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Abstract

At the time of writing, an ever-increasing amount of data is collected every day, with the vol-
ume of such generated records estimated to be doubling every two years. Thanks to the techno-
logical advancements, datasets are becoming massive in terms of size and substantially more
complex in nature. Nevertheless, this abundance of “raw information” does come at a price:
wrong measurements, data-entry errors, breakdowns of automatic collection systems and sev-
eral other causes may ultimately undermine the overall data quality. The percentage of encod-
ing errors in real-world databases, all fields taken together, is estimated to be approximately
five percent. In particular, unreliable observations are ubiquitously encountered in applications
that require involved recording operations, complex preprocessing procedures and whenever
human supervision and subjective judgment are unavoidable. Medical studies, for instance,
are often based on data self-recorded by patients, who tend to underestimate and/or hide sen-
sitive behaviors; furthermore, also on the physicians side biased and wrong diagnoses may
occur. Image analysis is also prone to errors, since data quality is highly influenced by the level
of details in each sample and, when a labeling task is involved, to the variability associated to it.
Food authenticity studies are also critical: no observation is to be trusted in a context wherein
the final purpose is exactly to detect potential adulterated units. Metagenomics analyses too re-
quire careful sample preparations and delicate bioinformatics procedures, during which many
initial units are discarded due to their unreliability. Lastly, in chemometrics, calibration errors
in the machinery and interexpert variability in samples preparation can ultimately generate
untrustworthy recordings. The real applications considered in this manuscript stem precisely
from the last three mentioned fields. To this extent, robust methods have a central role in prop-
erly converting contaminated “raw information” to trustworthy knowledge: a primary goal of
any statistical analysis.
The present manuscript presents novel methodologies for performing reliable inference, within
the model-based classification and clustering framework, in presence of contaminated data.
First, we propose a robust modification to a family of semi-supervised patterned models, for
accomplishing classification when dealing with both class and attribute noise. Second, we
develop a discriminant analysis method for anomaly and novelty detection, with the final aim
of discovering label noise, outliers and unobserved classes in an unlabeled dataset. Third, we
introduce two robust variable selection methods, that effectively perform high-dimensional
discrimination within an adulterated scenario.
The thesis is organized as follows. Chapter 1 reviews the statistical concepts of model-based
classification and robustness, with focus on tools and methodologies that will be considered in
the later sections. In addition, we list here the main real-data complexities that are encountered
in this context: they are the motivations that led to the novel contributions present in the re-
maining parts of the manuscript. In Chapter 2, we introduce a family of robust semi-supervised
patterned models, resistant to the harmful effects produced by wrongly labeled units and ob-
servations with corrupted attributes. Making use of impartial trimming and eigenvalue-ratio
constraints, robust parameter estimates are obtained and a robust classification rule is defined.
Chapter 3 describes a model-based discriminant analysis method for anomaly and novelty de-
tection. We show that the methodology effectively performs classification in presence of label
noise, outliers and unobserved classes in the test set. Parameters of known and hidden groups
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are robustly estimated via two flexible EM-based approaches, one considering the union of
training and test sets, and the other made of two phases, performing sequential inference for
known and hidden classes. Chapter 4 deals with adulterated high-dimensional data, and how
to develop a robust model-based classifier in this context, where noise assumes the form of
outliers, label noise and irrelevant features. To this aim, we introduce two wrapper variable
selection methods for identifying the relevant features, that is those bringing significant infor-
mation about class separation. The first method embeds the fully-supervised version of the
methodology developed in Chapter 2 within a greedy-forward algorithm, validating stepwise
inclusion and exclusion of variables from the relevant subset via a robust information crite-
rion. The second one resorts to the theory of maximum likelihood and irrelevance, defining
an objective function in which the subset of relevant variables is regarded as a parameter to
be estimated. Chapter 5 concludes the manuscript, summarizing the main contributions and
emphasizing future research developments.
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Chapter 1

Introduction

Classification is an instinctive task performed by human beings. Hundreds of times per day,
our brain unconsciously classifies objects, creatures and actions based on our past experience.
The learning process we undertook as children was mostly driven by explicit involvement and
direct evidence, from which memories were produced and, ultimately, knowledge created. As
a confirmation of our empirical-based knowledge, one may think of the, seemingly naive, task
of distinguishing whether the animal in Figure 1.1a is a cat or a dog. Our brain effortlessly and
instantly classifies it as a cat, and we are not even aware of the involvement of discriminating
features, such as pointy ears and whiskers, that made the identification so easy. Simply, we
have seen so many examples of cats and dogs in the past that as soon as we are faced with a
new “standard” sample we are immediately able to recognize its breed. The same task is not
accomplished as smoothly when focusing on the cat 1 depicted in Figure 1.1b: our stereotypical

(A) Clearly, a cat (B) Another cat

FIGURE 1.1: Two pictures of cats, one (left panel) displays stereotypical traits, the
other (right panel) possesses less common features.

idea of “catness” does not properly match with the kitten’s features, and therefore correctly
recognizing it as a cat results more difficult.
Moreover, imagine we were to teach someone how to distinguish between the two pets by only
showing him/her a (limited) number of labelled pictures of cats and dogs, respectively. That
is, a discriminating rule needs to be developed by direct exposition of samples from the two
groups, with no explicit mention to group-distinctive traits. Probably, considering this scenario,
we would not include Atchoum in the set of photos to be displayed, as its characteristics are
likely to weaken rather than improving the empirical understanding on how to distinguish a
cat from a dog. Likewise, when the learning entity is a computer system, the input data quality
highly influences the output results: a concept that is known in the literature as “Garbage In,
Garbage Out” principle.
The present manuscript investigates and proposes innovative solutions to situations where
Atchoum-like samples are present in both input and output of a classification task, with the

1Its name is Atchoum, and it has an Instagram account

https://www.instagram.com/atchoumthecat/?utm_source=ig_embed
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final aim of developing a set of robust classification rules. A statistical methodology is robust
when it performs reliable inference even if model assumptions are not entirely met by the
analysed dataset (Hampel et al., 2005). The approach adopted throughout this monograph
is the so called model-based framework for classification, whose definition involves the following
three elements (Bouveyron et al., 2019):

1. the usage of a finite mixture, that is the natural probabilistic framework for heterogeneous
data modeling,

2. the estimation of model parameters, which is achieved via a well-defined statistical method,

3. the adoption of a probability-based rule to perform a-posteriori classification, condition-
ally on the estimated model.

The main methodological notions for model-based classification and robustness are reviewed
in the upcoming Sections. The remainder of the chapter is organized as follows: in Section
1.1 the finite mixture model is introduced, covering its definition and estimation, specifically
for the Gaussian case. Model-Based classification is formally characterized in Section 1.2, by
presenting the notions of discriminant analysis and semi-supervised classification. Section 1.3
comprises a (non-exhaustive) list of difficulties that are encountered when performing model-
based classification. Section 1.4 examines the, increasingly current, topic of performing clas-
sification with high-dimensional data, focusing on the variable selection framework. Section
1.5 concludes this introductory chapter describing the main contributions of the present mono-
graph to the model-based classification literature, with the aim of addressing some of the open
problems that were highlighted during Section 1.3.

1.1 Finite Mixture Models

Finite mixtures of distributions are a mathematical-based approach to account for heterogene-
ity in a population. They provide a flexible and convenient semi-parametric framework for
modeling unknown distributional shapes, with a possibly different goal; being it classification,
density estimation or many more (McLachlan and Peel, 2004). By appropriately choosing its
components, a finite mixture is able to model quite complex phenomena, effectively handling
situations in which a single parametric family fails in providing a satisfactory fit. Their first
appearance goes back all the way to Pearson, 1894, and since then countless research papers on
the topic have been produced.
Denote with y1, . . . , yM a set of M multivariate data. The p-dimensional observation ym, m =
1, . . . , M, is supposed to be a realization of a continuous random vector Y ∈ Rp, with probabil-
ity density function f (ym). When f (ym) can be written in the form

f (ym) =
G

∑
g=1

τg fg(ym; θg) (1.1)

it is called a G-component finite mixture density. In Equation (1.1), fg(·; θg) is the density of
the gth mixture component parametrized by θg. The mixing proportion, or weight, τg repre-
sents the probability that an observation was generated by the gth component, with τg ≥ 0
for g = 1, . . . , G and ∑G

g=1 τg = 1. Altogether then, the probability distribution of ym is a
weighted average of G component densities fg(·; θg), g = 1, . . . , G. Commonly, the mixture
components are specified to belong to the same parametric family, so that fg(·; θg) = f (·; θg)
∀g, g = 1, . . . , G. In the upcoming Subsections, as well as throughout the rest of the manuscript,
we will focus on the most commonly and widely employed normal mixtures.
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FIGURE 1.2: Probability density function for a one-dimensional univariate fi-
nite normal mixture (left panel) and contours of the density function for a two-
dimensional finite bivariate normal mixture (right panel) with two mixture com-
ponents. The dots show two samples simulated from the respective density, with

the colors indicating the mixture component from which they were generated.

1.1.1 Gaussian Mixture Models

In the previous Section we have defined the general form of a mixture model. In practice,
the components f (·; θg) are often considered to belong to the normal family, leading to the so-
called Gaussian Mixture Model (GMM). Specifically, when p = 1, ym is one dimensional and the
gth component is a N(µg, σ2

g) density function with θg = (µg, σg) component-wise mean and
standard deviation. When p ≥ 2, f (·; θg) is the multivariate normal distribution parametrized
by its mean vector µg and by its covariance matrix Σg and has the form

φ
(

ym; µg, Σg

)
=
∣∣2πΣg

∣∣− 1
2 exp

{
−1

2

(
ym − µg

)T
Σ−1

g

(
ym − µg

)}
. (1.2)

The density of a Gaussian mixture model for observation ym is therefore denoted as follows:

f (ym) =
G

∑
g=1

τgφ(ym; µg, Σg). (1.3)

Figure 1.2 shows an example of the density function for a one-dimensional normal mixture (left
panel) and density contours for a two-dimensional bivariate Gaussian mixture (right panel)
with two mixture components.

1.1.2 Maximum Likelihood estimation

Given an i.i.d. sample y1, . . . , yM from (1.3), a natural way for estimating the set of model
parameters Θ = {τ1, . . . , τG, µ1, . . . , µG, Σ1, . . . , ΣG} is via maximum likelihood (ML), with the
log-likelihood being

`O(τ, µ, Σ|Y) =
M

∑
m=1

log

[
G

∑
g=1

τgφ
(

ym; µg, Σg

)]
. (1.4)
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In mixture models however, the direct maximization of the objective function in (1.4) is in-
tractable, and the Expectation-Maximization or EM algorithm (Dempster et al., 1977) is the
standard approach used for tackling the problem. The EM algorithm is a general framework
for maximum likelihood estimation, specifically tailored for incomplete-data scenarios, that is
when units are (or can be thought of being) only partially observed (McLachlan and Krish-
nan, 2008). This situation naturally arises in mixture models, since we observe realizations ym,
m = 1, . . . , M, but we do not know from which component density they were originated. In
this context then, we call the quantity in (1.4) the observed data log-likelihood (explicitly indicated
by the subscript O), as it includes in the specification only observed quantities. The estima-
tion procedure is carried out considering instead the “complete data” (ym, zm), m = 1, . . . , M,
where zm = (zm1, . . . , zmG) is the unobserved portion of the data, with

zmg =

{
1 if ym belongs to group g
0 otherwise.

(1.5)

zm are taken to be independent and identically distributed according to a multinomial distri-
bution of one draw with G categories, each with probability τg, g = 1, . . . , G and ∑G

g=1 τg = 1.
With this extra piece of information, we can define the complete data log-likelihood:

`C(τ, µ, Σ|Y, z) =
M

∑
m=1

G

∑
g=1

zmg log
[
τgφ

(
ym; µg, Σg

)]
. (1.6)

Notice that the log-likelihood specification in (1.6) includes not only the realizations ym, but,
through zm, also the associated component density from which each unit was generated. A
typical situation in which the complete data log-likelihood is directly available is model-based
classification (see Section 1.2).
In maximizing (1.4), the EM algorithm alternates between two steps. The expectation step (E-
step) computes the conditional expectation of the unobserved data given the observed data
and the current parameter estimates: ẑmg = E

[
zmg|ym; Θ

]
. The E-step at the (k + 1)th iteration

of the EM algorithm for mixture models reads:

ẑ(k+1)
mg =

τ̂
(k)
g φ

(
ym; µ̂

(k)
g , Σ̂

(k)
g

)
∑G

j=1 τ̂
(k)
j φ

(
ym; µ̂

(k)
j , Σ̂

(k)
j

) (1.7)

where τ̂
(k)
g , µ̂

(k)
g and Σ̂

(k)
g are the estimated values respectively for τg, µg and Σg after the kth EM

iteration.
The maximization step (M-step) determines the parameters value that maximizes the expected
log-likelihood obtained from the E-step. Closed-form solutions are obtained in the M-step for
the mixing proportion and the mean vector of each Gaussian component:

τ̂
(k+1)
g =

m̂(k+1)
g

M
;

µ̂(k+1)
g =

∑M
m=1 ẑ(k+1)

mg ym

m̂(k+1)
g

(1.8)

where m̂(k+1)
g = ∑M

m=1 ẑ(k+1)
mg , g = 1, . . . , G. Estimation for the covariance matrices may depend
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on their parametrization (see Section 1.2.1); when, for instance, heteroscedastic covariance ma-
trices are considered, the M-step update is obtained as follows:

Σ̂
(k+1)
g =

∑M
m=1 ẑ(k+1)

mg

(
ym − µ̂

(k+1)
g

) (
ym − µ̂

(k+1)
g

)T

m̂(k+1)
g

. (1.9)

Dempster et al., 1977 have proved the convergence of the EM algorithm to a local maximum of
the log-likelihood function, with the objective function not decreasing after each EM iteration.
A standard approach for validating whether the procedure has converged is to monitor the
increase in the log-likelihood between the last two iterations, typically an increase of less than
10−5 is deemed sufficient to stop the algorithm, retaining the estimates from the last iteration
as to be the final ML estimates.
Being the likelihood not convex in general, the converged estimate may depend on the initial
chosen values. The problem of properly initializing the EM algorithm is particularly critical
in the clustering context, where no prior information regarding the group structure is avail-
able. Since the focus of the present monograph is supervised and semi-supervised learning
rather than clustering, we will overlook the EM initialization issue at the moment, postponing
its treatment in the dedicated Section of adaptive learning (see Chapter 3). Nonetheless, the
interested reader is referred to Biernacki et al., 2003, Maitra, 2009, Scrucca and Raftery, 2015
and references therein for a thorough treatment of the problem.

1.2 Model-Based Classification

In this Section we review the main concepts of supervised classification based on mixture mod-
els, with particular focus on Eigenvalue Decomposition Discriminant Analysis and its semi-
supervised formulation, as introduced in Dean et al., 2006, since they are the basis of the novel
robust semi-supervised classifier introduced in Chapter 2. Other popular model-based clas-
sification methods, not reviewed here for sake of brevity, include Regularized Discriminant
Analysis (Friedman, 1989) and Mixture Discriminant Analysis (Hastie and Tibshirani, 1996;
Fraley and Raftery, 2002).

1.2.1 Eigenvalue Decomposition Discriminant Analysis

Model-based discriminant analysis (McLachlan, 1992; Fraley and Raftery, 2002) is a probabilis-
tic approach for supervised classification, in which a classifier is built from a complete set of
learning observations {(x1, l1), . . . , (xN , lN)}; where xn and ln, n = 1, . . . , N, are independent
realizations of random vectors X ∈ Rp and G ∈ {1, . . . , G}, respectively. That is, xn denotes a
p-variate observation and ln its associated class label, such that lng = 1 if observation n belongs
to group g and 0 otherwise, g = 1, . . . , G. Considering a Gaussian framework, and following
the notation introduced in Section 1.1, the probabilistic mechanism that is assumed to have
generated the data is as follows:

G ∼ MultG(1; τ1, . . . , τG)

X |G = g ∼ Np(µg, Σg).
(1.10)

Therefore, the joint density of (xn, ln) is given by:

f (xn, ln; Θ) =
G

∏
g=1

[
τgφ(xn; µg, Σg)

]lng
. (1.11)
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EVV VVV

VEE VVE EEV VEV

EVI VVI EEE EVE

EII VII EEI VEI

FIGURE 1.3: Ellipses of isodensity for each of the 14 Gaussian models obtained
by eigen-decomposition in case of three groups in two dimensions. Green (red)
area denotes variable (equal) volume across components. Dashed green (solid
red) perimeter denotes variable (equal) shape across components. Dashed green
(solid red) axes denote variable (equal) orientation across components. Solid
black perimeter denotes spherical shape. Solid black axes denote axis-aligned

orientation.
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Notice that (1.11) is closely tied with the complete-data log-likelihood introduced in (1.6):
clearly, there is no incomplete-data in the learning set since we observe both the realization
xn and its associated component via ln, ∀n, n = 1, . . . , N. The marginal density for xn can be
obtained by integrating the class labels out of the joint density in (1.11), in doing so we retrieve
the mixture model defined in (1.3).
Discriminant analysis makes use of data with known labels to estimate model parameters for
creating a classification rule. The trained classifier is subsequently employed for assigning a set
of unlabelled observations ym, m = 1, . . . , M to the class g with the associated highest posterior
probability:

zmg = P(G = g|X = ym) =
τgφ(ym; µg, Σg)

∑G
j=1 τjφ(ym; µj, Σj)

. (1.12)

using the maximum a posteriori (MAP) rule. The afore-described framework is widely em-
ployed in classification tasks, thanks to its probabilistic formulation and well-established effi-
cacy.
Observing that the number of parameters in the component covariance matrices in the joint
density (1.11) grows quadratically with the dimension p, Bensmail and Celeux, 1996 intro-
duced a parsimonious parametrization. They proposed to enforce additional assumptions on
the matrices structure, based on the eigen-decomposition of Banfield and Raftery, 1993 and
Celeux and Govaert, 1995:

Σg = λgDg AgD
′
g (1.13)

where Dg is an orthogonal matrix of eigenvectors, Ag is a diagonal matrix such that |Ag| = 1
and λg = |Σg|1/p. These elements correspond respectively to the orientation, shape and volume
(alternatively called scale) of the different Gaussian components. Allowing each parameter in
(1.13) to be equal or different across groups, Bensmail and Celeux, 1996 define a family of 14
patterned models, listed in Table 1.1 and graphically represented in Figure 1.3. Such class of
models is particularly flexible, as it includes very popular classification methods like Linear
Discriminant Analysis and Quadratic Discriminant Analysis as special cases for the EEE and
VVV models, respectively (Hastie and Tibshirani, 1996).
The computation needed to get ML estimates in discriminant analysis is equivalent to a single
M-step of the EM algorithm described in Section 1.1.2. The covariance estimate depends on
its parametrization, details of the M-step for each of the 14 patterned model is given in Celeux
and Govaert, 1995. Eigenvalue Decomposition Discriminant Analysis (EDDA) is implemented
in the mclust R package (Scrucca et al., 2016).

1.2.2 Semi-supervised classification

Exploiting the assumption that the data generating process outlined in (1.10) is the same for
both labelled and unlabelled observations, Dean et al., 2006 propose to include also the data
whose memberships are unknown in the parameter estimation. That is, information about
group structure that may be contained in both labelled and unlabelled samples is combined in
order to improve the classifier performance, in a semi-supervised manner.
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TABLE 1.1: Nomenclature, characteristics and parametrization of the covariance
matrices Σg, g = 1, . . . , G in the EDDA family of Gaussian parsimonious models.

Model Volume Shape Orientation Σg

EII Equal Spherical - λI
VII Variable Spherical - λg I
EEI Equal Equal Axis-aligned λA
VEI Variable Equal Axis-aligned λg A
EVI Equal Variable Axis-aligned λAg
VVI Variable Variable Axis-aligned λg Ag

EEE Equal Equal Equal λDAD
′

VEE Variable Equal Equal λgDAD
′

EVE Equal Variable Equal λDAgD
′

EEV Equal Equal Variable λDg AD
′
g

VVE Variable Variable Equal λgDAgD
′

VEV Variable Equal Variable λgDg AD
′
g

EVV Equal Variable Variable λDg AgD
′
g

VVV Variable Variable Variable λgDg AgD
′
g

Under the framework defined in Section 1.2.1, and given the set of available information {(xn, ln)|n =
1, . . . , N} ∪ {ym|m = 1, . . . , M}, the observed log-likelihood is

`O(τ, µ, Σ|X, Y, l) =
N

∑
n=1

G

∑
g=1

lng log
[
τgφ(xn; µg, Σg)

]
+

+
M

∑
m=1

log

[
G

∑
g=1

τgφ(ym; µg, Σg)

] (1.14)

in which both labelled and unlabelled samples are accounted for in the likelihood definition.
Notice that, compare to the standard observed log-likelihood for mixture models defined in
(1.4), here we include in addition the contribution given by the labelled set {(x1, l1), . . . , (xN , lN)}.
Treating the (unknown) labels zmg, m = 1, . . . , M, g = 1, . . . , G as missing data and including
them in the likelihood specification defines the so called complete-data log-likelihood (see Section
1.1.2):

`C(τ, µ, Σ|X, Y, l, z) =
N

∑
n=1

G

∑
g=1

lng log
[
τgφ(xn; µg, Σg)

]
+

+
M

∑
m=1

G

∑
g=1

zmg log
[
τgφ(ym; µg, Σg)

] (1.15)

Maximum likelihood estimates for (1.14) are obtained through a slight modification of the EM
algorithm described in Section 1.1.2. The unlabelled data are then classified according to ẑmg,
using the MAP. The updating classification rules was demonstrated to give improved classifi-
cation performance over the classical model-based discriminant analysis in some food authen-
ticity applications, particularly when the training size is small. An implementation of this can
be found in the upclass R package (Russell et al., 2014).
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1.2.3 Model selection

In most situations designing a classifier involves a selection step: particularly, for the models
described in Section 1.2.1 and 1.2.2 this refers to the selection of the “best” parsimonious struc-
ture out of the 14 patterned models listed in Table 1.1. The definition of “best model” depends
on the context: often, in classification, good overall prediction accuracy is of greatest interest,
and, therefore, the final goal would be to minimize the misclassification error in the test set. The
most widely data-driven approach used for estimating the misclassification error of a classifier
is cross-validation (CV). Cross-validation involves partitioning the training set into complemen-
tary subsets, fitting the model on a subset and assessing its performance on the other subset,
see, for instance, Section 7.10 in Hastie et al., 2009. Alternatively, in the model-based classifica-
tion setting, penalized log-likelihood criteria, such as the Bayesian Information Criterion (BIC)
(Schwarz, 1978) or the Akaike criterion (AIC) (Akaike, 1974) are at our disposal.
For the novel models developed in the remaining chapters of this thesis, robust penalized log-
likelihood criteria will be used for performing model selection (see Sections 2.2.4 and 3.2.5). The
rationale behind this choice is twofold: clearly, the computational cost needed for executing
cross-validation is much higher than the one necessary for computing an information criterion,
but there is also another, more crucial, argument to be made. As anticipated in the introduc-
tory section of this chapter, the main goal of the present monograph is to develop classifiers
that perform well even when dealing with real-data complexities. Particularly, the problem of
uncertain labels (see Subsection 1.3.3) has a yet unpredictable effect on cross-validation. Given
a well-trained classifier, imagine that some mislabelled units fall in the validation set: they will
be correctly assigned to their true group in contradiction to their (wrong) label, so misclassifi-
cation error will be biased. Robust prediction loss functions, such as the root trimmed mean
squared prediction error (RTMSPE), coupled with cross-validation have been successfully con-
sidered for model selection in robust regression (Alfons et al., 2013). Unfortunately, when there
is label noise, how to modify CV for validating a classifier is yet to be understood. Further
research is needed to develop a coherent and reliable data-driven method with adulterated
data.
To conclude, we recall the general definition for the Bayesian Information Criterion (BIC):

BIC = 2`O
(
τ̂, µ̂, Σ̂

)
− vXXX log (T) (1.16)

where `O
(
τ̂, µ̂, Σ̂

)
denotes the maximized observed data log-likelihood, vXXX is a penalty term

equal to the number of parameters to be estimated according to the model chosen in Table
1.1 and T is the number of observations considered for model fitting. Following the notation
introduced in the previous Sections, T = N for the EDDA model and T = N + M for its semi-
supervised version. The covariance structure that leads to the highest BIC value is ultimately
selected. From a theoretical viewpoint it is well known that, in a Bayesian framework, the
BIC approximates the log evidence of the postulated model (Schwarz, 1978; Kass, 1993; Kass
and Raftery, 1995). Even though no corresponding theory has yet been established for the
“trimmed” counterpart of (1.16), a discussion and some initial attempts in justifying the usage
of trimmed information criteria in the context of robust model selection is reported in Appendix
D.

1.3 Learning in presence of real-data complexities

Having defined the general framework for model-based supervised and semi-supervised learn-
ing, the present Section lists a set of difficulties that are often encountered in performing real-
data classification. Particularly, the need of overcoming some (or all) of the below-described
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problems at once with a single methodology was the main motivation that led to the develop-
ment of the novel models described in the remaining Chapters.

1.3.1 Outliers

In statistical analysis, an exact definition of an outlier often depends on hidden assumptions
regarding the data structure and the applied detection method (Maimon and Rokach, 2005).
Hawkins, 1980 defines an outlier as an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism. Barnett and Lewis,
1974 indicate that an outlying observation is one that appears to deviate markedly from other
members of the sample in which it occurs. Equivalently, Johnson et al., 2002 regard as outlier an
observation in a dataset which appears to be inconsistent with the remainder of that set of data.
In a classification context, outlying units (or units with attribute noise) present contamination
in the exploratory variables, that is, they display unusual values on their predictors (Wu, 1995).
Apart from these quite general specifications, the concept of outlier, unfortunately, does not
possess an unanimously accepted, rigorous mathematical definition (Ritter, 2014).
Generally, three main approaches can be employed when building a classifier from a noisy
dataset: cleaning the data, modeling the noise and using robust estimators of model parame-
ters (Bouveyron and Girard, 2009). To this extent, trimming is probably the earliest safeguard
against outliers, as it was employed already toward the end of the nineteenth century (New-
comb, 1886). Firstly introduced in the clustering analysis literature by Cuesta-Albertos et al.,
1997, impartial trimming is a data-driven procedure that excludes observations identified as
outliers when estimating the model parameters. The final result of a statistical method that
employs impartial trimming is therefore a set of robustly estimated parameters, as well as a
flag that identifies the “most outlying” observations according to the postulated model. Inter-
estingly, to our best knowledge, impartial trimming had never been (directly) used in a classi-
fication context: the methodology described in Chapter 2 takes advantage of its flexibility for
jointly dealing with outliers and uncertain labels. Given the importance played by impartial
trimming in the upcoming Chapters, we hereafter briefly describe its usage in robustifying the
EM algorithm for model-based clustering, along the lines of García-Escudero et al., 2008.
The considered methodological framework is the spurious-outliers model (Gallegos and Ritter,
2005), for which it is assumed that the data contains bMαc “spurious” observations, α ∈ (0, 1),
that should not be included in estimating the mixture model. Such probabilistic structure is
also employed in providing theoretical justification for the robust variable selection method
developed in Section 4.2.1, therefore, its detailed treatment is postponed to the fourth chapter
of the present manuscript. Here, we limit to recall its definition and main properties. Follow-
ing the notation introduced in Section 1.1, the spurious mixture model is defined through its
likelihood:

L(τ, µ, Σ, z|Y) =
M

∏
m=1

[
G

∏
g=1

τgφ
(

ym; µg, Σg

)]zmg ϕ(ym)

× [w (ym; ψm)]
1−ϕ(ym) , (1.17)

where ϕ(·) is a 0–1 indicator function that expresses whether observation ym is regarded as
spurious or not, and w (·; ψm) is a generic probability density function in Rp, parametrized
by ψm ∈ Ψm . That is, if the mth observation is contaminated, it is generated from an almost
arbitrary subject-specific distribution w (·; ψm). Under weak assumptions on the contaminating
distribution w (·; ψm), Gallegos and Ritter, 2005 and García-Escudero et al., 2008 show that
mixture parameters and group memberships can be inferred by just maximizing the trimmed
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FIGURE 1.4: Scatter plot from fitting with the tclust algorithm a two-dimensional
finite bivariate normal mixture with two components to a noisy dataset, varying
trimming level. The colors indicate the assigned group, trimmed observations

are denoted by ×.

log-likelihood (Neykov et al., 2007):

`trim(τ, µ, Σ, z|Y) =
M

∑
m=1

ϕ (ym)
G

∑
g=1

zmg log
[
τgφ

(
ym; µg, Σg

)]
. (1.18)

The tclust algorithm (García-Escudero et al., 2008; Fritz et al., 2013) serves the purpose of max-
imizing (1.18): it can be seen as a CEM-like algorithm (Celeux and Govaert, 1992) with an
additional Concentration Step (Rousseeuw and Driessen, 1999). The tclust algorithm operates
as follows at iteration k:

• Concentration Step: The trimming procedure is implemented by discarding the bMαc
observations ym with smaller values of

D
(

ym; Θ̂
(k)
)
=

G

∑
g=1

τ̂
(k)
g φ

(
ym; µ̂(k)

g , Σ̂
(k)
g

)
m = 1, . . . , M. (1.19)

That is, ϕ(ym) = 0 in (1.18) for such observations.

