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Models representing meaning as high-dimensional numerical vectors (such as LSA, HAL,
BEAGLE, Topic Models, GloVe or word2vec) have been introduced as extremely powerful
machine-learning proxies for human semantic representations, and have seen an explosive rise
in popularity over the last two decades. However, despite their considerable advancements
and spread in the cognitive sciences, one can observe problems associated with the adequate
presentation and understanding of some of their features. Indeed, when these models are ex-
amined from a cognitive perspective, a number of unfounded arguments tend to appear in the
psychological literature. In the present article, we review the most common of these argu-
ments, directed at (1) what exactly these models represent at the implementational level and
their plausibility as a cognitive theory, (2) how they deal with various aspects of meaning
such as polysemy or compositionality, and (3) how they relate to the debate on embodied and
grounded cognition. We identify common misconceptions arising due to incomplete descrip-
tions, outdated arguments, and unclear distinctions between theory and implementation of the
models. We clarify and amend these points, to provide a theoretical basis for future research
and discussions on vector models of semantic representation.
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Computationally implemented theories of human
semantic representations, in which word meanings are
represented as high-dimensional numerical vectors extracted
from large amounts of natural language data, appeared
in the field of cognitive science about twenty years ago.
The most prominent early models in the field were LSA
(Latent Semantic Analysis; Landauer & Dumais, 1997)
and HAL (Hyperspace Analogue to Language; Lund &
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Burgess, 1996). These models and their successors, such
as BEAGLE (Bound Encoding of the AGgregate Language
Environment; Jones & Mewhort, 2007), Topic Models
(Griffiths, Steyvers, & Tenenbaum, 2007) or, more recently,
GloVe (Global Vectors; Pennington, Socher, & Manning,
2014) and word2vec (Mikolov, Chen, Corrado, & Dean,
2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013)
have since then received considerable attention, both as
applied models for word meaning induction and as the focus
of investigation in cognitive science. An overview of these
models, alongside with short descriptions, is provided in
Table 1.

These word vector models have been shown to
be impressively high-performing: For example, they have
achieved perfect scores on multiple choice tests (Bullinaria
& Levy, 2012), above 95 % purity in word categorization
(Baroni & Lenci, 2010), and correlations around .8 with
human word similarity ratings – a score comparable to hu-
man inter-rater agreements (Baroni, Dinu, & Kruszewski,
2014; Bruni, Tran, & Baroni, 2014). Therefore, they have
been successfully applied in virtually all fields of cognitive
science, including artificial intelligence research (see Tur-
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Table 1
The most prominent vector models of semantic representation, along with short descriptions. More detailed descriptions are
provided in later sections of the article.

Model Authors Year Venue of Publication Short Description
HAL Lund & Burgess 1996 Behavior Research Meth-

ods
Creates a Word-by-Word Matrix

LSA Landauer & Dumais 1997 Psychological Review Creates a Word-by-Document Ma-
trix and applies dimensionality re-
duction via SVD

Topic Models Griffiths, Steyvers &
Tenenbaum

2007 Psychological Review Creates a Word-by-Document Ma-
trix and applies dimensionality re-
duction via LDA

BEAGLE Jones & Mewhort 2007 Psychological Review Modifies initially random word
vectors based on the other words in
successively processed documents

word2vec Mikolov, Chen, et al.;
Mikolov, Sutskever, et al.

2013 ICLR Workshop, Neural
Information Processing
Systems

Trains word vectors as the hidden
layer of a neural network that pre-
dicts words from the surrounding
words, or vice versa

GloVe Pennington, Socher &
Manning

2014 Empirical Methods in Nat-
ural Language Processing

Trains word vectors to optimally
predict words’ probability of co-
occurrence

ney & Pantel, 2010), computational psychology (see Jones,
Willits, & Dennis, 2015), psycholinguistics (e.g., Jones,
Kintsch, & Mewhort, 2006), cognitive neuroscience (e.g.,
T. M. Mitchell et al., 2008), instructional design and edu-
cation (e.g. Wade-Stein & Kintsch, 2004), but also social
psychology (e.g. Lenton, Sedikides, & Bruder, 2009), psy-
chiatry (e.g. Elvevåg, Foltz, Weinberger, & Goldberg, 2007)
and biomedicine (e.g. Cohen & Widdows, 2009).
Accordingly, these models have been highly impactful: As of
the time of this writing (April 2019), the article by Landauer
and Dumais (1997) on the Latent Semantic Analysis (LSA)
model has been cited almost 6,400 times on Google Scholar,
the article by Lund and Burgess (1996) on the Hyperspace
Analogue to Language (HAL) model about 1,700 times, and
the more recent GloVe model (Pennington et al., 2014) al-
most 7,100 times, with the citations per year steadily in-
creasing. With the advent of neural network-based models,
most prominently the word2vec model (Mikolov, Chen, et
al., 2013; Mikolov, Sutskever, et al., 2013), this trend was ac-
celerated even more - in fact, the articles by Mikolov, Chen,
et al. (2013) and Mikolov, Sutskever, et al. (2013) have al-
ready by far surpassed the original articles on the LSA and
HAL models in total citations (currently about 10,000 and
12,000, respectively). Given the success of these models, in
terms of performance as well as scientific impact, it is very
likely that this trend will explode in the near future.
Furthermore, while working with these models at first
required considerable amounts of technical knowledge,

applications based on them have become far more ac-
cessible over the last years. A critical milestone in
this development was the release of the LSA homepage
(http://lsa.colorado.edu/; see Dennis, 2007), which
allows to obtain similarity metrics from LSA models. Ad-
ditionally, different pieces of software have been released in
recent years that allow relatively easy access to vector model-
based computations (e.g. Dinu, Pham, & Baroni, 2013; Gün-
ther, Dudschig, & Kaup, 2015; Mandera, Keuleers, & Brys-
baert, 2017; Pennington et al., 2014; Řehůřek & Sojka, 2010;
Shaoul & Westbury, 2010). Given these circumstances, it is
therefore critical that these models are properly represented
and understood by the scientific community, both from a the-
oretical and a methodological perspective. As stated on the
front page of the LSA homepage: “It is essential that you
understand the LSA modeling methods before using the ap-
plications on this website” (emphasis in original).
However, the need to summarize these models for clear,
accessible communication to a general readership, and the
rhetorical demand to highlight specific aspects to make argu-
ments or counter-arguments, has at times lead to some rather
superficial or incomplete portrayals in the psychological lit-
erature. This is especially true from a theoretical perspec-
tive. In work not directly focussed on word vector mod-
els, they have often been contrasted with allegedly differing
theoretical views. For example, in work on the psycholog-
ical structure of concepts, they are at times introduced as
“black-box” models with abstract, non-interpretable dimen-
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sional values (e.g., Jones & Mewhort, 2007), while in work
on embodied and grounded cognition, they are depicted as
language-centric, purely symbolic models of meaning (e.g.,
Glenberg & Kaschak, 2002; Glenberg & Robertson, 2000).1

In the context of the specific claims and arguments such stud-
ies want to endorse, these references to vector-based models
can be appropriate and justified. However, when directed
at a general audience that is not necessarily familiar with
the large body of specialized literature on these word vector
models, this can lead to misrepresentations and snap judge-
ments, which repeatedly crop up in discussions on and as-
sessments of vector space models as cognitive theories, and
the research based on them. In the remainder of this article,
we will refer to these using the term misconceptions. How-
ever, we want to stress that by using this term we are not im-
plying that the literature on DSMs is full of errors. We rather
refer to portrayals of DSMs that can lead to misconceptions
on the side of the readers of such work and in secondary lit-
erature.
Apart from that, some claims have been made that were com-
pletely accurate at their time and for the models as presented
in the original proposals (Landauer & Dumais, 1997; Lund
& Burgess, 1996), but have since then been addressed or re-
solved in extensions or newer models. However, if the initial
critical claims appeared in influential articles, they tend to
stick in the debate, especially for a general audience that will
not necessarily be reached by new technical developments in
research explicitly focussed on word vector models. Thus,
when earlier claims are taken at face value without consid-
ering more recent research, progress in the scientific debate
will be hindered.
This phenomenon is further amplified by a rift in the research
on word vector models, which is largely split between the
fields of machine learning and natural language processing
on the one hand (more oriented towards model development,
language engineering, and artificial intelligence applications)
and cognitive psychology on the other hand (more oriented
towards understanding the human cognitive system, predict-
ing human behaviour, and applying measures derived from
the models as proxies for cognitive variables), with relatively
little communication between the two fields. As a conse-
quence, modelling advancements are sometimes designed as
engineering solutions without awareness of theoretical de-
bates in cognitive science. However, insights from cognitive
theory can serve as a highly valuable tool for model building,
since the human cognitive system often excels in the very
tasks that language engineering tries to solve. On the other
hand, the theoretical importance of modelling advancements
can be overlooked, especially when they are conceived in
non-psychological fields. As a consequence, theory building
in cognitive science will be hindered if such advancements in
model-building are not considered, discussed or interpreted.
Due to these issues, certain arguments concerning vector

models of meaning tend to be frequently reported in the sci-
entific discourse, and are discussed and addressed quite reg-
ularly. Such repetitions in debates, without a critical assess-
ment of the actual models, their theoretical assumptions, and
their more recent advancements, will over time impede sci-
entific progress. We therefore consider it profitable to col-
lect these arguments and to address them thoroughly in the
present article. Thus, we aim at providing a state-of-the-art
cognitive perspective on these models as theories of human
semantic representations. In the present article, we will re-
frain from delving too deep into the technical details; readers
interested in these aspects are referred to the literature cited
for the individual arguments. Excellent reviews in this re-
spect are provided by Sahlgren (2006) and Turney and Pantel
(2010), as well as by Lenci (2008, 2018), Jones et al. (2015)
and Landauer, McNamara, Dennis, and Kintsch (2007).
In the next section, we will first introduce word vector mod-
els in more detail, with a focus on their underlying theoretical
assumptions, before turning to a collection of common mis-
conceptions about them, which will be discussed thoroughly.

