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Abstract. We prove that the asynchronous rational group de-
fined by Grigorchuk, Nekrashevych, and Sushchanskĭı is simple
and not finitely generated. Our proofs also apply to certain sub-
groups of the asynchronous rational group, such as the group of all
rational bilipschitz homeomorphisms.

In [9], Grigorchuk, Nekrashevych, and Sushchanskĭı defined the group
R of all asynchronous rational homeomorphisms of the Cantor set (de-
noted Q in [9]). This is a countable subgroup of the full homeomor-
phism group of the Cantor set, consisting of all homeomorphisms that
can be defined by finite-state automata. As described in [9], such au-
tomorphisms are “repeating” in the sense that they have only finitely
many different restrictions on cones.

Rational homeomorphisms first appeared in the study of Grigorchuk’s
group of intermediate growth [8] and other automata groups, includ-
ing the Gupta–Sidki groups [10] and iterated monodromy groups [12],
and R can be viewed as the “universal” group that contains all au-
tomata groups as subgroups. Many other groups are also known to
embed into R, including Thompson’s groups F , T , and V [9], au-
tomorphism groups of full shifts [9], the matrix groups GLn(Z) [6],
solvable Baumslag-Solitar groups BS(1,m) [2], generalized lamplighter
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groups (Z/n) o Z [14], and all Gromov hyperbolic groups [4]. Every
finitely generated subgroup of R has solvable word problem [9], but
there is no algorithm to determine whether a given element of R has
finite order [3].

The purpose of this note is to prove the following theorem.

Theorem 1. R is simple but not finitely generated.

Our proof of simplicity uses the methods of Epstein [7], and resem-
bles the proofs of simplicity for Thompson’s group V , Brin’s higher-
dimensional Thompson groups nV [5], and Röver’s group V G [13]. In
each case, Epstein’s methods prove that the commutator subgroup is
simple, and some separate argument is required to show that the group
is perfect. Indeed, there exist groups in the Thompson family, i.e. the
Higman–Thompson groups Vn,r for n odd, that are not perfect and
hence not simple.

For the rational group R, we use Epstein’s argument to prove that
[R,R] is simple, and then a new trick involving the construction of the
element

(f, (f, (f, (f, . . .))))

from a rational homeomorphism f ∈ R to show that R is perfect. A
similar idea was used by Anderson [1] to prove that the full group of
homeomorphisms of the Cantor set is simple.

The proof that R is not finitely generated involves the primes that
divide the lengths of cycles in the transducer for an element f ∈ R.
Specifically, we generate a sequence {fp} of elements of R (with p
prime) that no finitely generated subgroup of R can contain. This
contrasts, for example, with Thompson’s group V , which is uniformly
dense in the homeomorphism group of the Cantor set and contains
embedded copies of all finite groups, but is nonetheless finitely gener-
ated. Even larger groups than V such as Brin’s groups nV and Röver’s
group V G are also finitely generated, but it seems that R is too large
to support a finite generating set.

The techniques of both of our proofs apply not just to R but also to
certain interesting subgroups of R. For example:

Theorem 2. The group of all rational bilipschitz homeomorphisms of
{0, 1}ω is simple but not finitely generated.

1. Background and Notation

Let {0, 1}ω be the Cantor set of all infinite binary sequences, and let
{0, 1}∗ be the set of all finite binary sequences, including the empty
sequence ε.
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Figure 1. The state diagram for an asynchronous transducer.

Definition 3. An asynchronous binary transducer is a quadruple
(S, s0, t, o), where

(1) S is a finite set (the set of internal states of the transducer);

(2) s0 is a fixed element of S (the initial state);

(3) t is a function S × {0, 1} → S (the transition function); and

(4) o is a function S × {0, 1} → {0, 1}∗ (the output function).