• Expectation Step: For each non-trimmed observation ym, compute the posterior proba-
bilities as per the E-step described in Section 1.1.2, hard assigning each ym to the group
component for which ẑ(k+1)

mg is highest.

• Constrained Maximization Step: the mixture parameters are updated based only on the
non-spurious observations, i.e., units for which ϕ(ym) = 1, m = 1, . . . , M. Here, an
additional restriction may be enforced (see Section 1.3.2 for details).

The positive impact impartial trimming has in robustifying parameter estimates and detecting
outlying observations is presented in Figure 1.4.
Several other methods for performing model-based classification robust to outlying obser-
vations were proposed in the literature. Hawkins and McLachlan, 1997 developed a high-
breakdown criterion to linear discriminant analysis, involving the identification of the data
subset whose deletion leads to the smallest determinant for the within-group covariance ma-
trix. S-estimators and the re-weighted MCD estimator for multivariate location and dispersion
matrices were respectively employed in He and Fung, 2000 and Hubert and Van Driessen, 2004
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for building a robust discriminant rule. Lastly, Vanden Branden and Hubert, 2005 provide a
framework for high-dimensional classification by means of a Robust Soft Independent Mod-
elling of Class Analogies (RSIMCA) method.

1.3.2 Degeneracies

Degenerate solutions generally arise when fitting mixture models with the EM algorithm,
rather than when a model-based approach is employed for classification. Nevertheless, it be-
comes paramount to be protected against singular and spurious solutions whenever a semi-
supervised or an adaptive learner, i.e., a model able to look for unobserved extra classes, is
considered (see 1.3.4 and the method developed in Chapter 3).
Extensive literature has been devoted to studying the appearance of the so-called degenerate
solutions that may be provided by the EM algorithm when fitting a finite mixture to a set of
data (Peel and McLachlan, 2000; Biernacki, 2007; Ingrassia and Rocci, 2011). This is due to
the likelihood function itself, rather than being a shortcoming of the EM procedure: it is easy
to show that for elliptical mixture models with unrestricted covariance matrices the associ-
ated likelihood is unbounded (Day, 1969); simply take µ1 = y1 and |Σ1| → 0 in Equation
(1.3). Therefore, the maximization of (1.4) without any constraint is an ill-posed mathematical
problem. An even more subtle issue, at least from a practitioner perspective, is the appear-
ance of solutions that are not exactly degenerate, but they can be regarded as spurious since
they lie very close to the boundary of the parameter space. They occur when an estimated
component has a very small generalized variance, fitting few data points almost lying on a
lower-dimensional space (Peel and McLachlan, 2000). Spurious solutions often display a high
likelihood value, however, little insight can be obtained in real-world applications as they are
mostly a result of modeling a localized random pattern rather than a true underlying group. In
general, methods for dealing with this issue can be grouped in constraint methods, Bayesian
methods, penalty methods, and others. We will review the first approaches, as they are an
essential part of the methodologies introduced in Chapters 2 and 3. A comprehensive list of
references for the remaining ones can be found in García-Escudero et al., 2018b.
The seminal paper of this strand is Hathaway, 1985, where he proposed to maximize the like-
lihood subject to the constraints that the eigenvalues of ΣgΣ−1

h be grater than or equal to some
minimum value c′ > 0, 1 ≤ g 6= h ≤ G. Unfortunately, no dedicated algorithm was proposed
for carrying out the associated constrained maximization. Another type of constraint, based
on the Löwner matrix ordering (�) was proposed by Gallegos and Ritter, 2009, requiring the
scatter matrix to satisfy Σg � c−1Σh for every g and h. Nonetheless, a specific algorithm for
solving this type of problem in closed form for any fixed value of the constant c is still missing.
A conceptually similar proposal of constraining the ratio of the maximum to the minimum of
all the eigenvalues of all the mixture component covariance matrices was introduced in García-
Escudero et al., 2015. Formally, the authors considered the problem of maximizing (1.4) with
the additional eigenvalues-ratio constraint:

Π/π ≤ c (1.20)

where Π = maxg=1...G maxl=1...p dlg and π = ming=1...G minl=1...p dlg, with dlg, l = 1, . . . , p, be-
ing the eigenvalues of the matrix Σg and c ≥ 1 being a fixed constant. The constraint in (1.20)
controls the relative variability within and between group populations. It also avoids singu-
larities, providing a well-defined maximization problem for MLE of (1.4). Furthermore, Fritz
et al., 2013 provide a computationally efficient and closed form solution for directly enforcing
the constraint in (1.20) at each iteration of the EM algorithm. In detail, the authors recast the
complex multivariate minimization problem of the original tclust algorithm (García-Escudero
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FIGURE 1.5: Bivariate Gaussian equidensity ellipsoids with different
eigenvalues-ratio restriction, varying constant c

et al., 2008), whose dimension depends on the value of p and G, with the minimization of a
one-dimensional function. A truncation operator is defined on the set of eigenvalues of the
covariance matrices, and its minimum is attained by only evaluating a univariate objective
function 2Gp + 1 times.
More formally, in the case of unconstrained scatters (VVV model), a truncated eigenvalue dm

lg
is defined as follows:

dm
lg =


dlg if dlg ∈ [m, cm]

m if dlg < m
cm if dlg > cm

(1.21)

with m some threshold value. Fritz et al., 2013 proved that for obtaining the best set of truncated
eigenvalues that satisfies (1.20) it is sufficient to find mopt that minimizes

f (m) =
G

∑
g=1

ng

p

∑
l=1

[
log dm

lg +
dlg

dm
lg

]
(1.22)

where ng denotes the sample size of the g-th group at that specific iteration of the EM algorithm.
As mentioned above, the minimum of (1.22) is achieved by only evaluating the function in
2Gp + 1 points. This is proven by firstly rewriting f (m) as follows:

f (m) =
G

∑
g=1

ng

[
p

∑
l=1

(
log m +

dlg

m

)
I(dlg < m) +

p

∑
l=1

(
log dlg + 1

)
I(m ≤ dlg ≤ cm)+

+
p

∑
l=1

(
log cm +

dlg

cm

)
I(dlg > cm)

]
.

(1.23)
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Being (1.22) a continuous differentiable function, mopt is one of those values m∗ that set its first
derivative to 0:

f
′
(m) = 0⇔

G

∑
g=1

ng

[
p

∑
l=1

(
1
m
− dlg

m2

)
I(dlg < m)+

+
p

∑
l=1

(
1
m
− dlg

cm2

)
I(dlg > cm)

]
= 0

G

∑
g=1

ng

[
p

∑
l=1

(
m− dlg

)
I(dlg < m) +

p

∑
l=1

(
m− dlg/c

)
I(dlg > cm)

]
= 0

G

∑
g=1

ng

[
p

∑
l=1

(m) I(dlg < m)−
p

∑
l=1

(
dlg
)

I(dlg < m)+

+
p

∑
l=1

(m) I(dlg > cm)−
p

∑
l=1

(
dlg/c

)
I(dlg > cm)

]
= 0

G

∑
g=1

ng

[
p

∑
l=1

(m)
(
I(dlg < m) + I(dlg > cm)

)
+

−
p

∑
l=1

(
dlg
) (

I(dlg < m) +
1
c

I(dlg > cm)

)]
= 0 (1.24)

Noticing that each term in (1.24) is greater than 0, equation (1.24) is satisfied for all m∗ > 0 such
that:

m∗ =
∑G

g=1 ng

(
∑

p
l=1 dlg(I(dlg < m) + ∑

p
l=1

dlg
c I(dlg > cm)

)
∑G

g=1 ng ∑
p
l=1

(
I(dlg < m) + I(dlg > cm)

) . (1.25)

Now consider the sequence u1 ≤ u2 ≤ · · · ≤ u2pG obtained by ordering

d11, d12, . . . , dlg, dpG, d11/c, d12/c, . . . , dlg/c, dpG/c. (1.26)

Each addend on the right hand-side of equation (1.25) takes constant values in the intervals
(−∞, u1], (u1, u2] , . . . , (u2pG, ∞). Therefore (1.25) is a step function that assumes a finite set of
values: mopt is chosen as to be the one in the 2Gp + 1 distinct entries that minimizes (1.22). A
graphical representation of the eigenvalues-ratio restriction, varying values of the constraint c
in the multivariate Gaussian equidensity ellipsoids, is reported in Figure 1.5.
For the remaining part of this monograph, the eigenvalues-ratio constraint in (1.20) will be
considered for protecting our models against degeneracies and to reduce the occurrence of
spurious solutions. Particularly, novel algorithms for combining such constraint within the
family of parsimonious Gaussian models listed in Table 1.1 are introduced: details are given in
Section 2.8.

1.3.3 Uncertain labels

When building a classifier in a real-data context a second difficulty that is likely to be encoun-
tered is the so called label noise problem: learning samples with wrongly associated labels (Zhu
and Wu, 2004). In this context, the learning scenario is denoted as imperfectly supervised: i.e., pat-
tern recognition applications where the assumption of label correctness does not hold for all the
elements of the training set (Barandela and Gasca, 2000). Often, a labeled dataset is the output
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of human activity: classes are manually assigned by domain experts to a set of given measure-
ments, an example being for instance biomedical applications. Clearly, this kind of heuristic
supervision may be imprecise, difficult and/or expensive; and several reasons like subjectivity,
data-entry errors or information inadequacy in the identification process may cause a labeling
error (Brodley and Friedl, 1999). More specifically, four main potential sources of label noise
can be identified (Frénay and Verleysen, 2014). First, lack of information may result in the im-
possibility of obtaining reliable labeling (Hickey, 1996). Second, the labeling process itself may
be prone to errors, especially if automatically performed by a sensitive system (Lagacherie and
Holmes, 1997). Third, as previously mentioned, when subjectivity is inherent in the labeling
task, as in medical applications (Malossini et al., 2006) and, lastly, label noise can simply come
from data encoding or communication problems (Angluin and Laird, 1988).
Frénay and Verleysen, 2014 provide a taxonomy of label noise, characterizing it in terms of
probabilistic dependence with respect to feature variables and group memberships. According
to the authors, labels are noisy completely at random when the occurrence of an error is indepen-
dent of the other variables, including the true class itself; noisy at random when the appearance
of label noise depends on the true class and noisy not at random when a more complex depen-
dence structure is present in the data. Clearly, if the noise is to be modeled, ad-hoc procedures
that depend on the underlying noise structure need to be considered.
Incorrect labels can strongly undermine the classifier performance, especially if the training size
is small. Specifically, label noise may badly affect the predicting power of a model, lowering its
classification accuracy, and unnecessarily increase model complexity, especially when it comes
to detect the most discriminative variables (Zhang et al., 2006). Section 1.4 and Chapter 4 are
entirely devoted to this topic. Therefore, robust methods capable of dealing with label noise
are critically important in applications. Likewise in dealing with outliers, as seen in Section
1.3.1, this can be generally achieved by cleaning the data, modeling the noise and finally using
robust estimations of model parameters. A novel approach of the latter type based on impartial
trimming and eigenvalues-ratio constraints is developed in Chapter 2. For a state-of-the-art
review and a thorough treatment on class noise, the reader is referred to the recent surveis of
Frénay and Verleysen, 2014 and Prati et al., 2019, while the “Supervised Classification with
Uncertain Labels” part in Section 5.5 of Bouveyron et al., 2019 provides a comprehensive list of
approaches that deal with classification with uncertain labels.

1.3.4 Unobserved classes

The last real-data complexity with whom the present monograph deals with is unobserved
classes. The usual framework of supervised classification does not consider the possibility
of having test units belonging to a class not previously observed in the learning phase. A
classic hypothesis is that the training set contains samples for each and every group within the
population of interest. Nevertheless, this strong assumption may not hold true in fields like
biology, where novel species may appear and their detection is an important issue, or in social
network analysis where communities continuously expand and evolve. Therefore, a classifier
suitable for these situations need to adapt to the detection of previously unobserved classes.
Unfortunately, standard supervised methods will predict class labels only within the set of
groups previously encountered in the learning phase.
A related topic to supervised classification with unobserved classes is called novelty detection,
that is, the identification of new or unknown data or signal that a machine learning system
is not aware of during training (Markou and Singh, 2003). A first attempt in dealing with
this issue in the classification context is considered in Tax and Duin, 1998, where novelties are
detected based on the instability of the outputs of different methods, namely mixture of Gaus-
sians, Parzen estimator and nearest neighbor estimator. Another very popular approach is the
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Support Vector Method for novelty detection (Schölkopf et al., 2000), in which known and novel
objects are identified through the estimation of a separating function, whose functional form
is given by a kernel expansion. Even though novelty detection methods are able to identify
new or unobserved data points, they lack the ability of recognizing several homogeneous and
previously hidden groups, and to adapt the classifier to new situations for classifying future
observations.
Within the model-based framework, a classifier capable of detecting several unobserved classes
in a set of unlabelled observations was proposed in Bouveyron, 2014: we briefly describe its
main features here, as an extension for joint anomaly and novelty detection is proposed in
Chapter 3. The Adaptive Mixture Discriminant Analysis (AMDA) is a model-based framework
for supervised classification that accounts for the case where some of the test units might belong
to a group not encountered in the training set. That is, the AMDA classifier is able to adapt for
the detection of previously unseen classes in the unlabeled sample.
More formally, following and adapting the notation introduced in Section 1.2, let {(y1, z1), . . . , (yM, zM)}
be the set of the unlabeled observations ym with unknown classes zm, where zmg = 1 if obser-
vation m belongs to group g and 0 otherwise, g = 1, . . . , E, with E ≥ G. Note that, contrarily
to what previously assumed, now E classes, with E possibly bigger than G, are supposed to be
present in the test set. That is, there might be a number H of “hidden” classes not previously
encountered in the training set, such that E = G + H, with H ≥ 0. Under this new framework,
the observed log-likelihood for the semi-supervised classification defined in (1.14) modifies to:

`O(τ, µ, Σ|X, Y, l) =
N

∑
n=1

G

∑
g=1

lng log
[
τgφ(xn; µg, Σg)

]
+

+
M

∑
m=1

log

[
G

∑
g=1

τgφ(ym; µg, Σg) +
E

∑
h=G+1

τhφ(ym; µh, Σh)

]
.

(1.27)

In (1.27), the difference compared to the likelihood in (1.14) is made explicit: here the summa-
tion within the second logarithm goes from 1 to E. Clearly, when E = G, the likelihood in
(1.27) equals the one in (1.14) since no extra classes are present in the test set, and the prob-
lem simplifies to semi-supervised model-based classification. Notice further that the first term
in (1.27) accounts for the joint distribution of (xn, ln), since both are observed; whereas in the
second term only the marginal density of ym contributes to the likelihood, given that its asso-
ciated label zm is unknown. Two alternative EM-based approaches for maximizing (1.27) with
respect to τg, µg and Σg, g = 1, . . . , E are proposed in Bouveyron, 2014. The adapted classi-
fier assigns a new observation ym to a known or previously unseen class with the associated
highest posterior probability:

ẑmg = P(C = g|X = ym) =
τ̂g f (ym; θ̂g)

∑E
j=1 τ̂j f (ym; θ̂j)

, for g = 1, . . . , G, G + 1, . . . , E.

Notice that the total number E of groups is not established in advance and needs to be esti-
mated: classical tools for model selection in the mixture model framework serve to this purpose
(Akaike, 1974; Schwarz, 1978).
Other connected methods include the initial approach of Miller and Browning, 2003, where a
mixture model with observed and unobserved classes is considered for modeling jointly la-
belled and unlabelled observations. A conceptually related inferential procedure, named trans-
ductive approach, is developed in Section 3.2.2. More recently, Vatanen et al., 2012 proposed
a semi-supervised classifier based on a mixture of Gaussians for detecting anomalies among
a background of normal data, a situation that regularly arises in experimental high energy
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FIGURE 1.6: Examples of learning scenarios for which the second dimension is ir-
relevant (left panel) or redundant (right panel) in discriminating the two groups.

physics. An exhaustive bibliographic reference of model-based methods for anomaly detection
is given in the “Novelty Detection” part of Section 5.5 in Bouveyron et al., 2019.

1.4 High dimensional data and variable selection

Nowadays, in many scientific domains such as chemometrics, computer vision, engineering
and genetics among others, it is increasingly common to measure hundreds or thousands of
variables on each sample. In principle, depending on the problem at hand, all the available
features might be relevant and thus deemed to be included in a subsequent analysis. Most of-
ten, however, incorporating every piece of information at our disposal unnecessarily increases
model complexity and, ultimately, it may undermine the entire output of a statistical proce-
dure. Model-based methods,as the ones described in the previous sections, are particularly
sensitive to the well-known curse of dimensionality (Bellman, 1957), as such models are over-
parametrized and suffer from identifiability problems in high dimensional spaces (Bouveyron
and Brunet-Saumard, 2014). Therefore, in a discriminant analysis context, selecting the useful
variables that better unveil the group structure is crucial to learn an efficient classifier. This has
been known for a long time, as demonstrated by the specific literature reviews on the topic in
the fields of machine learning (Blum and Langley, 1997; Yu and Liu, 2004; Liu and Motoda,
2007), data mining (Dash and Liu, 1997; Kohavi and John, 1997), bioinformatics (Saeys et al.,
2007), genomic (Yu, 2008) and statistics (McLachlan, 1992; Guyon et al., 2007). Hereafter, we
review the main theory of feature selection in discriminant analysis, as it is the groundwork
needed for the treatment of the robust variable selection methods developed in Chapter 4.

1.4.1 Variables role in discriminant analysis

The detection of p relevant features (out of the whole collection of P >> p available variables)
on which to train the classifier is particularly desirable as (McLachlan, 1992):

• it simplifies parameters estimation and interpretation,

• it avoids loss on predictive power due to the inclusion of irrelevant and redundant infor-
mation,

• it leads to cost reduction on future data collection and processing.
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Therefore, with the aim of choosing the best predictors, it is crucial to define the concept of
“relevant variable”. The framework of model-based discriminant analysis allows to define
“relevance” in terms of probabilistic dependence (or independence) with respect to the class
membership (Ritter, 2014). The distribution of the relevant variables, i.e., features that bring
significant information on class separation, directly depends on the class membership itself.
In discriminating men and women of the same ethnicity for example, the height is naturally
relevant. Irrelevant or noisy variables, on the contrary, do not contain any discriminating power,
and hence their distribution is completely independent from the group structure. To continue
with our previous example, hair and eye color do not convey any information on the gender of
a person. Lastly, redundant variables essentially contain discriminant information that is already
provided by the relevant ones: their distribution is conditionally independent of the grouping
variable, given the relevant ones. If the height of a person is known, little extra information is
gained by finding out his/her chest perimeter for determining his/her gender. In Figure 1.6,
the first dimension is a relevant variable for discriminating the two groups, while the second
dimension is respectively irrelevant in the left panel and redundant in the right one.

1.4.2 Methods for variable selection

Depending on how the variable selection process interacts with the model estimation, two
general approaches for feature identification can be defined. Following the nomenclature in-
troduced by John et al., 1994, filter methods are those in which the selection acts as a pre (or
post) processing step, discarding variables whose distribution appears non-informative. Since
the selection via filter methods is performed separately from the model estimation, i.e., without
reference to the class membership, such techniques may miss important grouping information;
a standard example being Principal Component Analysis (Chang, 1983). For a state-of-the-art
benchmark study on the comparison of filter methods for feature selection in high dimensional
classification, the reader is referred to Bommert et al., 2019.
For the second class of methods, the feature identification is “wrapped” around the classifica-
tion procedure; hence they are denoted as wrapper approaches. Within this framework, variable
selection and model estimation are simultaneously performed, aiming at identifying the pre-
dictors that better describe the underlying data partition. Focusing on the model-based meth-
ods for classification, Murphy et al., 2010 provide a wrapper approach for feature selection in
semi-supervised discriminant analysis, recasting the feature identification as a model selection
problem. The authors developed a greedy search and a headlong search algorithm for find-
ing a local optimum in the model space, inspired by the seminal work on variable selection in
model-based clustering of Dean et al., 2006, wherein for the first time the potential correlation
between relevant and irrelevant variables was taken into account. Similarly, a general method-
ology for selecting predictors in model-based discriminant analysis was introduced in Maugis
et al., 2011, where also theoretical results on model identifiability and consistency of the pro-
posed criterion were validated. More recently, a regularization approach for feature selection in
model-based clustering and classification was introduced in Celeux et al., 2019, where a lasso-
like procedure is employed for overcoming the slowness yielded by stepwise algorithms when
dealing with high-dimensional problems. The SelvarMix R package provides an efficient C++
implementation of the afore-mentioned procedure.
Lastly, methods that lie in between the two approaches have also been developed in the lit-
erature. Such hybrid methods usually involve feature selection based on some measure of
separability between groups, like the one introduced by Indahl and Næs, 2004, specifically tai-
lored for spectroscopic data, and the one proposed by Andrews and McNicholas, 2014. Further,
a series of techniques based on metaheuristic strategies for variable selection in discriminant
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analysis can be found in Pacheco et al., 2006, while the method of Chiang and Pell, 2004 re-
lies on a stochastic search based on genetic algorithms. In general, even though being more
complex and computationally intensive, wrapper approaches provide better classification re-
sults and more accurate representation of the data generating process (Kohavi and John, 1997).
For this reason, the present manuscript will focus on wrapper approaches: the novel methods
introduced in Chapter 4 fall within this category.

1.5 Outline and main contributions

The present Chapter has reviewed the main methodological notions and concepts that will be
adopted and developed in the remaining part of the monograph. As previously mentioned, in
this thesis we investigate and propose novel solutions for dealing with adulteration in model-
based classification. That is, when the learning framework is affected by real-data complexities,
being them outliers, uncertain labels, unobserved classes and irrelevant variables. Particularly,
Chapter 2 deals with scenarios in which the learning data are affected by the joint harmful
effect of label noise and outliers. In Chapter 3 we introduce a novel methodology for anomaly
and novelty detection, that extends the method developed in Chapter 2 accounting for the
possible presence of hidden classes in the test set not previously encountered in the training
set. Chapter 4 tackles the problem of robust high-dimensional supervised learning, where not
only observations are possibly affected by attribute and class noise but also a subset of the
recorded features is irrelevant to the classification task.
In details, Chapter 2 proposes a robust modification to a family of semi-supervised patterned
models, for performing classification in presence of both class and attribute noise. We show that
our methodology effectively addresses the issues generated by these two noise types, by iden-
tifying wrongly labeled units (noise in the response variable) and corrupted attributes in units
(noise in the explanatory variables). Robust parameter estimates can therefore be obtained by
excluding the noisy observations from the estimation procedure, both in the training set, and
in the test set. Our proposal is based on incorporating impartial trimming and eigenvalue-ratio
constraints in previous semi-supervised methods. We adapt the trimming procedure to the two
different frameworks, i.e., for the labeled units and the unlabeled ones. After completing the
robust estimation process, trimmed observations can be classified as well, by the usual Bayes
rule. This final step allows the researcher to detect whether one observation is indeed extreme
in terms of its attributes or it has been wrongly assigned to a different class. Such feature seems
particularly desirable in food authenticity applications, where, due to imprecise readings and
fraudulent units, it is likely to have label noise also within the labeled set. Some simulations,
and a study on real data from pure and adulterated Honey samples, show the effectiveness of
our proposal.
Chapter 3 proposes a model-based discriminant analysis method for anomaly and novelty de-
tection. We show that the methodology effectively performs classification in presence of label
noise, outliers and unobserved classes in the test set. By incorporating impartial trimming and
eigenvalue-ratio constraints, our proposal robustly estimates model parameters of known and
hidden classes, identifying as a by-product wrongly labeled and/or adulterated observations.
Considering a parsimonious family of patterned models, two flexible EM-based approaches
are proposed for parameter estimation: one based on the union of training and test sets, and
the other made of two phases, performing sequential inference for known and hidden groups.
Furthermore, we let the latter approach exploit the partial order structure of the parsimonious
models, deriving fast and closed-form solutions for estimating the parameters of the extra
classes. The resulting methodology includes several model-based classification methods as
special cases. A robust data-driven criterion is adapted for selecting the number of unobserved
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groups and constraint strength in covariances estimation. An extensive simulation study and
applications on a grapevine microbiome dataset prove the effectiveness of our proposal. Par-
ticularly, the classifier capability in discriminating (known and previously unobserved) grape
provenances, within an adulterated context, may foster promising developments in the food
authenticity domain.
Chapter 4 introduces two wrapper variable selection methods, resistant to outliers and label
noise. We show that by means of these approaches we can effectively perform high-dimensional
discrimination in an adulterated scenario. The first wrapper method embeds a robust model-
based classifier within a greedy-forward algorithm, validating stepwise inclusion and exclu-
sion of variables from the relevant subset via a robust information criterion. Theoretical justi-
fication that corroborates the procedure is also discussed. The second wrapper method resorts
to the theory of maximum likelihood and irrelevance, defining an objective function in which
the subset of relevant variables is regarded as a parameter to be estimated. A dedicated al-
gorithm for Maximum Likelihood Estimation within a Gaussian family of patterned models
is developed, and practical implementation issues are considered. Further, pros and cons of
the two novel procedures are discussed. A simulation study is developed for assessing the
effectiveness of our proposals in recovering the true discriminative features in a contaminated
scenario, comparing their performances against well-known variable selection criteria. The
novel methods are then successfully applied in solving a high-dimensional classification prob-
lem of contaminated spectroscopic data. High discriminating power is exhibited by the final
models, whence the identification of the wrongly labeled and/or adulterated observations is
derived as a by-product of the estimation procedures.
Chapter 5 concludes the manuscript, summarizing the main contributions and emphasizing
future research developments.
The last part of the thesis includes a somewhat less related topic: the employment of robust
mixture of factor analyzers in a clustering context for detecting wine adulteration. Given that
this piece of work has been produced during the early stage of the PhD program, we decided
to include it in Appendix A. The remaining appendices supplement the main chapters with
additional material related to computational and theoretical aspects. Appendix B provides
the listings for the main R routines developed in the thesis, while Appendix C reports some
details related to the computing time required by such novel methods. Lastly, in Appendix D
we present a discussion and some initial attempts to justify the usage of trimmed information
criteria in the context of robust model selection.
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Chapter 2

Robust model-based classification for
attribute and class noise

Based on:

Cappozzo, A., Greselin, F., Murphy, T. B.
“A robust approach to model-based classification based on trimming and constraints”
Advances in Data Analysis and Classification (2019)
https://doi.org/10.1007/s11634-019-00371-w

2.1 Introduction

In statistical learning, we define classification as the task of assigning group memberships to a
set of unlabelled observations. Whenever a labelled sample (i.e., the training set) is available,
the information contained in such dataset is exploited to classify the remaining unlabelled ob-
servations (i.e., the test set), either in a supervised or in a semi-supervised manner, depending
whether the information contained in the test set is included in building the classifier (e.g. Mc-
Nicholas, 2016). Either way, the presence of unreliable data points can be detrimental for the
classification process, especially if the training size is small (Zhu and Wu, 2004).
Broadly speaking, noise is anything that obscures the relationship between the attributes and
the class membership (Hickey, 1996). In a classification context, Wu, 1995 distinguishes be-
tween two types of noise: attribute noise and class noise. The former is related to contami-
nation in the exploratory variables, that is when observations present unusual values on their
predictors; whereas the latter refers to samples whose associated labels are wrong.
The approach presented in this chapter is based on a robust estimation of a Gaussian mix-
ture model with parsimonious structure, to account for both attribute and label noise. Our
conjecture is that the contaminated observations would be the least plausible units under the
robustly estimated model: the corrupted subsample will be revealed by detecting those obser-
vations with the lowest contributions to the associated likelihood. Impartial trimming (Gordal-
iza, 1991b; Gordaliza, 1991a; Cuesta-Albertos et al., 1997) is employed for robustifying the pa-
rameter estimates, being a well established technique to treat mild and gross outliers in the
clustering literature (García-Escudero et al., 2010b) and here used, for the first time, to addi-
tionally account for label noise in a classification framework. A semi-supervised approach is
developed, where information contained in both labelled and unlabelled samples is combined
for improving the classifier performance and for defining a data-driven method to identify
outlying observations possibly present in the test set.
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The rest of the Chapter is organized as follows. Section 2.2 introduces the robust updating
classification rules, covering the model formulation, inference aspects and model selection.
Simulation studies to compare the method introduced in Section 2.2 with other popular clas-
sification methods are reported in Section 2.3. Finally, in Section 2.4 our proposal is employed
in performing classification and adulteration detection in a food authenticity context, dealing
with contaminated samples of Irish honey. Concluding notes and further research directions
are outlined in Section 2.5. The proof of Proposition 1, details on the parameter values for sim-
ulation study II and efficient algorithms for enforcing the eigen-ratio constraint for different
patterned models are deferred respectively to appendices A, B and C (Sections 2.6, 2.7 and 2.8).