Vector Space Models as Distributional Semantics

So far, we have treated models such as LSA, HAL, Topic
Models, GloVe or word2vec as a collection of computation-
ally implemented models of semantic representation. How-
ever, the commonality of these models goes beyond them all
representing meanings as high-dimensional numerical vec-
tors (often referred to as distributional vectors, word vec-
tors, or word embeddings). Actually, all of these models can
be seen as specific parametrizations of a unique generalized
model, built on the same theoretical foundation: the distri-
butional hypothesis, according to which words with similar
meanings tend to occur in similar contexts (Firth, 1957; Har-
ris, 1954). Following this hypothesis, there is therefore a
correspondence (or, in a more radical view, even an equiv-
alence) between a word’s distribution over contexts and its
meaning (see also Landauer, 2007). In a strong reading of
the distributional hypothesis (described in Lenci, 2008), the
contexts in which a word is used not only follow from its
meaning, but also determine that meaning.
The power of this hypothesis lies in the fact that applying
rigorous operationalizations of “context” allows to quantify
a word’s distribution and hence, following the distributional
hypothesis, its meaning. A very simple operationalization
is to define “context” as other words in the same sentence.
For example, in the segment Never gonna give you up, never
gonna let you down, the word give occurs two times in the
context of never, gonna, and you, and one time in the context
of up, down, and let. The word’s distribution and therefore
its meaning are then represented as the numerical vector (2,

1These arguments will be presented in more detail later in the
article.
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2, 2, 1, 1, 1). If the same contexts are considered for all
words, the resulting vectors will all populate a common vec-
tor space, the semantic space. In realistic applications, where
the co-occurrence data is collected from large corpora of nat-
ural text, of course more than six different contexts are con-
sidered. As a result, the vectors and semantic spaces end up
being high-dimensional. Common definitions of contexts are
the documents (i.e. sentences, paragraphs or articles) a word
occurs in (Landauer & Dumais, 1997; Griffiths et al., 2007)
or other words within a fixed-size window around it (Lund
& Burgess, 1996; Mikolov, Chen, et al., 2013; Mikolov,
Sutskever, et al., 2013; Pennington et al., 2014).
Hence, the described vector space models all adhere to
this specific theoretical approach to meaning. Due to this,
they are often referred to as Distributional Semantic Models
(DSMs), which is a collective term for these models we will
be using throughout the remainder of this article. Note that
this term carries with it a certain theoretical commitment, in
that it implicitly assumes the validity of the distributional hy-
pothesis (otherwise, the models would only be distributional
models, without being semantic models). However, as will
be discussed throughout the article, there are a number of
arguments in favour of this assumption, which we believe
sufficiently justifies the adoption of this widely-used term.

Literature Review

To collect the most common misconceptions about DSMs,
we reviewed the description of DSMs in the 1,000 most cited
articles in the Web of Science database, which themselves
cited the original LSA article (Landauer & Dumais, 1997),
as of July 2018. These articles were selected as being the
most influential and best established scientific works relying
on or discussing DSMs. Partly due to the indexing criteria of
Web of Science, most of these articles belong to the domains
of Psychology (Experimental) (672) and Psychology (231),
followed by Computer Science (Artificial Intelligence) (404)
and Computer Science (Information Systems) (192) as well
as Linguistics (251).
These articles were then reviewed with respect to their de-
scription or discussions of DSMs, and findings and results
based on these models. We categorized the most com-
mon misconceptions into three major topics, each contain-
ing more specific sub–issues, that will constitute the main
structure of the present article:

1. The implementation of DSMs and the construction of
distributional vectors, with a focus on why DSMs are
implementations of a cognitive theory rather than sta-
tistical tools;

2. Detailed aspects of meaning and information as cap-
tured by distributional vectors, with a focus on top-
ics such as interpretability, polysemy, and context-
sensitivity;

3. The role of non-linguistic experience in DSMs.

The Implementation of Distributional Semantic Models

We will now turn to the first set of partial descriptions of
DSMs in the literature, which are concerned with the ex-
act nature of DSM representations. Alongside this, we de-
scribe how traditional, count-based DSMs2 such as LSA,
HAL or GloVe are typically implemented (for comprehen-
sive overviews, see Lenci, 2018; Turney & Pantel, 2010),
and what type of information their word vectors actually rep-
resent.

Do DSMs conceptualize meaning similarity as word co-
occurrences?

In some descriptions, DSMs are presented as (refined) word
co-occurrence measures (Barsalou, 1999; Dreyer & Pulver-
müller, 2018; French & Labiouse, 2002; Goldberg, Perfetti,
& Schneider, 2006; Lau, Goh, & Yap, 2018; McKoon &
Ratcliff, 1998; Meteyard, Cuadrado, Bahrami, & Vigliocco,
2012). For example, in very recent studies, Dreyer and
Pulvermüller (2018, p. 66) describe DSMs as “distribu-
tional learning of word-word correlations from texts”, and
Kowialiewski and Majerus (2018) explicitly use LSA co-
sine similarities as a word co-occurrence measure, stating
that “LSA measures the extent to which two words co-occur
within similar contexts using large corpora” (p. 70). On a
more theoretical level, French and Labiouse (2002, p. 316)
criticize DSMs because they “take issue with the claim that
lexical co-occurrence alone can capture real-world seman-
tics”.
It is true that actual word co-occurrences – or, more precisely,
word-context co-occurrences - form the data base for DSMs.
In traditional DSMs, the first step in the implementation of
the model is to construct a word-by-context matrix, either of
the word-by-document format (Landauer & Dumais, 1997;
Griffiths et al., 2007) or the word-by-word format (Lund &
Burgess, 1996). The cell entries of such a matrix are these ac-
tual co-occurrence counts. However, DSMs represent word
meanings as distributional vectors, and therefore complete
rows of such a matrix, and not single cell entries. As a con-
sequence, two words are similar in meaning not because of
their mutual co-occurrence score (which would correspond
to such a single cell entry, and only for word-by-word matri-
ces), but rather if they have similar global distributional pat-
terns over all contexts. Due to this, synonyms, which tend
to very rarely co-occur directly, will have very similar mean-
ings in DSMs (Sahlgren, 2008). This property of DSMs also

2Recent prediction-based models such as word2vec are imple-
mented using a different architecture, but this architecture in many
respects is based on a similar rationale as the traditional models
(Levy & Goldberg, 2014b). We will describe the word2vec algo-
rithm in more detail later in the article.
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
patient hospital medicine physician doctor

physician 4 5 3 0 0
doctor 10 10 7 0 0


cos (physician, doctor) = .995

Figure 1. Simplified word-by-word co-occurrence matrix.
As can be seen, the actual co-occurrences of the words physi-
cian and doctor are extremely low (zero); however, their dis-
tributional patterns – their respective rows in the matrix – are
very similar.

gives rise to the important notion that words that never occur
together can nevertheless end up with very similar meaning
representations (Landauer & Dumais, 1997), as can be seen
in Figure 1.

Do DSMs describe word meanings as co-occurrence pat-
terns?

Other descriptions, while recognizing that DSMs capture
global instead of local co-occurrences, still present them as
co-occurrence models (Borghi, Glenberg, & Kaschak, 2004;
?, ?; Rommers, Dijkstra, & Bastiaansen, 2013; Van Dam,
Rueschemeyer, & Bekkering, 2010; Van Herten, Chwilla, &
Kolk, 2006). This is typically expressed along the lines that
DSMs give a “semantic similarity measure that computes
how often two words co-occur with the same set of other
words” (Rommers et al., 2013, p. 766), that “LSA values do
not reflect how often a pair of words co-occur, but rather how
often they co-occur with the same words” (Van Tiel, Van Mil-
tenburg, Zevakhina, & Geurts, 2016, p. 159) or that they are
an “objective measure of co-occurrence in related contexts”
(Borghi et al., 2004, p. 867). In the context of these articles,
such descriptions are clearly intended as a short but compre-
hensible summary of DSMs. And, indeed, such descriptions
would be completely accurate if the word-by-context matrix
was the final step in the implementation. However, in actual
implementations, the raw co-occurrence vectors are typically
subject to further processing.
Typically, weighting schemes are applied to the raw co-
occurrence counts, such as positional weighting depending
on the number of intervening words (in word-by-word mod-
els such as Lund & Burgess, 1996), log-entropy weighting
(Martin & Berry, 2007) or Pointwise Mutual Information
(PMI, Church & Hanks, 1990). For example, PMI is defined
as

PMI =
P(a, b)

P(a) · P(b)

with P(a, b) being estimated via the co-occurrence frequency
and P(a) and P(b) via the global word frequency (or num-
ber of words in a document, if documents serve as context).

On the one hand, the purpose of such weightings is to ad-
just for word frequency effects – obviously, very frequent
words would result in high co-occurrence values, which then
would heavily influence the direction of the word vectors.
On the other hand, this also has the effect that the basis for
the word vectors is not the raw contiguity between a word
and a context, but rather the informativity of the relation be-
tween them – their contingency. For example, the raw co-
occurrence frequency between bark and dog is lower than
the co-occurrence frequency between dog and the, because
of the high frequency of the. The former pair, however, will
have a higher PMI, clearly capturing the significant degree of
informativity between its elements.. And this is in fact highly
desirable for a theory of semantic memory, as it is in line with
general learning theories emphasizing that contingency, not
contiguity, drives the learning of associations between stim-
uli (see, for example Murdock, 1982; Rescorla & Wagner,
1972).
These weighted co-occurrence vectors can then be forwarded
to a further processing step: dimensionality reduction (for
earlier applications of dimensionality reduction techniques in
research on semantic representations, see for example Heider
& Olivier, 1972; Osgood, 1952). The core principle of such
techniques is to identify redundancies and mutual constraints
in high-dimensional data patterns in order to extract underly-
ing factors. Then, factors that account only for little vari-
ability are dropped, so that a large part of the variability in
the data can be explained with lower-dimensional represen-
tations. As a very rough example, large parts of the three-
dimensional object “sheet of paper” can be described using a
two-dimensional representation. Typical dimensionality re-
duction techniques for DSMs are Singular Value Decompo-
sition (SVD; Martin & Berry, 2007), Latent Dirichlet Alloca-
tion (LDA; Blei, Ng, & Jordan, 2003) or Non-negative Ma-
trix Factorization (NMF; Arora, Ge, & Moitra, 2012).
Dimensionality reduction has been crucial to the success of
DSMs, and is associated with large gains in performance
(Landauer & Dumais, 1997; Bullinaria & Levy, 2012, but
see Recchia & Jones, 2009). It is therefore to be considered
a core feature of DSMs, also from a theoretical point of view
(in fact, this is the reason for the expression Latent Semantic
Analysis): Word meanings are not obtained by just observing
word-context co-occurrences, but by abstracting and gener-
alizing from them and by establishing higher-order represen-
tations relying on global information. As stated by Landauer
and Dumais (1997, p. 217), the “relation between any two
representations depends not only on direct experience with
them, but with everything else ever experienced”. This tran-
sition from first- to higher-order relations is claimed to re-
flect the transition from episodic memory, capturing concrete
instances of co-occurrence of entities, to semantic memory,
capturing more fundamental, conceptual relations between
them (see Landauer & Dumais, 1997).
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Are DSMs just language statistics?