Example 4. Figure 1 shows the state diagram for a certain asyn-
chronous transducer. This is a directed graph with one node for each
state s ∈ S, and a directed edge from s to s′ if t(s, σ) = s′ for some
σ ∈ {0, 1}. We label such an edge by the pair σ | o(s, σ), with two labels
in the case where t(s, 0) = t(s, 1) = s′. For example, the transducer in
Figure 1 has two states s0, s1, with transition function

t(s0, 0) = s1, t(s0, 1) = s0, t(s1, 0) = s0, t(s1, 1) = s0

and output function

o(s0, 0) = ε, o(s0, 1) = 11, o(s1, 0) = 0, o(s1, 1) = 10. �

If T = (S, s0, t, o) is a transducer, s ∈ S is a state, and σ1σ2 · · · is a
binary sequence (finite or infinite), then the corresponding sequence
of states {sn} is defined recursively by s1 = s and

sn+1 = t(sn, σn)

for all n ≥ 1. We define

t(s, σ1 · · ·σn) = sn+1 and o(s, σ1 · · ·σn) = o(s1, σ1) · · · o(sn, σn)

for each n, where the product on the right is a concatenation of binary
sequences. This extends the functions t and o to functions

t : S × {0, 1}∗ → S and o : S × {0, 1}∗ → {0, 1}∗.
If σ1σ2 · · · is an infinite binary sequence, we can also define

o(s, σ1σ2 · · · ) = o(s1, σ1) o(s2, σ2) · · ·
where the product on the right is an infinite concatenation of binary
sequences.
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Definition 5. A homeomorphism f : {0, 1}ω → {0, 1}ω is rational if
there exists an asynchronous binary transducer (S, s0, t, o) such that
f(ψ) = o(s0, ψ) for all ψ ∈ {0, 1}ω.

In [9], Grigorchuk, Nekrashevych and Sushchanskĭı proved that the
set R of all rational homeomorphisms of {0, 1}ω forms a group under
composition. This is the (asynchronous) rational group R.

Note 6. Though we are restricting ourselves to a binary alphabet,
there is a rational group RA associated to any finite alphabet A with
at least two symbols. It was proven in [9] that the isomorphism type
of RA does not depend on the size of A, so it suffices to consider only
the binary case.

Note 7. A transducer (S, s0, t, o) is said to be synchronous if the
image of the output function o is the set {0, 1} of binary digits. The
synchronous rational group, defined by Grigorchuk, Nekrashevych,
and Sushchanskĭı in [9], is the subgroup of R consisting of all homeo-
morphisms that can be defined by synchronous transducers. This pa-
per is concerned with the larger asynchronous group, where the output
function o takes values in the set {0, 1}∗ of finite binary sequences.

Grigorchuk, Nekrashevych, and Sushchanskĭı also gave a useful test
for determining whether a homeomorphism is rational. If α ∈ {0, 1}∗ is
any finite binary sequence, let Iα denote the subset of {0, 1}ω consisting
of all sequences that start with α. Note then that {Iα | α ∈ {0, 1}∗} is
a basis of clopen sets for the topology on {0, 1}ω.

For a homeomorphism f : {0, 1}ω → {0, 1}ω and α ∈ {0, 1}∗, if β is
the greatest common prefix of f(Iα) then define the restriction of f
to α to be the unique map f |α : {0, 1}ω → {0, 1}ω such that

f(αγ) = βf |α(γ)

for all γ ∈ {0, 1}ω.

Theorem 8. Let f : {0, 1}ω → {0, 1}ω be a homeomorphism. Then f
is rational if and only if f has only finitely many different restrictions.

Proof. This follows from [9, Theorem 2.5], since a homeomorphism
cannot have any empty restrictions. �

2. Simplicity

In [7], Epstein introduced a general framework for proving that a
group G of homeomorphisms is simple. The first step is to use some
variant of Epstein’s commutator trick to prove that the commutator
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subgroup [G,G] is simple, and then one must give an independent proof
that G = [G,G].

We start by observing a few important properties of R.

Definition 9. Let G be a group of homeomorphisms of a topological
space X.

(1) We say that a homeomorphism h of X locally agrees with G
if for every point p ∈ X, there exists a neighborhood U of p and
a g ∈ G such that h|U = g|U .

