill investigate aim (B) by considering a family of payoff differentials, which depend on an exogenous parameterµ.32

This latter scenario represents a situation in which the payoff differential varies depending on an exogenous cause, which33

can for instance modify the reciprocal position of the payoff functions, as well as the resulting possible equilibria. Such34

scenario is qualitatively present in Ref. [4] too, but it has not been investigated in Ref. [13]. We will present several general35

situations in which the effect of the variation of the payoff differential can be read in terms of bifurcation theory.36

We shall provide conditions under which the proposed family of maps is suitable to encompass the assumptions of37

Schelling in Ref. [4] for either setting (A) or (B). We prove general results about the existence of steady states and their38

relations to the equilibria considered in Ref. [4]. Then,we study the local stability conditionswith respect to both the speed of39

reaction of the agents and payoff changes. We show that qualitative behaviors predicted explicitly or implicitly by Schelling40

can be understood in terms of bifurcation theory. Finally, we propose some examples of models belonging to the introduced41

family, to provide a confirmation of the analytical results and to cast a glance on the possible global dynamics.42

The article is organized as follows. In Section 2 we introduce the model. In Section 3 we provide analytical results43

about local stability. In Section 4, we study some examples and perform simulations. Finally, in Section 5 we present some44

conclusions and future perspectives.45

2. Binary choice models46

We introduce a family of models in order to describe the aggregate outcome of repeated binary choice games. The setting47

we deal with is the same considered by Schelling in Ref. [4] and it is based on the following two assumptions (see in48

particular [4, p. 383]). First of all, we suppose that each agent is confronted with exactly two possible choices, that we49

will indicate with R (right) and L (left), so that, denoting by xt the fraction of agents that at time t make, for example, choice50

R, we have the51

3 In Ref. [14], Bischi and Merlone propose a unified model which synthesizes both the Galam’s rumor spreading model in Ref. [15] and the Schelling’s
binary choices model in Ref. [4].
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Assumption 2.1. At each time t , each agent faces a purely binary choice, so that if xt individuals play choice R, the remaining 1

1 − xt are playing the opposite one L. 2

Moreover, as in Ref. [4], we assume that all the agents have the same impact on the others choices, in the sense that there 3

is no ranking among players induced by sensitivity or influence, so that 4

Assumption 2.2. Each player’s payoff only depends on the number of agents who make choice R or L and not on their 5

identities. 6

The two previous assumptions by Schelling allow defining the payoff function R : [0, 1] → R of agents playing choice R 7

and, similarly, the payoff function L : [0, 1] → R of agents playing the opposite choice L. In what follows, we will suppose 8

that both R(x) and L(x) are sufficiently smooth to allow us to perform the needed computations. 9

In Ref. [4] several examples were discussed together with possible corresponding payoff functions, in order to identify 10

the related equilibria. We stress that those payoff functions were however described just by their qualitative properties, 11

such as monotonicity, and no analytic expression was provided. 12

Even if the original work by Schelling [4] was essentially static in nature, a dynamic behavior was implicitly present in 13

his analysis. This was already noticed by Bischi and Merlone in Ref. [13], who summarized it in the following 14

Assumption 2.3. If R (xt) > L (xt), the fraction xt of agents which choose strategy R will increase, while it will decrease 15

when L (xt) > R (xt). 16

The previous assumption implicitly suggests a gradient-like dynamic behavior for the fractions evolution, as they increase 17

towards the choicewith the highest payoff. Introducing the payoff differential functionχ : [0, 1] → R,χ(xt) = R(xt)−L(xt), 18

the family of dynamical adjustments that we propose is given by 19

xt+1 = g(xt) = xt + f (xt , γ χ(xt)), (2.1) 20

where f : [0, 1] × R → R, (x, y) → f (x, y), is a sufficiently smooth function which represents the variation in the fraction 21

of the agents that, having chosen L at time t , switch to R at time t + 1. Notice that it may also be negative if many agents 22

switch from R to L. 23

Parameter γ is a positive constant that represents the speed of reaction of the agents and the weight they assign to 24

the payoff differential. We stress that, since (2.1) describes a very simple adaptive adjustment mechanism, it is natural to 25

assume, as in Ref. [13], a reduced rationality degree for the agents, which, inmaking their choices, only know the (aggregate) 26

choice of the other agents at time t and the resulting payoff. 27

We remark that model (2.1) complies with both the previous Assumptions 2.1 and 2.2. First of all, a one-dimensional 28

model is enough, thanks to the purely binary nature of the choice established by Assumption 2.1. Then, the payoff differential 29

χ depends on the agents fractions only, in agreementwith Assumption 2.2. In order to satisfy Assumption 2.3, we need some 30

further hypotheses on function f . First of all, to guarantee that xt ∈ [0, 1] for all t , and thus that g(xt) is a function from 31

[0, 1] into itself, we need 32

−x ≤ f (x, y) ≤ 1 − x, ∀(x, y) ∈ [0, 1] × R, 33

which guarantees that 34

− xt ≤ f (xt , γ χ(xt)) ≤ 1 − xt , ∀χ : [0, 1] → R, γ > 0, xt ∈ [0, 1]. (2.2) 35

Condition (2.2) says that if the fraction of agentsmaking choice R increases (respectively decreases) from time t to time t+1, 36

it can do at most of the fraction 1−xt (respectively xt ) of agents making choice L (respectively R) at time t . This is essentially 37

the reason why the function f has to depend directly also on the fraction xt and not only on the payoff differential χ(xt). In 38

particular, we highlight that condition (2.2) requires that when xt = 0, then f has to be non-negative, while when xt = 1, 39

then f has to be non-positive. 40

To be consistent with Assumption 2.3, we require that, for a given pair (f , χ) and a reaction speed γ > 0 41
f (xt , γ χ(xt)) > 0, if χ(xt) > 0,
f (xt , γ χ(xt)) < 0, if χ(xt) < 0, (2.3) 42

for the internal fractions xt ∈ (0, 1) and, in order to encompass also the extremal Schelling equilibria in Ref. [4], for the 43

extremal fractions we impose that 44
f (x̄t , γ χ(x̄t)) ≥ 0, if χ(x̄t) > 0,
f (x̄t , γ χ(x̄t)) ≤ 0, if χ(x̄t) < 0, (2.4) 45

where x̄t is either 0 or 1. Moreover, we assume that f (xt , γ χ(xt)) = 0 for those xt ∈ [0, 1] for which χ(xt) = 0, which 46

means that if the payoff differential is null, no agent modifies his choice. We notice that, thanks to (2.3), we have that, if 47

both options are chosen by at least one agent (so that xt ≠ 0, 1), when the payoff differential is positive, then f is positive 48

too and the fraction of agents that at time t + 1 chooses R increases; conversely, when the payoff differential is favorable to 49

choice L, then f is negative and the agents that choose R at time t + 1 decrease. 50