As introduced previously, DSM algorithms are statistical
procedures applied to large collections of text in order to
obtain quantitative representations of word meaning. There-
fore, DSMs are at times described as language statistics, “a
computer program that computes an index of the relatedness
between sets of words on the basis of occurrences in similar
contexts” (Kaschak & Glenberg, 2000, p. 521), or reduced
to being methodological tools (Perfetti, 1998).
However, the seminal work on LSA by Landauer and Du-
mais (1997) already puts forward strong arguments in favour
of DSMs as explanatory theories rather than methodological
tools. In fact, DSMs are set up as a theory explaining how
semantic representations are acquired: These representations
can be extracted from a given distributed input, and from
contingencies in the experience of a learner/speaker. DSMs
start from the theoretical assumption that word meanings are
inferred from the contexts in which the words occur (based
on the distributional hypothesis). In essence, this is a spec-
ification of the assumption that word meanings are acquired
through experience, as stated by Jenkins (1954, p. 112): “in-
traverbal connections arise in the same manner in which any
skill sequence arises, through repetition, contiguity, differen-
tial reinforcement”.
In a more general perspective, DSMs thus stand in the tra-
dition of learning theories postulating that humans are ex-
cellent in capturing statistical regularities in their environ-
ments (Anderson & Schooler, 1991) and extracting informa-
tion from them (see also Günther, Smolka, & Marelli, 2018).
This ability can be observed in many different domains, such
as visual pattern recognition (Kirkham, Slemmer, & John-
son, 2002), procedural knowledge (Lewicki, Czyzewska, &
Hoffman, 1987), or social cognition (Lewicki, 1986), but has
also been found to play a vital role in language acquisition
(Saffran, Aslin, & Newport, 1996; Saffran, 2003).

Starting from this assumption, a model is built that in-
cludes cognitively motivated processing steps (see the pre-
vious paragraph). In contrast to many verbal theories pro-
posed in cognitive science, DSMs postulate a computational
implementation of the underlying theory, and this implemen-
tation includes statistical processing steps. However, the fact
that DSMs come with an implementation based on actual lin-
guistic data should not be considered a flaw. On the contrary,
it is a major advantage of these models, also from a theoreti-
cal point of view: This implementation allows researchers to
derive quantitative hypothesis so that the theory’s predictions
can actually be subjected to rigorous empirical tests, which
is in turn crucial for model adjudication.

Are DSMs psychologically implausible learning models?

When getting familiar with the traditional count-based
algorithm implementing DSMs such as LSA and HAL, as

described above, a very common reaction is to point out that
these models make very questionable assumptions about
the learning processes leading to semantic representations.
These shortcomings of traditional DSMs have already been
recognized and acknowledged (e.g. Sloutsky, Yim, Yao,
& Dennis, 2017), also by proponents of DSMs (Lemaire
& Denhière, 2004). Traditional DSMs are based on batch-
learning algorithms, where a matrix storing all information
is processed “at once”, using computationally demanding
techniques. The results are static word meanings estimated
from a fixed corpus of experience. And the assumption that
humans collect large amounts of co-occurrence data before at
some point turning them into semantic representations is not
very convincing (Hoffman, McClelland, & Lambon Ralph,
2018). In reality, word meanings are not static, but can
change dynamically and incrementally with new experience
(twenty years ago, our semantic representations for cloud or
phone were probably very different from now). Therefore,
it is usually claimed that models such as LSA are “not a
model of learning” and have “no obvious way of accounting
for developmental changes in word learning” (Sloutsky et
al., 2017, p. 6). However, when only LSA is presented as
a prototypical DSM and as the basis for such an argument,
without considering more recent developments, this gives
the incorrect impression that DSMs in general cannot deal
with incrementality.
In principle, a traditional DSM algorithm such as LSA can
cope with incrementality by updating the co-occurrence
matrix with each new input and re-running the algorithm.
However, this solution is quite unsatisfactory (see Recchia &
Jones, 2009): Firstly, the algorithm is quite computationally
demanding, especially because of the dimensionality
reduction step, and hence would put an enormous strain on
cognitive resources during language processing. Even more
worrying, such a mechanism would require a language user
to have the whole raw co-occurrence data, as stored in the
initial matrix, available at any time, basically reducing the
whole point of dimensionality reduction to absurdity.
However, as this criticism has been brought up early within
the DSM community, it has also been addressed there.
Martin and Berry (2007) described an algorithm for “folding
in” new documents into an existing LSA vector space.
However, this still requires a static semantic space to be
constructed at some point in time. Addressing the issue
of incrementality more directly, new DSM algorithms
have been proposed that explicitly implement incremental
learning of semantic representations. These models do not
start from co-occurrence matrices, but from random vectors
whose elements are then updated with each new encountered
text unit (Jones & Mewhort, 2007; Sahlgren, 2005), also
by using learning algorithms derived from psychological
learning models (for example the paired-associate learning
mechanism by Murdock, 1982, in the BEAGLE model,
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Jones & Mewhort, 2007).
More recently, prediction-based DSMs have been introduced
that estimate word vectors using a neural network archi-
tecture with one hidden layer (Mikolov, Chen, et al., 2013;
Mikolov, Sutskever, et al., 2013). In this architecture (see
Figure 2 for a graphical description), words serve as the
input layer from which its context words – the output layer
– are predicted (or vice versa). The activation values of the
hidden layer for a given word in the input layer is then taken
as its associated semantic vector. This network is trained on
a corpus, word by word, and so the incremental development
of distributional vectors over time is an inherent property
of this algorithm. In the psychological literature, it has
been demonstrated that these predicition-based models
are mathematically equivalent to psychologically plausible
learning models (Hollis, 2017; Mandera et al., 2017), such
as the Rescorla-Wagner model of reinforcement learning
(Rescorla & Wagner, 1972; see also Gluck & Bower, 1988;
Sutton & Barto, 1981).
It has also been shown that the word2vec model outperforms
traditional count-based models in a variety of tasks, includ-
ing the prediction of human behaviour (Baroni, Dinu, &
Kruszewski, 2014; Mandera et al., 2017; Pereira, Gershman,
Ritter, & Botvinick, 2016). Furthermore, a recent study
by Lazaridou, Marelli, and Baroni (2017) has shown that
such models can learn the meaning of novel words from
linguistic context in a human-like fashion, even from very
limited exposure to these words. This nicely highlights the
advantages of integrating technical advancements in model
building with insights from cognitive theory, and the mutual
benefit to both fields when they go hand in hand.

Moreover, while such incremental and prediction-
based models may seem to be far off from the tradi-
tional DSM algorithm described above, Levy and Goldberg
(2014b) showed that they can be described as performing
an implicit matrix factorization of a PMI-weighted word-
context matrix. This suggests that even traditional DSM al-
gorithms might not be as implausible as they appear to be at
first glance. This is mirrored in the claim already put forward
by Landauer and Dumais (1997) that the matrix-factorization
algorithm describes what the system does (the computational
level of description; Mandera et al., 2017) rather than giv-
ing an accurate model of how this is achieved (the algo-
rithmic level of description, incorporated more thoroughly
in prediciton-based models).

Are DSMs language-engineering tools rather than psy-
chological models?

DSMs have two major fields of application: While there
is a large body of research in cognitive science applying
and investigating these models, they are even more widely
applied in computer science and computational linguistics.

The existence of a vast body of literature in the fields of
machine learning, natural language processing and artificial
intelligence research focused on solving language-related
tasks suggests, on an implicit level, the view that DSMs are
an engineering tool rather than a cognitive theory: In this
engineering-oriented view, there is typically little emphasis
on the underlying theory and the cognitive plausibility of
DSMs as a model of human semantic representations, as
these aspects are not necessarily required to build well-
performing models and algorithms for these given tasks.
While DSMs might be valuable in order to engineer word
meanings, this does not automatically qualify them as
plausible psychological models (Glenberg & Mehta, 2008;
Perfetti, 1998), and “the utility of vector-space models for
understanding human semantic abilities remains in question”
(Rogers & Wolmetz, 2016, p. 124–125). Sahlgren (2006,
p. 134-135) explicitly states that it “cannot be stressed
enough that the word-space model is a computational model
of meaning, and not a psychologically realistic model of
human semantic processing” (emphasis in original) and
that they represent “not the meanings that are in our heads,
and not the meanings that are out there in the world, but
the meanings that are in the text” (Sahlgren, 2008, p. 46,
emphasis in original). Hence, they might prove highly useful
for machine applications and artificial cognitive systems,
but not as a psychological model for human semantic
representations.

However, these objections can be met with both the-
oretical and empirical arguments. The theoretical arguments
concerning how DSMs are conceived but also implemented
as psychological models were already outlined in the previ-
ous paragraphs. They are based on a cognitive hypothesis
of meaning (Lenci, 2008), and make cognitive assumptions
about how these meanings are acquired (Hollis, 2017; Lan-
dauer & Dumais, 1997; Mandera et al., 2017) – through re-
peated experience (Jenkins, 1954). The nature of a theory
being a “cognitive” one is first of all determined by its scope,
rather than its validity.

However, DSMs could still be bad cognitive the-
ories; whether the hypotheses and assumptions of DSMs
as a cognitive theory of semantic representation are valid,
and therefore whether they are good or useful theories, is
subject to empirical investigation. On the empirical side
though, there is a large collection of results showing that
DSMs can account for and predict human behaviour in a
wide range of semantic memory-related tasks (Baroni, Dinu,
& Kruszewski, 2014; Pereira et al., 2016; see also Landauer
et al., 2007; Lenci, 2008). These include (among others,
see the studies cited throughout the present article) catego-
rization tasks (Baroni & Lenci, 2010; Louwerse, 2011), syn-
onym tests (Bullinaria & Levy, 2012; Landauer & Dumais,
1997), similarity judgements (Bruni et al., 2014), free associ-
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Figure 2. A snapshot of the word2vec model architecture, in the training step of processing the target word defeats in the
utterance “... the red player beats blue opponents” ... (with a window size of 2). The widths of the edges represent the current
weights in the network, which are updated in every training step. The activation of the hidden layer (1.4, 1.2, ..., 0.3) is the
word vector representing defeats in the current state of the model, and will change as the weights between input layer and
hidden layer are updated. In the skip-gram version of the model (depicted here), the context words are predicted from the
target word. In the cbow version, the target word is predicted from the input instead (i.e., the input and the output layer are
switched).

ation tasks (Nematzadeh, Meylan, & Griffiths, 2017), seman-
tic priming (Günther, Dudschig, & Kaup, 2016; Jones et al.,
2006; Mandera et al., 2017), concept acquisition (Ouyang,
Boroditsky, & Frank, 2017; Lazaridou et al., 2017) and
text comprehension (Landauer, Foltz, & Laham, 1998). Of
course, a high performance in predicting human behaviour
qualifies a model as a good description at the computational
level, and not necessarily on the algorithmic level of how
this performance is achieved (Mandera et al., 2017). How-
ever, even in this case, DSMs already fulfil the criteria to be
considered as psychological models of the nature of semantic
representations and the structure of semantic memory, sim-
ilar to other models of semantic memory (see Jones et al.,
2015).
Interestingly, more recent work in the DSM literature has
more thoroughly considered the question of acquisition.
DSMs such as BEAGLE and word2vec have been shown to

incorporate psychologically plausible learning mechanisms
(Murdock, 1982; Rescorla & Wagner, 1972) to create their
word representations, raising their algorithmic plausibility
in comparison to earlier models (Hollis, 2017; Jones et al.,
2015; Mandera et al., 2017, see the previous section).3

Following from these arguments, DSMs should not be re-
futed from the outset as being mere engineering tools, as
they are formulated as cognitive theories, rely on psycho-
logically plausible assumptions, and are able to account for
behavioural data. However, we want to emphasize again that

3We should also note at this point that, when the issue of cogni-
tive plausibility at the algorithmic level is taken seriously, the source
corpus from which the distributional vectors are estimated plays a
more important role than in the context of engineering solutions.
For a cognitive model, the corpus should itself be plausible in the
sense that it serves as a good reflection of the actual experience
made by a human, preferrably in structure as well as in size.
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they are qualified as psychological theories by their scope,
and not necessarily by their quality. In this section we have
focussed on empirical phenomena that DSMs can account
for; yet, other psychological theories of semantic representa-
tion have been argued to account for phenomena that DSMs
cannot explain (see, for example, Glenberg & Robertson,
2000). Thus, we argue that DSMs are serious contenders as
psychological theories of semantic representation, but their
quality as such – as for any other theory – is subject to scien-
tific evaluation.