2.2 Robust Updating Classification Rules

We introduce here a robust modification to the updating classification rules described in Sec-
tion 1.2.2, with the final aim of developing a classifier whose performance is not affected by
contaminated data, either in the form of label noise and outlying observations.

2.2.1 Model formulation

The main idea of the proposed approach is to employ techniques originated in the branch of
robust statistics to obtain a model-based classifier in which parameters are robustly estimated
and outlying observations identified. We are interested in providing a method that jointly ac-
counts for noise on response and exploratory variables, where the former might be present in
the labelled set and the latter in both the labelled and unlabelled sets. We propose to modify
the log-likelihood in (1.14) with a trimmed mixture log-likelihood (Neykov et al., 2007) and to em-
ploy impartial trimming and constraints on the covariance matrices for achieving both robust
parameter estimation and identification of the unreliable sub-sample. Impartial trimming is
enforced by considering the distinct structure of the likelihoods associated to the labelled and
unlabelled sets, accounting for the possible label noise that might be present in the labelled
sample (see Section 2.2.2 for details). Following the same notation introduced in Section 1.2.1,
we aim at maximizing the trimmed observed data log-likelihood:

`trim(τ, µ, Σ|X, Y, l) =
N

∑
n=1

ζ(xn)
G

∑
g=1

lng log
[
τgφ(xn; µg, Σg)

]
+

+
M

∑
m=1

ϕ(ym) log

[
G

∑
g=1

τgφ(ym; µg, Σg)

] (2.1)

where ζ(·), ϕ(·) are 0-1 trimming indicator functions, that express whether observation xn and
ym are trimmed off or not. A fixed fraction αl and αu of observations, belonging to the la-
belled and unlabelled set respectively, is unassigned by setting ∑N

n=1 ζ(xn) = dN(1− αl)e and
∑M

m=1 ϕ(ym) = dM(1− αu)e. In particular, we will see in Section 2.2.2 that the less plausible
samples under the currently estimated model are tentatively trimmed out at each step of the
iterations that leads to the final estimate. The labelled trimming level αl and the unlabelled trim-
ming level αu account for possible adulteration in both sets. At the end of the iterations, a value
of ζ(xn) = 0 or ϕ(ym) = 0 corresponds to identify xn or ym, respectively, as unreliable obser-
vations. Notice that impartial trimming automatically deals with both class noise and attribute
noise, as observations that suffer from either noise structure will give low contribution to the
associated likelihood.
Maximization of (2.1) is carried out via the EM algorithm, in which an appropriate Concentra-
tion Step (Rousseeuw and Driessen, 1999) is performed in both labelled and unlabelled sets at
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TABLE 2.1: Nomenclature, covariance structure and number of free parameters
in Σ1, . . . , ΣG: γ denotes the number of parameters related to the orthogonal rota-
tion and δ the number of parameters related to the eigenvalues. The last column

indicates whether the eigenvalue-ratio (ER) constraint is required.

Model Σg γ δ ER

EII λI - 1 Not required
VII λg I - G Required
EEI λA - p Not required
VEI λg A - G + p− 1 Required
EVI λAg - Gp− (G− 1) Required
VVI λg Ag - Gp Required
EEE λDAD

′
p(p− 1)/2 p Not required

VEE λgDAD
′

p(p− 1)/2 G + p− 1 Required
EVE λDAgD

′
p(p− 1)/2 Gp− (G− 1) Required

EEV λDg AD
′
g Gp(p− 1)/2 p Not required

VVE λgDAgD
′

p(p− 1)/2 Gp Required
VEV λgDg AD

′
g Gp(p− 1)/2 G + p− 1 Required

EVV λDg AgD
′
g Gp(p− 1)/2 Gp− (G− 1) Required

VVV λgDg AgD
′
g Gp(p− 1)/2 Gp Required

each iteration to enforce the impartial trimming. In addition, we protect the parameter esti-
mation from spurious solutions, that may arise whenever one component of the mixture fits a
random pattern in the data, considering the eigenvalues-ratio restriction introduced in Section
1.3.2. Notice that, when the family of patterned models detailed in Section 1.2.1 is consid-
ered, the constraint in (1.20) is still needed whenever either the shape or the volume is free to
vary across components (García-Escudero et al., 2018b). That is for all models in Table 2.1 that
present “Required” entry in the ER column. The considered approach is the (semi)-supervised
version of the methodology proposed in Dotto and Farcomeni, 2019, which is framed in a com-
pletely unsupervised scenario. Feasible and computationally efficient algorithms for enforcing
the eigen-ratio constraint for different patterned models are reported in the Appendix C (Sec-
tion 2.8).

2.2.2 Estimation procedure

The EM algorithm for obtaining Maximum Trimmed Likelihood Estimates of the robust updat-
ing classification rules involves the following steps:

• Robust Initialization: Set k = 0. Employing only the labelled data, we obtain robust start-
ing values for the mean vector µg and covariance matrix Σg of the multivariate normal
density for each group g, g = 1, . . . , G, by means of the following procedure:

1. For each class g, draw a random (p + 1)-subset Jg and compute its empirical mean

µ̂
(0)
g and variance covariance matrix Σ̂

(0)
g according to the considered parsimonious

structure. This procedure yields better initial subsets than drawing random dN(1−
αl)e-subsets directly, because the probability of drawing an outlier-free (p+ 1)-subset
is much higher than that of drawing an outlier-free dN(1− αl)e-subset (Hubert et al.,
2018).
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2. Set

θ̂ = {τ̂1, . . . , τ̂G, µ̂1, . . . , µ̂G, Σ̂1, . . . , Σ̂G} =
= {τ̂(0)

1 , . . . , τ̂
(0)
G , µ̂

(0)
1 , . . . , µ̂

(0)
G , Σ̂

(0)
1 , . . . , Σ̂

(0)
G }

where τ̂
(0)
1 = . . . = τ̂

(0)
G = 1/G.

3. For each xn, n = 1, . . . , N, compute the conditional density

f (xn|lng = 1; θ̂) = φ
(

xn; µ̂g, Σ̂g

)
g = 1, . . . , G. (2.2)

bNαlc% of the samples with lowest value of (2.2) are temporarily discarded as pos-
sible outliers, namely label noise and/or attribute noise. That is, ζ(xn) = 0 for such
observations.

4. The parameter estimates are updated, based on the non-discarded observations:

τ̂g =
∑N

n=1 ζ(xn)lng

dN(1− αl)e
g = 1, . . . , G (2.3)

µ̂g =
∑N

n=1 ζ(xn)lngxn

∑N
n=1 ζ(xn)lng

g = 1, . . . , G. (2.4)

Estimation of Σg depends on the considered patterned model, details are given in
Bensmail and Celeux, 1996.

5. Iterate 3 − 4 until the bNαlc discarded observations are exactly the same on two
consecutive iterations, then stop (usually, ≤ 3 iterations are required).

The procedure described in steps 1 − 5 is performed nsamp times, and the parameter
estimates θ̂

R that lead to the highest value of the objective function `trim(τ̂, µ̂, Σ̂|X, l) =

∑N
n=1 ζ(xn)∑G

g=1 lng log
[
τ̂gφ(xn; µ̂g, Σ̂g)

]
, out of nsamp repetitions, are retained. The afore-

described procedure stems from the ideas of the FastMCD algorithm of Rousseeuw and
Driessen, 1999, here adapted for dealing with parsimonious structures in the covariance
matrices. Retaining θ̂

R as final estimate leads to a fully supervised robust model-based
method, called REDDA hereafter (see Section 2.3.1). Then, if the selected patterned model
allows for heteroscedastic Σg and (1.20) is not satisfied, constrained maximization is en-
forced, see Appendix C (Section 2.8) for details.

• EM Iterations: denote by θ̂
(k)

= {τ̂(k)
1 , . . . , τ̂

(k)
G , µ̂

(k)
1 , . . . , µ̂

(k)
G , Σ̂

(k)
1 , . . . , Σ̂

(k)
G } the parameter

estimates at the k-th iteration of the algorithm.

– Step 1 - Concentration: The trimming procedure is implemented by discarding the
bNαlc observations xn with smaller values of

D
(

xn; θ̂
(k)
)
=

G

∏
g=1

[
φ
(

xn; µ̂(k)
g , Σ̂

(k)
g

)]lng
n = 1, . . . , N (2.5)

and discarding the bMαuc observations ym with smaller values of

D
(

ym; θ̂
(k)
)
=

G

∑
g=1

τ̂
(k)
g φ

(
ym; µ̂(k)

g , Σ̂
(k)
g

)
m = 1, . . . , M. (2.6)
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– Step 2 - Expectation: For each non-trimmed observation ym compute the posterior
probabilities

ẑ(k+1)
mg =

τ̂
(k)
g φ

(
ym; µ̂

(k)
g , Σ̂

(k)
g

)
D
(

ym; θ̂
(k)
) g = 1, . . . , G; m = 1, . . . , M. (2.7)

– Step 3 - Constrained Maximization: The parameter estimates are updated, based on
the non-discarded observations and the current estimates for the unknown labels:

τ̂
(k+1)
g =

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg

dN(1− αl)e+ dM(1− αu)e
g = 1, . . . , G (2.8)

µ̂(k+1)
g =

∑N
n=1 ζ(xn)lngxn + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg ym

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg

g = 1, . . . , G. (2.9)

Estimation of Σg depends on the considered patterned model and on the eigenvalues-
ratio constraint. Details are given in Bensmail and Celeux, 1996 and, if (1.20) is not
satisfied, in Appendix C (Section 2.8).

– Step 4 - Convergence of the EM algorithm: Check for algorithm convergence (see Sec-
tion 2.2.3). If convergence has not been reached, set k = k + 1 and repeat steps 1-4.

Notice how the trimming step differs between the labelled and unlabelled observations. We
implicitly assume that a label in the training set conveys a sound meaning about the pres-
ence of a class of objects. Therefore, in the labelled set, we opted for trimming the samples

with lowest conditional density f (xn|lng = 1; θ̂
(k)
) = φ

(
xn; µ̂

(k)
g , Σ̂

(k)
g

)
. The alternative choice

of considering the joint density f (xn, lng; θ̂
(k)
) = ∏G

g=1

[
τgφ(xn; µg, Σg)

]lng
is instead prone to

completely trim off groups with small prior probability τg for large enough value of αl , and
should be discarded. Note that with (2.5) we are both discriminating label noise (i.e., observa-
tions that are likely to belong to the mixture model but whose associated label is wrong) and
outliers. In the unlabelled set, on the other hand, trimming is based on the marginal density

f (ym; θ̂
(k)
) = ∑G

g=1 τ̂
(k)
g φ

(
ym; µ̂

(k)
g , Σ̂

(k)
g

)
, having no prior information on the group member-

ship of the samples.
Once convergence is reached, the estimated values ẑmg provide a classification for the unla-
belled observations ym, assigning observation m to group g if ẑmg > ẑmg′ for all g

′ 6= g. Final
values of ζ(xn) = 0, and ϕ(ym) = 0, classify xn and ym respectively, as outlying observations.
The routines for the robust updating classification rules have been written in R language (R
Core Team, 2018): the source code is available at https://github.com/AndreaCappozzo/rupclass.
The estimation procedure detailed in this Section implies the monotonicity of the algorithm, ac-
cording to:

Proposition 1: If the values ζ(xn), ϕ(ym), n = 1, . . . , N, m = 1, . . . , M are kept fixed, the EM

algorithm described in Section 2.2.2 implies `trim(θ̂
(k+1)|X, Y, l) ≥ `trim(θ̂

(k)|X, Y, l) at any k.

The proof is reported in Appendix A (Section 2.6). Furthermore, our estimation procedure
reduces possible incorrect modes of the optimization function (spurious maximizers) and of-
fers a constructive way to obtain a maximizer θ̂n for the sample problem, that converges to
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FIGURE 2.1: Simulated data considering the simulation setup described in Sec-
tion 2.3.1, varying contamination rate η

the global maximizer for the population, see García-Escudero et al., 2008 and García-Escudero
et al., 2015.

2.2.3 Convergence criterion

We assess whether the EM algorithm has reached convergence evaluating at each iteration
how close the trimmed log-likelihood is to its estimated asymptotic value, using the Aitken
acceleration (Aitken, 1926):

a(k) =
`
(k+1)
trim − `

(k)
trim

`
(k)
trim − `

(k−1)
trim

(2.10)

where `
(k)
trim is the trimmed observed data log-likelihood from iteration k. The asymptotic esti-

mate of the trimmed log-likelihood at iteration k is given by (Böhning et al., 1994):

`
(k)
∞trim = `

(k)
trim +

1
1− a(k)

(
`
(k+1)
trim − `

(k)
trim

)
. (2.11)

The EM algorithm is considered to have converged when |`(k)∞trim − `
(k)
trim| < ε; a value of ε = 10−5

has been chosen for the experiments reported in the next Sessions.

2.2.4 Model selection

A robust likelihood-based criterion is employed for choosing the best model among the 14
patterned covariance structures listed in Table 2.1 and a reasonable value for the constraint c in
(1.20):

TBIC = 2`trim(τ̂, µ̂, Σ̂)− vc
XXX log (dN(1− αl)e+ dM(1− αu)e) (2.12)

where `trim(τ̂, µ̂, Σ̂) denotes the maximized trimmed observed data log-likelihood and vc
XXX a

penalty term whose definition is:

vc
XXX = Gp + G− 1 + γ + (δ− 1)

(
1− 1

c

)
+ 1. (2.13)
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FIGURE 2.2: Average misclassification errors on B = 1000 runs for different clas-
sification methods, increasing contamination rate.

That is, vc
XXX depends on the total number of parameters to be estimated: γ and δ for every

XXX patterned model are given in Table 2.1. It also accounts for the trimming levels and for
the eigen-ratio constraint c, according to Cerioli et al., 2018a. Note that, when c → +∞ and
αl = αu = 0, (2.12) is the Bayesian Information Criterion (Schwarz, 1978). A general discussion
on the rationale behind the usage of trimmed information criteria and future research directions
for their theoretical development is reported in Appendix D.

2.3 Simulation studies

In this Section, we present two simulated data experiments: Simulation Study I compares the
performances of several model-based classification methods in a low dimensional setting when
dealing with noisy data at different contamination rates; Simulation Study II considers a higher
dimensional scenario in which the accuracy performance of some popular classification meth-
ods is assessed, at a fixed contamination rate. In both scenarios we consider a joint noise struc-
ture on response and exploratory variables.

2.3.1 Simulation study I

Experimental setup

We consider a data generating process given by a mixture of G = 3 components of bivariate
normal distributions, according to the following parameters:

τ = (0.3, 0.2, 0.5)′, µ1 = (0, 0)′, µ2 = (4,−4)′, µ3 = (0, 8)′

Σ1 =

[
1 0.3

0.3 1

]
Σ2 =

[
1 −0.3
−0.3 1

]
Σ3 =

[
6.71 2.09
2.09 6.71

]
.

600 observations were generated from the model, randomly assigning N = 200 to the labelled
set and M = 400 to the unlabelled set. The labelled set was subsequently adulterated with
contamination rate η (ranging from 0 to 0.25), wrongly assigning dη/2Ne of the third group
units to the first class and adding dη/2Ne randomly labelled points generated from a Uniform
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TABLE 2.2: Average misclassification errors on B = 1000 runs, varying method
and contamination rate η. Standard errors are reported in parenthesis.

η 0 0.05 0.10 0.15 0.20 0.25

EDDA 0.009 0.031 0.053 0.079 0.099 0.112
(0.005) (0.026) (0.043) (0.051) (0.054) (0.05)

UPCLASS 0.008 0.041 0.091 0.142 0.166 0.186
(0.004) (0.056) (0.088) (0.088) (0.08) (0.067)

RMDA 0.009 0.045 0.049 0.052 0.07 0.08
(0.005) (0.072) (0.063) (0.057) (0.068) (0.073)

RLDA 0.027 0.027 0.026 0.026 0.026 0.067
(0.009) (0.009) (0.009) (0.008) (0.009) (0.037)

REDDA 0.01 0.01 0.01 0.009 0.024 0.042
(0.005) (0.005) (0.005) (0.005) (0.014) (0.014)

RUPCLASS 0.01 0.009 0.009 0.008 0.019 0.044
(0.005) (0.005) (0.005) (0.005) (0.013) (0.014)

distribution on the square with vertices [(−20,−20), (−20, 20), (20,−20), (20, 20)]. The con-
tamination is therefore twofold, involving jointly label switching and outliers for a total of ηN
adulterated labelled units. Examples of labelled datasets with different contamination rates are
reported in Figure 2.1. Performances of 6 model-based classification methods are considered:

• EDDA: Eigenvalue Decomposition Discriminant Analysis (Bensmail and Celeux, 1996)

• UPCLASS: Updating Classification Rules (Dean et al., 2006)

• RMDA: Robust Mixture Discriminant Analysis (Bouveyron and Girard, 2009)

• RLDA: Robust Linear Discriminant Analysis (Hawkins and McLachlan, 1997)

• REDDA: Robust Eigenvalue Decomposition Discriminant Analysis. This is the super-
vised version of the model described in Section 2.2, where only the labelled observations
are used for parameters estimation obtained via the robust initialization detailed in Sec-
tion 2.2.2.

• RUPCLASS: Robust Updating Classification Rules. The semi-supervised method de-
scribed in Section 2.2.

To make a fair performance comparison, a level of αl = 0.15 (REDDA and RUPCLASS) and
αu = 0.05 (RUPCLASS) have been kept fixed throughout the simulation study. Nevertheless,
exploratory tools such as Density-Based Silhouette plot (Menardi, 2011) and heuristic proce-
dures as the ones introduced in García-Escudero et al., 2011 and García-Escudero et al., 2018c
could be employed to validate and assess the choice of αl and αu. In particular, notice that
the quantities D

(
xn; θ̂

)
and D

(
ym; θ̂

)
measure the evidence of the belonging of xn and ym to

the training and test model terms, respectively. We can therefore make use of their ordered
distribution to provide reasonable values for the labeled and unlabeled trimming levels, along
the lines of García-Escudero et al., 2018c. An explicative example of how this heuristic works
for the training set is provided in Figure 2.4, considering a realization of the afore-described
data generating process with contamination level η equal to 0.15. In the left column of Fig-
ure 2.4 the points { n

N , D(n)(xn; θ̂)}, where D(n)
(
xn; θ̂

)
identifies the non-decreasing sequence of

D
(
xn; θ̂

)
, have been plotted for REDDA models estimated with increasing labeled trimming
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estimated change point ê = 0.14.

levels αl ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}. Ideally, the appropriate choice of αl is recognized by
identifying the plot in which an elbow arises in the proximity of the considered trimming level,
that is, a value αl such that D(n)

(
xn; θ̂

)
is steep for n/N < αl and the slope of the curve de-

creases for n/N > αl . We see that, in this example, such heuristic favors the correct solution
αl = 0.15, highlighted also by the associated partition depicted in the right column of Figure
2.4: both outliers and label noise originally present in the learning set are identified and cor-
rectly disposed of via impartial trimming. Alternatively, as already performed in Neykov et al.,
2007 in the context of robust mixtures, a two-phase regression of the TBIC values against the
trimming percentages may be employed to detect a change-point in the resulting pattern. In
details, the considered regression equation reads:

TBIC = β0 + β1(αl − e)+ + γαl (2.14)

where e is the threshold parameter and (αl − e)+ denotes the hinge function, which equals
αl − e when αl > e and 0 otherwise. The segmented threshold model in (2.14) is fitted via the
chngpt R package (Fong et al., 2017), returning estimates β̂0 = −2781.467, β̂1 = −4464.528 and
γ̂ = 7239.799. The change point is estimated to be at ê = 0.14 (see Figure 2.3), adjacent to the
true contamination level η equal to 0.15. With respect to the standard mixture framework, a
change-point detection approach could even be more appropriate in our classification context,
as the true number of classes is known a priori and need not be sought, simplifying the tuning
of the trimming levels. The very same rationales may be similarly applied to the test units for
setting a reasonable value for the unlabeled trimming parameter αu. Furthermore, one could
also monitor, varying αu, the stability of the group partition in the test set to identify possible
changes due to the unexpected inclusion of outliers in the estimation procedure, along the
lines of Cerioli et al., 2018a. A more automatic approach based on an iterative re-weighting
procedure to estimate the percentage of contamination, like the one introduced in Dotto et al.,
2018, could also be adapted to our framework. This, however, goes beyond the scope of the
present manuscript, it will nonetheless be addressed in the future. A value of c = 20 was
selected for the eigenvalue-ratio restriction in (1.20). Simulation study results are presented in
the following subsections.
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FIGURE 2.4: Considering the D
(
xn; θ̂

)
in non-decreasing order, giving raise to the

ordered sequence D(n)
(
xn; θ̂

)
, points { n

N , D(n)(xn; θ̂)} are plotted (left column);
the resulting trimming assignment (right column) with reference to the REDDA
model, varying labeled trimming level αl . Employed trimming levels are high-
lighted by vertical lines (left column), trimmed observations are denoted by “×”

(right column).
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FIGURE 2.5: Box plots of the simulated estimation errors for the parameters of
the mixture, computed via Euclidean norms for the proportion vector τ, the mean
vectors µg and covariance matrices Σg, g = 1, . . . , 3 for the different models, vary-

ing contamination rate η from 0 to 0.25.
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Classification performance

Average misclassification errors for the different methods and for varying contamination rates
are reported in Table 2.2 and in Figure 2.2. The error rate is computed on the unlabelled dataset
and averaged over the B = 1000 simulations. As expected, the misclassification error is fairly
equal to all methods when there is no contamination rate, with the only exception being RLDA:
this is due to the implicit model assumption that Σ1 = Σ2 = Σ3, which is not the case in our sim-
ulated scenario. As the contamination rate increases, so does the error rate for the non-robust
methods (EDDA and UPCLASS), whereas for RLDA and RMDA it has a lower increment rate.
Nevertheless, such methods fail to jointly cope with both sources of adulteration, namely class
and attribute noise. Our proposals REDDA and RUPCLASS, thanks to the trimming step en-
forced in the estimation process, have always higher correct classification rates, on average, at
any adulteration level. Notice that, to compare results of robust and non-robust methods, also
the trimmed observations were classified a-posteriori according to the Bayes rule, assigning
them to the component g having greater value of τ̂gφ(ym; µ̂g, Σ̂g).
On average, the robust semi-supervised approach performs better than the supervised counter-
part, due to the information incorporated from genuine unlabelled data in the estimation pro-
cess. Interestingly, the same behavior is not reflected in the non-robust counterparts, where the
detrimental effect of contaminated labelled units magnifies the bias of the UPCLASS method.
Therefore, robust solutions are even more paramount when a semi-supervised approach is con-
sidered.

Parameter estimation

Figure 2.5 reports the box plots of the simulated estimation error over B = 1000 Monte Carlo
repetitions for the parameters of the mixture model, computing Euclidean norms for the pro-
portion vector τ, the mean vectors µg and covariance matrices Σg, g = 1, . . . , 3. The estimated
values for the mixing proportions are mildly affected when increasing contamination is con-
sidered; conversely, the estimation of µ2 is on average heavily influenced by the adulterating
process, and also the robust methods fail to estimate it correctly as soon as the contamination
rate η is larger than the trimming level αl = 0.15. Clearly, the estimation of the covariance
matrices is as well badly affected in most extreme scenarios, where their entries are inflated in
order to accommodate more and more bad points. Our robust proposals are less affected by
the harmful effect of adding anomalous observations, also in the most adulterated scenario.

2.3.2 Simulation study II

Experimental Setup

We consider here a simulating model with a larger number of features (p = 10), where the data
generating process is given by a mixture of G = 4 components of a multivariate t-distribution
with ν = 6 degrees of freedom. More details on the parameter values are contained in Ap-
pendix B (Section 2.7). 1000 observations were generated from the model, randomly assign-
ing N = 250 to the labelled set and M = 750 to the unlabelled set. The training set was
subsequently adulterated wrongly labelling 10 units and adding 15 randomly labelled outly-
ing points, uniformly generated in the p-dimensional hypercube over [10, 15]10. We therefore
consider a scenario in which 10% of the learning units are contaminated, via both label and
attribute noise.
Together with the model-based methods previously described in Section 2.3.1, we included in
the performance evaluation widely used classification techniques that, even though not engi-
neered to achieve robustness, are noise tolerant. Particularly, the ensemble learner AdaBoost
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FIGURE 2.6: Box plots of the misclassification errors under B = 1000 repetitions
of the simulating experiment II. Error rate is computed on the M = 750 data

points of the test set for different classification methods.