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Thanks to (2.3), we will prove that the only possible fractions equilibria of (2.1) with xt ∈ (0, 1) are those for which1

the profit differential is null, which is in accordance with the work by Schelling [4]. The difference between (2.3) and (2.4)2

lies in the possibility in (2.4) to have f (x̄t , γ χ(x̄t)) = 0 even when χ(x̄t) ≠ 0, i.e., we only allow function f to possibly3

introduce equilibria x = 0 and x = 1 even if the profit differential does not vanish for such fractions. This is still consistent4

with Ref. [4]. In fact, when strategy R dominates L near x = 1, the equilibrium has to be x = 1, as well as when strategy5

L dominates R near x = 0, the equilibrium has to be x = 0, as shown in several examples therein (see, for instance, the6

multiperson prisoner’s dilemma in Ref. [4, pp. 386–390] or the example in Ref. [4, p. 402]).7

In the following result, we look for the possible steady states of (2.1) and their relation to the equilibria of the static8

setting in Ref. [4], which correspond to the fractions that make the payoff differential null or, possibly, to the extremal9

fractions x = 0, 1.10

Proposition 2.1. If x∗
∈ (0, 1), then it is a steady state for (2.1) if and only if χ(x∗) = 0. If x∗

= 0, then it is a steady state for11

(2.1) if χ(0) ≤ 0 or if χ(0) > 0 and f (0, γ χ(0)) = 0. If x∗
= 1, then it is a steady state for (2.1) if χ(1) ≥ 0 or if χ(1) < 012

and f (1, γ χ(1)) = 0.13

Proof. Firstly, we notice that steady states of (2.1) require that f vanishes and that, thanks to the hypotheses on f , we have14

f (x∗, χ(x∗)) = 0 when x∗
∈ [0, 1] is such that χ(x∗) = 0.15

Let us now show that if x∗
∈ (0, 1) is a steady state of (2.1), then χ(x∗) = 0. Indeed, if x∗

∈ (0, 1) and χ(x∗) ≠ 0, from16

(2.3) we have that also f (x∗, γ χ(x∗)) ≠ 0, with γ > 0, so that the only possible internal steady states are those for which17

the payoff differential is null.18

Let us finally consider x∗
= 0. If χ(0) < 0, then from (2.4) we have that f (0, γ χ(0)) ≤ 0, with γ > 0, and from (2.2)19

that f (0, γ χ(0)) ≥ 0, so that f (0, γ χ(0)) = 0. Proceeding in a similar way for x∗
= 1 allows concluding the proof. �20

The previous result guarantees that the only possible internal steady states are those fractions for which the payoff21

differential vanishes.Moreover, if the payoff of choice R is larger than the payoff of choice L in some interval of the form [a, 1],22

then x∗
= 1 is a steady state. Similarly, if the payoff of choice L is larger than the payoff of choice R in some interval of the form23

[0, b], then x∗
= 0 is a steady state. We already noticed that both these situations are in agreement with Ref. [4]. However,24

we remark that from (2.4) extremal fractions can be steady states of (2.1) even if the previous conditions on payoffs are not25

satisfied. With this we want to allow for the possibility to include in (2.1) some classical choice adjustment mechanisms,26

based for instance on simple replicator or logistic dynamics (see also Section 4). As we will show in Proposition 3.3, such27

extremal x∗
= 0 and x∗

= 1 steady states, which are not Schelling equilibria, are always unstable and thus are reached only28

if the initial datum is exactly given by x0 = 0 or x0 = 1, respectively. Since the adjustment process we propose is based on29

a reduced degree of rationality, it seems perfectly acceptable to include those situations in which, although when xt = 030

or xt = 1, agreeing all the agents on the same choice, they could not be aware of the opposite choice payoff, any small31

perturbation in a single agent choice leads all the other agents to change their choices, too.32

3. Local stability33

Schelling in Ref. [4] discussed several situations in order to qualitatively study the possible equilibria of repeated binary34

choice games. As concerns the local analysis of the dynamicalmodel (2.1), wewill provide conditions for the local stability of35

steady states andwewill investigate how theymay possibly lose stability. In what follows, we split the study of the stability36

of the steady states
∧
into two parts, for both analytical and interpretative reasons. Indeed, stability of model (2.1) can be37

studied with respect to two factors, i.e., reaction speed and payoff differential variation. As regards the former, the stability38

or instability of the system is inherently related to the decision process of the agents, and in particular to their tendency39

to change their decisions and to weight the payoff differential. In regard to the latter, the stability or instability of (2.1) is40

connected to the economic or social changes that modify the payoffs: in fact, these also influence the nature of the possible41

loss of stability and the consequent global dynamics. Before proving stability results, we provide the following proposition.42

Proposition 3.1. Let x∗ be such that χ(x∗) = 0. Then43

d
dx

f (x∗, 0)χ ′(x∗) ≥ 0. (3.1)44

Proof. The conclusion is trivial if χ ′(x∗) = 0. Let us then suppose that χ ′(x∗) > 0. If x∗
∈ (0, 1), then there exist intervals45

(a, x∗) and (x∗, b) in which we respectively have χ(x) < 0 and χ(x) > 0. From (2.3), we also have f (x, χ(x)) < 0 for46

x ∈ (a, x∗) and f (x, χ(x)) > 0 for x ∈ (x∗, b). This implies df /dx(x∗, 0) ≥ 0. For the extremal situations x∗
= 0 and x∗

= 1,47

the previous argument is still valid considering respectively right or left neighborhoods only. The case χ ′(x∗) < 0 can be48

handled similarly. �49

In the following sections we will frequently make reference to several aspects of bifurcation theory. For the reader’s50

convenience, we provide a brief graphical and interpretative summary of the bifurcations we will study. In Fig. 1 we report51

examples of flip, fold and pitchfork bifurcation diagrams, together with the one-dimensional maps, which depend on a Q452
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Fig. 1. Bifurcation diagrams (top row) of some one-dimensionalmaps (bottom row) depending on a parameter a. Stable steady states are indicated by filled
dots, unstable ones by empty squares. In the fold bifurcation diagram the dynamics can only converge to the black points, while green points represent
unstable steady states. In the pitchfork bifurcation diagram the dynamics can converge either to the black or green points, depending on the initial datum.