Aspects of Meaning

In the previous section, we have described the algorithms
used to create semantic spaces. In this section, we will now
turn to common misconceptions related to the implications
of the vector representation format for word meanings.

Are distributional vector dimensions uninterpretable?

As a consequence of the application of dimensionality
reduction in the model architectures described above, the
dimensions of distributional vectors represent abstract,
or latent, semantic dimensions (Landauer & Dumais,
1997). Jones and Mewhort (2007, p. 2) summarize this well
(referring to the LSA model) by stating: “In a semantic space
model, the features that represent a word are abstract values
that have no identifiable meaning in isolation from the other
features. Although a particular feature of bird in a feature
list might be “has wings,” the presence of which has birdlike
meaning on its own, the meaning of bird in a semantic space
model is the aggregate distributed pattern of all the abstract
dimensions, none of which has interpretable meaning on
its own.” Hence, distributional vector dimensions are
usually described as not meaningful or interpretable (e.g.,
Borghesani & Piazza, 2017; Hansson, Bååth, Löhndorf,
Sahlén, & Sikström, 2016), rendering distributional vectors
“devoid of content” (Rogers & Wolmetz, 2016, p. 124).
This is an especially troublesome property for many
linguistic theories of semantics, which often heavily rely
on well-defined semantic features (see Bierwisch, 2011;
Nida, 1979; Johnson, 2008), but many psychological
theories of word meanings and concepts are also founded on
interpretable features (e.g. Collins & Loftus, 1975; McRae,
Cree, Seidenberg, & McNorgan, 2005; Smith & Medin,
1981).4

For many DSMs, such as LSA, HAL, or word2vec, these
claims are completely accurate. However, we also want to
point out noteworthy exceptions and developments. A quite
prominent case of DSMs with interpretable dimensions are
Topic Models (Griffiths et al., 2007). At the very foundation
of these models lies the core theoretical assumption that
texts/documents are generated to cover certain topics. In
Topic Models, Latent Dirichlet Allocation (Blei et al.,
2003), a dimensionality reduction technique, is applied to

a word-by-document matrix to detect these topics. As a
result, each word vector represents a probability distribution
over semantic topics (models using Non-Negative Matrix
Factorization as a dimensionality reduction technique are
based on the same idea; Dinu & Lapata, 2010; Lee &
Seung, 1999). Griffiths et al. (2007) provide examples of
these topics by presenting the words that have the highest
probability scores on different topics: For example, the
highest-value words on one topic were play, stage, audience,
theater, and actors, on another topic they were hypothesis,
experiment, scientific, observations, and scientists, and on
another topic they were class, Marx, economic, capitalist,
and socialist. These topics can be labelled (similar to
labelling latent factors after a factorial analysis) – in this
case using labels such as drama, science, and Marxism –
making each dimension of the semantic space interpretable
(but see Chang, Gerrish, Wang, Boyd-Graber, & Blei, 2009,
for criticism concerning the objectivity of such post-hoc
topic labels). In a similar fashion, other studies were able to
derive interpretable dimensions from traditional LSA spaces
by applying mathematical procedures such as varimax
rotation (Evangelopoulos, Zhang, & Prybutok, 2012) or base
transformations (Olmos, Jorge-Botana, León, & Escudero,
2014) to these spaces .
Other studies have shown that interpretable information
can be extracted from initially uninterpretable distributional
vectors. Hollis and Westbury (2016) applied a principal
component analysis to a semantic space obtained through
word2vec, and found that the principal components obtained
can be identified with basic-level semantic dimensions such
as concreteness, or the affective dimensions of valence,
arousal, and dominance already postulated by Osgood, Suci,
and Tannenbaum (1957). In general, understanding what
kind of semantic information is captured by distributional
vectors is a topic of intense debate and current research. For
instance, Tsvetkov, Faruqui, Ling, Lample, and Dyer (2015)
show that semantic type information (such as ANIMAL
or MOTION) can be, at least partially, recovered from
distributional vector dimensions. Further, Durda, Buchanan,
and Caron (2009) demonstrate that feature norms produced
by human speakers can be predicted from distributional
vectors, using a neural network mapping approach. And in
a very recent study, Sommerauer and Fokkens (2018) show
that distributional vectors capture semantic properties related
to the functionality of the denoted concepts, by employing
a supervised classification algorithm that estimates from
the vector dimension values whether or not a given word
has a given semantic property, such as is dangerous.
These studies shows that distributional vectors in principle

4Note however that the reliance on well-defined features can
also be framed as a problem of such theoretical approaches rather
than a problem of feature-free models of meaning; see for example
Westbury (2016) for arguments along this line.
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encode semantically interpretable information, which can be
extracted by using adequate methods.

Does each distributional vector represent a single, fixed
symbolic meaning?

In a semantic space, each unique word form is associated
with exactly one high-dimensional numerical vector rep-
resenting its meaning. In reality, however, a very large
proportion of words have multiple meanings. For example,
some words are homonyms: A mouse can be an animal or
a piece of computer hardware. Beyond this, the issue of
polysemy, where words have multiple related senses, is even
more widespread: A paper can be a physical piece of paper,
but also a text printed on this paper, and even a piece of text
without being printed on paper. And the fact that meanings
are context-sensitive is virtually ubiquitous: For the exact
same object described by the word newspaper, the aspect of
carrying printed text is relevant in the sentence I read the
newspaper, even if it is an online newspaper. On the other
hand, in the sentence I use the newspaper to protect my face
from the rain, the aspect of being a solid physical object is
relevant (Glenberg & Robertson, 2000).
Since DSMs represent word meanings as a single numerical
vector with fixed values, Glenberg and Robertson (2000)
argue that they cannot appropriately capture this context-
sensitivity. A similar argument is made by French and
Labiouse (2002), who maintain that distributional vector
representations are not context-sensitive because they are
only an average representation of the word’s distribution.
Accordingly, they conclude that DSMs cannot accurately
represent metaphorical meanings, such as wolf in the
sentence John is a real wolf with the ladies – which does not
imply that he turns into an actual canine in female company.
Thus, it has been concluded that multiple meanings, senses
or interpretations cannot be represented via a one single
vector.
However, this argument neglects the fact that distributional
vectors are distributed representations that encode a word’s
learning history, rather than being a symbolic meaning
representation (see Westbury, 2016). Thus, if a word has
multiple meanings or senses, these will be encoded in the
vector and its position in the semantic space; in that, the
observation by French and Labiouse (2002) that vectors are
average representations is correct. However, this does not
imply the conclusion that multiple meanings or senses can
no longer be retrieved from these vectors. Figure 3, created
using the R package LSAfun (Günther et al., 2015), provides
a intuitive basis for this argument using the mouse example
(Camacho-Collados & Pilehvar, 2018), and demonstrates
that semantic spaces are structured in a way that allows
to retrieve different meanings and senses from a single
word vector, by considering its position and the relative

positions of other words in the semantic space (for more
detailed approaches, see Camacho-Collados & Pilehvar,
2018; Heylen, Wielfaert, Speelman, & Geeraerts, 2015).
In a different example, Griffiths et al. (2007) show that
different semantic dimensions of their distributional vectors
capture different contexts in which words are used – and
by extension, different meanings and senses (see Lee &
Seung, 1999, for a similar demonstration). Hence, DSMs
seem to well account for different subordinate meanings as a
function of contextual information.

Additionally, various computational methods have
been shown to consistently outperform statistical baselines
in disambiguating different word senses and meanings from
distributional vectors (see Camacho-Collados & Pilehvar,
2018), for example by relying on their respective similarities
to multiple different pre-determined word categories, or
clusters (Boleda, Padó, & Utt, 2012; Pantel & Lin, 2002).
Although the introduction of such pre-determined categories
is potentially problematic from a psychological perspective,
as actual speakers have to learn these categories from
experience in a bottom-up and dynamic way, rather than
obtaining them top-down from an outside source, such
studies still demonstrate that distributional vectors encode
information that can be harvested to disambiguate different
senses.

Pursuing a different line of argumentation,
Westbury (2016) argues that, even for words tradition-
ally considered monosemous, the assumption of single
symbolic word meanings can be called into question. It
is not unusual that two entities that share only very few
features – or sometimes even no features at all – are assigned
the same label: Two patients diagnosed with depression can
have a disjunct set of symptoms, or several experiences one
describes as happy can have nothing in common. Due to this,
Westbury (2016) argues that word meanings should be seen
as mappings from particular experiences and instances onto
a common label rather than well-defined feature definitions –
which fits perfectly with distributional vector representations
of word meaning.

Concerning the issue of context-sensitivity of word
meanings and senses in sentences, Jones and Mewhort
(2007) point out that multiple meanings of a word can be
stored within a single vector representation – as shown above
– and that different meanings can emerge from a single rep-
resentation depending on the word’s context (as postulated in
different psychological theories of discourse comprehension;
Kintsch, 1988; Tabossi, 1988). As a direct demonstration,
Kintsch (2001) proposed a model based on his construction-
integration theory (Kintsch, 1988) that computes a vector
representation for predicate-argument constructions (such as
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Figure 3. A two-dimensional projection of the 50 nearest neighbours of mouse in an actual semantic space. Semantic sim-
ilarity is represented by the distance between the words as well as the colour of lines connecting them. As can be seen, the
neighbourhood is clustered into different meanings and senses (computer mouse, mouse as an animal, mouse as a laboratory
animal), with high within-cluster similarities but low between-cluster similarities.