(2) We say that G is full if every homeomorphism of X that locally
agrees with G belongs to G.

That is, G is full if one can determine whether a homeomorphism h
lies in G by inspecting the germs of h. The word “full” here comes from
the theory of étale groupoids, where G is full if and only if G is the
“full group” of the étale groupoid consisting of all germs of elements
of G.

Examples of full groups include the full homeomorphism group of
any topological space, the full group of diffeomorphisms of any dif-
ferentiable manifold, and the Thompson groups F , T , and V acting
on the interval, the circle, and the Cantor set, respectively. Other
Thompson-like groups such as Röver’s group V G (see [13]) and Brin’s
higher-dimensional Thompson groups nV (see [5]) are also full.

Proposition 10. Let G be a group of homeomorphisms of the Cantor
set {0, 1}ω, and let h be a homeomorphism of {0, 1}ω. Then h locally
belongs to G if and only if there exists a partition

{0, 1}ω = Iα1 ] · · · ] Iαn

and elements g1, . . . , gn ∈ G such that h agrees with gi on each Iαi
.

Proof. Clearly h locally belongs to G if it satisfies the given condition.
For the converse, suppose that h locally belongs to G. Since the Iα form
a basis for the topology on {0, 1}ω and {0, 1}ω is compact, there exists a
finite cover {Iα1 , . . . , Iαn} of {0, 1}ω and elements g1, . . . , gn ∈ G so that
h agrees with gi on each Iαi

. Since any two Iαi
are either disjoint or one

is contained in the other, we may assume that the cover {Iα1 , . . . , Iαn}
is a partition of {0, 1}ω. �

Proposition 11. The rational group R is full.

Proof. Let h be a homeomorphism of {0, 1}ω, and suppose that h locally
belongs to R. By Proposition 10, there exists a partition

{0, 1}ω = Iα1 ] · · · ] Iαn
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and elements g1, . . . , gn ∈ R such that h agrees with gi on each Iαi
.

Then h|α = gi|α whenever αi is a prefix of α, so all but finitely many
restrictions of h are also restrictions of some gi. Since each gi is ratio-
nal, each gi has finitely many different restrictions by Theorem 8, and
therefore h has finitely many different restrictions as well. Then h ∈ R
by Theorem 8. �

We also require a certain transitivity property.

Definition 12. Let G be a group of homeomorphisms of the Can-
tor set. We say that G is flexible if for every pair E1, E2 of proper,
nonempty clopen subsets of X, there exists a g ∈ G so that g(E1) ⊆ E2.

Examples of flexible groups include the full homeomorphism group
of the Cantor set, Thompson’s groups T and V , and many other
Thompson-like groups, such as Röver’s group V G and Brin’s groups nV .

Proposition 13. The rational group R is flexible.

Proof. As observed in [9], R contains Thompson’s group V , and since
V is flexible R must be flexible as well. �

Next we need some notation. Given two homeomorphisms f, g ∈ R,
let (f, g) denote the homeomorphism

(f, g)(ω) =

{
0 f(ζ) if ω = 0ζ,

1 g(ζ) if ω = 1 ζ.

Note that (f, g)|0α = f |α and (f, g)|1α = g|α for all α ∈ {0, 1}∗, so by
Theorem 8 (f, g) is rational.

Note also that f = (f |0, f |1) for any f ∈ R such that f(I0) = I0
and f(I1) = I1. In particular, any element of R that is the identity on
I1 can be written as (g, 1) for some g ∈ R, and similarly any element
of R that is the identity on I0 can be written as (1, g) for some g ∈ R.

The following lemma lets us define the element

(f, (f, (f, (f, . . .))))

for a given f ∈ R.
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Lemma 14. Let f ∈ R. Then there exists a g ∈ R such that g = (f, g).

Proof. Let (S, s0, t, o) be a transducer for f , and consider the transducer
(S ′, s′0, t

′, o′) defined as follows:

(1) S ′ is obtained from S by adding a new state s′0.