∧
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) .

parameter a, they are generated from. In correspondence to a flip bifurcation (left column of plots in Fig. 1), themap becomes 1

steeper and steeper at the steady state as the parameter increases. The initially stable steady state is then replaced by an 2

initially stable period-2 cycle, which for increasing values of a incurs a cascade of period doublings leading to chaos. In 3

correspondence to a fold bifurcation (middle column of plots in Fig. 1), on varying the parameter the map becomes tangent 4

to the 45-degree line, so that a pair of stable/unstable steady states arises. In correspondence to a pitchfork bifurcation (right 5

column of plots in Fig. 1), on varying the parameter a stable steady state becomes unstable and it is replaced by a pair of 6

stable steady states. The dynamics can converge to both steady states, depending on the initial datum. 7

3.1. Stability analysis with respect to speed of reaction 8

We want to study what happens when, considering the dynamics characterized by a particular function f , the reaction 9

speed γ of the agents to a particular payoff χ is varied. In this scenario function f has to satisfy the hypotheses in Section 2 10

(in particular conditions (2.3) and (2.4)) for all γ > 0. This allows proving a consequence of Proposition 3.1. 11

Corollary 3.1. Let f be a function for which Conditions (2.3) and (2.4) are fulfilled for any γ > 0. If x∗ is such that χ(x∗) = 0, 12

then 13

∂xf (x∗, 0)χ ′(x∗) ≥ 0 and ∂yf (x∗, 0) ≥ 0. (3.2) 14

Proof. The result is trivial for χ ′(x∗) = 0. If χ ′(x∗) ≠ 0, from Proposition 3.1, we have that 15

∂xf (x∗, 0)χ ′(x∗) + γ (χ ′(x∗))2∂yf (x∗, 0) ≥ 0, (3.3) 16

which has to be valid for any γ > 0. 17

If ∂yf (x∗, 0) < 0, considering γ > −∂xf (x∗, 0)/(χ ′(x∗)∂yf (x∗, 0)) would violate condition (3.3). 18

Similarly, if ∂xf (x∗, 0)χ ′(x∗) < 0, then γ < −∂xf (x∗, 0)/(χ ′(x∗)∂yf (x∗, 0)) would violate (3.3). This concludes the 19

proof. � 20
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We start our analysis by considering internal steady states.1

Proposition 3.2. System (2.1) is locally asymptotically stable at the steady state x∗
∈ (0, 1) provided that2

− 2 < ∂xf (x∗, 0) + γχ ′(x∗)∂yf (x∗, 0) < 0. (3.4)3

Proof. The proof is a straightforward consequence of the stability condition |g ′(x∗)| < 1, where g ′
= 1+ ∂xf +γχ ′∂yf . �4

The previous result says that stability essentially depends on the behavior of the payoff differential at the equilibrium5

itself, as well as on the reaction speed γ . In particular, if the payoff differential is not decreasing in x∗, as for example when6

R(x) < L(x) and R(x) > L(x) respectively in a left and a right neighborhoods I− and I+ of x∗, then the equilibrium is7

necessarily unstable. In fact, from χ ′(x∗) ≥ 0 and (3.2), we have that both ∂xf (x∗, 0) and ∂yf (x∗, 0) are non-negative. This8

result is in agreement with Assumption 2.3, since, in this case, we have that, if x ∈ I−, the fraction of agents choosing Rmust9

decrease and, conversely, when x ∈ I+, the fraction of agents choosing Rmust increase.10

When insteadχ ′(x∗) < 0, from (3.2)we have that ∂xf (x∗, 0) is non-positive and ∂yf (x∗, 0) is non-negative. If ∂yf (x∗, 0) ≠11

0, then the right inequality in (3.4) is always satisfied and stability depends on the reaction speed γ , as increasing γ12

can lead to instability through a flip bifurcation.4 We notice that if ∂yf (x∗, 0) = 0, the reaction speed does not affect13

equilibrium stability. Since we are interested in the role of γ , in the examples considered in Section 4 it is always the case14

that ∂yf (x∗, 0) > 0.15

In the next proposition, we study the local stability of x∗
= 0, 1.16

Proposition 3.3. Let x∗
= 0 be a steady state for (2.1). If χ(0) = 0, then it is locally asymptotically stable provided that17

−2 < ∂xf (0, 0) + γχ ′(0)∂yf (0, 0) < 0.18

If χ(0) < 0, then it is locally asymptotically stable independently of γ , while, if χ(0) > 0, then it is unconditionally unstable.19

Let x∗
= 1 be a steady state for (2.1). If χ(1) = 0, then it is locally asymptotically stable provided that20

−2 < ∂xf (1, 0) + γχ ′(1)∂yf (1, 0) < 0.21

If χ(1) > 0, then it is locally asymptotically stable independently of γ , while if χ(1) < 0, then it is unconditionally unstable.22

Proof. The proof is similar for both extremal fractions, so we only detail the case x∗
= 0. If χ(0) = 0, the desired conclusion23

follows from the same arguments used for Proposition 3.2. If χ(0) < 0 and f (0, γ χ(0)) = 0, we have from (2.3) and the24

regularity assumptions that f (x, γ χ(x)) < 0 in a suitably small interval (0, a). Then, in such interval, we have g(x) < x for25

all γ , and this guarantees unconditional local stability. If χ(0) > 0 and f (0, γ χ(0)) = 0, we have the opposite situation,26

and f (x, γ χ(x)) > 0 in a suitably small interval (0, a). This allows concluding. �27

The previous proposition guarantees that if the payoff differential is null for extremal fractions, then the stability of such28

steady states is regulated by conditions similar to those obtained for internal fractions. If instead the payoff differential is29

favorable to choice R near x = 1 or to choice L near x = 0, then the corresponding extremal fraction is a stable equilibrium30

independently of the reaction speed, so that the dynamics always locally converge towards the extremal fraction. Conversely,31

the steady states that can be possibly introduced by function f and that are not equilibria in Ref. [4] are always unstable.32

3.2. Stability analysis with respect to payoff differential33

In the work by Schelling [4], a crucial concern is about the study of what happens when the relative position of the34

payoff functions varies. In Section ‘‘Prisoner’s Dilemma’’ in Ref. [4], Schelling extends the two person prisoner’s dilemma35

to Multiperson Prisoner’s Dilemma (MPD) and describes several possible configurations arising from the choice of linear36

payoff functions (see p. 388). Later, in Section ‘‘Some Different Configurations’’, he examines other situations that, even if37

are not formally ascribable to MPD, show, at least locally, a similar behavior. As we already noticed in the Introduction, in38

such contexts a key role is played by the qualitative behavior of externality.39

We then reconsider some examples inspired by Ref. [4], to briefly show possible scenarios that can arise when the payoff40

functions are shifted or rotated. To fix ideas, we keep R fixed and we vary L.41

In the first situation we consider (see Fig. 2), we have two linear payoff functions.42

Several examples of situations involving such payoff functions can be found in Ref. [4] (we refer in particular to Sections43

‘‘Intersecting Curves’’ and ‘‘Contingent Externality’’, on pp. 401 and 404, respectively). More precisely, in Fig. 1 function L1 is44

dominated by function R, and the only equilibrium is x = 0, as in theMPD. If the payoff of L is shifted up and slightly rotated,45

the initial uniform externality turns into a contingent externality and an internal equilibrium emerges, as in the case of R46

and L2. Such steady state is stable, but if the payoff function of L is inclined like L3 the equilibrium can become dynamically47

4 Referring to the notation introduced in the proof of Proposition 3.2, we recall that a flip bifurcation occurs at x∗ when g ′(x∗) = −1.
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Fig. 2. All the payoff functions are linear.With R and L1 wehave aMPD situation,without internal equilibria;with R and L2 wehave an internal equilibrium;
if the payoff of L is further rotated the equilibrium can become unstable, like in the case of R and L3 .