SHARK(LAWYER) in My lawyer is a shark). This model
updates the predicate vector by adding vectors that are close
to both the predicate and the argument to it, and is therefore
argued to capture the meaning aspects of shark relevant in
this context (being vicious, rather than being a fish). Kintsch
(2000) also argues that this model can offer an account for
metaphor comprehension, and Jorge-Botana, León, Olmos,
and Hassan-Montero (2010) use this model to extract dif-
ferent senses from polysemous words. In a similar spirit,
Baroni and colleagues showed that different senses of adjec-
tives are activated depending on the noun they are used with
(using compositional methods described in more detail later
in the article; Baroni, Bernardi, & Zamparelli, 2014; Baroni
& Zamparelli, 2010): An old tomato is a rotten tomato, old
ruins are ancient ruins, and an old belief is a traditional be-
lief.
At this point, it might be objected that the context-sensitive

modification of one vector is an extension to original DSM
representations. However, it should be noted that only stan-
dard distributional vectors are employed in these approaches,
and it can therefore only work because these vectors al-
ready encode all necessary information. In fact, the possi-
bility of integrating LSA with context-models such as the
construction-integration model was already pointed out and
discussed in the original article by Landauer and Dumais
(1997).

Do DSMs only represent isolated word meanings without
relational structure?

In DSMs as outlined so far, word vectors are constructed
on the basis of surface-level word co-occurrences, without
consideration for the relations or syntactic dependencies
between the words (as discussed by Hansson et al., 2016).
Although moving window models such as HAL or word2vec
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encode some syntax, this takes place on a very rudimentary
level. However, languages typically use syntactic dependen-
cies to express the relations between words, which are often
the focus of logic and ontological theories of meaning, which
in turn are central to linguistic analyses of semantics (see
Annesi, Croce, & Basili, 2013). In addition, DSMs also seem
to largely ignore relations between words in their meaning
representations: Since DSMs represent word meanings as
vectors in a semantic space, research has focussed on simple
similarity metrics such as cosine similarity. Thus, DSMs
appear to represent word meanings as isolated elements,
without actually considering the relations between them,
neither in encoding nor in representation. Thus, they appear
to miss out on essential aspects of semantics.
However, both issues of encoding and representation have
been addressed within the DSM framework, in different lines
of research. Using the BEAGLE model which is explicitly
designed to encode word order information during learning,
Jones and Mewhort (2007) demonstrate that the nearest
“left” neighbors for words (luther, barbaric, and burger
for king) differ from their nearest “right” neighbors (midas,
lear, and henry for king). Thus, order information can be
retrieved from distributional vectors.
Another line of research has directly focussed on building
DSMs that explicitly consider syntactic dependencies in the
input data and thus already in model building (e.g. Biemann
& Riedl, 2013; Lin, 1998; Padó & Lapata, 2007). These
models rely on dependency-parsed corpora, and in essence
consider words as co-occurring in the same context if there
is a specific syntactic relation between them. For example,
in the sentence man bites dog, dog occurs one time as the
object of bite, but in dog bites man, man occurs one time
as the object of bite. Padó and Lapata (2007) demonstrated
that DSMs built from syntactic dependencies can predict
behavioural data such as semantic priming, detect synonyms,
and disambiguate different word senses (showing again that
distributional vectors don’t represent a fixed symbolic
meaning). Another DSM explicitly designed to capture
properties of and relations between concepts, such as that a
tiger is in a jungle or has stripes, was proposed by Baroni,
Murphy, Barbu, and Poesio (2010). This model infers these
properties by employing a part-of-speech tagged corpus and
considering explicitly the type of linguistic construction in
which pairs of words co-occur.
However, in this context, Landauer (2007) takes a strong
position in arguing that the importance of syntactic depen-
dencies and grammatical relations for mental representations
of word meanings is only marginal when compared to the
co-occurrence of words, and argues in favour of bag-of-word
models5 of meaning such as LSA. Indeed, recent research
provides a proof of principle that also standard DSM vectors
can encode structured information, which can be uncovered
by using more refined, asymmetrical similarity measures

instead of the typical symmetrical cosine information
(Kintsch, 2014; Lenci & Benotto, 2012). Kintsch (2014)
developed an asymmetrical similarity measure for which,
for example, the similarity between China and Korea is
rather low, while the similarity between Korea and China is
very high, reflecting behavioural patterns typically observed
in human free associations. In other studies more oriented
towards linguistic relations between words, it has been
shown that relations such as hypernymy and hyponymy (i.e.
set-subset relations: every dog is a mammal, but the opposite
is not true) can be inferred from distributional vectors by
using asymmetrical similarity measures (Lenci & Benotto,
2012).
However, semantic relations between words clearly go be-
yond the quite coarse relations outlined here: For example,
the pairs skin and body as well as bark and tree both share
a covers relation. This issue of automatically identifying an
open-ended class of semantic relations has been addressed
in studies on analogies. In a famous example, Mikolov,
Yih, and Zweig (2013) found that the nearest vector to
king - man + woman is queen, suggesting that king and
man share the same relation as queen and woman. Apart
from this illustratory example, the possibility to recover
open-ended relational similarities between words from
their distributional vectors was systematically confirmed
in several studies (Mikolov, Yih, & Zweig, 2013; Turney,
2006; Zhila, Yih, Meek, Zweig, & Mikolov, 2013, see Levy
& Goldberg, 2014a).

Do DSMs only capture linguistic knowledge about word
meanings?

As described earlier, the data from which DSMs are built
typically consists of large amounts of natural text. The
general objective of such algorithms has been described by
Buitelaar, Cimiano, and Magnini (2005, p.4) as “the acqui-
sition of explicit knowledge implicitly contained in (textual)
data”. However, in both linguistics and cognitive science,
researchers often differentiate between linguistic knowledge
on the one hand (what would be considered the semantics
of a word), and non-linguistic knowledge on the other hand,
derived from our knowledge about the world (Jackendoff,
2003; Lang & Maienborn, 2011; although this differentia-
tion is also debated, see Hagoort, Hald, Bastiaansen, & Pe-
tersson, 2004). For example, the fact that the US president is
married is part of our world knowledge, while the fact that a
husband is married is part of the semantics of the word. Sim-
ilarly, the fact that being a woman typically is a necessary

5LSA is described as a bag-of-word model since it takes as input
only a matrix specifying the word-by-document occurrences, with-
out any concern of their structure. It would derive exactly the same
distributional vectors if the order of words within a document was
randomized or sorted alphabetically.
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condition to be a mother is part of our semantic knowledge,
while the information that being woman raises the likelihood
of being under-privileged in many human societies is part
of our world knowledge. Since traditionally DSMs are built
from language data, it could be assumed that they only cap-
ture linguistic knowledge. Following this distinction, DSMs
have been used in empirical studies to exclusively account for
linguistic, semantic knowledge in research on linguistic vs.
extra-linguistic knowledge (Dudschig, Maienborn, & Kaup,
2016).
However, such a conclusion would underestimate the knowl-
edge about word meanings that is implicitly encoded in natu-
ral text, as speakers often use language to communicate about
their view on the world, and to express their concepts, as-
sumptions, norms and ideas. Accordingly, Caliskan, Bryson,
and Narayanan (2017) have shown that DSMs can in fact
draw implicit information related to social and cultural bi-
ases from text data: They used DSM vectors to compute
word similarities of items used in the Implicit Association
Test (IAT; Greenwald, McGhee, & Schwartz, 1998), in or-
der to approximate reaction times (with higher cosines cor-
responding to faster reactions). These measures showed the
same biases as humans in several domains, such as gender
biases with respect to career choices and societal roles (see
also Lenton et al., 2009, for an earlier DSM-based approach
to this issue), attitudes towards race, or biases towards phys-
ical vs. mental health issues. These results were further cor-
roborated in a study by Bhatia (2017b).
In another recent study on world knowledge-based judge-
ments, Bhatia (2017a) employed DSMs similarities to mea-
sure associations between mental representations. With this
approach, Bhatia demonstrated that DSMs can predict hu-
man performance (and biases) in a wide range of high-level
judgement tasks, including the conjunction fallacy (Tversky
& Kahneman, 1983), base rate neglect (Kahneman & Tver-
sky, 1973) and the recognition heuristic (Gigerenzer & Gold-
stein, 1996).
Such studies show that the information captured by DSMs
goes beyond purely linguistic semantic knowledge, into the
domain of (implicit) world knowledge and cultural specifici-
ties.

Can DSMs account for productivity of meaning?

Another feature of word meanings in natural language
settings is that they can be very productive (depending
on the specific language). For example, meanings such
as objectify can be created from object via affixation, and
words such as air and port can be combined into compounds
(airport). Most importantly, however, word meanings can be
created and words that have never been used or experienced
before can be readily understood by a language user. This is
particularly true for the above-mentioned cases of complex
expressions: It is quite easy to understand what it means to

twitterify politics, or what a like-addiction is supposed to be.
And language users have no problem in using existing words
in novel ways, as in the newspaper example in the previous
sections.
However, the DSM algorithm runs on a given corpus of
text. If a word is not included in such a corpus, no vector
representation will be derived. And if a word is never
used in a specific sense (i.e. if it is not used in specific
contexts), this will in turn affect the vector representation
itself. In both cases, incremental addition of new experience
as described earlier is not going to help, since the argument
is that humans can deal with meanings that they have never
experienced or used before. Glenberg and Robertson (2000,
p. 397) therefore notice that DSMs cannot deal with novel
uses of known meanings, but that a “computational model
should be able to account for material beyond its training
set. It is especially important that a theory of language and
meaning be flexible and productive beyond its training set
because humans are flexible and productive.” The problem
of the non-productivity of the traditional DSM algorithm has
also been recognized elsewhere by other authors (Lynott &
Ramscar, 2001; J. Mitchell & Lapata, 2010).

However, the issue of novel uses of existing
words can be addressed within the DSM framework. As
argued in a previous section, several studies have shown
that distributional vectors can encode various aspects of
word meaning, including semantic features (Durda et
al., 2009) and functionality-related semantic properties
(Sommerauer & Fokkens, 2018). This does not require that
all this information is explicitly mentioned in the text; it
can be inferred from the distributional similarity to other
words denoting concepts that share the same properties and
features. As an example, if you learn that you can build
boxes out of something called polystyrene to transport pasta
and curries, you can easily infer that you could also build
something like an umbrella out of this material. This works
even if the possibility was never explicitly mentioned, since
the distributional use of polystyrene is similar to that of
other water-proof material such as plastic or polyethylene.
Depending on the context in which a word is used, this
relevant dimension can then be emphasized through context-
sensitive updating (see Kintsch, 1988, 2001, as discussed in
a previous section).