(2) t′ agrees with t on S × {0, 1}, and satisfies t(s′0, 0) = s0 and
t(s′0, 1) = s′0.

(3) o′ agrees with o on S × {0, 1}, and satisfies o(s′0, 0) = 0 and
o(s′0, 1) = 1.

It is easy to check that (S ′, s′0, t
′, o′) defines a rational homeomorphism

g of {0, 1}ω, and that g = (f, g). �

We say that an element f ∈ R has small support if there exists a
proper, nonempty clopen subset E of {0, 1}ω such that f is the identity
on the complement of E. In this case, we say that f is supported on E.

Lemma 15. Every element of R with small support is a commutator
in R.

Proof. Let f ∈ R have small support. Since R is flexible by Proposi-
tion 13, we can conjugate f by an element of R so that it is supported
on I01. Then

f =
(
(1, g), 1

)
for some g ∈ R. By Lemma 14, there exists an h ∈ R that satisfies the
equation

h = (g, h).

Let k = (1, h), and let x0 ∈ R be the first generator for Thompson’s
group F , i.e. the homeomorphism x0 : {0, 1}ω → {0, 1}ω satisfying

x0(00ζ) = 0ζ, x0(01ζ) = 10ζ, x0(1ζ) = 11ζ

for all ζ ∈ {0, 1}ω. (A trandsucer for x0 is shown in Figure 2.) Then

x−10 kx0 = x−10 (1, h)x0 = x−10

(
1, (g, h)

)
x0 =

(
(1, g), h

)
= fk

and therefore f = x−10 kx0k
−1. �

Figure 2. The transducer for the element x0.
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Proposition 16. The elements of small support generate R, and there-
fore R = [R,R].

Proof. Let f be any non-identity element in R. Then there exists a
nonempty clopen set E ⊆ {0, 1}ω such that f(E) is disjoint from E and
E ∪ f(E) is not the whole Cantor set. Let g be the homeomorphism
of {0, 1}ω that agrees with f on E, agrees with f−1 on f(E), and is
the identity elsewhere. Since R is full by Proposition 11, we know that
g ∈ R. Then g is supported on E ∪ f(E), and gf is the identity on E,
so g and gf have small support. Then f = g−1(gf) is a product of
elements of small support, and is therefore in [R,R] by Lemma 15. �

Note 17. In fact, the proof of Proposition 16 shows that every element
of R is a product of at most two commutators. That is, the commu-
tator width of R is at most two. It is an open question whether every
element of R is in fact a commutator. �

Theorem 18. R is simple.

Proof. Let N be a nontrivial normal subgroup of R, and let f0 be
a nontrivial element of N . Then there exists a nonempty clopen set
E ⊆ {0, 1}ω such that f0(E) is disjoint from E. Since R is flexible
by Proposition 13, there exists a c ∈ R so that c(I0) ⊆ E. Then
f1 = c−1f0c is an element of N and has the property that f1(I0) is
disjoint from I0.

Let g, h ∈ R. Then f1(g, 1)−1f−11 is supported on f1(I0), so the
element

g′ = (g, 1)f1(g, 1)−1f−11

of N agrees with (g, 1) on I0. It follows that
[
g′, (h, 1)

]
=
(
[g, h], 1

)
, so

the latter is in N .
Since [R,R] = R by Proposition 16, it follows that (k, 1) ∈ N for

all k ∈ R. Since R is flexible, we can conjugate by elements of R to
deduce that every element of R with small support lies in N . But such
elements generate R, and therefore N = R. �

Note that the argument in Lemma 15, Proposition 16, and Theo-
rem 18 applies to many other groups as well. Indeed, we have proven
the following.

Theorem 19. Let G be a full, flexible group of homeomorphisms of
the Cantor set. Suppose that:

(1) For all g ∈ G both (1, g) and (g, 1) lie in G, and every element
of G supported on I0 or I1 has this form,

(2) For all g ∈ G there exists an h ∈ G so that h = (g, h), and



ON THE ASYNCHRONOUS RATIONAL GROUP 9

(3) The first generator x0 of Thompson’s group F lies in G.