(Freund and Schapire, 1997) and the kernel method Support Vector Machine (Cortes and Vap-
nik, 1995) were added to the comparison. Furthermore, the robust adaptation of the SIMCA
method for high-dimensional classification (Vanden Branden and Hubert, 2005) was also con-
sidered. The classification performance of the afore-described techniques are tested against
the proposed methodologies, under different combinations of (c, αl , αu): accuracy results are
reported in the next Section.

Classification Performance

Boxplots of the misclassification errors for the considered methods are reported in Figure 2.6.
The error rate is computed on the M = 750 units of the test set, under B = 1000 repetitions
of the generating process and subsequent adulteration scheme described in Section 2.3.2. As
it was already apparent from the previous simulation study, accuracy for non-robust methods
is badly affected by the contamination present in the learning set. Even though not specifi-
cally designed for dealing with adulterated datasets, SVM and AdaBoost perform better than
the non-robust model-based approaches, thanks to their non-parametric nature and flexibil-
ity. As expected, the best classification accuracy are obtained by the robust methodologies,
namely RLDA and our proposals REDDA and RUPCLASS. We also check the sensitivity of
our techniques comparing different combinations of (c, αl , αu). As it is easily visible in the
boxplots, setting a smaller than needed labelled trimming level αl leads to a loss in prediction
accuracy, as a portion of adulterated units still affects the learning phase. Once the corrupted
observations are correctly trimmed (i.e., αl is set ≥ 0.1), accuracy seems to remain stable with
little influence induced by the choice of c and αu, with only a slight preference for the semi-
supervised RUPCLASS over its supervised version REDDA. This shows that setting a higher
value of αl is less detrimental than underestimating it, and that the impartial trimming almost
exactly identifies the corrupted units when αl = 0.1, that is the true adulteration proportion.
The bad performance of RSIMCA is only due to the simulating process: given the fact that
data truly lie on a 10-dimensional space, performing (robust) dimensional reduction prior to
classification evidently leads to a concealment in the grouping structure.
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FIGURE 2.7: Midinfrared spectra for pure and contaminated honey, Irish Honey
data.

The proposed methodologies were shown to be capable of dealing with data whose distribution
is not exactly Gaussian, but where an effective robust decision rule can be built employing
Gaussian mixture models.

2.4 Application to Midinfrared Spectroscopy of Irish Honey

The semi-supervised method introduced in Section 2.2 is employed in performing adulteration
detection and classification in a food authenticity context: we consider the task of discriminat-
ing between pure and adulterated Irish Honey, where the training set itself contains unreliable
samples.

2.4.1 Honey samples

Honey is defined as “the natural sweet substance, produced by honeybees from the nectar of
plants or from secretions of living parts of plants, or excretions of plant-sucking insects on the
living parts of plants, which the bees collect, transform by combining with specific substances
of their own, deposit, dehydrate, store and leave in honeycombs to ripen and mature” (Ali-
mentarius, 2001). Being a relatively expensive commodity to produce and extremely variable
in nature, honey is prone to adulteration for economic gain: in 2015 the European Commis-
sion organized an EU coordinated control plan to assess the prevalence on the market of honey
adulterated with sugars and honeys mislabelled with regard to their botanical source or geo-
graphical origin. It is therefore of prime interest to employ robust analytical methods to protect
food quality and uncover its illegal adulteration.
We consider here a dataset of midinfrared spectroscopic measurements of 530 Irish honey sam-
ples. Midinfrared spectroscopy is a fast, non-invasive method for examining substances that
does not require any sample preparation, it is therefore an effective procedure for collecting
data to be subsequently used in food authenticity studies (Downey, 1996). The spectra mea-
surements lie in the wavelength range of 3700 nm and 13600 nm, recorded at intervals of 35 nm,
with a total of 285 absorbance values. The dataset contains 290 Pure Honey observations, while
the rest of the samples are honey diluted with adulterant solutions: 120 with Dextrose Syrup
and 120 with Beet Sucrose, respectively. Kelly et al., 2006 gives a thorough explanation of the
adulteration process. The aim of the study is to discriminate pure honey from the adulterated
samples, when varying sample size of the labelled set whilst including a percentage of wrongly
labelled units. Such a scenario is plausible to be encountered in real situations, since in a con-
text in which the final purpose is to detect potential adulterated samples it may happen that the
learning data is itself not fully reliable. An example of the data structure is reported in Figure
2.7.
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2.4.2 Robust dimensional reduction

Prior to perform classification and adulteration detection, a preprocessing step is needed due
to the high-dimensional nature of the considered dataset (p = 285 variables). To do so, we
robustly estimate a factor analysis model, retaining a set d of factors, d� p, to be subsequently
employed with the Robust Updating Classification Rules. Formally, for each Honey sample xi,
we postulate a factor model of the form:

xi = µ + Λui + ei (2.15)

where µ is a p× 1 mean vector, Λ is a p× d matrix of factor loadings, ui are the unobserved
factors, assumed to be realizations of a d-variate standard normal and the errors ei are inde-
pendent realizations of N (0, Ψ), with Ψ a p× p diagonal matrix. In such a way, the observed
variables are assumed independent given the factors. For a general review on factor analysis,
see for example Chapter 9 in (Mardia et al., 1979). Parameters in (2.15) are estimated employing
a robust procedure based on trimming and constraints (García-Escudero et al., 2016), yielding
dimensionality reduction at the same time. Note that, in Appendix A, the very same method-
ology is employed for detecting adulterations in wine samples. Given the robustly estimated
parameters, the latent traits are computed using the regression method (Thomson, 1939):

ûi = Λ̂
′ (

Λ̂Λ̂
′
+ Ψ̂

)−1
(xi − x̄) (2.16)

The estimated factors scores ûi will be used for the classification task reported in the upcoming
Section. For the considered dataset, after a graphical exploration of Cattell’s scree plot for the
correlation matrix robustly estimated via MCD (Rousseeuw and Driessen, 1999), reported in
Figure 2.8, we deem sufficient to set the number d of latent factors equal to 10. Parameters
were estimated setting a trimming level α = 0.1 and cnoise = 1000.

2.4.3 Classification performance

SVM, AdaBoost and RSIMCA are designed to optimally perform in a high dimensional setting.
Therefore, to respect the specificity of each family of methodologies, we directly applied SVM,
AdaBoost and RSIMCA on the whole spectra. For EDDA, UPCLASS, RMDA, RLDA, REDDA
and RUPCLASS we preprocessed the data with the dimension reduction method described in
Section 2.4.2. To discriminate between pure and adulterated honey samples, we divided the
available data into a training (labelled) sample and a validation (unlabelled) sample. We inves-
tigated the effect of having different sample sizes in the labelled set, both in terms of classifi-
cation accuracy and adulteration detection. Particularly, 3 proportions have been considered:
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TABLE 2.3: Misclassification rates in the unlabelled set for different classification
methods. Average values for 50 random splits in training and validation (three

proportions are considered), standard deviations reported in parentheses.

Method EDDA UPCLASS RMDA RLDA SVM AdaBoost

50% Tr - 50% Te 0.033 0.065 0.291 0.1 0.025 0.036
(0.012) (0.049) (0.091) (0.02) (0.008) (0.011)

25% Tr - 75% Te 0.078 0.112 0.303 0.12 0.048 0.042
(0.025) (0.028) (0.08) (0.04) (0.021) (0.012)

10% Tr - 90% Te 0.24 0.126 0.375 0.157 0.109 0.058
(0.031) (0.023) (0.065) (0.08) (0.036) (0.021)

TABLE 2.4: Misclassification rates in the unlabelled set, % of wrongly labelled
samples correctly trimmed in the labelled set and % of those correctly trimmed
observations properly a-posteriori assigned to the Beet Sucrose group. Average
values for 50 random splits in training and validation (three proportions are con-

sidered), standard deviations reported in parentheses.

RSIMCA REDDA RUPCLASS

50% Tr - 50% Te Error Rate 0.069 0.05 0.029
(0.029) (0.013) (0.01)

% Correctly Trimmed 1 0.977 1
(0) (0.075) (0)

% Correctly Assigned 1 1 1
(0) (0) (0)

25% Tr - 75% Te Error Rate 0.075 0.053 0.032
(0.038) (0.034) (0.009)

% Correctly Trimmed 1 0.88 0.96
(0) (0.25) (0.145)

% Correctly Assigned 1 0.963 1
(0) (0.162) (0)

10% Tr - 90% Te Error Rate 0.111 0.121 0.053
(0.051) (0.039) (0.038)

% Correctly Trimmed 0.99 0.47 0.73
(0.071) (0.238) (0.381)

% Correctly Assigned 0.99 0.72 0.84
(0.019) (0.071) (0.37)

50% - 50% , 25% - 75% and 10% - 90% for splitting data into training and validation set, respec-
tively, within each group. For each split, 10% of the Beet Sucrose adulterated samples were
incorrectly labelled as Pure Honey in the training set, adding class noise in the discrimination
task. The trimming levels αl and αu were set equal to 0.12 and 0.05, respectively. Table 2.3 and
2.4 summarize the accuracy results employing different classification approaches under the
described scenarios. Careful investigation has been dedicated to measuring the ability of the
robust methodologies in correctly determining (i.e., trimming) the 10% of incorrectly labelled
samples, that is, units adulterated with Beet Sucrose and erroneously labelled as Pure Honey:
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such information, only relevant for RSIMCA, REDDA and RUPCLASS models, is reported in
Table 2.4. % Correctly Trimmed indicates the class noise percentage correctly detected by the
impartial trimming. For the recognized class noise, % Correctly Assigned indicates the per-
centage of units properly a-posteriori assigned to the Beet Sucrose group. RSIMCA performs
remarkably well in identifying the adulterated units, even though the classification accuracy is
lower than the one obtained employing RUPCLASS model. As expected, the semi-supervised
approach performs much better in terms of classification rate when the labelled sample size
is small. Comparing the error rate of the robust techniques with the other methods in Table
2.3 we notice how powerful classifiers like SVM and AdaBoost work well also in dealing with
adulterated datasets: SVM error rate in the 50% Tr - 50% Te is on average lower than the one ob-
tained with RUPCLASS. However, when the labelled sample size decreases a semi-supervised
approach is preferable: RUPCLASS reports the lowest error rate for both 25% Tr - 75% Te and
10% Tr - 90% Te scenarios. VEV and VVV models have been almost always chosen: model
selection was performed through the Robust criteria defined in Section 2.2.4.
Results in Table 2.4 show that the proposed methodology is effective not only for accurately
robustifying the parameter estimates, but also for efficiently detecting observations affected by
class noise, firstly by trimming and subsequently by correctly assigning them: a critical infor-
mation that cannot be obtained with standard classification methods like SVM and AdaBoost.

2.5 Concluding remarks

In this chapter we have proposed a robust modification to a family of semi-supervised pat-
terned models, for performing classification in presence of both class and attribute noise.
We have shown that our methodology effectively addresses the issues generated by these two
noise types, by identifying wrongly labelled units (noise in the response variable) and cor-
rupted attributes in units (noise in the explanatory variables). Robust parameter estimates can
therefore be obtained by excluding the noisy observations from the estimation procedure, both
in the training set, and in the test set. Our proposal has been based on incorporating impar-
tial trimming and eigenvalue-ratio constraints in previous semi-supervised methods. We have
adapted the trimming procedure to the two different frameworks, i.e., for the labelled units
and the unlabelled ones. After completing the robust estimation process, trimmed observa-
tions can be classified as well, by the usual Bayes rule. This final step allows the researcher
to detect whether one observation is indeed extreme in terms of its attributes or it has been
wrongly assigned to a different class. Such feature seems particularly desirable in food authen-
ticity applications, where, due to imprecise readings and fraudulent units, it is likely to have
label noise also within the labelled set. Some simulations, and a study on real data from pure
and adulterated Honey samples, have shown the effectiveness of our proposal.
As an open point for further research, an automatic procedure for selecting reasonable values
for the labelled and unlabelled trimming levels, along the lines of Dotto et al., 2018, is currently
under study.
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2.6 Appendix A

Proof of Proposition 1: Considering the random variable Zmg corresponding to zmg, the E-step
on the (k + 1)th iteration requires the calculation of the conditional expectation of Zmg given
ym:

E
θ̂
(k)(Zmg|ym) = P

(
Zmg = 1|ym; θ̂(k)

)
=

=
P
(

ym|Zmg = 1; θ̂(k)
)
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)
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j=1 P
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)
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Zmj = 1; θ̂(k)

) =

=
τ̂
(k)
g φ

(
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(k)
g , Σ̂

(k)
g

)
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j=1 τ̂
(k)
j φ

(
ym; µ̂

(k)
j , Σ̂

(k)
j

) =

= ẑ(k+1)
mg g = 1, . . . , G; m = 1, . . . , M.

(2.17)

Therefore, the Q function, to be maximized with respect to θ in the M-step, is given by

Q(θ; θ̂
(k)
) =

N

∑
n=1

ζ(xn)
G

∑
g=1

lng log
[
τgφ(xn; µg, Σg)

]
+

+
M

∑
m=1

ϕ(ym)
G

∑
g=1

ẑ(k+1)
mg log

[
τgφ(ym; µg, Σg)

]
.

(2.18)

The maximization of (2.18) according to the mixture proportion τg, ∑G
j=1 τj = 1 is solved con-

sidering the Lagrangian L(θ, κ):

L(θ, κ) = Q(θ; θ̂
(k)
)− κ

(
G

∑
j=1

τj − 1

)
(2.19)

with κ the Lagrangian coefficient. The partial derivative of (2.19) with respect to τg has the
form:

∂

∂τg
L(θ, κ) =

∑N
n=1 ζ(xn)lng

τg
+

∑M
m=1 ϕ(ym)ẑ

(k+1)
mg

τg
− κ (2.20)

and setting (2.20) equal to 0 for all g = 1, . . . , G we obtain:

N

∑
n=1

ζ(xn)lng +
M

∑
m=1

ϕ(ym)ẑ
(k+1)
mg − κτg = 0. (2.21)

Summing (2.21) over g, g = 1, . . . , G, provides the value of κ = dN(1− αl)e+ M(1− αu)e and
substituting it in the previous expression yields the ML estimate for τg:

τ̂
(k+1)
g =

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg

dN(1− αl)e+ dM(1− αu)e
g = 1, . . . , G. (2.22)
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The partial derivative of (2.18) with respect to the mean vector µg reads:

∂
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(2.23)

Equating (2.23) to 0 and rearranging terms provides the ML estimate of µg:

µ̂(k+1)
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Discarding quantities that do not depend on Σg, we can rewrite (2.18) as follows:
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where W X
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(k+1)
mg

[(
ym − µg

) (
ym − µg

)′]
.

Finally, considering the eigenvalue decomposition Σg = λgDg AgD
′
g, (2.25) simplifies to:
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p log λg

(
N

∑
n=1
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W X
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The partial derivative of (2.26) with respect to
(
λg, Ag, Dg

)
depends on the considered pat-

terned structure: for a thorough derivation the reader is referred to Bensmail and Celeux, 1996.
If (1.20) is not satisfied, the constraints are enforced as detailed in Appendix C (Section 2.8).
Lastly, notice that in performing the concentration step the optimal observations of both train-
ing and test sets are retained, i.e. the ones with the highest contribution to the objective func-
tion.
The afore-described procedure falls within the structure of a general EM algorithm, for which
the likelihood function does not decrease after an EM iteration, as shown in Dempster et al.,
1977 and reported in page 78 of McLachlan and Krishnan, 2008.

�

2.7 Appendix B

This appendix details the structure of the Simulation Study in Section 2.3.2. We consider a data
generating process given by a mixture of G = 4 components of multivariate t-distributions
(McLachlan and Peel, 1998; Peel and McLachlan, 2000), according to the following parameters:

τ = (0.2, 0.4, 0.1, 0.3)′, ν = 6,

µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′,

µ2 = (4,−4, 4,−4, 4,−4, 4,−4, 4,−4)′,

µ3 = (0, 0, 7, 7, 7, 3, 6, 8,−4,−4)′,

µ4 = (8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8)′,

Σ1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

Σ2 = diag(2, 2, 2, 2, 2, 2, 2, 2, 2, 2),
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FIGURE 2.9: Generalized pairs plot of the simulated data under the Simulation
Setup described in 2.3.2. Both label noise and outliers are present in the data

units.

Σ3 = Σ4 =



5.05 1.26 −0.35 −0.00 −1.04 −1.35 0.29 0.07 0.69 1.17
1.26 2.57 0.17 0.00 0.27 0.11 0.61 0.11 0.59 0.89
−0.35 0.17 6.74 −0.00 −0.26 −0.31 −0.01 0.00 0.08 0.14
−0.00 0.00 −0.00 5.47 −0.00 −0.00 0.00 0.00 0.00 0.00
−1.04 0.27 −0.26 −0.00 6.80 −0.76 −0.12 −0.01 0.09 0.21
−1.35 0.11 −0.31 −0.00 −0.76 7.75 −0.26 −0.04 −0.03 0.03
0.29 0.61 −0.01 0.00 −0.12 −0.26 4.76 0.06 0.38 0.60
0.07 0.11 0.00 0.00 −0.01 −0.04 0.06 4.18 0.07 0.11
0.69 0.59 0.08 0.00 0.09 −0.03 0.38 0.07 3.23 0.60
1.17 0.89 0.14 0.00 0.21 0.03 0.60 0.11 0.60 3.24


.

A generalized pairs plot of contaminated labelled units under the afore-described Simulation
Setup is reported in Figure 2.9.

2.8 Appendix C

This final Section presents feasible and computationally efficient algorithms for enforcing the
eigenvalue-ratio constraint according to the different patterned models in Table 2.1. At the
k−th iteration of the M-step, the goal is to update the estimates for the covariance matrices
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Σ̂
(k+1)
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where â(k+1)
lg indicates the diagonal entries of matrix Â(k+1)

g . Denote with Σ̂U
g = λ̂U

g D̂U
g ÂU

g D̂
′U
g

the estimates for the variance covariance matrices obtained following Bensmail and Celeux,
1996 without enforcing the eigenvalues-ratio restriction in (2.27). Lastly, denote with ∆̂

U
g =

λ̂U
g ÂU

g the matrix of eigenvalues for Σ̂
U
g , with diagonal entries d̂U

lg = λ̂U
g âU

lg, l = 1, . . . , p.

Constrained maximization for VII, VVI and VVV models

1. Compute ∆g applying the optimal truncation operator defined in Fritz et al., 2013 to
{

∆̂
U
1 , . . . , ∆̂

U
G

}
,

under condition (2.27)

2. Set λ̂
(k+1)
g = |∆g|1/p, Â(k+1)

g = 1
λ̂
(k+1)
g

∆g, D̂(k+1)
g = D̂U

g

Constrained maximization for VVE model

1. Compute ∆g applying the optimal truncation operator defined in Fritz et al., 2013 to
{

∆̂
U
1 , . . . , ∆̂

U
G

}
,

under condition (2.27)

2. Given ∆g, compute the common principal components D via, for example, a majorization-
minimization (MM) algorithm (Browne and McNicholas, 2014)

3. Set λ̂
(k+1)
g = |∆g|1/p, Â(k+1)

g = 1
λ̂
(k+1)
g

∆g, D̂(k+1)
g = D

Constrained maximization for EVI, EVV models

1. Compute ∆g applying the optimal truncation operator defined in Fritz et al., 2013 to
{

∆̂
U
1 , . . . , ∆̂

U
G

}
,

under condition (2.27)

2. Compute ∆?
g constraining ∆g such that ∆?

g = λ?A?
g. That is, constraining |∆?

g| to be equal
across groups (Maronna and Jacovkis, 1974; Gallegos, 2002). Details are given in Section
3.2 of Fritz et al., 2012

3. Iterate 1− 2 until (2.27) is satisfied

4. Set λ̂
(k+1)
g = λ?, Â(k+1)

g = A?
g, D̂(k+1)

g = D̂U
g

Constrained maximization for EVE model

1. Compute ∆g applying the optimal truncation operator defined in Fritz et al., 2013 to
{

∆̂
U
1 , . . . , ∆̂

U
G

}
,

under condition (2.27)

2. Compute ∆?
g constraining ∆g such that ∆?

g = λ?A?
g. Details are given in Section 3.2 of Fritz

et al., 2012

3. Iterate 1− 2 until (2.27) is satisfied
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4. Given A?
g, compute the common principal components D via, for example, a majorization-

minimization (MM) algorithm (Browne and McNicholas, 2014)

5. Set λ̂
(k+1)
g = λ?, Â(k+1)

g = A?
g, D̂(k+1)

g = D

Constrained maximization for VEI, VEV models

1. Set ∆g = ∆̂
U
g

2. Set λ?
g = λ̂U

g , g = 1, . . . , G

3. Compute ∆?
g applying the optimal truncation operator defined in Fritz et al., 2013 to {∆1, . . . , ∆G},

under condition (2.27)

4. Compute A? = ∑G
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)
6. Set ∆g = λ?
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7. Iterate 3− 6 until (2.27) is satisfied

8. Set λ̂
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g = A?, D̂(k+1)

g = D̂U
g

Constrained maximization for VEE model

1. Set Kg = Σ̂
U
g

2. Set λ?
g = λ̂U

g , g = 1, . . . , G

3. Compute K?
g applying the optimal truncation operator defined in Fritz et al., 2013 to {K1, . . . , KG},

under condition (2.27)

4. Compute C? = ∑G
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5. Compute λ?
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)
6. Set Kg = λ?

gC?

7. Iterate 3− 6 until (2.27) is satisfied

8. Considering the spectral decomposition for C? = D?A?D? ′ , set λ̂
(k+1)
g = λ?

g, Â(k+1)
g = A?,

D̂(k+1)
g = D?
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Chapter 3

Anomaly and Novelty detection for
robust semi-supervised learning

Based on:

Cappozzo, A., Greselin, F., Murphy, T. B.
“Anomaly and Novelty detection for robust semi-supervised learning”
Submitted

3.1 Introduction

The standard classification framework assumes that a set of outlier-free and correctly labeled
units are available for each and every group within the population of interest. Given these
strong assumptions, the labeled observations are employed to build a classification rule for
assigning unlabeled samples to one of the known groups. However, as seen in the previous
chapter, real-world training set may contain noise, that can adversely impact the classification
performances of induced classifiers. Two sources of anomalies may appear:

• label noise, that is wrongly labeled data, represented in the left panel of Figure 3.1;

• feature noise, whenever erroneous measurements are given to some units, as shown in
central panel of Figure 3.1.

Moreover, when new data are given to the classifier, extra classes, not observed earlier in the
training set, may appear (see right panel of Figure 3.1). Therefore, for a classification method
to succeed when the aforementioned assumptions are violated, both anomalies and novelties
need to be identified and categorized as such. Since neither anomaly nor novelty detection is
universally defined in the literature, we hereafter characterize their meaning in a classification
context.
Anomaly detection refers to the problem of finding patterns in data that do not conform to
expected behavior (Chandola et al., 2009). Particularly, in discriminant analysis, we identify
anomalies with both attribute and class noise as they were defined in Chapter 2.
As mentioned in Section 1.3.4, novelty detection is the identification of new or unknown data
or signal that a machine learning system is not aware of during training (Markou and Singh,
2003). Particularly, in a classification context, we indicate with novelty a group of observations
in the test set that displays a common pattern not previously encountered in the training set,
and can therefore be identified as a novel or hidden class. From a stochastic viewpoint, this
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FIGURE 3.1: Different classification scenarios in which the training set presents
label noise (left panel), outliers (central panel) and in which the test set contains

groups not previously encountered in the learning phase (right panel).

is equivalent to assuming that the probability distribution of the labels differs in the labelled
and unlabelled sets, as a result of an unknown sample rejection process. More generally, the
difference between the joint distribution of labels and input variables in the training and test
sets is denoted as “dataset shift” problem: for a thorough description of the topic, the interested
reader is referred to Quionero-Candela et al., 2009.
The ever-increasing complexity of real-world datasets motivates the development of methods
that bridges the advantages of both novelty and anomaly detection classifiers. For instance,
human supervision is required in bio-medical applications: this costly and difficult procedure
is prone to introduce label noise in the training set, while some less common or yet unknown
patterns might be left completely undiscovered. Another example comes from the food au-
thenticity domain: adulterated samples are nothing but wrongly-labeled units in the training
set, whilst new and unidentified adulterants and/or state-of-the-art adulteration procedures
are unobserved classes that need to be discovered. Also, in food science, the state-of-the-art
approach for determining food origin is to employ microbiome analysis as a discriminating
signature: a promising application for identifying wine provenance is reported in Section 3.4.
In the present chapter we introduce a joint anomaly and novelty detection model-based method
for performing classification in situations where class-memberships are unreliable for some
training units (label noise), a proportion of observations departs from the main structure of the
data (outliers) and new groups in the test set were not encountered earlier in the learning phase
(unobserved classes). Our proposal models the unobserved classes as arising from a mixture
of multivariate normal densities, whilst avoiding to impose any distributional assumption for
the noise component. In detail, we extend in three ways the original AMDA model briefly
summarized in Section 1.3.4. Firstly, we account for both attribute and class noise that can be
present in the samples employing impartial trimming. Secondly, we consider a more flexible
class of learners with the parsimonious parametrization based on the eigen-decomposition of
Banfield and Raftery, 1993 and Celeux and Govaert, 1995, described in Section 1.2.1. Thirdly,
we deal with a constrained parameter estimation to avoid convergence to degenerate solutions
and to protect the estimates from spurious local maximizers that are likely to arise when search-
ing for unobserved classes (see Section 3.2.6). Such extended model is denoted as Robust and
Adaptive Eigen Decomposition Discriminant Analysis (RAEDDA).
The rest of the chapter is organized as follows. In Section 3.2, we describe formulation, in-
ference aspects and selection criteria for the novel RAEDDA model. Experimental results for
evaluating the features of the proposed method are covered in Section 3.3. Section 3.4 presents



3.2. Robust and Adaptive EDDA 47

a real data application, involving the detection of grapes origin when only a subset of the sam-
pling sites are known in advance and learning units are not to be entirely trusted. Section 3.5
concludes the chapter with some remarks and directions for future research. Appendix A (Sec-
tion 3.6) reports closed-form solutions for the covariance estimation in the discovery phase,
within an inductive framework (see Section 3.2.3), for all 14 models of Celeux and Govaert,
1995.