This still leaves the issue of the meaning of novel
words. How can DSMs represent meanings for words that
are not part of a corpus? The answer can be found in the
recent emergence of compositional DSMs addressing this
issue (Baroni, Bernardi, & Zamparelli, 2014), including the
domains of affixed words (Günther et al., 2018; Marelli &
Baroni, 2015) and compounds (Günther & Marelli, 2016,
2018; Marelli, Gagné, & Spalding, 2017). These models
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use training procedures to detect the structure guiding the
compositional process forming complex word meanings,
and can then apply this structure to form new meanings. For
example, the affixation model by Marelli and Baroni (2015)
uses a regression approach mapping mummy to mummify,
person to personify, and so on, in order to estimate a function
representing the -ify affix. Essentially, this function encodes
how the -ify affix usually affects a word meaning. It can then
be applied to new stems, for example to twitter in order to
create a vector representation for twitterify. Similar training
approaches have been used to create vector representations
for the meaning of novel compounds, such as honey soup or
star rock, from their constituent words (Günther & Marelli,
2016, 2018; Marelli et al., 2017).

To some extent, such approaches are still limited by
the words contained in the training set: Clearly identifiable
morphological constituents of words have to be repeatedly
observed in a corpus so that these models can be trained an
applied. However, recent advancements in the domain of nat-
ural language processing have addressed this issue by imple-
menting models such as fastText (Bojanowski, Grave, Joulin,
& Mikolov, 2017) which are trained on sub-lexical units,
such as letter n-grams (for example the 3-grams mou, ous,
and use), and not only lexical units such as words (mouse).
In order to represent word meanings, the obtained sub-lexical
representations are then used to construct distributional vec-
tors for any combination of these units. In a very recent study
(Hendrix, under revision), it has been shown that semantic
measures derived from these vectors can indeed be used to
predict participants’ response times towards nonwords in a
lexical decision task.

Thus, even meanings for novel word – new morpho-
logically complex forms as well as completely novel letter
combinations – can be represented within a DSM framework,
with adequate computational and compositional models at
hand. Again, the objection that these are extensions beyond
how DSMs are originally conceptualized can be met with the
argument that, in order for these systems to work efficiently,
all the information must be already available in the statistical
regularities in the input captured by DSMs, and can therefore
be decoded from the original distributional vectors.

Embodiment and the Role of Non-Linguistic Experience

In the previous section, we have focussed on issues concern-
ing the vector format of meaning representation, and what
type of information these vectors can encode. In the follow-
ing section, we will now turn to the data that is used to create
these vectors. This will also lead us to the theoretical debate
on embodiment, which has often been framed in opposition
to distributional models.

Do DSMs imply that language constitutes the conceptual
system?

As described earlier, DSMs are usually trained on large cor-
pora of natural text. Thus, they build their semantic represen-
tations solely on the basis of linguistic experience. However,
this is surely not representative of human: We have in fact
access to substantial amounts of non-linguistic, sensorimo-
tor experience, from perceptual input to our actions in the
surrounding world. It is therefore more than plausible that
humans heavily rely on this experience as well when building
semantic representations. This assumption is at the core of
the embodiment view of language comprehension (Barsalou,
1999; Glenberg & Kaschak, 2002; Glenberg & Robertson,
2000; Sadoski, 2018; Zwaan & Madden, 2005). Indeed, it
has been argued that semantic representations can only be
reasonably understood as emerging from and being based on
bodily and perceptual experience (Glenberg, 2015).
In this context, DSMs have often been discussed as an oppos-
ing theoretical approach, as they rely on purely linguistic in-
put and do not consider sensorimotor experience (Borghesani
& Piazza, 2017; Glenberg, Gutierrez, Levin, Japuntich, &
Kaschak, 2004; Glenberg & Kaschak, 2002; Glenberg &
Robertson, 2000; Munoz-Rubke, Kafadar, & James, 2018;
Sadoski, 2018; Simmons, Hamann, Harenski, Hu, & Barsa-
lou, 2008; for an extensive overview on this debate from
both theoretical points of view, see De Vega, Glenberg, &
Graesser, 2012). Rogers et al. (2004) acknowledge that ver-
bal experience is an important constributor to conceptual
knowledge, but since DSMs rely completely on verbal input
and are models without any influence of nonverbal experi-
ence, they cannot accurately represent our conceptual sys-
tem (see also Borghesani & Piazza, 2017). Interestingly, it
has also been noted that this very property of distributional
models renders them ideal candidates to account for meaning
representations of abstract concepts that cannot easily be re-
lated to sensorimotor experience, such as equality or justice
(Borghi et al., 2017).
We stand on the viewpoint that it is very important in this dis-
cussion to distinguish between theoretical assumptions, on
the one hand, and practical implementations, on the other
hand. While DSMs typically are built entirely from text
data, this is in fact only a practical convenience, likely due to
the fact that text data is available in huge amounts, and can
be very easily and naturally segmented into basic, discrete
units (such as words and documents). The theoretical claim
of the distributional hypothesis, namely that the contexts in
which a word occurs determine its meaning, does not need to
be restricted to linguistic contexts alone (although this may
have been the case for the original proposal by Harris, 1954).
The possibility to include other sources of experience was
already discussed in the original article on LSA (Landauer
& Dumais, 1997, p. 227): “Indeed, if one judiciously added
numerous pictures of scenes with and without rabbits to the
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context columns in the encyclopedia corpus matrix, and filled
in a handful of appropriate cells in the rabbit and hare word
rows, LSA could easily learn that the words rabbit and hare
go with pictures containing rabbits and not to ones without,
and so forth.” Similar claims on HAL have been made by
Lund and Burgess (1996, p. 29): “We do think a HAL-like
model that was sensitive to the same co-occurrences in the
natural environment as a human language learner (not just
the language stream) would be able to capitalize on this addi-
tional information and construct more meaningful represen-
tations”. Note that such arguments have to assume that the
perceptual environment is categorized into discrete units, so
that co-occurrences can be counted. Although it is a funda-
mental psychological insight that humans organize their per-
ceptual input into categories, implementing this into a com-
putational model is certainly not a trivial task. For the sake of
this argument, we have to assume that the input to such mod-
els is already in a discrete format; see the next section for
an overview on how current multimodal DSMs actually inte-
grate perceptual and language information in a single model.
We argue that, considering this distinction between theoreti-
cal assumptions and practical implementation, it is striking
to see that DSMs and (some) models of embodied cogni-
tion actually have very much in common. For example, a
highly influential and very productive model in the embod-
ied tradition is the experiential trace model by Zwaan and
Madden (2005). This model assumes that all mental repre-
sentations are formed from experiential traces, which can be
divided into sensorimotor and linguistic traces. Critically,
these traces are interconnected, and these interconnections
are assumed to arise from co-occurrences: Co-occurrences
between sensorimotor traces (for example, seeing a dog to-
gether with a leash), co-occurrences between sensorimotor
and linguistic traces (seeing a dog while hearing the word
dog), and co-occurrences between linguistic traces (hearing
the words dog and leash in the same linguistic context).
Zwaan and Madden (2005) explicitly mention that DSMs
such as LSA can be used to model the latter kind, i.e. linguis-
tic co-occurrences. However, when dropping the implicit as-
sumption that DSMs are inherently language-centric – which
is not an actual theoretical assumption of these models – and
accepting that they can also take sensorimotor experience as
context (see also Hasson, Egidi, Marelli, & Willems, 2018
for a similar argument from a neurobiological point of view),
then the experiential trace model can in fact be itself identi-
fied as a DSM.

Are DSMs based on non-linguistic experience actually
implemented?

The view that the exclusion of sensorimotor experience
might be a practical rather than a theoretical issue has been
acknowledged by some critics of DSMs (see Glenberg et al.,
2004; Glenberg & Robertson, 2000). However, one of their

points of criticism against solutions such as those proposed
by Landauer and Dumais (1997) or Lund and Burgess (1996)
is that these are not actually implemented in the models. In
fact, similar argumentations can be found within the DSM
literature itself, as stated by Sahlgren (2006, p. 135): “In
order for the word-space model to qualify as a model of
human semantic processing, it needs to reach beyond the
linguistic frontier into the realms of the extralinguistic world,
and to include extralinguistic context in its representation. I
do not believe that this is impossible in principle, although
I do believe that it would require a radical innovation in
how we define and use context for accumulating context
vectors. Until that breakthrough, we should be wary about
claims for cognitive plausibility.” Therefore, the claim
that “the central deficiency of AI-based theories is the lack
of a convincing account of comprehension and meaning”
(Sadoski, 2018, p. 337) is perpetuated in the literature: In
a very recent review article, Sadoski (2018) concludes that
“disembodied computer vectors of word relationships could
not comprehend situations that would be quite simple even
for young children” (p. 337), explicitly referring to the
arguments and study by Glenberg and Robertson (2000).
Yet, following up on the initial objections, there has been
a surge in recent years in research on multimodal DSMs
(e.g. Andrews, Vigliocco, & Vinson, 2009; Bruni et al.,
2014; Kiela & Clark, 2015; Kiela, Bulat, & Clark, 2015;
Lazaridou, Bruni, & Baroni, 2014; Lazaridou, Pham, &
Baroni, 2015; Lopopolo & Miltenburg, 2015; Sadeghi,
McClelland, & Hoffman, 2015; see also Lee & Seung,
1999). However, also in very recent presentations of
DSMs as purely language-centric models, these newer
developments are often not considered (Sadoski, 2018;
Munoz-Rubke et al., 2018).
Multimodal DSMs are explicitly designed to incorporate
non-linguistic (experiential and perceptual) and linguistic
data in order to create distributional vectors. From a
theoretical point of view, they are therefore in line with
models of embodied cognition such as the experiential
trace model cited above (Zwaan & Madden, 2005). For
instance, Howell, Jankowicz, and Becker (2005) showed,
using a neural network training technique, that vectors
trained on text corpora and ratings on sensorimotor features
collected from participants performed better than vectors
trained on text corpora alone. Similarly, Andrews et al.
(2009) use a Bayesian approach to integrate traditional
distributional vectors with speaker-generated feature norms
into combined semantic representations (see Steyvers, 2010,
for a similar approach). Using machine learning algorithms,
Bruni et al. (2014) extract vectors representing visual
features directly from images, and then merge these with
traditional distributional vectors for the associated image
labels in order to construct more comprehensive semantic
representations. The model by Lazaridou et al. (2014) learns
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a mapping function between visual and textual vectors from
training examples, which can then be applied to instances
outside the training set. Lazaridou et al. (2015) use an
algorithm similar to the word2vec model (Mikolov, Chen,
et al., 2013; Mikolov, Sutskever, et al., 2013) to predict
linguistic contexts simultaneously with visual features from
words in order to construct distributional vectors (the words
were used as labels for the images, and visual vectors
representing the visual features were extracted automatically
from these images). In a similar vein, Sadeghi et al. (2015)
applied an LSA-like algorithm on a corpus of labelled
objects (corresponding to the words in LSA) in visual
scenes (corresponding to the documents in LSA) to derive
distributional vectors for the object labels.