Then G is simple. �

Groups to which this theorem applies include:

• The group of all homeomorphisms of the Cantor set (see [1]).

• The group of all bilipschitz homeomorphisms of the Cantor set.

• The group of all bilipschitz elements of R.

Note that the group of bilipschitz elements of R is a proper subgroup
of R, since for example it does not contain the homeomorphism whose
transducer is shown in Figure 1.

Incidentally, an alternative to the proof of Theorem 18 above is the
following remarkable theorem:

Matui’s Theorem. Let G be a full, flexible group of homeomorphisms
of the Cantor set. Then [G,G] is simple.

Proof. See [11, Theorem 4.16]. The word “flexible” does not appear
in Matui’s work, but Matui does prove in [11, Proposition 4.11] that
an essentially principal étale groupoid is purely infinite and minimal if
and only if the associated full group is flexible as defined above. Tech-
nically, Matui assumes that the étale groupoid of germs is Hausdorff,
but nothing in his proof requires this condition. �

In addition to the groups considered above, this theorem applies to
many groups of interest, including the full homeomorphism group of
the Cantor set, Thompson’s groups V as well as the generalized groups
Vn,r (not all of which are simple), Röver’s group V G (see [13]), and
Brin’s higher-dimensional Thompson groups nV (see [5]).

3. Finite Generation

For each prime p, let fp be the element ofR defined by the transducer
shown in Figure 3. This homeomorphism switches every p’th digit of a
binary sequence, leaving the remaining digits unchanged. The goal of
this section is to prove the following theorem.

Theorem 20. Let M be any submonoid of R that contains fp for
infinitely many primes p. Then M is not finitely generated.

Since R is itself such a submonoid, it follows from this theorem that
R is not finitely generated. (Note that a group is finitely generated if
and only if it is finitely generated as a monoid.) This also proves that
various other subgroups of R are not finitely generated, such as:

(1) The subgroup of R generated by Thompson’s group V and all
of the fp.
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Figure 3. The transducer for fp.

(2) The subgroup of all measure-preserving elements of R.

(3) The subgroup of R generated by Thompson’s group V and all
synchronous rational functions.

(4) The subgroup of all bilipschitz elements of R.

Note that (3) is a proper subgroup of (4). For example, the element
f ∈ R satisfying f = (x0, f) (where x0 is the element shown in Figure 2)
is bilipschitz but does not lie in (3).

We now turn to the proof of Theorem 20. Given a binary asynchro-
nous transducer T = (S, s0, t, o), recall that a state s ∈ S is accessible
if there exists an α ∈ {0, 1}∗ such that

t(s0, α) = s.

A cycle in T is an ordered pair (c, γ), where c ∈ S and γ ∈ {0, 1}∗ is
a nonempty binary sequence satisfying

t(c, γ) = c.

Such a cycle corresponds to a directed cycle of edges in the state dia-
gram for T . The length |γ| of γ is called the length of the cycle. A
cycle (c, γ) is accessible if c is an accessible state.

Definition 21. Let p be a prime.

(1) We say that a transducer T is oblivious to p if there exists an
accessible cycle in T whose length is not a multiple of p.

(2) We say that a rational homeomorphism f ∈ R is oblivious to
p if there exists a transducer for f that is oblivious to p.

Note that any transducer with fewer than p states is automatically
oblivious to p.

Lemma 22. If p is prime, then fp is not oblivious to p.
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Proof. Let T = (S, s0, t, o) be any transducer for fp, and let (c, γ) be an
accessible cycle for T . Since c is accessible, there exists an α ∈ {0, 1}∗
so that t(s0, α) = c. Fix a λ ∈ {0, 1}∗ so that |α|+ |γ|+ |λ| is a multiple
of p, and let ρ = 0p−11. Then the infinite binary sequence

αγλρω

eventually has 1’s in positions that are multiples of p, so fp(αγλρ
ω)

ends in an infinite sequence of 0’s. In particular,

fp(αγλρ
ω) = βδµ0ω

where β = o(s0, α), δ = o(c, γ), and o(c, λρω) = µ0ω for some finite
binary sequence µ ∈ {0, 1}∗. If we now eliminate the trip around the
cycle, we see that

fp(αλρ
ω) = βµ0ω.