3.2 Robust and Adaptive EDDA

3.2.1 Model formulation

In this Section we introduce a novel flexible procedure that serves the purpose of perform-
ing reliable supervised classification when dealing with label noise, outliers and unobserved
classes.
The model is based on the definition of trimmed log-likelihood (Neykov et al., 2007) under a
Gaussian mixture framework, employing impartial trimming and eigenvalue-ratio restrictions
for robust parameter estimation and identification of mislabeled and outlying observations,
as proposed in Chapter 2 of the present manuscript. Furthermore, as for the ADMA model
detailed in Section 1.3.4, we assume that only a subset of the whole set of classes was observed
in the training sample: hidden groups in the test data may be detected. Considering the same
notation introduced in Section 1.3.4 and given a sample of N training and M test data, we
construct a procedure for maximizing the trimmed observed data log-likelihood:

`trim(τ, µ, Σ|X, Y, l) =
N

∑
n=1

ζ(xn)
G

∑
g=1

lng log
(

τgφ(xn; µg, Σg)
)
+

+
M

∑
m=1

ϕ(ym) log

(
E

∑
g=1

τgφ(ym; µg, Σg)

) (3.1)

where φ(·; µg, Σg) represents the multivariate Gaussian density with mean vector µg and co-
variance matrix Σg; the functions ζ(·) and ϕ(·) are indicator functions that determine whether
each observation contributes or not to the trimmed likelihood, such that only ∑N

n=1 ζ(xn) =
dN(1− αl)e and ∑M

m=1 ϕ(ym) = dM(1− αu)e terms are not null in (3.1). The labeled trimming
level αl and the unlabeled trimming level identify the fixed fraction of observations, respectively
belonging to the training and test sets, that are tentatively assumed to be unreliable at each it-
eration during the maximization of (3.1), likewise what done in Chapter 2. Once the trimming
levels are specified, the proposed maximization process returns robustly estimated parameter
values (see Sections 3.2.2 and 3.2.3 for details). Finally notice that only G groups in (3.1), out of
the E ≥ G present in the population, were already captured within the labeled units, as in the
AMDA model.
To introduce flexibility and parsimony, we consider the eigen-decomposition for the covari-
ance matrices of Banfield and Raftery, 1993 and Celeux and Govaert, 1995 as detailed in Sec-
tion 1.2.1: since our proposal generalizes the original EDDA including robust estimation and
adaptive learning, the name Robust and Adaptive Eigenvalue Decomposition Discriminant
Analysis (RAEDDA) seems appropriate. Two alternative estimation procedures for maximiz-
ing (3.1) are proposed. The transductive approach (see Section 3.2.2) works on the joint union
of learning and test sets to estimate model parameters. The inductive approach (see Section
3.2.3), instead, consists of two distinctive phases: in the first one the training set is employed
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l Y

dM(1 − αu)e

X

Training Set

dN(1 − αl)e

Test Set

τ̂

µ̂1, . . . , µ̂G, µ̂G+1, . . . , µ̂E

Σ̂1, . . . , Σ̂G, Σ̂G+1, . . . , Σ̂E

FIGURE 3.2: General framework of the robust transductive estimation approach:
dN(1− αl)e observations in the training and dM(1− αu)e observations in the test
are jointly employed in estimating parameters for the known and hidden classes.

for estimating parameters of the G known groups; in the second phase the unlabeled observa-
tions are assigned to the known groups whilst searching for new classes and estimating their
parameters. Computational aspects for both procedures are detailed in the next Sections.

3.2.2 Estimation procedure: transductive approach

Transductive inference considers the joint exploitation of training and test sets to solve a spe-
cific learning problem (Vapnik, 2000; Kasabov and Shaoning Pang, 2003). Transductive rea-
soning is applied for instance in semi-supervised classification methods: the data generating
process is assumed to be the same for labeled and unlabeled observations and hence units com-
ing from both sets can be used to build the classification rule. For instance, the methodology
developed in Chapter 2 falls within this framework. The present context is more general than
semi-supervised learning since the total number of classes E might be strictly larger than the
G ones observed in the training set. Therefore, an ad-hoc procedure needs to be introduced: a
graphical representation of the transductive approach is reported in Figure 3.2.
An adaptation of the EM algorithm (Dempster et al., 1977) that includes a Concentration Step
and an eigenvalue-ratio restriction is employed for maximizing (3.1). The former serves the
purpose of enforcing impartial trimming in both labeled and unlabeled units at each step of the
algorithm, whereas the latter prevents the procedure to be trapped in spurious local maximiz-
ers that may arise whenever a random pattern in the test is wrongly fitted to form a hidden class
(see Section 3.2.6). Likewise for the methodology in Chapter 2, the considered eigenvalue-ratio
restriction is the one detailed in Section 1.3.2. In addition, the feasible algorithms developed in
Section 2.8 are employed also here when different specifications for the covariance matrices are
considered.
Under the transductive learning phase, the trimmed complete data log-likelihood is as follows:

`trimc(τ, µ, Σ|X, Y, l, z) =
N

∑
n=1

ζ(xn)
G

∑
g=1

lng log
(

τgφ(xn; µg, Σg)
)
+

+
M

∑
m=1

ϕ(ym)
E

∑
g=1

zmg log
(

τgφ(ym; µg, Σg)
) (3.2)

The next steps detail a constrained EM algorithm for jointly estimating model parameters (see
Figure 3.2) whilst searching for new classes and outliers.
Unlike what is suggested in Bouveyron, 2014, the EM initialization is here performed in two
subsequent steps for preventing outliers to spoil the starting values and henceforth driving the
entire algorithm to reach uninteresting solutions. We firstly make use of a robust procedure to
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obtain a set of parameter estimates {τ̄, µ̄, Σ̄} for the known groups G using only the training
set. Afterwards, if E > G, we randomly initialize the parameters for the H = E− G hidden
classes taking advantage of the known groups structure learned in the previous step. Notice
that, as in Bouveyron, 2014, at this moment the number of hidden classes E is assumed to be
known: we will discuss its estimation later (see Section 3.2.5).

• Robust Initialization for the G known groups: set k = 0. Employing only the labeled data,
we obtain robust starting values for µg and Σg, g = 1, . . . , G as follows:

1. For each known class g, draw a random (p + 1)-subset Jg and compute its empirical

mean µ̄
(0)
g and variance covariance matrix Σ̄

(0)
g according to the considered parsimo-

nious structure.

2. Set

{τ̄, µ̄, Σ̄} = {τ̄1, . . . , τ̄G, µ̄1, . . . , µ̄G, Σ̄1, . . . , Σ̄G} =
= {τ̄(0)

1 , . . . , τ̄
(0)
G , µ̄

(0)
1 , . . . , µ̄

(0)
G , Σ̄

(0)
1 , . . . , Σ̄

(0)
G }

where τ̄
(0)
1 = . . . = τ̄

(0)
G = 1/G.

3. For each xn, n = 1, . . . , N, compute the conditional density

f (xn|lng = 1; µ̄, Σ̄) = φ
(

xn; µ̄g, Σ̄g

)
g = 1, . . . , G. (3.3)

bNαlc% of the samples with lower values of (3.3) are temporarily discarded from
contributing to the parameters estimation. The rationale being that observations
suffering from either class or attribute noise are implausible under the currently
fitted model. That is, ζ(xn) = 0 in (3.2) for such observations.

4. The parameter estimates for the G known classes are updated, based on the non-
discarded observations:

τ̄g =
∑N

n=1 ζ(xn)lng

dN(1− αl)e
g = 1, . . . , G (3.4)

µ̄g =
∑N

n=1 ζ(xn)lngxn

∑N
n=1 ζ(xn)lng

g = 1, . . . , G. (3.5)

Estimation of Σg depends on the considered patterned model, details are given in
Bensmail and Celeux, 1996.

5. Iterate 3 − 4 until the bNαlc discarded observations are exactly the same on two
consecutive iterations, then stop.

The procedure described in steps 1− 5 is performed n_init times, and the parameter esti-
mates {τ̄, µ̄, Σ̄} that lead to the highest value of the objective function `trim(τ̄, µ̄, Σ̄|X, l) =

∑N
n=1 ζ(xn)∑G

g=1 lng log
[
τ̄gφ(xn; µ̄g, Σ̄g)

]
are retained. We say that {τ̄, µ̄, Σ̄} is the output

of the robust initialization phase for the G known classes.

• Initialization for the H hidden classes: If E > G, starting values for the H = E− G hidden
classes need to be properly initialized as follows:

1. For each hidden class h, h = G + 1, . . . , E, draw a random (p + 1)-subset Jh and

compute its empirical mean µ̂
(0)
h and variance covariance matrix Σ̂

(0)
h according to
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the considered parsimonious structure. Mixing proportions τh are drawn from U[0,1]
and initial values set equal to

τ̂
(0)
h =

τh

∑E
j=G+1 τj

× H
E

, h = G + 1, . . . , E.

The previously estimated τg should also be renormalized:

τ̂
(0)
g = τ̄g ×

G
E

, g = 1, . . . , G.

In such a way the initialized vector of mixing proportion sums to 1 over the E
groups.

• If the selected patterned model allows for heteroscedastic Σg, and Σ̂
(0)
g , g = 1, . . . , E do

not satisfy the eigenvalues-ratio constraint in (1.20), constrained maximization needs to
be enforced. Given the semi-supervised nature of the problem at hand, we propose to fur-
ther rely on the information that can be extracted from the robustly initialized estimates
{τ̄, µ̄, Σ̄} to set sensible values for the fixed constant c ≥ 1 required in the eigenvalue-
ratio restriction. That is, if no prior information for the value c is available, as it is almost
always the case in real applications (García-Escudero et al., 2018b), the following quantity
could be, at least initially, used:

c̃ =
maxg=1...G maxl=1...p d̄lg

ming=1...G minl=1...p d̄lg
(3.6)

with d̄lg, l = 1, . . . , p being the eigenvalues of the matrix Σ̄g, g = 1, . . . , G. This implicitly
means that we expect extra hidden groups whose difference among group scatters is no
larger than that observed for the known groups. Such a choice prevents the appearance of
spurious solutions, protecting the adapted learner to wrongly identify random patterns
as unobserved classes whilst allowing for groups variability to be preserved. Neverthe-
less, one might want to allow more flexibility in the group structure and use (3.6) as a

lower bound for c, rather than an actual reasonable value. Once having obtained Σ̂
(0)
g

under the eigenvalue ratio constraint, the following EM iterations produce an algorithm
that maximizes the observed likelihood in (3.1).

• EM Iterations: denote by Θ̂
(k)

= {τ̂(k)
1 , . . . , τ̂

(k)
E , µ̂

(k)
1 , . . . , µ̂

(k)
E , Σ̂

(k)
1 , . . . , Σ̂

(k)
E } the parameter

estimates at the k-th iteration of the algorithm.

– Step 1 - Concentration: the trimming procedure is implemented by discarding the
bNαlc observations xn with smaller values of

D
(

xn; Θ̂
(k)
)
=

E

∏
g=1

[
φ
(

xn; µ̂(k)
g , Σ̂

(k)
g

)]lng
n = 1, . . . , N (3.7)

and discarding the bMαuc observations ym with smaller values of

D
(

ym; Θ̂
(k)
)
=

E

∑
g=1

τ̂
(k)
g φ

(
ym; µ̂(k)

g , Σ̂
(k)
g

)
m = 1, . . . , M. (3.8)
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Notice that we implicitly set lng = 0 ∀ n = 1, . . . , N, g = G + 1, . . . , E in (3.7). That
is, none of the learning units belong to one of the hidden classes h, h = G + 1, . . . , E.

– Step 2 - Expectation: for each non-trimmed observation ym compute the posterior
probabilities

ẑ(k+1)
mg =

τ̂
(k)
g φ

(
ym; µ̂

(k)
g , Σ̂

(k)
g

)
D
(

ym; θ̂
(k)
) g = 1, . . . , E; m = 1, . . . , M. (3.9)

– Step 3 - Constrained Maximization: the parameter estimates are updated, based on the
non-discarded observations and the current estimates for the unknown labels:

τ̂
(k+1)
g =

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg

dN(1− αl)e+ dM(1− αu)e
g = 1, . . . , E (3.10)

µ̂(k+1)
g =

∑N
n=1 ζ(xn)lngxn + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg ym

∑N
n=1 ζ(xn)lng + ∑M

m=1 ϕ(ym)ẑ
(k+1)
mg

g = 1, . . . , E. (3.11)

Estimation of Σg depends on the considered patterned model and on the eigenvalues-
ratio constraint. Details are given in Bensmail and Celeux, 1996 and, if (1.20) is not
satisfied, in Section 2.8.

– Step 4 - Convergence of the EM algorithm: if convergence has not been reached (see
Section 3.2.4), set k = k + 1 and repeat steps 1-4.

Notice that, once the hidden classes have been properly initialized, the transductive approach
relies on an EM algorithm that makes use of both training and test sets for jointly estimating the
parameters of known and hidden classes, with no distinction between the two. The final output
from the procedure is a set of parameters {τ̂g, µ̂g, Σ̂g}, g = 1, . . . , E, and values for the indicator
functions ζ(·) and ϕ(·). Furthermore, the estimated values ẑmg provide a classification for the
unlabeled observations ym using the MAP rule.
Summing up, the procedure jointly identifies a mislabeled and/or an outlying unit in the train-
ing set when ζ(xn) = 0, an outlier in the test set when ϕ(ym) = 0 and an observation in the test
belonging to a hidden class whenever argmaxg=1,...,E ẑmg ∈ {G + 1, . . . , E}.

3.2.3 Estimation procedure: inductive approach

In contrast with transductive inference, the inductive learning approach aims at solving a
broader type of problem: a general model is built from the training set to be ideally applied on
any new data point, without the need of a specific test set to be previously defined (Mitchell,
1997; Shaoning Pang and Kasabov, 2004). As a consequence, this approach is most suitable for
real-time dynamic classification of data streams, since only the classification rule (i.e., model
parameters) is stored and the training set need not be kept in memory. Operationally, inductive
learning is performed in two steps: a robust learning phase and a robust discovery phase (see
Figure 3.3). In the learning phase, only training observations are considered and we therefore
fall into the robust fully-supervised framework for classification. In the robust discovery phase
only the parameters for the E− G extra classes need to be estimated, since the parameters ob-
tained in the learning phase are kept fixed throughout this second phase. The entire procedure
is detailed in the next Sections.
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Σ̂G+1, . . . , Σ̂E
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FIGURE 3.3: General framework of the robust inductive estimation approach.
dN(1 − αl)e observations in the training are used to estimate parameters for
the known groups in the Robust Learning Phase. Keeping fixed the estimates
obtained in the previous phase, dM∗ (1− αu)e observations in the augmented
test are then employed in estimating parameters only for the hidden classes,

M∗ = M + bNαlc.

Robust learning phase

The first phase of the inductive approach consists of estimating parameters for the observed
classes using only the training set. That is, we aim at building a robust fully-supervised model
considering only the (complete set) of observations {xn, ln}, n = 1, . . . , N. The associated
trimmed log-likelihood to be maximized with respect to parameters {τg, µg, Σg}, g = 1, . . . , G,
reads:

`trim(τ, µ, Σ|X, l) =
N

∑
n=1

ζ(xn)
G

∑
g=1

lng log
(

τgφ(xn; µg, Σg)
)

(3.12)

Notice that (3.12) is the first of the two terms that compose (3.1). In this situation, the likelihood
in (3.12) is equivalent to the one of the REDDA model introduced in Section 2.2. The estimation
procedure coincides with the Robust Initialization for the G known groups step in the transductive
approach (see Section 3.2.2).
At this point, one could employ the trimmed adaptation of the Bayesian Information Criterion
(Neykov et al., 2007; Schwarz, 1978; Fraley and Raftery, 2002) for selecting the best model
among the 14 covariance decomposition of Figure 1.3. Notice that the parametrization chosen
in the learning phase will influence the available models for the discovery phase (see Figure
3.4).
This concludes the learning phase and the role the training set has in the estimation procedure:
from now on {xn, ln}, n = 1, . . . , N may be discarded. The only exception being the bNαlc units
for which ζ(xn) = 0: denote such observations with {x∗i , l∗i }, i = 1, . . . , bNαlc. These are the ob-
servations not included in the estimation procedure, that is, samples whose conditional density
(3.3) is smallest. This could be due to either a wrong label l∗i or x∗i to be an actual outlier: in the
former case, x∗i could still be potentially useful for detecting unobserved classes. We therefore
propose to join the bNαlc units excluded from the learning phase with the test set to define an
augmented test set Y∗ = Y ∪ X(αl), with elements y∗m, m = 1, . . . , M∗, M∗ = (M + bNαlc), to be
employed in the discovery phase. Clearly, Y∗ reduces to Y if αl = 0. In addition, depending on
the real problem at hand, the recovery of the x∗i units may be too time consuming or too costly
or simply impossible when an online classification is to be performed. In such cases the robust
discovery phase described in the next Section can still be applied making use of the original
test units ym, m = 1, . . . , M.
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Robust discovery phase

In the robust discovery phase, we search for H = E − G hidden classes robustly estimating
the related parameters in an unsupervised way. Particularly, the set {µ̄g, Σ̄g}, g = 1, . . . , G will
remain fixed throughout the discovery phase and, therefore, the observed trimmed log-likelihood
given by:

`trim(τ, µ, Σ|Y∗, µ̄, Σ̄) =
M∗

∑
m=1

ϕ(y∗m) log
( G

∑
g=1

τgφ(y∗m; µ̄g, Σ̄g)+

+
E

∑
h=G+1

τhφ(y∗m; µh, Σh)

) (3.13)

will be maximized with respect to {τ, µh, Σh}, h = G + 1, . . . , E. Notice again that the param-
eters for the known classes obtained in the robust discovery phase are kept fixed, as indicated
by the bar in the notation. Direct maximization of (3.13) is an intractable problem, therefore,
we extend Bouveyron, 2014 making again use of an EM algorithm defining a proper complete
trimmed log-likelihood:

`trimc(τ, µ, Σ|Y∗, µ̄, Σ̄, z∗) =
M∗

∑
m=1

ϕ(y∗m)
( G

∑
g=1

z∗mg log(τgφ(y∗m; µ̄g, Σ̄g))+

+
E

∑
h=G+1

z∗mh log(τhφ(y∗m; µh, Σh))

) (3.14)

The following steps delineate the procedure needed for maximizing (3.13):

• Initialization for the H hidden classes:

1. For each hidden class h, h = G + 1, . . . , E, draw a random (p + 1)-subset Jh and

compute its empirical mean µ̂
(0)
h and variance covariance matrix Σ̂

(0)
h according to

the considered parsimonious structure. Mixing proportions τh are drawn from U[0,1]
and initial values set equal to

τ̂
(0)
h =

τh

∑E
j=G+1 τj

× H
E

, h = G + 1, . . . , E.

The τg estimated in the robust learning phase should also be renormalized:

τ̂
(0)
g = τ̄g ×

G
E

, g = 1, . . . , G.

• If the selected patterned model allows for heteroscedastic Σg, and Σ̂
(0)
g , g = G + 1, . . . , E

do not satisfy (1.20), constrained maximization needs to be enforced, given the unsuper-
vised nature of the problem, as spurious solutions are likely to appear during the estima-
tion procedure. Notice that, thanks to the inductive approach, only the estimates for the
H hidden groups covariance matrices need to satisfy the eigen-ratio constraint. Similarly
to what done for the transductive approach, we propose to further rely on the informa-
tion that can be extracted from the robust learning phase to set a lower bound for the
fixed constant c ≥ 1 required in the eigenvalue-ratio restriction. Particularly, the quantity
in (3.6) can be used, therefore implicitly assuming that the hidden groups variability is no
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FIGURE 3.4: Partial-order structure in the eigen-decomposition for the covariance
matrices of Banfield and Raftery, 1993 and Celeux and Govaert, 1995. Model
complexity increases from left to right. Dashed arrows denote equivalent models

in terms of parameters to be estimated in the Discovery Phase.

larger than that observed for the known groups. In this way, estimates are protected from
the appearance of spurious solutions that can easily arise when searching for unobserved
classes also in the simplest scenarios (see Section 3.2.6).

Once initial values satisfying the constraint in (1.20) have been properly determined for
the parameters of the hidden classes, the following EM iterations produce an algorithm
that maximizes (3.13).

• EM Iterations: denote by Θ̂
(k)

= {τ̂(k)
1 , . . . , τ̂

(k)
E , µ̂

(k)
G+1, . . . , µ̂

(k)
E , Σ̂

(k)
G+1, . . . , Σ̂

(k)
E } the parame-

ter estimates at the k-th iteration of the algorithm.

– Step 1 - Concentration: Define

Dg

(
y∗m; Θ̂

(k)
)
=

τ̂
(k)
g φ

(
y∗m; µ̄g, Σ̄g

)
g = 1, . . . , G

τ̂
(k)
g φ

(
y∗m; µ̂

(k)
g , Σ̂

(k)
g

)
g = G + 1, . . . , E

The trimming procedure is implemented by discarding the bM∗αuc observations y∗m
with smaller values of

D
(

y∗m; Θ̂
(k)
)
=

E

∑
g=1

Dg

(
y∗m; Θ̂

(k)
)

m = 1, . . . , M∗.

– Step 2 - Expectation: for each non-trimmed observation y∗m compute the posterior
probabilities

ẑ∗
(k+1)

mg =
Dg

(
y∗m; Θ̂

(k)
)

D
(

y∗m; Θ̂
(k)
) g = 1, . . . , E; m = 1, . . . , M∗.

– Step 3 - Constrained Maximization: the parameter estimates are updated, based on the
non-discarded observations and the current estimates for the unknown labels. Due
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to the constraint
(

∑G
g=1 τg + ∑E

h=G+1 τh

)
= 1, the mixing proportions are updated as

follows using the Lagrange multipliers method as per Section 2.6:

τ̂
(k+1)
g =


τ̄g

(
1−∑E

h=G+1
∑M

m=1 ϕ(y∗m)ẑ∗
(k+1)

mh
dM∗(1−αu)e

)
g = 1, . . . , G

∑M
m=1 ϕ(y∗m)ẑ∗

(k+1)
mg

dM∗(1−αu)e g = G + 1, . . . , E

where the proportions for the G known classes computed in the learning phase are
renormalized according to the proportions of the H new groups. The estimate up-
date for the mean vectors of the hidden classes reads:

µ̂
(k+1)
h =

∑M∗
m=1 ϕ(y∗m)ẑ

∗(k+1)
mh y∗m

∑M∗
m=1 ϕ(y∗m)ẑ

∗(k+1)
mh

h = G + 1, . . . , E.

Estimation of Σh, h = G + 1, . . . , E depends on the selected patterned model condi-
tioning on the one estimated in the learning phase. More specifically, the parsimo-
nious Gaussian models of Banfield and Raftery, 1993 and Celeux and Govaert, 1995
define a partial order structure in terms of model complexity, graphically reported in
Figure 3.4. Such structure allows for constraints relaxation when estimating the co-
variance matrices for the hidden classes H, moving from left to right in the graph of
Figure 3.4. A simple example will clarify the procedure. Imagine to have selected a
VEE model in the Learning Phase: Σ̄g = λ̄gD̄ĀD̄

′
, g = 1, . . . , G. Due to the Inductive

approach, only VEE, VVE, VEV and VVV models can be selected in the Discovery
Phase since the first G covariance matrices need to be kept fixed, and their volume
is already free to vary across components. If for instance we employ a VEV model
(i.e., equal shape across components) in the discovery phase, the estimates for Σh,
h = G + 1, . . . , E will be:

Σ̂
(k+1)
h = λ̂

(k+1)
h D̂(k+1)

h ĀD̂(k+1)′

h h = G + 1, . . . , E

where the estimate for the shape Ā comes from the learning phase. Closed form
solutions are obtained for all 14 models of Celeux and Govaert, 1995, no matter the
parsimonious structure selected in the Learning Phase: details are reported in Ap-
pendix A (Section 3.6). Notice further that whenever the model in the discovery
phase is EII, EEI or EEE, no extra parameters need to be estimated for the covariance
matrices of the hidden groups. Finally, if (1.20) is not satisfied for the covariance ma-
trices in the new classes, the eigenvalue restriction needs to be enforced: see Section
2.8.

– Step 4 - Convergence of the EM algorithm: check for algorithm convergence (see Section
3.2.4). If convergence has not been reached, set k = k + 1 and repeat steps 1-4.

Notice that the EM algorithm is solely based on the augmented test units for estimating pa-
rameters of the hidden classes. That is, if E = G no extra parameters will be estimated in
the discovery phase and the inductive approach will reduce to a fully-supervised classification
method.
The final output from the learning phase is a set of parameters {τ̄g, µ̄g, Σ̄g}, g = 1, . . . , G for
the known classes and values for the indicator function ζ(·) where ζ(xn) = 0 identify xn as an
outlying observation. The final output from the discovery phase is a set of parameters {µ̂h, Σ̂h},
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h = G + 1, . . . , E, for the hidden classes together with an update for the mixing proportion
τ̂g, g = 1, . . . , E and values for the indicator functions ϕ(·) where ϕ(y∗m) = 0 identify y∗m as
an outlying observations. Likewise for the transductive approach, the estimated values ẑ∗mg
provide a classification for the unlabeled observations y∗m, assigning them to one of the known
or hidden classes.
R (R Core Team, 2018) source code implementing the EM algorithms under the transductive
and inductive approaches is available at https://github.com/AndreaCappozzo/raedda. A
dedicated R package is currently under development.

3.2.4 Convergence criterion

The convergence for both transductive and inductive approaches is assessed via the Aitken
acceleration (Aitken, 1926; McNicholas et al., 2010):

a(k) =
`
(k+1)
trim − `

(k)
trim

`
(k)
trim − `

(k−1)
trim

(3.15)

where `
(k)
trim is the trimmed observed data log-likelihood from iteration k: equation (3.1) and

(3.13) for the transductive and the inductive approach, respectively.
The asymptotic estimate of the trimmed log-likelihood at iteration k is given by (Böhning et al.,
1994):

`
(k)
∞trim = `

(k)
trim +

1
1− a(k)

(
`
(k+1)
trim − `

(k)
trim

)
. (3.16)

The EM algorithm is considered to have converged when |`(k)∞trim − `
(k)
trim| < ε; a value of ε = 10−5

has been chosen for the experiments reported in the next Sections.

3.2.5 Model selection: determining the covariance structure and the number of
components

A robust likelihood-based criterion is employed for choosing the number of hidden classes, the
best model among the 14 patterned covariance structures depicted in Figure 1.3 and a reason-
able value for the constraint c in (1.20). Particularly, in our context, the problem of estimating
the number of hidden classes corresponds to setting the number of components in a finite Gaus-
sian mixture model (see for example Mclachlan and Rathnayake, 2014 for a discussion on the
topic). The general form of the robust information criterion is:

RBIC = 2`trim(τ̂, µ̂, Σ̂)− vc
XXX log (n∗) (3.17)

where `trim(τ̂, µ̂, Σ̂) denotes the maximized trimmed observed data log-likelihood under ei-
ther the transductive or inductive approach: equation (2.1) and (3.13), respectively. The total
number of observations n∗ employed in the estimation procedure is:

n∗ =

{
dN(1− αl)e+ dM(1− αu)e Transductive EM
dM∗(1− αu)e Inductive EM (discovery phase).

In (3.17), the penalty term vc
XXX accounts for the number of parameters to be estimated. It

depends on the estimation procedure (either transductive or inductive), the chosen patterned
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TABLE 3.1: Nomenclature and number of free parameters to be estimated for
the variance covariance matrices, under the 14 patterned structures of Banfield
and Raftery, 1993 and Celeux and Govaert, 1995. γ denotes the number of pa-
rameters related to the orthogonal rotation and δ the number of parameters re-
lated to the eigenvalues, for both transductive and inductive approach (discovery
phase). The last column indicates whether the eigenvalue-ratio (ER) constraint is
required. The learning phase of the inductive approach possesses the number of

parameters indicated for the transductive approach, with E replaced by G.