Fig. 3. The payoff functions of L are linear, while that for R presents a perturbation in the concavity with respect to the linear framework. For R and L1 we
have only the intersection P , which is an internal equilibrium. For R and L2 , the two payoff functions are tangent at P . For R and L3 , we have three internal
equilibria: P has become unstable, while the new equilibria are locally asymptotically stable.

unstable (of course, as we saw in Proposition 3.2, stability depends also on γ and ∂yf ). In bifurcation theory, this is a well- 1

known scenario corresponding to a flip bifurcation in which, as recalled at the beginning of Section 3, an initially locally 2

stable equilibrium loses its stability and a stable period-2 cycle emerges. 3

However, even confining ourselves to monotonic payoff functions, a slight change in one of the payoffs can give rise to 4

a totally different situation. Suppose for instance that function R changes its concavity, as in Fig. 3: notice that function R 5

is only slightly different from the linear one considered in the previous example. The main dissimilarity between the two 6

frameworks is that now the variation of payoff R is no longer constant, but it increases as we approach P . In this situation, as 7

L rotates, two new equilibria join the initial one. In the case depicted in Fig. 3, the internal equilibrium is initially stable with 8

R and L1, then it becomes neutrally stable with R and L2, and finally with R and L3 it becomes unstable and two new locally 9

stable equilibria emerge. Of course, increasing the reaction speed γ can lead the two new locally stable internal equilibria to 10

instability. This phenomenon can be assimilated to the occurrence of a pitchfork bifurcation for a dynamical system which, 11

as previously recalled, is characterized by the presence of an initially stable equilibrium that becomes unstable. At the same 12

time, two new locally stable equilibria arise. We remark that even if the concavity of the payoff functions was not taken 13

into account in the original work of Schelling, payoff functions reported in Fig. 3 are suitable modeling for several examples 14

provided in Ref. [4]. To this end, we can mention the examples reported in Refs. [9] and [16]. We also underline that the 15

opposite situation, characterized by an initially unique unstable equilibrium that gains stability and two unstable equilibria 16

arise, is possible as well. 17

The third situation we want to point out is inspired by the example described in Ref. [4, p. 414], which Schelling reports 18

to model a choice about opting for a particular communication system. Again we call attention to what happens when the 19

intensity of the payoff function of L is varied (see Fig. 4). 20

The choice R stays for adopting the system,while, when L is chosen, the system is not adopted. If there are several reasons 21

not to adopt that system (for instance, because of law restrictions or of heavy taxation) and the payoff function L1 lies all 22

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 4. The payoff of R is unimodal. With R and L1 we have a MPD framework; with R and L2 the payoff functions are tangent and the unique equilibrium
is internal; if the payoff of L is further rotated, like in the case with R and L3 , then there are two internal equilibria.

above function R, then the only steady state is x = 0. If relative conditions for the communication systems become more1

favorable to its adoption, a new equilibrium arises when the two payoff functions are tangent, like in the case with R and L2.2

If the payoff of L further decreases, like in the case of L3, then there are two internal equilibria, the leftmost unstable and the3

rightmost possibly stable. Indeed, as we already noticed also referring to Assumption 2.3, an equilibrium x∗ is necessarily4

unstable if, like for the leftmost equilibrium in our example, in a left neighborhood of x∗ we have L(x) > R(x) and in a right5

neighborhood of x∗ we have L(x) < R(x). The rightmost equilibrium can instead be stable, depending on the steepness of6

the functions, since the opposite scenario occurs. If this is the case, such behavior can be described in terms of bifurcation7

theory by means of a fold bifurcation which, as seen, consists in the sudden emergence of two new equilibria, a stable and8

an unstable one.9

In what follows, we aim to analytically study the possible dynamical behaviors of (2.1) due to variations in the payoff10

functions. To such end, for a fixed function f , we consider a family of payoff differentials, characterized by a real, exogenous11

parameter µ, which, for example, affects the position or the steepness of the payoff functions. Without loss of generality,12

for the sake of simplicity, we keep one of the payoff functions fixed and we allow the other one to vary depending on µ, so13

that the family of payoff differential can be represented by14

χ(x, µ) = R(x) − L(x, µ),15

and we set16

g(x, µ) = x + f (x, γ χ(x, µ)).17

Notice that, on varying µ, both the number and position of equilibrium fractions may change.18

Still for simplicity, since all examples considered in Section 4 do satisfy such assumption, from now on we shall only19

focus on those families of payoff differentials for which, as µ varies, the set of the possible resulting equilibria contains the20

whole interval (0, 1).21

In order to focus on the effects on the agents’ choices caused just by payoff differential variations, in this section we take22

γ as fixed and we assume that function f satisfies the hypotheses in Section 2 for any payoff differential of the family.23

Under the assumptions above, we get the following consequence of Proposition 2.1.24

Corollary 3.2. Let x∗ be such that χ(x∗) = 0. Then we have25

∂n
x f (x

∗, 0) = 0, ∀n ≥ 1, (3.5)26

and27

∂yf (x∗, 0) ≥ 0. (3.6)28

Proof. Since function f has to satisfy Condition (2.3) for any χ(x, µ) and since equilibria x∗, as µ varies, assume all the29

values in (0, 1), from Proposition 2.1, we have f (x, 0) = 0, ∀x ∈ (0, 1). Hence, ∂n
x f (x, 0) = 0, ∀n ≥ 1, ∀x ∈ [0, 1], and in30

particular ∂n
x f (x

∗, 0) = 0, ∀n ≥ 1, as desired. Inequality (3.6) is obtained from (3.1) and (3.5). �31

In the next propositions, we provide general sufficient conditions on (2.1) for the occurrence of flip, fold and pitchfork32

bifurcations. We will consider only isolated critical points belonging to (0, 1). Moreover, we will focus on those situations33

in which agents are not neutral to payoff differential variations near the equilibrium, namely ∂yf (x∗, 0) ≠ 0, which allows34

rewriting condition (3.6) as35

∂yf (x∗, 0) > 0. (3.7)36
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According to Ref. [17, page 91], for the flip bifurcation at the steady state x∗ we need that, for a suitable µfl, ∂xg(x∗, µfl) = 1

−1, namely that the left inequality in (3.4) be violated. The remaining two conditions, i.e., ∂µg(x∗, µfl)∂2
xxg(x