This ends with an infinite sequence of 0’s, so αλρω must eventually
have 1’s in positions that are multiples of p. Then |α|+ |λ| must be a
multiple of p, and therefore |γ| is a multiple of p. Since the cycle (c, γ)
was arbitrary, we conclude that T is not oblivious to p. Since T was
arbitrary, it follows that fp is not oblivious to p. �

Lemma 23. Let p be a prime and let f, f ′ ∈ R. If f is oblivious to p
and f ′ has a transducer with fewer than p states, then f ′f is oblivious
to p.

Proof. Let T = (S, s0, t, o) and T ′ = (S ′, s′0, t
′, o′) be transducers for f

and f ′, where T is oblivious to p and T ′ has fewer than p states. Then
there exists a transducer T ′′ for f ′f with state set S × S ′ and initial
state (s0, s

′
0) whose transition and output functions t′′, o′′ satisfy

t′′
(
(s, s′), α

)
=
(
t(s, α), t′(s′, β)

)
and o′′

(
(s, s′), α

)
= o′(s′, β)

for all α ∈ {0, 1}∗, where β = o(s, α).
Now, since T is oblivious to p, there exists an accessible cycle (c, γ)

for T whose length is not a multiple of p. Since c is accessible, there
exists an α ∈ {0, 1}∗ such that t(s0, α) = c. Then

t(s0, αγ
n) = c

for all n ≥ 0. Let β = o(s0, α) and δ = o(c, γ), so

o(s0, αγ
n) = βδn

for all n ≥ 0. Since T ′ has fewer than p states, by the pigeonhole
principle there exist numbers j, k with 0 ≤ j < k < p such that

t′(s′0, βδ
j) = t′(s′0, βδ

k).
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Let c′ = t′(s′0, βδ
j), and observe that

t′(c′, δk−j) = c′.

Then (c, c′) is an accessible state for T ′′ since

t′′
(
(s0, s

′
0), αγ

j
)

=
(
t(s0, αγ

j), t′(s′0, βδ
j)
)

= (c, c′).

Moreover

t′′
(
(c, c′), γk−j

)
=
(
t(c, γk−j), t′(c′, δk−j)

)
= (c, c′)

so
(
(c, c′), γk−j

)
is an accessible cycle in T ′′. But neither |γ| nor k − j

is a multiple of p, so the length |γk−j| = (k− j) |γ| of this cycle is not a
multiple of p. We conclude that T ′′ is oblivious to p, so f ′f is oblivious
to p. �

Proof of Theorem 20. Let M be a submonoid of R that contains in-
finitely many fp. For each n ∈ N, let M≤n be the submonoid of M
generated by all elements of M that can be represented by transduc-
ers with n or fewer elements. This gives us an ascending sequence of
monoids

M≤1 ⊆M≤2 ⊆M≤3 ⊆ · · ·
with

⋃
n∈NM≤n = M. If p is prime, then by Lemma 23 every el-

ement of M≤p−1 is oblivious to p. By Lemma 22, it follows that
fp /∈ M≤p−1 for each p, and therefore M is an ascending union of
proper submonoids. �

Note 24. Although our proof uses submonoids of R, there is a slight
modification that gives an ascending sequence of proper subgroups.
Specifically, for each n ∈ N let R≤n be the subgroup generated by all
f ∈ R for which both f and f−1 can be represented by transducers
with n or fewer states. Clearly

R≤1 ⊆ R≤2 ⊆ R≤3 ⊆ · · ·

and
⋃
n∈NR≤n = R. But if p is prime then every element of R≤p−1 is

oblivious to p. Since fp ∈ R≤p for each p (with f−1p = fp) it follows
that R≤p−1 is properly contained in R≤p for each prime p. �
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