Model γtransductive δtransductive γinductive δinductive ER

EII 0 1 0 0 Not Required
VII 0 E 0 H Required
EEI 0 p 0 0 Not Required
VEI 0 E + p− 1 0 H Required
EVI 0 Ep− (E− 1) 0 Hp− H Required
VVI 0 Ep 0 Hp Required
EEE p(p− 1)/2 p 0 0 Not Required
VEE p(p− 1)/2 E + p− 1 0 H Required
EVE p(p− 1)/2 Ep− (E− 1) 0 Hp− H Required
EEV Ep(p− 1)/2 p Hp(p− 1)/2 0 Not Required
VVE p(p− 1)/2 Ep 0 Hp Required
VEV Ep(p− 1)/2 E + p− 1 Hp(p− 1)/2 H Required
EVV Ep(p− 1)/2 Ep− (E− 1) Hp(p− 1)/2 Hp− H Required
VVV Ep(p− 1)/2 Ep Hp(p− 1)/2 Hp Required

covariance structure and the value for the constraint c:

vc
XXX = κ + γ + (δ− 1)

(
1− 1

c

)
+ 1. (3.18)

κ is the number of parameters related to mixing proportions and mean vectors: κ = Ep +
(E− 1) in the transductive setting and κ = Hp + H for the discovery phase in the inductive
approach. γ and δ denote, respectively, the number of free parameters related to the orthogonal
rotation and to the eigenvalues for the estimated covariance matrices. Their values, for the two
approaches and the different patterned structure, are reported in Table 3.1.
The robust information criterion in (3.17) is an adaptation of the complexity-penalized like-
lihood approach introduced in Cerioli et al., 2018a that here also accounts for the trimming
levels and patterned structures. Note that, when c → +∞ and αl = αu = 0, (3.17) reduces to
the well-known Bayesian Information Criterion (Schwarz, 1978).

3.2.6 On the role of the eigenvalue restrictions

As mentioned in Section 1.3.2, when employing mixture models for supervised learning and
discriminant analysis there is actually no need in worrying about the appearance of spurious
solutions, since the joint distribution of both observations and associated labels is directly avail-
able. The parameters estimation therefore reduces to estimate the within class mean vector and
covariance matrix, without the need of any EM algorithm (Fraley and Raftery, 2002). Nonethe-
less, adaptive learning is based on a partially unsupervised estimation, since hidden classes are
sought in the test set without previous knowledge of their group structure extracted from the
labelled set. Therefore, efficiently dealing with the possible appearance of spurious solutions
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FIGURE 3.5: Original learning problem, with a set of N = 300 labelled observa-
tions and M = 300 unlabeled observations generated from the same mixture of

bivariate normal distributions with three components.

becomes fundamental in our context, where the identification of a hidden class might just be
the consequence of a spurious solution. As thoroughly reported in the previous Sections, we
protect our estimates from the appearance of spurious solutions employing a constrained ver-
sion of the EM algorithm, by means of the truncation operator defined in Section 1.3.2 and the
novel computational procedures introduced in Section 2.8.
We now provide an illustrative example for underlying the importance of protecting the adap-
tive learner from spurious solutions, that may arise also in the simplest scenarios. Consider a
data generating process given by a three components mixture of bivariate normal distributions
(E = G = 3 and p = 2) with the following parameters:

τ = (0.35, 0.15, 0.5)′, µ1 = (0, 0)′, µ2 = (4,−4)′, µ3 = (5, 7)′

Σ1 = Σ2 = Σ3 =

[
1 0.3

0.3 1

]
Figure 3.5 graphically presents the learning problem, in which both the training and test sets
contain 300 data points. Clearly, even from a visual exploration, the test set does not contain
any hidden group and we therefore expect that the model selection criterion defined in Section
3.2.5 will choose a mixture of E = 3 components as the best model for the problem at hand.
Employing transductive estimation, the RAEDDA model is fitted to the data, with trimming
levels set to 0 for both labelled and unlabeled sets (αl = αu = 0) and considering two different
values for the eigen-ratio constraint: c = 10 in the first case and c = 1010 in the second. That is,
we set a not too restrictive constraint in the former model (notice that the true ratio between the
biggest and smallest eigenvalues of Σg, g = 1, . . . , 3 is equal to 1.86) and we consider a virtually
unconstrained estimation for the latter. The classification obtained for the best model in the test
set, selected via the robust information criterion in (3.17), under the two different scenarios is
reported in Figure 3.6. The value for the maximized log-likelihood in the first scenario is equal
to −2257.279, and it is equal to −2186.615 in the unconstrained case. With only 2 data points
in the hidden group and |Σ̂4| < 10−10 we are clearly dealing with a spurious solution and not
with a hidden class. Nonetheless, the appearance of spurious maxima even in this simple toy
experiment casts light on how paramount it is to protect the estimates against this harmful
possibility.
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RAEDDA transductive results with eigen−ratio constraint
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RAEDDA transductive results with no eigen−ratio constraint
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FIGURE 3.6: The classification obtained for the best model in the test set, with
two different values for the eigen-ratio constraint. In the unconstrained case the
classification is based on a spurious solution, with a localized random pattern

wrongly identified as a hidden class.

3.2.7 Further aspects

Notice that the RAEDDA methodology is a generalization of several model-based classification
methods, in particular:

• EDDA (Bensmail and Celeux, 1996) when only fitting the robust learning phase with
αl = 0.

• REDDA (Chapter 2 of the present manuscript) when only fitting the robust learning phase
with αl > 0.

• UPCLASS (Dean et al., 2006) when fitting the transductive approach with E = G and
αl = 0, αu = 0

• RUPCLASS (Chapter 2 of the present manuscript) when fitting the transductive approach
with E = G and αl > 0, αu > 0.

• AMDA transductive (Bouveyron, 2014) when fitting the transductive approach with E ≥
G and αl = 0, αu = 0. Notice in addition that RAEDDA considers a broader class of
learners employing patterned covariance structures.

• AMDA inductive (Bouveyron, 2014) when fitting the inductive approach with αl = 0,
αu = 0. Also here the class of considered models is larger, thanks to the partial-order
structure in the eigen-decomposition of the covariance matrices (see Figure 3.4).

3.3 Simulation study

In this Section, we present a simulation study in which the performance of novelty detection
methods is assessed when dealing with different combinations of data generating processes
and contamination rates. For each scenario, an entire class is not present in the labelled units,
and it thus needs to be discovered by the adaptive classifiers in the test set. The problem
definition is therefore as follows: we aim at judging the performance of various methods in re-
covering the true partition under a semi-supervised framework, where the groups distribution
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is (approximately) Gaussian, allowing for a distribution-free noise structure, both in terms of
label noise and outliers.

3.3.1 Experimental setup

The E = 3 classes are generated via multivariate normal distributions of dimension p = 6 with
the following parameters:

µ1 = (0, 8, 0, 0, 0, 0)′, µ2 = (8, 0, 0, 0, 0, 0)′, µ3 = (−8,−8, 0, 0, 0, 0)′

Σ1 = diag(1, a, 1, 1, 1, 1), Σ2 = diag(b, c, 1, 1, 1, 1), Σ3 =

d e
e f 0

0 I


We consider 5 different combinations of (a, b, c, d, e, f ):

• (a, b, c, d, e, f ) = (1, 1, 1, 1, 0, 1), spherical groups with equal volumes (EII)

• (a, b, c, d, e, f ) = (5, 1, 5, 1, 0, 5), diagonal groups with equal covariance matrices (EEI)

• (a, b, c, d, e, f ) = (5, 5, 1, 3,−2, 3), groups with equal volume, but varying shapes and ori-
entations (EVV)

• (a, b, c, d, e, f ) = (1, 20, 5, 15,−10, 15), groups with different volumes, shapes and orienta-
tions (VVV)

• (a, b, c, d, e, f ) = (1, 45, 30, 15,−10, 15), groups with different volumes, shapes and orien-
tations (VVV) but with two severe overlap

The afore-described data generating process has been introduced in García-Escudero et al.,
2008: we adopt it here as it elegantly provides a well-defined set of resulting parsimonious
covariance structures. In addition, two different group proportions are included:

• equal: N1 = N2 = 285 and M1 = M2 = M3 = 360

• unequal: N1 = 190, N2 = 380 and M1 = 216, M2 = M3 = 432

where Ng, g = 1, 2 and Mh, h = 1, 2, 3 denote the sample sizes for each group in the training
and test sets, respectively. According to the notation introduced in Section 1.3.4, we observe
G = 2 classes in the training and H = 1 extra class in the test set. Furthermore, we apply
contamination adding both attribute and class noise as follows. A fixed number Ql and Qu
of uniformly distributed outliers, having squared Mahalanobis distances from µ1, µ2 and µ3
greater than χ2

6,0.975, are respectively added to the labelled and unlabeled sets. Additionally, we
assign a wrong label to Ql genuine units, randomly chosen in the training set. Four different
contamination levels are considered, varying Ql and Qu:

• No contamination: Ql = Qu = 0,

• Low contamination: Ql = 10 and Qu = 40,

• Medium contamination: Ql = 20 and Qu = 80,

• Strong contamination: Ql = 30 and Qu = 120.

A total of B = 1000 Monte Carlo replications are generated for each combination of covariance
structure, groups proportion and contamination rate. Results for the considered scenarios are
reported in the next Section.
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3.3.2 Simulation results

Given the simulation framework presented in the previous Section, we compare the perfor-
mance of RAEDDA against the original AMDA model (Bouveyron, 2014) and two popular
novelty detection methods, namely Classifier Instability (Tax and Duin, 1998) and Support
Vector Method for novelty detection (Schölkopf et al., 2000), respectively denoted as QDA-ND
and SVM-ND hereafter. For assessing the performance in terms of classification accuracy, out-
liers detection and hidden groups discovery for the competing methods, a set of 4 metrics is
recorded at each replication of the simulation study:

• % Label Noise: the proportion of Ql mislabeled units in the training set correctly identi-
fied as such by the RAEDDA model (for which the final value of the trimming function
ζ(·) is equal to 0);

• % Hidden Group: the proportion of units in the test set belonging to the third group
correctly assigned to a previously unseen class by AMDA and RAEDDA methods;

• ARI: Adjusted Rand Index (Rand, 1971), measuring the similarity between the partition
returned by a given method and the underlying true structure;

• % Novelty: the proportion of units in the test set belonging either to the third group or to
the set of Qu outliers correctly identified by the novelty detection methods.

Box plots for the four metrics, resulting from the B = 1000 Monte Carlo repetitions under differ-
ent covariance structure, groups proportion and contamination rate are reported in Figure 3.7
and 3.8. The “% Label Noise” metric highlights the effectiveness of our proposal in correctly
identifying the Ql wrongly labelled units in the training set, thus protecting the parameter es-
timates from bias. Both transductive and inductive approaches perform well regardless of the
contamination rate; the number of correctly detected mislabeled units however slightly de-
creases under the VVV and VVV with overlap simulation scenarios. This is nonetheless due to
the more complex covariance structure and to the presence of overlapping groups: this makes
the identification of label noise more difficult and less crucial for obtaining reliable inference.
The “% of Hidden group” metric in Figure 3.7 shows remarkably good performance in de-
tecting the third unobserved class for the adaptive Discriminant Analysis methods, both for
AMDA and its robust generalization RAEDDA. Careful investigation of this peculiar result
revealed that the AMDA method tended to merge outlying units and the third (unobserved)
class in one single extra group. That is, even though the AMDA method correctly discovers
the presence of an extra class, the associated parameter estimates are completely spoiled by the
presence of outliers. Furthermore, the same result does not hold in the two most complex sce-
narios, where the negative effect of attribute and class noise strongly undermines the adaptive
effectiveness of the AMDA model, especially when the transductive estimation is performed.
The “ARI” metric in Figure 3.8 highlights the predictive power of the RAEDDA model: by
means of the MAP rule and impartial trimming the true partition of the test set, that jointly
includes known groups, one extra class and Qu outlying units, is efficiently recovered. As pre-
viously mentioned, AMDA fails in separating the uniform noise from the extra Gaussian class,
with consequent lower values for the ARI metric. Lastly, the “% Novelty” metric serves the
purpose of extending the comparison from the two adaptive models to the novelty detection
methods, stemming from the machine learning literature. Particularly, the latter class of algo-
rithms only distinguishes the known patterns (i.e., the first two groups in the training set) and
the novelty: in our case the hidden class and the uniform noise. It is evident that, as soon as
few noisy data points are added to the training set, both novelty detection methods completely
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FIGURE 3.7: Box plots for % Label Noise and % Hidden Group metrics for
B = 1000 Monte Carlo repetitions under different covariance structure, groups

proportion and contamination rate.
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FIGURE 3.8: Box plots for ARI and % Novelty metrics for B = 1000 Monte Carlo
repetitions under different covariance structure, groups proportion and contam-

ination rate.
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fail in separating known and novel patterns. In addition, the QDA-ND and SVM-ND perfor-
mances deteriorate when more complex covariance structures are considered, even under the
outlier-free scenarios.
Notice that the model selection criterion for the RAEDDA method defined in Section 3.2.5 was
used for identifying not only the number of components but also the parsimonious covari-
ance structure: this always yielded to choose the true parametrization according to the values
of (a, b, c, d, e, f ). As a last worthy note, the simulation study was performed employing the
rationale defined in (3.6) for setting c in the eigenvalue-ratio restriction, whilst the impartial
trimming levels αl and αu were set high enough to account for the presence of both label noise
and outliers. The correct tuning for the model hyper-parameters remains a critical challenge,
especially for the trimming levels: a promising idea was recently proposed by Cerioli et al.,
2019, however, further research in the robust classification framework is still to be pursued.

3.4 Application to grapevine microbiome analysis

In recent years, the tremendous advancements in metagenomics have brought to statisticians
a whole new set of questions to be addressed with dedicated methodologies, fostering the
fast development of research literature in this field (Waldron, 2018; Calle, 2019). In particular,
the role of plant microbiota in grapevine cultivar (Vitis vinifera L.) is notably relevant since
it has been proven to act as discriminating signature for grape origin (Bokulich et al., 2014;
Mezzasalma et al., 2017). Therefore, the employment of microbiome analysis for automatically
identifying wine provenance is a promising approach in the food authenticity domain.
A flexible method that performs online classification of grapevine samples, discriminating po-
tentially fraudulent units from known or previously unseen regions is likely to have a great
impact on the field.
Motivated by a dataset of microbiome composition of grape samples, we validate the perfor-
mance of the method introduced in Section 3.2 under different contamination and dataset shifts
scenarios.

3.4.1 Data

The considered dataset reports microbiome composition of 45 grape samples collected in 3 dif-
ferent regions having similar pedological features. The first sampling site was the Lombardy
Regional Collection in Northern Italy (hereafter NI); the second site was the germplasm collec-
tion of E. Mach Foundation in the Trento province, at the foot of the Italian Alps (AI); while the
third group of grapes comes from the Government of La Rioja collection, located in Northern
Spain (NS). The processes of DNA extraction, sequencing and numbering of microbial compo-
sition are thoroughly described in Mezzasalma et al., 2018: we refer the reader interested in the
bioinformatics details to consult that paper and references therein.
At the end of sample preparation, the resulting dataset consists of an abundance table with p =
836 features (bacterial communities) defined as Operational Taxonomic Unit (OTU): collapsed
clusters of similar DNA sequences that describe the total microbial diversity. For each site, 15
observations are available: a graphical representation of the count table, collapsed at OTU level
for ease of visualization, is reported in Figure 3.9.

3.4.2 Dimension reduction

Given the high-dimensional nature of the considered dataset (p = 836) and the small sam-
ple size, a preprocessing step for reducing the dimensionality is paramount before fitting the
RAEDDA model. Focusing on the counting nature of the observations at hand, a natural choice
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Sample 45: NS
Sample 44: NS
Sample 43: NS
Sample 42: NS
Sample 41: NS
Sample 40: NS
Sample 39: NS
Sample 38: NS
Sample 37: NS
Sample 36: NS
Sample 35: NS
Sample 34: NS
Sample 33: NS
Sample 32: NS
Sample 31: NS
Sample 30: AI
Sample 29: AI
Sample 28: AI
Sample 27: AI
Sample 26: AI
Sample 25: AI
Sample 24: AI
Sample 23: AI
Sample 22: AI
Sample 21: AI
Sample 20: AI
Sample 19: AI
Sample 18: AI
Sample 17: AI
Sample 16: AI
Sample 15: NI
Sample 14: NI
Sample 13: NI
Sample 12: NI
Sample 11: NI
Sample 10: NI
Sample 09: NI
Sample 08: NI
Sample 07: NI
Sample 06: NI
Sample 05: NI
Sample 04: NI
Sample 03: NI
Sample 02: NI
Sample 01: NI

Operational Taxonomic Unit

0 10 100 1000 4000 16000

Counts:

FIGURE 3.9: Count table depicting the abundance and distribution of the OTUs
resulting from the sequence analysis for each sample in the 3 different regions:
Northern Italy (NI), Italian Alps (AI) and Northern Spain (NS). Grapevine micro-

biome data.
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True Label: NI
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FIGURE 3.10: Learning scenario for anomaly and novelty detection of the
grapevine microbiome data on the ROBPCA subspace: 1 unobserved region and

label noise.

would be to perform probabilistic Poisson PCA (PLNPCA): a flexible methodology based on
the Poisson Lognormal model recently introduced in the literature (Chiquet et al., 2018). Nev-
ertheless, the variational approximation employed for PLNPCA inference makes its general-
ization from training to test set not so straightforward, and, furthermore, the whole procedure
is not robust to outlying observations. Therefore, given the classification framework in which
the preprocessing step needs to be embedded, a less domain-specific, yet robust and well-
established technique was preferred for dimension reduction.
The considered preprocessing step proceeds as follows: we fit Robust Principal Component
Analysis (ROBPCA) to the labelled set, and afterwards we project the test units to the ob-
tained subspace; please refer to Hubert et al., 2005 for a detailed description of the employed
methodology. In this way, robust and test-independent (i.e., suitable for either transductive or
inductive inference) low-dimensional scores are available for adaptive classification.

3.4.3 Anomaly and novelty detection: label noise and one unobserved class

The first experiment involves the random selection of 24 learning units from the NI and AI
regions, with a consequent test set of 21 samples including all the 15 grapes collected in North-
ern Spain (NS). Furthermore, 2 of the NI units in the learning set are incorrectly labelled as
grapes coming from the AI site. The aim of the experiment is therefore to determine whether
the RAEDDA method is capable of recovering the unobserved NS class whilst identifying the
label noise in the training set. The preprocessing step described in Section 3.4.2 is applied prior
to perform classification: standard setting for the PcaHubert function in the rrcov R package
(Todorov and Filzmoser, 2009) retains d = 2 robustly estimated principal components, a graph-
ical representation of the learning scenario is reported in Figure 3.10. A RAEDDA model is
then employed for building a classification rule, considering both a transductive and an induc-
tive approach. The robust information criterion in (3.17) is used for selecting the best patterned
structure and, more importantly, the number of extra classes. RBIC values for the two estima-
tion procedures are reported in Tables 3.2 and 3.3. We restrict the attention to the subset of
diagonal models in line with our preprocessing step. Notice that, in the inductive approach,
once the VVI model is selected in the learning phase, only the most flexible diagonal model
needs to be fitted to the test data, thanks to the partial order structure of Figure 3.4. Our find-
ings show that the robust information criterion correctly detects the true number of classes
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TABLE 3.2: RBIC for different patterned structures and number of hidden classes
for the RAEDDA model, transductive inference. The model with the highest
RBIC value is highlighted in bold. Grapevine microbiome data with one unob-

served class (NS).

Covariance Structure
# Classes EII VII EEI VEI EVI VVI

2 -1278.25 -1204.55 -1279.60 -1208.11 -1221.39 -1175.25
3 -1289.24 -1240.30 -1291.21 -1242.67 -1241.95 -1148.50
4 -1300.23 -1254.60 -1302.20 -1257.00 -1256.57 -1163.34

TABLE 3.3: RBIC for different patterned structures and number of hidden classes
for the RAEDDA model, inductive inference. The models with the highest RBIC
value are highlighted in bold. Grapevine microbiome data with one unobserved

class (NS).

Robust learning phase

Covariance Structure
# Classes EII VII EEI VEI EVI VVI

2 -719.26 -709.13 -718.97 -712.11 -688.40 -678.29

Robust discovery phase

Covariance Structure
# Classes VVI

2 -639.85
3 -506.59
4 -511.43

E = 3, in both inferential approaches. Regarding anomaly detection, the two units affected by
label noise are identified and a posteriori classified as coming from the NI site by the induc-
tive approach. Contrarily, just one out of the two anomalies was captured by the transductive
approach. In this and in the upcoming experiment, trimming levels αl = αu = 0.1 were con-
sidered for both training and test sets, while the eigenvalue-ratio restriction was automatically
inferred by the estimated group scatters of the known classes.
Table 3.4 reports the confusion matrices for the RAEDDA classifier. The model correctly iden-
tifies the presence of a hidden class, recovering the true data partition with an accuracy of 86%
(3 misclassified units) and 90% (2 misclassified units) in the transductive and inductive frame-
work, respectively. Considering the challenging classification problem and the limited sample
size, the RAEDDA model shows remarkably good performance.

3.4.4 Anomaly and novelty detection: outliers and two unobserved classes

This second experiment considers an even more extreme scenario: the training set contains
only 14 observations, among which 12 units truly belong to the NI region, while the remaining
2 come from the AI area but with an incorrect NI label. That is, in the remaining 31 unlabeled
units there are two sampling sites, namely AI and NS, that need to be discovered.
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TABLE 3.4: Confusion tables for RAEDDA classifier (transductive and inductive
inference) on the test set for the Grapevine microbiome data with one unobserved

class (NS).

RAEDDA Transductive RAEDDA Inductive
Truth

Classification NI NS AI
NI 1 1 0
AI 0 0 3

HIDDEN GROUP 1 2 14 0

Truth
Classification NI NS AI

NI 2 1 0
AI 0 0 3

HIDDEN GROUP 1 1 14 0

True Label: AITrue Label: AI

Learning Data Test Data

−1000 0 1000 2000 −1000 0 1000 2000

−6000

−4000

−2000

0
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P
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2

Grape Region: NI NS AI

FIGURE 3.11: Learning scenario for anomaly and novelty detection of the
grapevine microbiome data on the ROBPCA subspace: 2 unobserved regions and

outliers in the training set.

Likewise in the previous Section, ROBPCA retains d = 2 principal components when fitted to
the training set: the grapevine sample in the robustly estimated subspace is plotted in Figure
3.11. Notice in this context the compelling necessity of performing robust dimensional reduc-
tion: the two mislabeled observations from the AI area in the training set can be seen as outliers,
and a dimensional reduction technique sensitive to them may have introduced masked and/or
swamped units. The RBIC is used to select the best patterned structure and number of compo-
nents: results are reported in Tables 3.5 and 3.6. Again, also in this more extreme experiment
both inferential procedures recover the true number of sites from which the grapes were sam-
pled. Due to the ROBPCA output, in both transductive and inductive approaches the wrongly
labelled units in the training set are easily trimmed off and identified as belonging to an area
different from NI. Classification results for the chosen model are reported in Table 3.7, where
the recovered data partition notably agrees with the 3 different sampling sites, with only 4 and
3 misclassified units for the transductive and inductive estimation, respectively.
In general, considering also additional experiments not reported in the present paper, the in-
ductive approach seems to perform slightly better in terms of anomaly and novelty detection,
especially if the sample size of the hidden classes is small. This had already been noted in Bou-
veyron, 2014, and it may be even more evident in our proposal due to the augmented test set
(see end of Section 3.2.3) employed in the discovery phase. For instance, in this experiment, the
two AI units that are trimmed off in the learning phase come back again in the parameters esti-
mation of the discovery phase, improving the classifier efficiency. Contrarily, the transductive
approach simply does not account for them when estimating the parameters of the NI group.
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TABLE 3.5: RBIC for different patterned structures and number of hidden classes
for the RAEDDA model, transductive inference. The model with the highest
RBIC value is highlighted in bold. Grapevine microbiome data with two un-

observed classes (NS and NI).

Covariance Structure
# Classes EII VII EEI VEI EVI VVI

1 -1339.32 - -1340.13 - - -
2 -1326.16 -1251.13 -1347.46 -1254.85 -1351.08 -1268.71
3 -1337.30 -1240.35 -1358.60 -1244.33 -1365.89 -1222.04

TABLE 3.6: RBIC for different patterned structures and number of hidden classes
for the RAEDDA model, inductive inference. The models with the highest RBIC
value are highlighted in bold. Grapevine microbiome data with two unobserved

classes (NS and NI).

Robust learning phase

Covariance Structure
# Classes EII VII EEI VEI EVI VVI

1 -390.83 - -364.67 - - -

Robust discovery phase

Covariance Structure
# Classes EEI VEI EVI VVI

1 -3910.27 - - -
2 -1418.22 -1042.85 -982.86 -979.16
3 -1104.38 -1037.56 -955.12 -897.35
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TABLE 3.7: Confusion tables for RAEDDA classifier (transductive and inductive
inference) on the test set for the Grapevine microbiome data with two unobserved

classes (NS and NI).

RAEDDA Transductive RAEDDA Inductive
Truth

Classification NI NS AI
NI 1 1 1

HIDDEN GROUP 1 0 0 12
HIDDEN GROUP 2 2 14 0

Truth
Classification NI NS AI

NI 1 0 1
HIDDEN GROUP 1 2 15 0
HIDDEN GROUP 2 0 0 12

In these preliminary experiments we have positively assessed how our proposal, coupled with
a robust dimension reduction technique, can be employed in identifying grapes provenance
even considering adulteration and sample selection bias. Even though domain-expert supervi-
sion will always be crucial for class interpretation when extra groups are detected, an automatic
pipeline that performs microbiome composition, dimension reduction and robust and adaptive
classification seems a promising procedure for enhancing the quality, speed and mechanization
of food authenticity analyses.

3.5 Concluding remarks

In the present chapter we have proposed a model-based discriminant analysis method for
anomaly and novelty detection. We have shown that the methodology effectively performs
classification in presence of label noise, outliers and unobserved classes in the test set. By incor-
porating impartial trimming and eigenvalue-ratio constraints, our proposal robustly estimates
model parameters of known and hidden classes, identifying as a by-product wrongly labelled
and/or adulterated observations. Considering a parsimonious family of patterned models,
two flexible EM-based approaches have been proposed for parameter estimation: one based
on the union of training and test sets, and the other made of two phases, performing sequen-
tial inference for known and hidden groups. Furthermore, we let the latter approach exploit
the partial order structure of the parsimonious models, deriving fast and closed-form solutions
for estimating the parameters of the extra classes. The resulting methodology includes several
model-based classification methods as special cases. A robust data-driven criterion has been
adapted for selecting the number of unobserved groups and constraint strength in covariances
estimation. An extensive simulation study and applications on a grapevine microbiome dataset
have proved the effectiveness of our proposal. Particularly, the classifier capability in discrimi-
nating (known and previously unobserved) grape provenances, within an adulterated context,
may lead to promising developments in the food authenticity domain.
Further research directions include a data-driven procedure for selecting reasonable values
for the trimming levels, and a metric that automatically categorizes trimmed units as being
affected by label and/or attribute noise. Additionally, the definition of a general framework for
robust and adaptive variable selection and classification, suitable for data of large dimensions,
is imperative in domains like chemometrics, computer vision and genetics. About that, two
robust methodologies for variable selection that deal with the issue in the fully-supervised,
i.e., not adaptive, framework are introduced in Chapter 4. Based on such methodologies, an
extension to the adaptive learning scenario is currently under study and it will be object of
future developments.
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3.6 Appendix A

This appendix provides closed form solutions for the estimation of the covariance matrices Σh,
h = G + 1, . . . , E of the unobserved classes via the inductive approach; our main reference here
is the seminal paper of Celeux and Govaert, 1995, where patterned covariance matrices were
firstly defined and algorithms for their ML estimation were proposed. In the robust discovery
phase only the parameters for the H = E − G densities need to be estimated, according to
the available patterned models, given the one considered in the Learning Phase (see Figure
3.4). Denote with W h = ∑M

m=1 ϕ(ym)ẑmh
[
(ym − µ̂h) (ym − µ̂h)

′] and let W h = Lh∆hL
′
h be its

eigenvalue decomposition. Further, consider nh = ∑M
m=1 ϕ(ym)ẑmh for h = G + 1, . . . , E. Lastly,

denote with a bar the estimates obtained in the robust learning phase for the G known groups:
they are fixed and should not be changed. The formulae needed for the parameter updates are
as follows:

• VII model: Σh = λh I

λ̂h =
tr(W h)

p nh
, h = G + 1, . . . , E.