∗, µfl) + 2

2∂2
xµg(x

∗, µfl) ≠ 0 and 3(∂2
xxg(x

∗, µfl))2 + 2∂3
xxxg(x

∗, µfl) ≠ 0, are very nonrestrictive and can be easily satisfied by generic 3

functions, as we will show in what follows. Since the particular expressions of such conditions in terms of χ are not very 4

explanatory, we do not provide them explicitly. 5

Instead, the conditions for fold and pitchfork bifurcations are more interesting and we report them in Propositions 3.4 6

and 3.5, respectively. 7

Proposition 3.4. Let µfo be such that ∂xχ(x∗, µfo) = 0 and suppose that ∂µχ(x∗, µfo) ≠ 0 and ∂2
xxχ(x∗, µfo) ≠ 0. Then a fold 8

bifurcation occurs for µ = µfo at the steady state x∗. 9

Proof. According to Ref. [18, Theorem 2.5, p. 76], we need ∂xg(x∗, µfo) = 1. Since 10

∂xg = 1 + ∂xf + γ ∂yf ∂xχ, (3.8) 11

we have that such condition is satisfied thanks to the first hypothesis and to (3.5). 12

The second condition for a fold bifurcation requires ∂µg(x∗, µfo) ≠ 0, but since 13

∂µg = γ ∂yf ∂µχ, (3.9) 14

thanks to (3.7) and the second hypothesis, it is fulfilled. The last condition in Ref. [18] requires ∂2
xxg(x

∗, µfo) ≠ 0. We have 15

that 16

∂2
xxg = ∂2

xxf + γ ∂2
xyf ∂xχ + γ


∂2
xyf + γ ∂2

yyf ∂xχ

∂xχ + γ ∂yf ∂2

xxχ, (3.10) 17

which, thanks to (3.7), (3.5), the first and the third hypotheses, is indeed not null at (x∗, µfo). � 18

Proposition 3.5. Let µp be such that ∂xχ(x∗, µp) = 0 and let us suppose that ∂µχ(x∗, µp) = ∂2
xxχ(x∗, µp) = 0, 19

∂2
xµχ(x∗, µp) ≠ 0, ∂3

xxxχ(x∗, µp) ≠ 0. Then, a pitchfork bifurcation occurs for µ = µp at the steady state x∗. 20

Proof. According to Ref. [19], we need ∂xg(x∗, µp) = 1, which, recalling (3.8), is satisfied thanks to the first hypothesis and 21

to (3.5). 22

The second condition requires ∂µg(x∗, µp) = 0. From (3.9), thanks to the second hypothesis, it is always satisfied. The 23

third condition requires ∂2
xxg(x

∗, µp) = 0. From (3.10), using (3.5), the first and the third hypotheses, it is indeed satisfied. 24

For the fourth condition, we need ∂2
xµg(x

∗, µp) ≠ 0. Since 25

∂2
xµg = γ


∂2
xyf + γ ∂2

yyf ∂xχ

∂µχ + γ ∂yf ∂2

xµχ, 26

from (3.7), the second and the fourth hypotheses, the fourth condition is valid. Finally, we need ∂3
xxxg(x

∗, µp) ≠ 0. We have 27

∂3
xxxg = ∂3

xxxf + γ ∂xχ + γ ∂2
xyf ∂

2
xxχ + γ ∂xχ


∂3
xxyf + γ


∂3
xyyf + γ ∂3

yyyf ∂xχ

∂xχ + γ ∂2

yyf ∂
2
xxχ + γ ∂3

xyyf ∂xχ


28

+ 2γ

∂2
xyf + γ ∂2

yyf ∂xχ

∂2
xxχ + γ


∂3
xxyf + γ ∂3

xyyf ∂xχ

∂xχ + γ ∂yf ∂3

xxxχ 29

in which, thanks to (3.5) and the first four hypotheses, all the terms but the last one vanish at (x∗, µp). Thanks to (3.7) and 30

the last hypothesis, we can conclude. � 31

The twoprevious propositions say that, thanks to (3.5) (aswell as to (3.7)), the appearance of a fold or pitchfork bifurcation 32

in (2.1) is determined only by the properties of the payoff functions. Nowwe provide some families of payoff functions that 33

satisfy the conditions in Propositions 3.4 and 3.5. 34

For the fold bifurcation, the functions we propose mimic the example reported in Fig. 4. 35

Corollary 3.3. Let us consider L(x, µ) = x0 + µx and R(x) = x0 + µfox − (x − x∗)2R̂(x), with µfo
≠ 0 and R̂(x) > 0. Then, for 36

µ = µfo, a fold bifurcation occurs at x∗
∈ (0, 1). 37

Proof. It is sufficient to verify that the payoff functions R and L satisfy the conditions in Proposition 3.4. Since 38

∂xχ(x, µ) = µfo
− µ − 2(x − x∗)R̂(x) − (x − x∗)2R̂′(x), 39

wehave that the first condition ∂xχ(x∗, µfo) = 0 is satisfied. The second condition is satisfied, since ∂µχ(x∗, µfo) = −x∗
≠ 0, 40

as well as the last condition, since 41

∂xxχ(x, µ) = −2R̂(x) − 4(x − x∗)R̂′(x) − (x − x∗)2R̂′′(x) 42

gives ∂2
xxχ(x∗, µfo) = −2R̂(x∗) ≠ 0, as needed. � 43

Like for the fold bifurcation, starting from the example shown in Fig. 3, we present a family of payoff functions that exhibit 44

a pitchfork bifurcation. We stress that a sort of pitchfork bifurcation has been detected in Ref. [3], too, where a set of agents
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randomly chooses one of two competing shops which sell the same perishable products, selecting with a higher probability1

the store they are most satisfied with. Indeed, in Ref. [3, Fig. 2], for increasing value of the temperature parameter, which2

takes into account the influence of factors that are not explicitly described, the system, starting from a symmetric state3

where both stores maintain the same level of activity, reaches a state with broken symmetry where one of the two shops4

attracts more customers than the other.5

Corollary 3.4. Let us consider L(x, µ) = x0 + µ(x − x∗) and R(x) = x0 + µp(x − x∗) + (x − x∗)3R̂(x), with µp
≠ 0 and6

R̂(x) < 0. Then, for µ = µp, a pitchfork bifurcation occurs at x∗
∈ (0, 1).7

Proof. It is sufficient to verify that the payoff functions R and L satisfy the conditions in Proposition 3.5. Since8

∂xχ(x, µ) = µp
− µ + (x − x∗)3R̂′(x) + 3R̂(x)(x − x∗)29

we have that the first condition ∂xχ(x∗, µp) = 0 is satisfied. The second and the third conditions are satisfied, since10

∂2
xxχ(x, µ) = 6(x − x∗)2R̂′(x) + 6R̂(x)(x − x∗) + (x − x∗)3R̂′′(x)11

and ∂µχ = x∗
− x. The fourth condition is satisfied as ∂2

xµχ = −1, while, noticing that12

∂3
xxxχ(x, µ) = 6R̂(x) + (x − x∗)3R̂′′′(x) + 18(x − x∗)R̂′(x) + 9(x − x∗)2R̂′′(x),13

thanks to the negativity of R̂, we can infer that also the last condition is fulfilled. This concludes the proof. �14