Perhaps more surprisingly, in other perceptual do-
mains models have been designed that incorporate sound
data (Kiela & Clark, 2015; Lopopolo & Miltenburg, 2015)
or even olfactory data (Kiela et al., 2015) into distributional
vectors, following the principle methods employed in the
visual domain as outlined above. Interestingly, these mul-
timodal models have been shown to outperform traditional
DSMs based only on text data in a variety of tasks, for ex-
ample in predicting human similarity ratings (Bruni et al.,
2014). They can also overcome problems associated to text-
based DSMs, which for example tend to undervalue basic
perceptual information.
That said, it is apparent that these models rely largely on
visual data extracted from images, mainly because of the
availability of large annotated image data bases and meth-
ods to extract vectors from image data (see however Kiela
& Clark, 2015; Kiela et al., 2015; Lopopolo & Miltenburg,
2015). The scope of the embodiment view obviously goes
far beyond this. However, it is important to highlight again
that the main issue is collecting adequate training data, and
it is thus not directly related to the model architectures or
learning algorithms incorporated in DSMs. In other words,
the issue is practical rather than theoretical, as already dis-
cussed in the previous section. In this context, the already
existing and fully implemented models described here show
that non-linguistic data can be incorporated to build distribu-
tional vectors, improving their quality. This is an important
first step in the direction of more realistic DSMs using all
kinds of sensorimotor and linguistic experience available to
humans.

Do language-based DSMs have access to sensorimotor in-
formation?

Although multimodal DSMs have become available recently,
the vast majority of research employing DSMs has used tra-
ditional models trained on language corpora. In many cases,
these have been used to model conceptual knowledge. But
how can this be plausible, given that these DSMs only have

access to language data, while our conceptual knowledge
heavily relies on sensorimotor information?
Due to this supposed limitation, it has been argued that text-
based DSMs can only serve as models of lexical semantics
(and are therefore restricted to the linguistic or engineering
domain), but not as models of the human conceptual sys-
tem (Barsalou, 1999; French & Labiouse, 2002; Glenberg &
Robertson, 2000; Glenberg et al., 2004; Sadoski, 2018). This
argumentation relies on the assumption that the language we
use is independent from the world we live in, and from our
sensorimotor experience. In reality, however, one of the pri-
mary functions of language is to confer to others information
about the world we perceive and act in. Therefore, a substan-
tial amount of sensorimotor information is actually incorpo-
rated in language - for example, the fact that some food is
tasty, while other things that can be eaten are far from being
tasty.
The idea that sensorimotor information and language are in-
tertwined has been put forward by Louwerse in the symbol
interdependency hypothesis (e.g. Louwerse, 2011; Louwerse
& Zwaan, 2009). This hypothesis receives support from the
observation that distributional vectors actually encode sur-
prising amounts of information about the surrounding world:
For example, Louwerse and Zwaan (2009) applied a multi-
dimensional scaling technique to the similarities between
distributional vectors for city names, and projected them onto
a two-dimensional space. They found that the coordinates
of the cities within this space were correlated with the ac-
tual geographical positions of these cities, in the real world
(Louwerse & Zwaan, 2009; Recchia & Louwerse, 2016) as
well as in fictional worlds such as Lord of the Ring’s Middle
Earth (Louwerse & Benesh, 2012). Other studies have shown
that the similarity structure between distributional vectors
also reflects other real-world similarity structures, such as
the relative position of the days of the week or months of
the year (Louwerse, Raisig, Tillman, & Hutchinson, 2015).
Importantly for the argument presented here, studies test-
ing the symbol interdependency hypothesis have also found
that distributional vectors encode the vertical location of ob-
jects in the world (Hutchinson & Louwerse, 2013), percep-
tual modalities (visual, auditory, olfactory, gustatory and
haptic; Louwerse & Connell, 2011), affective dimensions
(dominance, valence and arousal; Hollis & Westbury, 2016),
the typical spatial organization of objects, or the sensibility of
performing certain actions with specific objects (Louwerse,
2011). Thus, distributional vectors do not only encode what
would generally be considered world knowledge, but also
certain sensorimotor aspects of our conceptual systems that
are usually explained by referring to embodied or grounded
approaches of meaning.
In summary, because language is not independent from the
world it is used in, but used to communicate about said world,
the structure of semantic relations within language tends to
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reflect the structure of the outside world (see also Andrews et
al., 2009; Johns & Jones, 2012; Hoffman et al., 2018; Rior-
dan & Jones, 2011). Since distributional vectors are heavily
influenced by statistical regularities of language, they also
incorporate substantial amounts of sensorimotor experience.
Note however that, although there is a correspondence be-
tween information expressed in language and the physical
world, we (and the literature cited above) do not claim this
correspondence to be perfect. Thus, while some aspects of
meaning can be obtained from both sources, others are only
available from either of them (Bruni et al., 2014).

Open Issues

In the previous sections, we have discussed a wide range of
arguments that are frequently directed at DSMs. We have
outlined how these arguments have already been or can suc-
cessfully be addressed within the DSM framework, and thus
are not in-principle arguments against the validity of DSMs
as models of human semantic representations. However,
there are still open issues that need to be addressed. In the
following sections, we will outline some of these issues as
potentially paramount topics for future research on the cog-
nitive validity of DSMs.

Models and Training Data

In a number of arguments throughout the article, we have
pointed out that a series of initial criticisms against DSMs
may be related to the data on which the models are trained,
rather than to the models themselves. It is important to point
out again that the distinction between the model architecture
on the one hand and the training data on the other hand is
a critical one, and that highly valid arguments against one
aspect cannot readily be taken as valid arguments against the
other.
In most instances, we have argued that objections raised
against DSMs are in fact arguments against the training data:
This especially concerns the issue of multimodality, but also
points such as the cognitive plausibility of the models and the
access to perceptual information through language. While
research on DSMs has been constantly striving to improve
the quality and adequacy of the training data, this issue is far
from solved. Obtaining optimal training data therefore is an
open issue to be addressed in future research.
In this context, we argue that several points should be consid-
ered. A common approach in machine learning and natural
language processing to obtain higher-quality training data is
increasing the amount of data itself, which usually improves
the quality of the empirical results (Recchia & Jones, 2009).
Having more training data makes the model algorithms more
robust against statistical noise, and also increases the repre-
sentativity of the training data for a population of speakers, as
usually investigated in empirical studies. The improvement

of model performance with corpus size has also been sug-
gested to determine better inferences about perceptual rep-
resentations: These are based on redundancies between the
perceptual world and language (see Louwerse, 2011), which
can be more easily detected with more language experience
available to the model (Johns & Jones, 2012).
However, increasing the amount of training data cannot be
the whole answer to the question. For once, not only the
size, but also the structure of the training data (i.e. the type
of data included) is a critical factor for its adequacy. For ex-
ample, Herdağdelen and Marelli (2017) have demonstrated
that word frequencies derived from social media corpora –
which can be assumed to be close to actual human language
experience – give better results for psycholinguistic studies
than other general-purpose corpora. Thus, optimal training
data for DSMs should be as representative of human experi-
ence as possible, which would also be desirable in order to
raise the cognitive plausibility of these models.
Another issue to be considered in this context is the fact that
DSMs are usually set up to model semantic representations
on the population level rather than the individual level. How-
ever, this approach is inherently inadequate to account for in-
dividual differences between speakers in a DSM framework
(see Schmidtke, Van Dyke, & Kuperman, 2018, for results
indicating that typical DSMs are only adequate for highly lit-
erate persons). In an “ideal” world (from a research perspec-
tive), it would be highly valuable to build semantic spaces
for individual speakers based on their idiosyncratic experi-
ence (for an impressive study collecting three years of video
material of a researcher’s child to study its language acqui-
sition, see Roy et al., 2006). In this context, Johns, Jones,
and Mewhort (2016) proposed a method to sample docu-
ments from a large multi-source corpus in order to estimate
the sub-corpus best representing the language experience of
a speaker group or individual speakers, in that it best captures
standard behavioural effects such as the word-frequency ef-
fect (Brysbaert, Mandera, & Keuleers, 2018) in these par-
ticipants’ performance. While relying on such behavioural
“training data” might not always be practicable or feasible,
their results suggest some rule-of-thumb approaches to the
selection of adequate sub-corpora: For example, the esti-
mated sub-corpus representing the experience of younger
participants contained far more young-adult books than that
of older participants. In principle, the technical instruments
for actual large-scale individual data collection are readily
available in the age of the internet and social media, for data
experienced as well as produced by speakers; the question is
more if and how such a line of research should be pursued,
given the severe ethical issues it raises.
Finally, an issue where the technical solution is less advanced
is the collection of data that include actual multimodal expe-
rience. At the moment, multimodal DSMs largely rely on
annotated data sets of sensorimotor information (such as im-
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ages or sound files), which are then integrated with infor-
mation collected from linguistic corpora. However, either
are usually obtained from independent sources of data: The
training corpora typically don’t consist of text used in the
context of the images (or other sensorimotor information).
This is a crucial shortcoming for some embodied theories of
meaning, where the notion of co-occurrence between linguis-
tic and sensorimotor traces of experience is central (Zwaan
& Madden, 2005). Thus, an ideal data base for truly multi-
modal DSMs would consist of a large collection of actual ex-
perience, where co-occurring entities from different modal-
ities and sources (sensorimotor and linguistic) are simulta-
neously encoded. We acknowledge that this is not a trivial
task. A possible starting point that seems to be technolog-
ically feasible in the near future might be the decoding of
video material, employing techniques developed in artificial
intelligence research, such as visual object recognition and
speech recognition.

A Unified Distributional Model?

In this article, we have addressed a range of issues that are at
times associated with DSMs. In many cases, we have argued
that most of these issues are not inherent to DSMs per se, and
can be solved with appropriate model architectures: Incre-
mental models such as BEAGLE or word2vec don’t rely on
implausible learning assumptions, multimodal DSMs are not
dependent on language experience only, and Topic Models
don’t produce arbitrary, non-interpretable semantic dimen-
sions. All these approaches constitute valuable proofs of con-
cept for the possibilities within the general DSM approach.
However, it is also obvious that, at this point, we have differ-
ent models designed to address different issues. From a theo-
retical point of view, this is unsatisfying (Rogers & Wolmetz,
2016): If DSMs are to serve as a plausible model of semantic
representation, there should be a unified DSM architecture
which can address all issues simultaneously. A similar argu-
ment holds for the data on which the models are trained (as
discussed in the previous section): If different training data is
needed for different models or to address different phenom-
ena, this clearly comes at the cost of generalizability.
A necessary condition for the implementation of a unified
DSM is that the different approaches are not mutually exclu-
sive. In the case of the three examples described above, the
model architectures should be compatible with one another:
Incremental models rely on specific learning algorithms that
processes chunks of data successively; multimodal DSMs
rely on different input channels for different types of data,
and need a mechanism to merge these channels; and Topic
Models represent words as distributions over topics (and
vice versa). For all pairwise combinations, these approaches
have been shown to be compatible: The multimodal skip-
gram model by Lazaridou et al. (2017) incorporates an incre-
mental learning algorithm as implemented in the word2vec

model (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et
al., 2013). Steyvers (2010) has demonstrated that perceptual
data – here in the form of feature norms – can be integrated in
Topic Models alongside textual data (see also Andrews et al.,
2009). Finally, Topic Models can also be built incrementally
(AlSumait, Barbará, & Domeniconi, 2008). Thus, it should
in principle be possible to design a mechanism that incre-
mentally builds a Topic Model from different kinds of input
data.
We therefore believe that a unified DSM can be designed,
and advocate this to be an objective of future research. As
in any scientific field, theory and model development within
the DSM framework would benefit from a cumulative and
nested approach (compare Jacobs & Grainger, 1994). Un-
der this approach, an existing model should be adjusted and
extended in order to incorporate new mechanisms and to ac-
count for new results, rather than crafting novel architectures
that don’t consider previous insights.