• VEI model: Σh = λh Ā

λ̂h =
tr(W h Ā−1)

p nh
, h = G + 1, . . . , E.

• EVI model: Σh = λ̄Ah

Âh =
diag(W h)

|diag(W h)|1/p , h = G + 1, . . . , E.

• VVI model: Σh = λh Ah

λ̂h =
|diag(W h)|1/p

nh
, h = G + 1, . . . , E.

Âh =
diag(W h)

|diag(W h)|1/p , h = G + 1, . . . , E.

• VEE model: Σh = λhD̄ĀD̄
′

Let C̄ = D̄ĀD̄
′

and

λ̂h =
tr(W hC̄−1

)

p nh
, h = G + 1, . . . , E.

• EVE model: Σh = λ̄D̄AhD̄
′

Âh =
diag(D̄

′
W hD̄)

|diag(D̄
′
W hD̄)|1/p

, h = G + 1, . . . , E.

• EEV model: Σh = λ̄Dh ĀD
′
h

D̂h = Lh, h = G + 1, . . . , E.

• VVE model: Σh = λhD̄AhD̄′
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Let Rh = λh Ah

R̂h =
1
nh

diag(D̄
′
W hD̄), h = G + 1, . . . , E.

and, subsequently
λ̂h = |R̂h|1/p, h = G + 1, . . . , E.

Âh =
1

λ̂h
R̂h, h = G + 1, . . . , E.

• VEV model: Σh = λhDh ĀD
′
h

D̂h = Lh, h = G + 1, . . . , E.

λ̂h =
tr(W hD̂h Ā−1D̂h

′)
p nh

, h = G + 1, . . . , E.

• EVV model: Σh = λ̄Dh AhD
′
h

Let Ch = Dh AhD
′
h

Ĉh =
W h

|W h|1/p , h = G + 1, . . . , E.

Âh, D̂h are obtained through the eigenvalue decomposition of Ĉh, h = G + 1, . . . , E.

• VVV model: Σh = λhDh AhD
′
h

Σ̂h =
1
nh

W h

λ̂h, Âh, D̂h are obtained through the eigenvalue decomposition of Σ̂h, h = G + 1, . . . , E.
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Chapter 4

Robust variable selection in
model-based learning

Based on:

Cappozzo, A., Greselin, F., Murphy, T. B.
“Robust variable selection in model-based learning”
In preparation

4.1 Introduction

The problem of identifying the most discriminating features when performing supervised learn-
ing has been extensively investigated in the past years. In particular, several methods for vari-
able selection in model-based classification have been proposed. Surprisingly, the impact that
outliers and wrongly labeled units cause on the determination of relevant predictors has re-
ceived far less attention, with almost no dedicated methodologies available in the literature:
no one of the wrapper methods listed in Section 1.4.2 provide protection against outliers and
label noise. Nonetheless, the presence of only few adulterated data points can severely under-
mine the variable selection results (see Section 4.3).
A notable exception regards two existing approaches that already provide robust selection of
variables. In linear discriminant analysis (LDA), early-stage wrapper methods consider the
employment of stepwise procedures in testing for no additional information, like the stepwise
MANOVA described in Section 12.3 of McLachlan, 1992: these are usually based on the likeli-
hood ratio test Wilks’ Λ statistic. By respectively employing M-estimates and MCD-estimates
to obtain a robust version of the Wilks’ Λ statistics, Krusińska and Liebhart, 1988 and Todorov,
2007 developed LDA-based techniques for variable selection resistant to outliers. In addition,
a methodology to achieve feature selection for classification problems polluted by label noise
is proposed in Frénay et al., 2014.
Nevertheless, to our best knowledge, wrapper methods that perform robust feature selection in
a more general framework and accounting also for label noise are still missing in the literature.
In order to overcome this limitation, the present chapter proposes two approaches for robust
variable selection in model-based classification: one that embeds the robust classifier devel-
oped in Chapter 2 in a greedy-forward stepwise procedure for model selection (Section 4.2.1);
and the other based on the theory of maximum likelihood estimation and the notion of irrele-
vant variables within robust ML estimation of normal mixtures (Section 4.2.2).
The remaining of the chapter is structured as follows. The two novel variable selection tech-
niques resistant to outliers and label noise are introduced in Section 4.2. Section 4.3 is devoted
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to the comparison of several feature selection procedures within a simulation study in an ar-
tificially contaminated scenario. Section 4.4 presents a high-dimensional discrimination study
where the robust variable selection methods described in Section 4.2 are successfully applied
to a chemometric contest. Section 4.5 concludes the chapter outlying some remarks and future
research directions. Technical issues and computational details for the two novel methods are
respectively deferred to Appendix A (Section 4.6) and B (Section 4.7).

4.2 Robust variable selection in model-based classification

In the present Section we introduce two novel wrapper approaches for robust variable selection
in high-dimensional model-based classification.
In Section 4.2.1, the REDDA method (Section 2.2.2) is embedded in a greedy-forward procedure
for model selection. A robust classification rule is constructed in a stepwise manner, by consid-
ering the inclusion of extra variables into the model and also the removal of existing variables
from the model conditioning on their discriminating power. Particularly, the selection pro-
cedure is based on a robust information criterion, that accounts for the possible presence of
outliers and label noise in the dataset.
In Section 4.2.2, the theory of maximum likelihood estimation and the notion of irrelevant vari-
ables for normal mixtures is employed for defining a ML subset selector, along the lines of
the procedure introduced in section 5.3.3 of Ritter, 2014 for the unsupervised framework. The
identification of the relevant subset is regarded as a parameter to be estimated via ML: an EM-
based procedure is derived for maximizing the objective function. The Section concludes with
a comparison, highlighting strengths and weaknesses of the two proposals.

4.2.1 The robust stepwise greedy-forward approach via TBIC

The present procedure searches for the set of relevant variables in a greedy-stepwise manner.
That is, we start from the empty set and we sequentially add relevant variables until no more
discriminating features are available. More specifically, following the notation introduced in
Sections 1.2.1 and 2.2, in each step of the algorithm we partition the learning observations xn,
n = 1, . . . , N, into three parts xn = (xc

n, xp
n, xo

n), where:

• xc
n indicates the set of variables currently included in the model

• xp
n the variable proposed for inclusion

• xo
n the remaining variables

In order to decide whether to include the proposed variable xp
n, we compare the following two

competing models:

• Grouping (MGR): p(xn|ln) = p(xc
n, xp

n, xo
n|ln) = p(xc

n, xp
n|ln)p(xo

n|xp
n, xc

n)

• No Grouping (MNG): p(xn|ln) = p(xc
n, xp

n, xo
n|ln) = p(xc

n|ln)p(xp
n|xr

n ⊆ xc
n)p(xo

n|xp
n, xc

n)

where xr
n denotes a subset of the currently included variables xc

n. The grouping model spec-
ifies that xp

n provides extra grouping information beyond that provided by xc
n; whereas the

No Grouping model specifies that xp
n is conditionally independent of the group membership

given xr
n. The reason for considering xr

n in the conditional distribution being that xp
n might

be related to only a subset of the grouping variables xc
n (Maugis et al., 2009b; Maugis et al.,

2009a; Maugis et al., 2011). The differences between the two models are graphically illustrated
in Figure 4.1. The model structure of p(xo

n|xp
n, xc

n) is assumed to be the same for both grouping
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MNG ln

xo
n

xp
nxc

n

Grouping

MGRln

xo
n

xp
nxc

n

No Grouping

xr
n ⊆ xc

n

FIGURE 4.1: Graphical Representation of the Grouping and the No Grouping
models

and no grouping specification, and we let p(xc
n, xp

n|ln) and p(xc
n|ln) be a normal density with

parsimonious covariance structure, according to the model assumptions introduced in Section
1.2.1. Additionally, we assume p(xp

n|xr
n ⊆ xc

n) to be a normal linear regression model, as a
result from conditional multivariate normal means. The selection of which model to prefer is
carried out employing a robust approximation to the Bayes Factor. More specifically, the Bayes
Factor (Kass and Raftery, 1995) is equal to the ratio between the integrated likelihood of the
two competing models:

BGR,NG =
p(xn|MGR)

p(xn|MNG)
=

∫
p(xn|θGR,MGR)p(θGR|MGR)dθGR∫

p(xn|θNG,MNG)p(θNG|MNG)dθNG
(4.1)

where θGR and θNG denote the set of parameters for the Grouping and the No Grouping model,
respectively. When no prior preference for one of the two models is considered, (4.1) is equal
to the posterior odds in favour of MGR. The Bayes Factor can therefore be used for assess-
ing to which extent the data supports the Grouping structure compare to the No Grouping
formulation. Along the lines of Raftery and Dean, 2006, the Bayesian Information Criterion

BIC = 2× log maximized likelihood− v log N

is used as an approximation for the integrated likelihoods, where v is a penalty term (number of
parameters in the model) and N is the sample size (Schwarz, 1978). Thus, twice the logarithm
of BGR,NG can be approximated with

2 log (BGR,NG) ≈ BIC(Grouping)− BIC(No Grouping) (4.2)

and a variable xp
n with a positive difference in BIC(Grouping)− BIC(No Grouping) is a candi-

date for being added to the model. For avoiding the detrimental effect that class and attribute
noise might produce in the variable selection procedure, the Trimmed BIC (TBIC), firstly intro-
duced in Neykov et al., 2007, is employed as a robust proxy for the quantities in (4.2). Let us
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define:

TBIC(Grouping) = 2
N

∑
n=1

ζ(xc
n, xp

n)
G

∑
g=1

lng log
(

τ̂
cp
g φ(xc

n, xp
n; µ̂cp

g , Σ̂
cp
g )
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,xp
n ,ln)

+

− vcplog(N∗)

(4.3)

TBIC(No Grouping) = 2
N

∑
n=1

ι(xc
n, xp

n)
G

∑
g=1

lng log
(

τ̂c
gφ(xc

n; µ̂c
g, Σ̂

c
g)
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,ln)

−vclog(N∗)+

−N∗
[

log 2π + 2 log

(
∑N

n=1 ι(xc
n, xp

n)(xp
n − (α̂ + β̂

′
xr

n))
2

N∗

)
+ 1

]
︸ ︷︷ ︸

2×trimmed log maximized likelihood of p(xp
n |xr

n⊆xc
n)

+

− vplog(N∗).

(4.4)

Alternatively, (4.4) can be written as:

TBIC(No Grouping) = 2
N

∑
n=1

ι(xc
n, xp

n)
G

∑
g=1

lng log
(

τ̂c
gφ(xc

n; µ̂c
g, Σ̂

c
g)
)

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xc

n,ln)

−vclog(N∗)+

+2
N

∑
n=1

ι(xc
n, xp

n) log
[
φ
(

xp
n; α̂ + β̂

′
xr

n, σ̂2
)]

︸ ︷︷ ︸
2×trimmed log maximized likelihood of p(xp

n |xr
n⊆xc

n)

−vplog(N∗).

(4.5)

The penalty terms vcp and vc indicate the number of parameters for a REDDA model respec-
tively estimated on the set of variables xc

n, xp
n and xc

n; while vp accounts for the number of pa-
rameters in the linear regression of xp

n on xr
n. The 0-1 indicator functions ζ(·) and ι(·) identify

the subset of observations that have null weight in the trimmed likelihood under the grouping
and no grouping models, with N∗ = ∑N

n=1 ζ(xn) = ∑N
n=1 ι(xn).

In detail, the parameters
{

τ
cp
g , µ

cp
g Σ

cp
g
}

, g = 1, . . . , G of the grouping model are estimated
through a standard REDDA fitted on the variables xc

n, xp
n, in which the C-step is enforced dis-

carding bNαlc% of the samples with lowest value of

DGrouping
(
xc

n, xp
n; θ̂GR

)
=

G

∑
g=1

lng log
[
φ
(

xc
n, xp

n; µ̂cp
g , Σ̂

cp
g

)]
n = 1, . . . , N. (4.6)

For the no grouping model, REDDA needs to be fitted only on the set of currently included
variables xc

n, coupled with the linear regression of xp
n on xr

n. For this case, the discriminating
function reads:

DNo Grouping
(
xc

n, xp
n; θ̂NG

)
=

G

∑
g=1

lng log
[
φ
(

xc
n; µ̂c

g, Σ̂
c
g

)]
+

+ log
[
φ(xp

n; α̂ + β̂
′
xr

n, σ̂2)
] (4.7)
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for n = 1, . . . , N. That is, at each iteration of the procedure that leads to the final robust es-
timates, we discard the bNαlc% of the sample with the lowest contribution to the conditional
likelihood under the no grouping model. Once the C-step is enforced, the set of parameters{

α, β, σ2} for the regression part is robustly estimated via ML on the untrimmed observations,
in which a stepwise method is employed for automatically choosing the subset of regressors
xr

n. Details on the procedure are reported in Appendix A (Section 4.6).
After each addition stage, we make use of the same procedure described above to check whether
an already chosen variable in xc

n should be removed: in this case xp
n takes the role of the vari-

able to be dropped, and a positive difference in terms of TBIC implies the exclusion of xp
n to the

set of currently included variables. The procedure iterates between variable addition and re-
moval stage until two consecutive steps have been rejected, then it stops. Notice that, whenever
αl = 0, BIC and TBIC coincide and the entire approach reduces to the methodology described
in Maugis et al., 2011.
A last worthy note regards the theoretical justification for the employment of TBIC as an ap-
proximation of the integrated likelihood. The rationale arises from the spurious outliers model,
firstly defined in Gallegos and Ritter, 2005 and briefly introduced in Section 1.3.1, as the proba-
bilistic specification for the contaminated sub-sample. Let qn denote an indicator of genuine
observations, such that qn = 1 when {(xn, ln)} is a “regular" unit and qn = 0 whenever
{(xn, ln)} presents some sort of contamination/adulteration. Notice that the complete obser-
vation {(xn, ln)} might be regarded as an outlier whenever either the associated label and/or
some of its predictors present unusual values. In such a way, we account for both attribute
and class noise. The data generating distribution for a specific observation {(xn, ln)} is then
assumed to be as follows:

p(xn, ln|qn; θ) = p(xn, ln; θ)qn w(xn, ln; ψn)
(1−qn) (4.8)

where p(xn, ln; θ) denotes the probability distribution for the regular bulk of the data, in our
context being alternatively the Grouping or the No Grouping model; and w(xn, ln; ψn) is an
almost arbitrary, subject specific probability density function, parametrized by ψn ∈ Ψn. For
an independent sample of N observations, the likelihood for the model in (4.8) is therefore
given by:

N

∏
n=1

p(xn, ln; θ)qn
N

∏
n=1

w(xn, ln; ψn)
(1−qn) (4.9)

where a fixed αl% of contamination is assumed such that N∗ = ∑N
n=1 qn = dN(1− αl)e.

LetN = {N1, N0} be a partition of N into regular and non-regular observations, indexed by qn
being either 1 or 0 for n = 1, . . . , N, with |N1| = dN(1− αl)e and |N0| = bNαlc, respectively.
Further, denote with D(N) the set of all partitions of such type, with |D(N)| = ( N

dN(1−αl)e). The
non-regular contribution of the contaminated observations can be avoided in maximizing (4.9)
with respect to θ when the w(·; ψn)’s satisfy

arg max
N∈D(N)

max
θ

N

∏
n=1

p(xn, ln; θ)qn ⊆ arg max
N∈D(N)

max
ψ1,...,ψN

N

∏
n=1

w(xn, ln; ψn)
(1−qn). (4.10)

The condition in (4.10) means that the configuration that maximizes the first factor in (4.9) also
maximizes the second one (Gallegos and Ritter, 2005). More specifically, the partitions assign-
ing dN(1− αl)e regular units that maximize the likelihood of the genuine observations are con-
tained in the set of partitions assigning bNαlc non regular units that maximize the likelihood
corresponding to the noise. Condition (4.10) holds under general and non-restrictive assump-
tions on the non regular units, particularly, w(·; ψn) can easily accommodate observations that
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can be merely regarded as outliers (Gallegos and Ritter, 2005; García-Escudero et al., 2008). The
contaminated observations are therefore no more considered in the estimation process, and the
model log-likelihood simplifies to:

N

∑
n=1

qn log p(xn, ln; θ) (4.11)

to be maximized with respect to the set of parameters θ; details are reported in Appendix A
(Section 4.6). Finally, the integrated likelihood for (4.11) can be approximated via the Bayesian
Information Criterion:

2
N

∑
n=1

qn log p(xn, ln; θ̂)− v log N∗ (4.12)

where θ̂ denotes MLE for the simplified log-likelihood, v is the number of parameters and
N∗ is the number of data values that contribute to the summation in (4.11) (Kass, 1993). An
initial attempt of generalizing and formally proving this result is reported in Appendix D.
Depending which scenario is considered, (4.12) defines (4.3) or (4.4) under the Grouping and
the No Grouping model, respectively.

4.2.2 The ML subset selector approach

The second approach we consider for robust variable selection in model-based classification
stems from the maximum likelihood subset selector theory developed for clustering, where
the main reference is Section 5.3.3 of Ritter, 2014. Particularly, being classification a gener-
ally simpler problem than unsupervised learning, the ML subset selection ideas are naturally
adapted to a robust supervised context with variable selection. Here we build a model for the
entire P-dimensional space in which the observations lie, and exploit theoretical results for the
conditional distribution of the multivariate Gaussian under irrelevance. Let us introduce the
following notation: for a positive semi-definite matrix Σ ∈ PD(P), denote its restriction to the
variables in F ⊆ 1, . . . , P by ΣF, with size |F| = p. The block-wise representation of Σ, via the
natural order of F, is therefore:

Σ =

(
ΣF ΣF,E

ΣE,F ΣE

)
with E = F̄ and |E| = P − p. Analogously, the vector µF is the projection of µ ∈ RP onto
the variables in F, following the natural order of F. For a generic observation xn ∈ RP, the
canonical projection of a normal distribution to a subset F of variables is described by the
restrictions µF and ΣF of its parameters, with the equality Nµ,Σ(xn,F) = NµF ,ΣF(xn,F) such that
xn,F ∼ N(µF, ΣF). Considering the notation introduced in Section 1.2.1 and applying standard
results for multivariate normal theory, (see, for example, Theorem 3.2.4 in Mardia et al., 1979),
the conditional distribution of xn,E given xn,F, ln reads:

xn,E|xn,F, ln = g ∼ φ(xn,E −Gg,E|Fxn,F; µg,E|F, Σg,E|F) (4.13)

where µg,E|F = µg,E − Gg,E|Fµg,F, Σg,E|F = Σg,E − Gg,E|FΣg,F,E and Gg,E|F = Σg,E,FΣ−1
g,F, g =

1, . . . , G. Now assume that E is an irrelevant subset with respect to F, that is, the class mem-
bership ln is conditionally independent of xn,E given xn,F. By Lemma 5.2 and Theorem 5.7 of
Ritter, 2014, the parameters Gg,E|F, µg,E|F and Σg,E|F do not depend on the class g; applying the
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product formula we obtain the following specification for the joint density of (xn,F, xn,E, ln):

p(xn,F, xn,E, ln) = p(xn,F, xn,E|ln)p(ln) =

= p(xn,E|xn,F, ln)p(xn,F|ln)p(ln) =

= p(xn,E|xn,F)p(xn,F|ln)p(ln).
(4.14)

Therefore, for a sample of N observations, the associated trimmed log-likelihood for the prob-
ability density in (4.14) is:

`trim(τ, µF, ΣF, GE|F, µE|F, ΣE|F|X, l) =

=
N

∑
n=1

ζ(xn)

(
G

∑
g=1

lng log
[
τgφ(xn,F; µg,F, Σg,F)

]
+

+ log
[
φ(xn,E −GE|Fxn,F; µE|F, ΣE|F)

] )
(4.15)

where the identification of the relevant variables belonging to the subset F is regarded as a
model parameter. Maximization of (4.15) is carried out via a modification of the EMST al-
gorithm introduced in Ritter, 2014, adapted to the classification framework and extended to
flexibly account for the entire family of patterned models of Bensmail and Celeux, 1996. The
main steps involving the estimation procedure are given below, further details concerning the
implementation can be found in Appendix B (Section 4.7).

1. Robust Initialization:

• If N is sufficiently large compared to P and G, draw a random (P + 1)-subset for
each class g, g = 1, . . . , G, set ζ(xn) = 1 if xn belongs to any of such G subsets,
otherwise set ζ(xn) = 0. Go to step 2 of the algorithm.

• If N is small compared to P and G, draw a random (p + 1)-subset for each class g,
g = 1, . . . , G and set ζ(xn) = 1 if xn belongs to any of such G subsets, otherwise set
ζ(xn) = 0.
Draw a random subset F̂(0) of dimension p from 1, . . . , P and compute:

µ̂g,F̂(0) =
∑N

n=1 ζ(xn)lngxn,F̂(0)

∑N
n=1 ζ(xn)lng

g = 1, . . . , G,

and Σ̂
(0)
g,F̂(0) , g = 1, . . . , G, depending on the considered patterned model, refer to

Bensmail and Celeux, 1996 for the details. Lastly, update the trimming function
ζ(xn), n = 1, . . . , N, setting ζ(xn) = 0 for bNαlc% of the samples with lowest value
of

lng log
[
φ(xn,F(0) ; µ̂

(0)
g,F(0) , Σ̂

(0)
g,F(0))

]
and ζ(xn) = 1 otherwise.

2. (M-step)

Compute:

τ̂g =
∑N

n=1 ζ(xn)lng

dN(1− αl)e
g = 1, . . . , G
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µ̂g =
∑N

n=1 ζ(xn)lngxn

∑N
n=1 ζ(xn)lng

g = 1, . . . , G.

Estimation of Σg depends on the considered patterned model, details are given in Bens-
mail and Celeux, 1996.

Notice that the estimates are computed for the full dimension P, that is µ̂g ∈ RP and
Σ̂g ∈ PD(P), respectively. In addition, robustly compute also the pooled mean:

µ̂ =
∑N

n=1 ζ(xn)xn

dN(1− αl)e
.

Depending on the considered patterned model, formulae for the associated pooled esti-
mate Σ̂ are detailed in Appendix B (Section 4.7).

3. (S-step)

Minimize the difference:

h(F) =
G

∑
g=1

τ̂g log det Σ̂g,F − log det Σ̂F (4.16)

w.r.t. the subset F̂ ⊆ 1, . . . , P, with |F̂| = p, where Σ̂g,F̂ is the restriction of Σ̂g to F̂. The
minimization of (4.16) involves a discrete structure optimization, that becomes quickly
unfeasible as (P

p) grows: a genetic algorithm is proposed for solving it. More details are
reported in Appendix B (Section 4.7).

4. (T-step)

Compute the MLE’s for the regression parameters

ĜÊ|F̂ = Σ̂Ê,F̂Σ̂
−1
F̂

µ̂Ê|F̂ = µ̂Ê − ĜÊ|F̂µ̂F̂

Σ̂Ê|F̂ = Σ̂Ê − Σ̂Ê,F̂Σ̂
−1
F̂ Σ̂F̂,Ê

And update the value of the trimming function ζ(·), setting ζ(xn) = 0 for bNαlc% of the
samples with lowest value of

G

∑
g=1

lng log
[
τ̂gφ(xn,F̂; µ̂g,F̂, Σ̂g,F̂)

]
+ log

[
φ
(

xn,Ê − ĜÊ|F̂xn,F̂; µ̂Ê|F̂, Σ̂Ê|F̂
)]

5. Iterate 2− 4 until the bNαlc discarded observations are exactly the same on two consecu-
tive iterations, then stop.

The procedure described in steps 1-5 shall be performed n_init times, and the parameter esti-
mates that lead to the highest value of the objective function (4.15), out of n_init repetitions,
provide the final estimated quantities. As a last worthy comment, notice that the specification
of the cardinality of F, i.e., the number p of relevant variables that are sought by the estimation
algorithm, is a-priori required as a model hyper-parameter.
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4.2.3 Methods comparison

In the previous subsections two novel methods for robust variable selection in model-based
classification have been introduced. As already anticipated, the main operational difference
between the two relies on the fact that the ML subset selector requires the a-priori specification
of the subset-size p, whereas the greedy-forward approach via TBIC automatically infers the
number of relevant variables by means of a stopping criterion in the stepwise search. This
could come both as an advantage and as a disadvantage: one may desire to specifically retain
the p most relevant variables (i.e., p = 2 for visualization purposes). In this case, the ML
subset selector approach shall be preferred, as the entire feature space P is accounted for in
the likelihood specification in (4.15), contrarily to the greedy approach employed in Section
4.2.1. If this is not the case, run the algorithm for a reasonable range of values p and select
the favourite solution, consensus methods like the one in Strehl and Ghosh, 2003 for clustering
can be adapted to the classification framework. In addition, if computational burden is not an
issue, the greedy-forward approach via TBIC can be firstly employed for assessing the order of
magnitude of the subset size, and afterwards the ML subset selector can be run varying p in
the proximity of the number of relevant variables found by the former method, qualitatively
assessing the difference.
Clearly, the suggestions above are mostly heuristic, a more formal treatment on how to compare
and validate results from both procedures is still missing: this however goes beyond the scope
of the present manuscript and it will be the object of future research.

4.3 Simulation study

The aim of this simulated example is to numerically assess the effectiveness of the method-
ologies introduced in Section 4.2, whilst investigating the effect that a (small) percentage of
contamination has on standard variable selection procedures. In doing so, we decided to rely
on the same data generating process (DGP) considered in Maugis et al., 2011 and Celeux et al.,
2019, including in addition some attribute and class noise to the original experiment.

4.3.1 Experimental setup

The synthetic dataset considers G = 4 classes for a total of P = 16 features: the first three are
relevant for the classification, the subsequent four are redundant given the first ones while the
last nine are independent from both the group variable and the previous predictors. The prior
probabilities of the four classes are equal to τ = (0.15, 0.3, 0.2, 0.35). On the three discriminant
variables, data are generated from multivariate normal densities

x[1−3]
n |ln = g ∼ φ

(
µg, Σg

)
, g = 1, . . . , 4

with mean vectors
µ1 = (1.5,−1.5, 1.5)′, µ2 = (−1.5, 1.5, 1.5)′

µ3 = (1.5,−1.5,−1.5)′, µ4 = (−1.5, 1.5,−1.5)′

and covariance matrices Σg with elements ρ
|i−j|
g , 1 ≤ i, j ≤ 3, and ρ1 = 0.85, ρ2 = 0.1, ρ3 = 0.65,

ρ4 = 0.5. The four redundant variables are sampled from

x[4−7]
n ∼ N

(
x[1,3]

n

(
1 0 −1 0
0 −2 2 1

)
; I4

)
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while the 9 independent ones are simulated from x[8−16]
n ∼ N(γ, δ) with

γ = (−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2)

and
δ = diag(0.5, 0.75, 1, 1.25, 1.5, 1.25, 1, 0.75, 0.5).