4. Examples15

In this section, we provide some examples of f and we show simulative and graphical evidence of the analytical results16

of the previous section. We also use such examples to give an insight of the possible routes to chaos and to provide some17

brief considerations about global dynamics.18

The first example can be considered as a smooth version of model (1.1). In particular, let h1 : R → [−1, 1] be a smooth19

strictly increasing function with h1(y) > 0 for y > 0 and h1(y) < 0 for y < 0. Let h2 : R → [0, 1] be a non-negative20

function, strictly decreasing for y < 0 and strictly increasing for y > 0, and such that h2(0) = h′

2(0) = 0. Then, for any21

positive a and b such that a + b = 1, let us define the continuous function f1 : [0, 1] × R → R,22

f1(x, γ χ(x)) =


ax(1 − x)h1(γ χ(x)) + b(1 − x)h2(γ χ(x)), if χ(x) ≥ 0,
ax(1 − x)h1(γ χ(x)) − b x h2(γ χ(x)), if χ(x) < 0, (4.1)23

where χ : [0, 1] → R is a suitable smooth map and γ a positive parameter.24

First of all we notice that both the derivative of b(1 − x)h2(γ χ(x)) and of −bxh2(γ χ(x)) vanish when χ(x) = 0, so f1 is25

smooth. Furthermore, thanks to the hypotheses on the sign of h1 and h2, we have that (2.3) and (2.4) are both satisfied. We26

remark that for (4.1) the extremal fractions are not always equilibria for (2.1). Indeed, x = 1 is an equilibrium if χ(1) ≥ 027

and x = 0 is an equilibrium if χ(0) ≤ 0, while in the opposite cases they cannot be equilibria. Then, we notice that28

−ax ≤ ax(1 − x)h1(γ χ(x)) ≤ a(1 − x),29

and30 
0 ≤ b(1 − x)h2(γ χ(x)) ≤ b(1 − x), for χ(x) ≥ 0,
−bx ≤ −bxh2(γ χ(x)) ≤ 0, for χ(x) < 0.31

These inequalities allow concluding that f1 satisfies (2.2). Since, with respect to y, both b(1− x)h2(y) and −xbh2(y) are non-32

decreasing and ax(1 − x)h1(y) is strictly increasing, we also have that (3.7) is satisfied. Finally, an easy computation shows33

that (3.5) is also valid for f1. A possible choice for h1 and h2 is given by34

h1(y) = tanh(y), h2(y) = 1 − exp(−y4) (4.2)35

(see Fig. 5(A)).36

The second example we propose is a logistic map, with coefficient depending on the payoff differential, which can be37

obtained considering a = 1 and b = 0 in the previous example (4.1), namely38

f2(x, γ χ(x)) = x(1 − x)h1(γ χ(x)). (4.3)39

In this case, x = 0, 1 are always steady states. Again we consider40

h1(y) = tanh(y) (4.4)41

(see Fig. 5(B)).42

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 5. In (A) the map in (4.1) with h1 and h2 given by (4.2). In (B) the map in (4.3) with h1 given by (4.4). In (C) the map in (4.5) with h3 given by (4.7). The
three graphs are obtained considering γχ(x) as a free variable y, i.e., not specifying γ and χ(x).

Fig. 6. Maps in (4.8)–(4.10) for R(x) = 3x + 1 and L(x) = 2x + 3 and for two different values of reaction speed γ , i.e., γ = 0.2 and γ = 5, respectively.

The last example we take into account is 1

f3(x, γ χ(x)) = x(1 − x)
1 − h3(γ χ(x))

(1 − x)h3(γ χ(x)) + x
. (4.5) 2

If h3(y) ≥ 0, we have that condition (2.3) rewrites as Q5 3
h3(y) < 1, if y > 0,
h3(y) > 1, if y < 0, (4.6) 4

while f3(x̂, y) = 0 for x̂ = 0, 1 independently of h3, so that (2.4) is automatically fulfilled and 0,1 are always equilibria. 5

Thanks to the assumed positivity of h3, we have that f3 satisfies (2.2) also. We notice that, since 6

∂yf3(x, y) = −x(1 − x)
h′

3(y)
((1 − x)h3(y) + x)2

, 7

we have that (3.7) is valid if h′

3(y) < 0. 8

It can be proved that 9

∂xf3(x, y) =
h3(y)

((1 − x)h3(y) + x)2
− 1 10

and for n > 1 11

∂n
x f3(x, y) =

n!h3(y)(h3(y) − 1)(n−1)

((1 − x)h3(y) + x)n+1
, 12

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 7. Top: maps g1, g2 and g3 when the payoff functions are R(x) = −2x + 1 and L(x) = x − 1/3, for two different values of γ (i.e., γ = 1 and γ = 10,
respectively). Bottom: bifurcation diagrams with respect to γ ∈ [0, 20], for the initial condition x0 = 0.1.

so that, thanks to (4.6), for all n ≥ 1, ∂n
x f3(x

∗, 0) = 0 for those x∗ for which χ(x∗) = 0 and thus (3.5) is satisfied. In the1

following simulations we will consider2

h3(y) = exp(−y) (4.7)3

(see Fig. 5(C)).4

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 8. Graph of g2
1 − id for different values of γ . Fold, stable and unstable fixed points are marked respectively with

∧
F , S and U . Point Pij comes from a

bifurcation of point Qi . Stable fixed points are marked by red dots, unstable ones by red squares. In the second row, a blow-up near the region of x∗
= 4/9

is plotted. Outside the plotted region, the shape of g2
1 − id remains similar to that of the first row of graphs.

∧
(For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.) .

0

0.2

0.4

0.6

0.8

1

0.94 0.95 0.96 0.97 0.98 0.99 1

Fig. 9. The graph of the identity map (in blue) and of the first three iterates of g2
3 (in red, magenta and cyan, respectively) for γ = 20. The interval

highlighted in green on the horizontal axis is J from Remark 4.1.
∧
(For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.) .
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Fig. 10. Bifurcation diagrams for the maps g1, g2 and g3 with R = (x − 1/2) + 2 and L = µ(x − 1/2) + 2.