A Variety of Tasks for Semantic Memory

Any model claiming to be a general-level model of seman-
tic memory has to satisfy at least two criteria: (1) It has to
successfully predict human behaviour across the wide range
of tasks in which semantic memory plays a role, including
behavioural data it was not designed for and not trained on;
(2) its performance should be as close to actual human per-
formance in these tasks as possible. Thus, a model should
not fail in tasks that humans are able to perform, nor should
it vastly outperforms humans (which computational models
at times tend to do).
In most respects, DSMs serve these criteria quite well. They
were conceived as models of semantic memory in the late
90s, without being tailored for any specific task. Follow-up
research has then subsequently shown that they account quite
well for human behaviour across a variety of tasks without
being explicitly designed for them (e.g. Bullinaria & Levy,
2012; Jones et al., 2006; Louwerse, 2011; Mandera et al.,
2017). Thus, the necessary criteria for serving as general-
level models of semantic memory are satisfied. Yet, there
are still open issues. First, DSMs don’t perform equally well
in all tasks. For example, they tend to have very high per-
formances in relatively explicit meaning judgement tasks,
such as synonym tests (Bullinaria & Levy, 2012), similar-
ity judgements (Bruni et al., 2014), or categorization tasks
(Baroni & Lenci, 2010). On the other hand, their perfor-
mance is somewhat lower in other tasks, such as semantic
priming (Hutchison, Balota, Cortese, & Watson, 2008; Man-
dera et al., 2017) or free associations (Kennett, Levi, Anaki,
& Faust, 2017; Nematzadeh et al., 2017).6

6Note that these studies did not consider asymmetrical similar-
ity measures as proposed by Kintsch (2014), which might be more
adequate for free associations.
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Additionally, not all DSMs perform equally well across all
tasks. For example, while the recent word2vec model tend to
outperform more traditional models across almost all tasks
(such as similarity judgements, categorizations, synonym
tests, semantic priming; Baroni, Dinu, & Kruszewski, 2014;
Mandera et al., 2017; Pereira et al., 2016), it is in turn out-
performed by Topic Models in predicting free associations
(Nematzadeh et al., 2017). Additionally, DSMs usually have
a number of free parameters (for example number of dimen-
sions, or context size), which also have differential effects
on their performance for different tasks (Bullinaria & Levy,
2007, 2012).
Ideally, it would be highly desirable to have one single DSM
with a fixed set of parameters that is able to predict hu-
man behaviour across the whole range of semantic memory-
related tasks with a high accuracy. Obviously, this is a very
ambitious objective – at this point, we cannot predict whether
it is bound to succeed, which ultimately remains an empirical
question. However, we again want to advocate to converge
on a unified DSM instead of crafting many different models
specifically designed to shine in exactly one task. While this
is a valid strategy for language engineering, it is only of lim-
ited helpfulness in building a unified model and theory of the
human semantic memory.

Learning Beyond Co-occurrence Patterns

By definition, DSMs define learning as observing and ab-
stracting the distributional patterns of entities over contexts
(or co-occurrence patterns) in the vast amount of experience
available to us. In the earlier sections, we discussed that this
is not limited to linguistic entities, but can instead be applied
to all different kinds of entities, including the general do-
mains of perception and action. By applying this broader
definition, DSMs can seamlessly be integrated with embod-
ied and grounded models of cognition, which also rely heav-
ily on the notion of co-occurrence (Zwaan & Madden, 2005).
One main question remains open: Can all kinds of human
learning be broken down in terms of distributional learning?
For learning mechanisms that are not necessarily defined in
terms of distributional patterns, possible solutions can be
imagined: For example, evaluative conditioning (learning
to like or dislike stimuli De Houwer, Thomas, & Baeyens,
2001; Levey & Martin, 1975) can be conceptualized as dis-
tributional patterns of stimuli over evaluative psychological
states. Admittedly, this operationalization might be difficult
to actually implement in a real-world scenario. However, on
a conceptual level, we argue that all types of learning that
can be traced back to a process of classical conditioning or
association learning (as is the case for, for example, evalua-
tive conditioning De Houwer et al., 2001) can be translated
into distributional patterns.
At the same time, there are certainly cases where conceptual-
izations of learning scenarios as co-occurrence patterns reach

their limit. A possible example is one-shot learning, which
describes how humans, and especially children, are some-
times able to learn new concepts from just a single exposition
(Landau, Smith, & Jones, 1988). This seems out of the scope
of distributional models, which usually learn their represen-
tations from vast amounts of data. This is rooted in the as-
sumption that DSMs learn semantic representations from the
repetition and abstraction of co-occurrence patterns. Thus,
because they are explicitly modelled to transcend episodic
memory, they cannot easily model phenomena associated
to it. Despite there being computational models that suc-
cessfully model one-shot learning (Lake, Salakhutdinov, &
Tenenbaum, 2015), these rely on a different model architec-
ture than current DSMs, and it is at the current point un-
clear whether the two approaches can be combined into a
general-purpose model architecture (although models such
as word2vec seem to be potential candidates for this task, and
studies relying on such architectures have shown that they
can learn new concepts from minimal exposure; Lazaridou
et al., 2017).
Furthermore, current DSMs are heavily focussed towards
the stimulus level of learning. In most cases, the entities
as well as the contexts in which they occur are defined in
terms of stimuli, such as words, documents, or visual fea-
tures in multi-modal models. There is, however, a large
body of psychological literature demonstrating that learning
is more than just passively encoding and observing a stream
of stimuli: Factors such as attention (Gottlieb, 2012; Gross-
berg, 1999), motivation (Dweck, 1986), emotion (Hascher,
2010), or personality traits (Corr, Pickering, & Gray, 1995),
amongst many others, all can influence learning and the way
that we organize the experience we make. Although research
on DSMs has undertaken first steps in the direction of inte-
grating these factors into the models (see Ling et al., 2015,
for a word2vec-based model implementing some basic – not
necessarily psychologically motivated – attentional mecha-
nisms), this line of work is still in its infancy, and requires
considerable amounts of additional research.
Another critical issue in the DSM approach to learning is
that the learner is essentially conceptualized as a passive re-
cipient of experience, an observer. While this is certainly
an important aspect of language acquisition, it does not con-
sider that humans are also active learners that interact with
the world and other humans. It has been argued that such
interactions with the world and with others play a central
role in constituting our semantic representations (e.g. Glen-
berg & Kaschak, 2002; Glenberg, 2015). This view receives
strong empirical support from recent studies in artificial in-
telligence, where artificial agents learn semantic represen-
tations for initially meaningless symbols through commu-
nication with each other, updating them based on whether
a communicative act was successful or not (e.g. Spranger,
2012; Spranger, Pauw, Loetzsch, & Steels, 2012). From
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such a perspective, the co-occurrence of words follows from
the agents’ communication and the structure of their envi-
ronment, rather than constituting the basis of their semantic
representations (cf. Louwerse, 2011). This corresponds to a
weak version of the distributional hypothesis, assuming that
a word’s distribution follows from its meaning (Lenci, 2008).
Surely, the human acquisition of semantic representation en-
tails both processes: The construction of semantic represen-
tations based on the distributional structure of entities in their
environment (passive observation), as well as the interaction
with the environment and communication about it (active en-
gagement). Investigating the relative role of these processes,
also with respect to the time course of language acquisition,
remains a central, open issue for future research.

Conclusion

Mental representations of the world are a highly powerful
cognitive tool that enable us to successfully navigate in and
properly interact with our environment, and help us to struc-
ture the endless and overwhelming stream of information to
which we are continuously exposed. However, every sin-
gle one of us experiences a highly idiosyncratic environment,
specific to time, location, culture, and the people surrounding
us, and also subject to constant change. Mental representa-
tions of the world are hence most useful if they are shaped
through these specific experiences we make. In this sense,
learning consists in perpetually tuning our cognitive system
to the environment in which we live, and the experience we
make (Ramscar, Hendrix, Love, & Baayen, 2013). And, in-
deed, humans excel in capturing and learning statistical reg-
ularities and patterns in their environment across many dif-
ferent domains (Perruchet & Pacton, 2006; Saffran, 2003).
As stated by Anderson and Schooler (1991, p. 404): “human
memory mirrors, with a remarkable degree of fidelity, the
structure that exists in the environment”.
DSMs seem to take on this function. Taking together the
literature reviewed in the present article, a common over-
arching theme is that statistical regularities and redundan-
cies – here, in the form of co-occurrences and distributional
patterns – entail information that can give rise to rich men-
tal representations, and to cognitive phenomena usually de-
scribed through high-level concepts (see Westbury, 2016). In
order to build these representations, we “just” need to ex-
tract this statistical information from our experience through
some powerful learning mechanisms. Somewhat rather sur-
prisingly given the complexity of the stream of information
we are exposed to, it seems that such powerful mechanisms
can actually be rather simple: A common element between
all the approaches reviewed here is that they focus on the
informative relation between two units – if the presence/ab-
sence of one stimulus is a valid cue for the presence/absence
of another stimulus – rather than their simple co-presence
(Rescorla & Wagner, 1972). Further, these models don’t

only rely on local co-occurrences, but also consider global
co-occurrence patterns in order to structure the incoming in-
formation (Landauer & Dumais, 1997). Just think of two bus
drivers on your line which you probably never see together,
but always in the same context: the same bus, the same time,
the same route. Even though you only see one of them at any
given time, your representations of them will nevertheless be
highly similar.
How does language come into this picture? On the one hand,
language itself provides stimuli we experience on a very reg-
ular basis, and which occur in the context of other linguis-
tic and non-linguistic stimuli (as extensively discussed in the
last section of the article; see also Zannino, Caltagirone, &
Carlesimo, 2015). As a result, the linguistic system is ide-
ally suited as a learning environment. On the other hand,
language serves a crucial function as “experience by proxy”
(Johnson-Laird, 1983), allowing us to transfer experience
across persons, across space, and even across time. We can
therefore build mental representations of the world that are
potentially informed by the experience of an entire species,
and truly stand on the shoulders of giants who help us navi-
gate through this world (Harari, 2014).
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