The resulting dynamical systems are then:1

xt+1 = g1(xt) =


xt +

1
2
(1 − xt)


xt tanh(γ χ(xt)) + 1 − exp(−(γ χ(xt))4)


, if χ(xt) ≥ 0,

xt +
1
2
xt


(1 − xt) tanh(γ χ(xt)) − 1 + exp(−(γ χ(xt))4)


, if χ(xt) < 0,

(4.8)2

coming from (4.1) and (4.2) with a = b =
1
2 ;3

xt+1 = g2(xt) = xt + tanh(γ χ(xt))xt(1 − xt), (4.9)4

coming from (4.3) and (4.4);5

xt+1 = g3(xt) = xt + xt(1 − xt)
1 − exp(−γχ(xt))

(1 − xt) exp(−γχ(xt)) + xt
6

=
xt

(1 − xt) exp(−γχ(xt)) + xt
, (4.10)7

coming from (4.5) and (4.7). We remark that (4.10) belongs to the family of replicator functions: for more details see8

Refs. [20,21].9

We stress that, for f3 in (4.5) with h3 in (4.7), as γ → +∞ (or as the payoff differential becomes very large), if x ∈ (0, 1),10

then all the agents decide to adopt the most profitable strategy, namely11 
lim

γ→+∞
f3(x, γ χ) = 1 − x, if χ(x) > 0,

lim
γ→+∞

f3(x, γ χ) = −x, if χ(x) < 0.
12

This is not true for f1 and f2.13

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 11. The graph of the second iterate of g2 for γ = 1 and several values of µ. Stable and unstable fixed points are labeled with S and U respectively.
Point Pij comes from a bifurcation of point Qi and point Pijk comes from a bifurcation of Qij .

In Fig. 6, we report the graph of the maps in (4.8)–(4.10) in a MPD situation, with payoff functions R(x) = 3x + 1 and 1

L(x) = 2x + 3. All the maps vanish for x = 0, which is the equilibrium, while g2(1) = g3(1) = 1 ≠ g1(1), as for g2 and g3 2

the extremal fractions are always steady states, even when they are not equilibria. For small values of γ all the functions 3

look very similar, while, as γ increases, some stronger differences appear. In particular, the distance between g1(1) and 1 4

becomes more evident. 5

In general, for γ → +∞, it is easy to see that g1 pointwise converges to 6−1/2x2 + x + 1/2, for x such that χ(x) > 0,
1/2x2, for x such that χ(x) < 0,
x, for x such that χ(x) = 0,

7

while g2 pointwise converges to 82x − x2, for x such that χ(x) > 0,
x2, for x such that χ(x) < 0,
x, for x such that χ(x) = 0,

9

and g3 pointwise converges to 101, for x such that χ(x) > 0,
0, for x such that χ(x) < 0,
x, for x such that χ(x) = 0 and x ≠ 0, 1.

11

The convergence provided by g3 is in general the fastest one. 12

In Proposition 3.2, we analyzed the role of γ for the stability, proving that its increase leads equilibria to instability 13

via a flip bifurcation. For example, let us consider the two linear payoff functions R(x) = −2x + 1 and L(x) = x − 1/3, 14

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 12. Top: maps g1, g2 and g3 when the payoff functions are R(x) = −2x2 + 3x + 0.5 and L(x) = µx + 1, for γ = 100 and different values of µ.

which intersect at x∗
= 4/9. Since R(x) > L(x) for x < x∗ and R(x) < L(x) for x > x∗, the intersection point is the1

equilibrium, which is conditionally stable, depending on γ and ∂yf (x∗, 0). In particular, we have that χ ′(4/9) = −3 and2

∂yf1(4/9, 0) = 10/81, ∂yf2(4/9, 0) = ∂yf3(4/9, 0) = 20/81, so that the critical values of γ above which stability is lost are3

γ1 = 5.4 and γ2 = γ3 = 2.7.4

In Fig. 7, we report the graphs of g1, g2 and g3 for two different values of γ and the corresponding bifurcation diagrams5

obtained with the initial condition x0 = 0.1. As predicted by Proposition 3.2, the destabilization of the internal equilibrium6

occurs by means of a period doubling bifurcation at the values γ = γi, i ∈ {1, 2, 3}, just found, but the successive7

scenarios are quite different for the threemaps. Formap g1, the bifurcation diagram shows the coexistence between different8

attractors. To better understand such phenomenon, for some significant values of γ , in Fig. 8 we report the graph of g2
1 − id,9

where id denotes the identitymap.We plot it in place of the second iterate of g1 in order tomake graphically visible the fixed10

points of g2
1 , which in g2

1 − id are the intersections with the horizontal axis. For small values of γ , the map g2
1 has the only11

stable fixed point x∗
= 4/9. When γ approaches 2.05, the second iterate has two fold bifurcations, which give rise to two12

couples of stable–unstable fixed points, so that we have coexistence of stable attractors. When γ reaches and exceeds the13

critical value 5.4, the second iterate of g1 has a classical supercritical pitchfork bifurcation, which means a period doubling14

bifurcation of the original map g1. However, the two stable fixed points that are just born very soon (at γ ≈ 5.408) merge15

with the two unstable fixed points of g2
1 coming from the pitchfork bifurcation, by means of a fold bifurcation. This means16

that above such value of γ the only stable attractor is the period-2 orbit that arose in the initial fold bifurcations of the17

second iterate, which, from simulations, seems stable when γ is further increased.18

On the other hand, in both the diagrams related to (4.9) and (4.10), a cascade of flip bifurcations leads to chaos.19

Wenow focus on the bifurcation diagram for g3(x) in Fig. 7 to showsome conclusions about existence of chaos in the sense20

of Li–Yorke. Indeed in Remark 4.1 we illustrate how to apply the well-known result by Li and Yorke [22], using conditions21

(T1) and (T2) in Theorem 1 therein (from now on, Th1 LY), to the second iterate of the map22

g3(x) =
x

(1 − x)e−γ (−3x+4/3) + x
=

x
(1 − x)eγ (3x−4/3) + x

. (4.11)23

Please cite this article in press as: F. Cavalli, et al., A family of models for Schelling binary choices, Physica A (2015),
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Fig. 13. Bifurcation diagrams of g1, g2 and g3 with respect toµ for R(x) = −2x2 +3x+0.5 and L(x) = µx+1, starting from the initial condition x0 = 0.6.
For γ = 1 all the maps have the same bifurcation diagram (top left). For γ = 100 the bifurcation diagrams are different.

We recall that if the map F in Th1 LY has a period-three orbit, then that theorem applies. Moreover, as observed in 1

Ref. [22], Th1 LY can be generalized to the case in which F : J → R is a continuous function that does not map the interval 2

J onto itself. 3

Remark 4.1. For the map g3 in (4.11), fix γ = 20 and set J = [0.94315, 0.94944]. Then for any point x ∈ J it holds that 4

y = g2
3 (x), z = g4

3 (x) and w = g6
3 (x) satisfy w ≥ x > y > z and thus Conditions (T1) and (T2) in Th1 LY do hold true for 5

g2
3 . In particular,5 for any x ∈ int(J) it holds that g6

3 (x) > x, while for x ∈ ∂(J) it holds that g6
3 (x) = x, that is, the extreme 6

points of J are period-three points for g2
3 . 7

We show that the chain of inequalities w ≥ x > y > z is satisfied on J by plotting in Fig. 9 the graphs of the identity map 8

in blue, of g2
3 in red, of g4

3 in magenta and of g6
3 in cyan. A direct inspection of that picture shows that it is possible to apply 9

Th1 LY to g2
3 on J and thus we immediately get the desired conclusions. 10

We stress that the computer simulation in Fig. 7 confirms the presence of chaos for g3, theoretically verified in Remark 4.1 11

when γ = 20. Moreover we remark that, although in Remark 4.1 we have fixed a particular parameter value for γ , by 12

continuity, the same result still holds, suitably modifying the interval J , also for small variations of γ . Hence, by Remark 4.1 13

the existence of Li–Yorke chaos for the map g2
3 follows when γ lies in a neighborhood of 20. Notice that, from the fact that 14

g2
3 is Li–Yorke chaotic interesting features can be deduced for the map g3 as well. For instance, by (T1) in Th1 LY it follows 15

that g3 has periodic points of any even period. 16

In the next set of simulations,we show the destabilization due to payoff variations. First, we consider a situation similar to 17

that depicted in Fig. 2, obtained taking R = (x−1/2)+2 and L = µ(x−1/2)+2. The resultingmaps g1, g2 and g3 are similar 18

5 Given an interval I , we denote its interior by int(I) and its boundary by ∂(I).
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Fig. 14. Maps g1, g2 and g3 when the payoff functions are R(x) = −(x − 1/2)3 + (x − 1/2) + 2 and L(x) = µ(x − 1/2) + 2, for γ = 20 and different
values of µ.

to those reported in Fig. 7. The period doubling occurs when µ = (γ + 16)/γ for g1 and when µ = (γ + 8)/γ for g2 and g3.1

The bifurcation diagrams for γ = 1 are reported in Fig. 10. For g1, we have a situation similar to that of the flip bifurcation2

due to γ , with an initial destabilization through a period-2 cycle quickly replaced by a different coexisting period-2 orbit. The3

bifurcation diagram for g3 suggests that, when the equilibrium loses its stability, a period-2 cycle emerges, which remains4

stable also when increasing µ. Conversely, for g2 the behavior is quite different.5

Each point of the initial period-2 cycle has for µ ≈ 20 a pitchfork bifurcation, and it is replaced by a new point which is6

initially stable for the second iterate. Each of such points then
∧
loses stability via a flip bifurcation, and, increasing µ further,7

the chaotic regime emerges. This is evident looking at the plot of the second iterate of g2 reported in Fig. 11 for some values8

of µ.9

Nowwe focus on the occurrence of a fold bifurcation considering a situation similar to that in Fig. 4. To this end, we take10

R(x) = −2x2 + 3x + 0.5 and L(x) = µx + 1, obtained by setting x0 = 1, µfo
= 1, x∗

= 1/2 and R̂ = 2 in Corollary 3.3, and11

we consider γ = 1 and γ = 100. In Fig. 12 we report the graph of the corresponding maps for γ = 100 and three different12

values of µ. We remark that when there is more than a single equilibrium, in particular when the payoff functions have13

multiple intersections, the basin of attraction of each stable equilibrium can consist of the union of several disjoint intervals.14

In Fig. 13, we show the bifurcation diagrams for g1, g2 and g3 with respect to µ, starting from x0 = 0.6, for γ = 1 and15

γ = 100. In the former case, the diagram is the same for both g1, g2 and g3 and we observe that if µ is greater than 1,16

the only equilibrium is x∗
= 0, as choice L is dominant. When µ = 1, the new equilibrium x∗

= 1/2 arises, coexisting17

with x∗
= 0. When 1/2 ≤ µ < 1, payoff functions intersect in two distinct points internal to [0, 1], corresponding to an18

unstable and a stable equilibria. Finally, when µ < 1/2, the intersection corresponding to the stable equilibrium is outside19

the interval [0, 1], and x∗
= 0, 1 are the stable equilibria.When γ increases, the situationmay change, as the internal steady20

state can become unstable. This is indeedwhat happens in Fig. 13whenwe take γ = 100. More precisely, for γ = 100maps21

g2 and g3 display a flip bifurcation, while the dynamics of g1 are more complicated and are characterized by the presence of22

coexisting attractors. We do not investigate this case further.23
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Fig. 15. Bifurcation diagrams of g1, g2 and g3 with respect toµ, for R(x) = −(x−1/2)3+(x−1/2)+2 and L(x) = µ(x−1/2)+2. For γ = 1 the bifurcation
diagram, starting from the initial condition x0 = 0.45, is the same for all themaps (top left). For γ = 20 the bifurcation diagrams are different. In particular,
we depict in black the diagram obtained for the initial condition x0 = 0.45, while in red that for x0 = 0.55.

∧
(For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.) .

The last example we consider concerns the pitchfork bifurcation and refers to the framework shown in Fig. 3. The 1

expressions of the payoff functions are R(x) = −(x−1/2)3 + (x−1/2)+2 and L(x) = µ(x−1/2)+2, which correspond to 2

the choice of x0 = 2, x∗
= 1/2, µp

= 1, R̂ = −1 in Corollary 3.4. In Fig. 14, we report the corresponding maps for γ = 20 3

and three different values ofµ. In Fig. 15, we show the bifurcation diagrams for g1, g2 and g3 with respect toµ, starting from 4

the initial condition x0 = 0.45 (in black) and from x0 = 0.55 (in red), for γ = 1 and γ = 20. In the former case the diagram 5

is the same for g1, g2 and g3 and we observe that if µ is larger than 1, both x = 0, 1/2 and 1 are stable equilibria. Decreasing 6

µ below 1, the internal equilibrium loses its stability and two stable equilibria emerge, that are stable for µ ∈ (3/4, 1), 7

while at µ = 3/4 they contemporaneously leave [0, 1]. For large values of γ , also this new stable equilibria can become 8

unstable. This is indeed what happens to g2 in Fig. 15 when we take γ = 20. We remark that, instead, for increasing values 9

of µ, we can identify behaviors that are similar to those described for the previously considered bifurcations. 10

5. Conclusions 11

In the present paper we introduced a family of models to describe Schelling binary choices in a dynamic setting. We 12

analyzed the general model, studying the possible steady states and their connection with the equilibria in Ref. [4]. We 13

then studied several cases examined in Ref. [4], in terms of the local stability properties of the models. We showed that 14

both reaction speed and payoff functions can lead to instability, and that the ways the equilibria lose their stability can be 15

linked to the scenarios qualitatively described by Schelling. Finally, we presented three particular models and we provided 16

numerical confirmation of the analytical results, togetherwith an investigation of the possible global behaviors of themodel. 17

Future research should focus on extending the model in order to take into account more complex frameworks, 18

considering not only purely binary choices, introducing possible differences in the influence of the various agents and 19

studying the effect of their spatial distribution, in view of analyzing both global and local interactions. 20
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