A total of B = 100 Monte Carlo (MC) experiments are conducted as follows. From the DGP
outlined above, N = 500 units are generated and their group membership retained for con-
structing the training set; while M = 5000 unlabeled observations compose the test set. Subse-
quently, label noise is simulated by wrongly assigning 20 units coming from the fourth group
to the third class. In addition, 5 uniformly distributed outliers, having squared Mahalanobis
distances from µg greater than χ2

3,0.975 ∀g ∈ {1, 2, 3, 4}, are appended to the training set, with
randomly assigned labels. These contaminations produce, in each MC replication, a total of 25
adulterated units, that account for slightly less than 5% of the entire learning set. In the up-
coming Section, we validate the performance of our novel methods in correctly retrieving the
relevant variables, compared to non-robust procedures. Particularly, the comparison is carried
out considering the following methods:

• TBIC: robust stepwise greedy-forward approach via TBIC (Section 4.2.1)

• ML subset: maximum likelihood subset selector approach (Section 4.2.2), with subset size
of relevant variables p equal to 3, 6 and 9

• SRUW: stepwise greedy-forward approach via BIC (Maugis et al., 2011)

• SelvarMix: variable selection in model-based discriminant analysis with a regularization
approach (Celeux et al., 2019).

Furthermore, once the important variables have been identified, the associated classifier (i.e.,
REDDA for the robust variable selection criteria and EDDA for the non-robust ones) is trained
on the reduced set of predictors and the classification accuracy is computed on the test set. A
labeled trimming level αl equal to 0.05 was kept fixed during the experiment. Lastly, for provid-
ing benchmark values on the relevance of feature selection, both EDDA and REDDA classifiers
are also fitted on the original set with P = 16 variables. Simulation results are presented in the
next Section.

4.3.2 Simulation results

Figure 4.2 graphically displays the proportion of times a variable has been selected as relevant
by the different methods in the B = 100 repetition of the simulated experiment. As it is clearly
visible from the plot, the first three features are selected by all the procedures in almost ev-
ery repetition of the simulation study. The only exception is the SRUW model, for which the
third variable is identified as relevant only 92 times out of 100. Generally therefore, the con-
tamination introduced in the training set does not cause any systematic exclusion of the true
discriminative variables from the relevant subset, also for the non-robust methods. Nonethe-
less, outliers and label noise lead SRUW and SelvarMix to severely overestimate the number
of retained features. Redundant and irrelevant variables are often included in the selection,
as demonstrated by the hollow triangles and diamonds in Figure 4.2. The robust stepwise ap-
proach via TBIC instead does not seem to suffer from this unfavorable behavior: it correctly
identifies the first three relevant variables in every single simulation. As already pointed out in
Section 4.2.3, the main drawback of the maximum likelihood subset selector approach is given
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FIGURE 4.2: Proportion of times a variable has been selected as relevant, out
of B = 100 MC repetition of the simulated experiment, for different variable
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tion of the simulated experiment, for the M = 5000 test data, varying variable

selection and model-based classification methods.
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by the need of pre-specifying the subset size p. When p = 3, i.e., the true number of discrim-
inating variables, the algorithm always correctly selects the relevant ones. Clearly, when p is
set higher than three, some irrelevant and/or redundant features will be necessarily included
in the retained set. However, letting p to be greater than the true relevant predictors does not
seem to severely affect the predictive power of the robust classification rule. As it can be seen
from the results reported in Table 4.1 and in Figure 4.3, the misclassification errors are only
slightly influenced by the choice of p in the ML subset selector, and are always lower than non-
robust procedures. As expected, the best prediction accuracy is obtained when p = 3, result
that entirely agrees with the one obtained by the forward selection algorithm via TBIC, as the
very same variables are selected for each simulation and, subsequently, the REDDA classifier is
fitted on the retained subset. Interestingly, the EDDA classifier coupled with (non-robust) vari-

TABLE 4.1: Average misclassification error, out of B = 100 MC repetition of the
simulated experiment, for the M = 5000 test data, varying variable selection and
model-based classification methods. Standard deviations reported in parenthe-

ses.

Method Misclassification Method Misclassification
Error Error

ML subset (p=3) 0.0409 REDDA No Var Sel 0.051
(0.0026) (0.0026)

ML subset (p=6) 0.0455 SRUW 0.072
(0.0037) (0.0037)

ML subset (p=9) 0.0493 SelvarMix 0.0639
(0.0028) (0.0028)

TBIC 0.0409 EDDA No Var Sel 0.073
(0.0026) (0.0026)

able selection via either SelvarMix or SRUW shows on average higher misclassification error
than REDDA learned on the entire set of features. That is, the harmful effect of adulterated ob-
servations is increased by the presence of noisy variables, also shown by the poor performance
of EDDA with no feature selection.
The present simulation study highlights how a very small percentage of attribute and class
noise may somewhat spoil a wrapper procedure, driving the algorithm to include many more
features than the truly relevant ones. That is, when adulterated units are not properly dealt
with, both feature identification and classification may provide inappropriate results, with bias
in the former propagating to badly affect the derived classifier even further. Therefore, re-
placing standard methods with robust solutions seem paramount whenever it is believed the
considered dataset may contain some noisy units, especially in high dimensional settings.

4.4 Application to MIR spectra: starches discrimination

Chemometrics is a natural field of application for high-dimensional statistics, as data recorded
from chemical systems are complex in nature and generally limited in terms of sample size. In
particular, variable selection methods are notably appealing for observations recorded by spec-
troscopic instruments: for virtually continuous spectra the information contained in adjacent
features is often correlated, and thus the determination of a relevant subset of wavelengths is
desirable prior to perform any subsequent analysis (Brown, 1992; Brenchley et al., 1997). Fur-
thermore, data reduction simplifies results interpretation, making future measurements sim-
pler and cheaper (Indahl and Næs, 2004).
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FIGURE 4.4: Midinfrared spectra of starches of four different classes, training set.

Spectroscopic data are recorded during controlled experiment, and the quality of both mea-
surements and analysed substances is, in most cases, reliable. Nevertheless, calibration errors
may appear during spectra collection, and, moreover, for some delicate applications such as
food authenticity, the raw material itself may be spoiled and/or adulterated (Reid et al., 2006).
In this context therefore, variable selection methods that not only robustly identify relevant
wavelengths, but also recognize outliers and possibly fraudulent samples may be particularly
valuable to chemometricians. Motivated by a Mid-infrared (MIR) dataset of the chemometric
challenge organized during the ‘Chimiométrie 2005’ conference, the methodologies introduced
in Section 4.2 are employed for performing high-dimensional classification and outlier detec-
tion.

4.4.1 Data

The considered datasets, described in Fernández Pierna and Dardenne, 2007, include respec-
tively N = 215 (training set) and M = 43 (test set) MIR spectra of starches of four different
classes, taken on a Perkin-Elmer Spectrum 2000 FTIR spectrometer (Perkin Elmer Corporation,
Norwalk, CT, USA) between 4000 and 600 cm−1 at 1 cm−1 data interval, for a total of P = 2901
absorbance measurements for each sample. A subset of the learning observations is displayed
in Figure 4.4. In order to create an extra difficulty to be tackled by the participants during the
competition, four outliers were included in the test set:

• Sample 2: a shifted version of unit 1, obtained by removing its first six data points and
appending six new variables at the end of the spectrum;

• Sample 4: a noisy version of unit 2, by generating Gaussian white noise and multiplying
it by the absorbance values of the sample;

• Sample 43: a modified version of unit 39, obtained by manually changing a data point on
the spectrum (wavelength 2456) to simulate a spike;

• Sample 20: a modified version of unit 17, by adding a slope to its original spectrum.

Therefore, the discrimination challenge held during ‘Chimiométrie 2005’ consisted in learning
a classification rule from the training set to predict the labels of the test units, whilst also per-
forming adulteration detection on the latter. In our experiment, we additionally include label
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FIGURE 4.5: Generalized pairs plot of the relevant variables selected by the step-
wise greedy-forward approach via TBIC. Starches dataset, training samples.

noise by wrongly assigning the last four units of the third group of starches to the fourth one:
this accounts for less than 2% of the entire training set. Classification results are reported in the
next Section.

4.4.2 Results

The discriminating problem described in the previous Section cannot be solved by directly ap-
plying model-based classifiers, since N � P. For overcoming this issue, we make use of the
robust wrapper variable selection methods introduced in this chapter: such approaches pro-
vide a natural solution for dealing with contaminated high-dimensional data, and, as we will
see, they can be further used to identify the noisy units in the test set. We firstly run the step-
wise greedy-forward approach via TBIC (Section 4.2.1) with αl = 0.05: the procedure, out of
P = 2901, selects a total of only six relevant wavelengths: 1773, 1999, 2506, 1946, 1819 and
2504. Figure 4.5 displays the generalized pairs plot for the selected variables. Motivated by
the TBIC output and by the results presented in the Simulation Study, we decided to retain
a slightly higher number of relevant variables in the ML subset selector, setting the value of
p to be equal to 9. In doing so, the ML subset selector estimates the relevant subset F to be
comprised of the following wavelengths: 1747, 1790, 1854, 1936, 2190, 2246, 2278, 2412 and
2503. A generalized pairs plot of such subset is reported in Figure 4.6. Interestingly, the two
approaches select entirely different wavelengths as to be the most discriminative ones. Care-
ful investigation of this behavior shows high correlation between the variables selected by the
two methodologies, while the correlation reported by features within the same subset is much
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FIGURE 4.6: Generalized pairs plot of the relevant variables selected by ML sub-
set selector with p = 9. Starches dataset, training samples.
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lower. Clearly, in dealing with real datasets the separation between relevant, irrelevant and re-
dundant variables is much less apparent. Particularly for spectroscopic data, highly correlated
wavelengths often result in very comparable discriminating power, with no natural preference
in terms of relevance. Nevertheless, it is worth noting that both methods chose wavelengths
from the right-hand side part of the spectrum, as it seems to delineate the highest separation
between the different starches, also by visual inspection of Figure 4.4.
A REDDA model with αl = 0.05 is employed to predict the class for the test samples, using
as predictors the variables retained by the TBIC and ML subset selector, respectively. In both
cases, units that present class noise in the training set were correctly identified as such and
not accounted for in the estimation procedure. In addition, a Support Vector Machine with
Gaussian radial kernel (SVM) was also considered, as it was shown to be the best performing
classifier for this specific dataset (Fernández Pierna et al., 2005; Fernández Pierna and Dard-
enne, 2007). Lastly, we replicate the second best solution proposed by one of the participants:
an ensemble method was constructed by combining ROC, PLS and SVM predictions via ma-
jority vote on a subset of variables, previously determined by a PLS model. Classification ac-
curacy for the four competing methods, considering test sets with and without modified units,
is reported in Table 4.2: the robust model-based classifiers show better results than the other

TABLE 4.2: Number of correctly predicted test samples and associated misclassi-
fication error for different methods. The test set with and without outliers has a

total sample size of M = 43 and M = 39, respectively.

REDDA REDDA SVM ROC+PLS+SVM
(TBIC) (ML subset) radial kernel

With outliers
# correctly predicted 34 36 32 33

% correctly predicted 0.791 0.837 0.744 0.767

Without outliers
#correctly predicted 32 34 31 31

% correctly predicted 0.821 0.872 0.795 0.795

solutions. The performance of the kernel and ensemble methods are negatively impacted by
the presence of the 4 mislabelled units in the training set: compare results in Table 4.2 with the
ones reported in Table 1 of Fernández Pierna and Dardenne, 2007, wherein the classifiers were
trained on an uncontaminated learning set. The relevant subsets retained by both robust vari-
able selection methods lead to similar results in terms of classification accuracy, with a slight
better performance when REDDA is fitted on the features identified by the ML subset selector
approach. As already pointed out in Fernández Pierna and Dardenne, 2007, the main source of
errors is due to the difficulties in separating classes 1 and 2, as it is evident also from Figure 4.5
and 4.6.
We mentioned at the beginning of the Section that the REDDA method can be effectively em-
ployed in performing outlier detection in the test set. Particularly, given the probabilistic as-
sumptions that underlie the methodology, for each test unit ym, m = 1, . . . , M, we can compute
its estimated marginal density as follows:

p̂(ym,F̂; τ̂, µ̂F̂, Σ̂F̂) =
G

∑
g=1

τ̂gφ
(

ym,F̂; µ̂g,F̂, Σ̂g,F̂

)
(4.17)

where F̂ denotes either the relevant variables identified by the stepwise approach with TBIC
or by the ML subset selector, with parameters robustly estimated via the REDDA model on the
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retained features. For both variable selection approaches, the 3 observations ym with lowest
value of (4.17) are units 2, 4 and 20; all of them were manually modified, as described in Section
4.4.1. The only neglected outlier is unit 43: it was contaminated on a single wavelength that
was not identified as relevant by the variable selection methods. Nonetheless, by using an
impartial trimming approach, we are effectively able to identify 3 out of 4 adulterated units.
In this Section, we have shown that the proposed noise-resistant variable selection approaches,
coupled with robust discriminant analysis, can be effectively employed in performing high-
dimensional classification in an adulterated framework. Even though being notably noise toler-
ant, powerful classifiers such as Support Vector Machine provide lower classification accuracy
when a small percentage of class noise is present in the training set. In addition, after parame-
ters have been robustly estimated, our proposal can be used to recognize possible adulterated
units in the test set. All in all, an automatic methodology that performs robust feature detec-
tion, parameters estimation and outlier identification may become beneficial in chemometrics,
easing both pre and post processing steps of complex spectroscopic analyses.

4.5 Concluding remarks

In the present chapter we have introduced two wrapper variable selection methods, resistant
to outliers and label noise. We have shown that by means of these approaches we can effec-
tively perform high-dimensional discrimination in an adulterated scenario. The first wrapper
method embeds a robust model-based classifier within a greedy-forward algorithm, validating
stepwise inclusion and exclusion of variables from the relevant subset via a robust information
criterion. Theoretical justification that corroborates the procedure is also discussed. The sec-
ond wrapper method resorts to the theory of maximum likelihood and irrelevance, defining
an objective function in which the subset of relevant variables is regarded as a parameter to be
estimated. A dedicated algorithm for MLE within a Gaussian family of patterned models has
been developed, and practical implementation issues have been considered. Further, pros and
cons of the two novel procedures have been discussed. A simulation study has been devel-
oped for assessing the effectiveness of our proposals in recovering the true discriminative fea-
tures in a contaminated scenario, comparing their performances against well-known variable
selection criteria. The novel methods have then been successfully applied in solving a high-
dimensional classification problem of contaminated spectroscopic data. High discriminating
power has been exhibited by the final models, whence the identification of the wrongly labeled
and/or adulterated observations is derived as a by-product of the estimation procedures.
An open point for further research regards the extension of the fully supervised framework
outlined here to the adaptive one, embedding the semi-supervised procedure introduced in
Chapter 3 within a robust variable selection approach. In addition, careful investigation will be
devoted to the development of a methodology that automatically assesses the contamination
rate present in a sample, as the a-priori specification of the trimming level still remains an open
issue in this field, particularly delicate for high-dimensional data.

4.6 Appendix A

In this Section we retrieve the ML estimates for the grouping and no grouping structures in
the robust stepwise greedy-forward approach (Section 4.2.1), by means of the spurious outliers
model specification.



90 Chapter 4. Robust variable selection in model-based learning

4.6.1 Grouping model

The log-likelihood function of the spurious outliers model under the grouping structure is:

`(N , τcp, µcp, Σcp) =
N

∑
n=1

qn

G

∑
g=1

lng log
(
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cp
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n, xp
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+

+
N

∑
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(1− qn) log w(xc
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n, ln; ψn)

(4.18)

to be maximized with respect to {N , τcp, µcp, Σcp}. The problem then reads:

max
N∈D(N)

[
max

τcp,µcp,Σcp
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(4.19)

By property (4.10), any configuration that maximizes the first addend in (4.19) also maximizes
the second one. For a fixed partition N ∈ D(N), the MLE for the first quantity are given by:

τ̂
cp
g =

∑N
n=1 qnlng

dN(1− αl)e
g = 1, . . . , G

µ̂cp
g =

∑N
n=1 qnlng(xc

n, xp
n)

∑N
n=1 qnlng

g = 1, . . . , G.

Estimation of Σ
cp
g depends on the considered patterned model, details are given in Bensmail

and Celeux, 1996. Operatively, the final estimates are obtained via a REDDA model fitted on
xc

n, xp
n, see Section 2.2.

4.6.2 No grouping model

The log-likelihood function of the spurious outliers model under the no grouping structure is:

`(D, τc, µc, Σc, α, β, σ2) =
N

∑
n=1
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(4.20)
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to be maximized with respect to {N , τc, µc, Σc, α, β, σ2}. The problem then reads:

max
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(4.21)

By property (4.10), any configuration that maximizes the sum of the first and second addend
in (4.21) also maximizes the third one. For a fixed partition N ∈ D(N), the first two quantities
can be separately maximized, leading to the following MLE

τ̂c
g =

∑N
n=1 qnlng

dN(1− αl)e
g = 1, . . . , G

µ̂c
g =

∑N
n=1 qnlngxc

n

∑N
n=1 qnlng

g = 1, . . . , G.

for the former addend, where as usual Σ̂
c
g depends on the considered patterned model. ML

estimates for the regression coefficients are obtained solving the following minimization prob-
lem:

min
α,β

N

∑
n=1

qn(xp
n − α− β

′
xr

n)
2 (4.22)

which is very similar to the least trimmed squares method (Rousseeuw, 1984). Lastly, the vari-
ance is estimated as follows:

σ̂2 =
1

dN(1− αl)e
N

∑
n=1

qn(xp
n − α̂− β̂

′
xr

n).

Operatively, the MLE for (4.20) are obtained combining a REDDA model on xc
n with a robust

linear regression of xp
n on xr

n. The discriminating function in (4.7) is used to determine the subset
of untrimmed units on which to compute the estimates defined above, iterating the algorithm
until the same observations are discarded in two consecutive steps. Lastly, at each iteration, the
subset of variables xr

n is determined with the bicreg function in the BMA R package (Raftery et
al., 2018).

4.7 Appendix B

This final Section discusses the computational details of the algorithm used for fitting the ML
subset selector, whose main steps are reported in Section 4.2.2. For achieving flexibility, par-
simony and computational speed, the family of patterned models based on the eigenvalue
decomposition in (1.13) of Bensmail and Celeux, 1996 is considered. Let us further introduce
the following notations: for a d× d matrix A, diag(A) denotes the d× d diagonal matrix whose
diagonal entries are the same of the matrix A. Lastly, A(i, j) denotes the scalar entry at the ith
row and jth column of the matrix A.
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4.7.1 Computational details on the M-step

As previously mentioned, we refer the reader to Bensmail and Celeux, 1996 for a complete
treatment on the estimation of Σg, g = 1, . . . , G under the 14 covariance structures. Condition-
ing on the chosen model, the estimation of the pooled covariance matrix Σ has the following
form:

• Ellipsodial:

Σ̂ell =
1

dN(1− αl)e
N

∑
n=1

ζ(xn)
[
(xn − µ̂)(xn − µ̂)

′]
for EEE, VEE, EVE, EEV, VVE, VEV, EVV and VVV models

• Diagonal:
Σ̂diag = diag(Σ̂ell)

for EEI, VEI, EVI, VVI models.

• Spherical:

Σ̂ =
1
P

P

∑
d=1

Σ̂diag(d, d)IP

for EII, VII models

4.7.2 Computational details on the S-step

The S-step involves a discrete structure optimization, where we seek to determine the set of
p variables that minimizes (4.16). Solving the problem by exhaustive enumeration is feasible
only when (P

p) is not too large, sadly it is rarely the case in a high-dimensional setting. Thus, the
considered implementation relies on a stochastic algorithm for fixed-size subset selection, by
means of the kofnGA R package (Wolters, 2015). Nonetheless, for specific patterned structures,
simpler form of the objective function may be derived: see the following sections.

EEE model

For the homoscedastic model (EEE), (4.16) simplifies as follows:

h(F) = log det Σ̂EEE,F − log det Σ̂ell,F (4.23)

where

Σ̂EEE,F =
1

dN(1− αl)e
G

∑
g=1

n̂g

N

∑
n=1

ζ(xn)
[
(xn,F − µ̂g,F)(xn,F − µ̂g,F)

′]
and

n̂g =
∑N

n=1 ζ(xn)lng

dN(1− αl)e
.

It is nevertheless computationally efficient to derive Σ̂EEE for the full dimension P at once and
to extract the sub-matrix Σ̂EEE,F when needed.
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VVI model

For the heteroscedastic diagonal model (VVI), (4.16) simplifies to:

h(F) = ∑
k∈F

G

∑
g=1

τ̂g log
Σ̂g(k, k)

Σ̂diag(k, k)
(4.24)

for which F̂ is the set of the indices k with the p smallest sums ∑G
g=1 τ̂g log Σ̂g(k,k)

Σ̂diag(k,k)
.

EEI model

For the homoscedastic diagonal model (EEI), (4.16) reads:

h(F) = ∑
k∈F

log
Σ̂EEI(k, k)
Σ̂diag(k, k)

(4.25)

with

Σ̂EEI =
1

dN(1− αl)e
G

∑
g=1

n̂gdiag

(
N

∑
n=1

ζ(xn)
[
(xn,F − µ̂g,F)(xn,F − µ̂g,F)

′])
.

In this case, F̂ is the set of the indices k with p smallest quotients Σ̂EEI(k,k)
Σ̂diag(k,k)

.

4.7.3 Computational details on the T-step

When the full dimension P is large, it may occur that Σ̂Ê|F̂ is not of full rank. In this case, it is
still possible to estimate a singular normal distribution on a subspace of the set Ê of irrelevant
variables. The associated density will then be:

(2π)−k/2(
∏K

k=1 ωk

)1/2 exp
{
−1

2
(xn,Ê − ĜÊ|F̂xn,F̂ − µ̂Ê|F̂)

′Σ̂
−
Ê|F̂(xn,Ê − ĜÊ|F̂xn,F̂ − µ̂Ê|F̂)

}
(4.26)

where Σ̂
−
Ê|F̂ is the g-inverse of Σ̂Ê|F̂ and ω1, . . . , ωK are the non-zero eigenvalues of Σ̂Ê|F̂.

4.7.4 Models comparison

As a final remark, we mention the possibility of developing a procedure for automatically
choosing the best model within the 14 parsimonious structures in the ML subset selector ap-
proach. One could rely on a BIC-like criterion (Schwarz, 1978), penalizing twice the final max-
imized trimmed log-likelihood by the number of estimated parameters and untrimmed ob-
servations, retaining the model that presents the highest value. However, this would rapidly
increase the computational time needed for performing the analysis. For this reason, in both
the simulation study and in the application, a VVV model only was considered when fitting
the ML subset selector approach.
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Chapter 5

Conclusions

The present manuscript has been devoted to investigating the effect that noise produces in su-
pervised learning, thereupon proposing innovative solutions on how to effectively cope with
it. The adopted methodology has been model-based discriminant analysis: a solid probabilistic
framework for modeling heterogeneity in a population. In order to achieve robust parame-
ters estimation and adulteration detection, an impartial trimming approach has been favored,
wherein the least likely observations, according to the postulated model, are not included in
the estimation process. Such procedure, coupled with constrained maximization by means of
an eigenvalues-ratio constraint, has defined a well-posed mathematical problem for provid-
ing robust inference in a contaminated scenario. Such background concepts on model-based
classification and robustness have been reviewed in Chapter 1.
For the remaining part of the manuscript, noise has been a comprehensive term for identify-
ing any mechanism that obscures the relationship between attributes and class membership.
Therefore, several robust models have been developed, depending on which type of noise they
were meant to deal with. The methodologies in Chapter 2 have confronted with noise in the
form of outliers and mislabeled units, both in the training and in the test set. In Chapter 3,
the semi-supervised model of the previous chapter has been expanded to account for sample
selection bias, where unobserved classes may have been present in the unlabeled set. In the
context of high-dimensional data, only a subset of the recorded predictors might be useful in
recovering the group structure, and the distinction between relevant and noisy variables plays
a determinant role in the development of an efficient classifier. This has been the topic of Chap-
ter 4, where noise has assumed the form of outliers, label noise and irrelevant features: two
robust variable selection methods have been introduced for jointly tackling these issues.
A well-defined course for future research certainly involves the definition of a unified frame-
work that includes the different models presented in this thesis. A thorough methodology
for robust and adaptive high-dimensional classification via impartial trimming and constraint
would be the most desirable output of the work carried out during the PhD program, accom-
panied by related statistical software. Hopefully, supported by the promising results obtained
in the applications, such unified procedure will become valuable for practitioners that are reg-
ularly faced with complex analysis of contaminated data, as in the fields of food authenticity,
metagenomics and chemometrics among others.
We conclude reporting a quote contained in the pioneering work of Andrews et al., 1972: “From
the 1970s to 2000 we would see [...] extensions to linear models, time series, and multivariate
models, and widespread adoption to the point where every statistical package would take the
robust method as the default”. Even though, after almost 50 years from the original Princeton
Robustness Study, robust methods are not yet the default choice for a statistical analysis, they
have experienced a tremendous growth in the past decades. With this manuscript, we have
humbly intended to be a small part of this advancement, fostering the employment of robust
techniques in engaging with wonders and pitfalls of the big data era.
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Appendix A

Detecting wine adulterations via
trimming

Based on:

Cappozzo, A., Greselin, F.
“Detecting wine adulterations employing robust mixture of Factor Analyzers”
Statistical Learning of Complex Data. CLADAG 2017. Studies in Classification, Data Analysis, and
Knowledge Organization. (2019)
https://doi.org/10.1007/978-3-030-21140-0_2

A.1 Introduction and motivation

The wine segment is identified as a luxury market category, with savvy as well as non-expert
customers willing to spend a premium price for a product of a specific vintage and culti-
var. Therefore, in the context of global markets, analytical methods for wine identification
are needed in order to protect wine quality and prevent its illegal adulteration.
In the present work we employ an approach based on robust estimation of mixtures of Gaussian
Analyzers, for discriminating corrupted red wines samples from their authentic variety. In a
modeling context, we assume a probability distribution function for the chemical and physical
characteristics measured on the wines, considering a density in the form of a mixture, when-
ever the dataset presents more than a wine variety. As a consequence, the probability that a
wine sample comes from a specific grape can be estimated from the model, performing classifi-
cation through the Bayes rule. Robust estimation of the parameters in the model is adopted to
recognize the corrupted data. Particularly, we expect that adulterated observations would be
implausible under the robustly estimated model: the illegal subsample is revealed by selecting
observations with the lowest contributions to the overall likelihood using impartial trimming,
without imposing any assumption on their underlying density.
The rest of this appendix is organized as follows: in Section A.2 the notation is introduced
and the main concepts about Gaussian Mixtures of Factor Analyzers (MFA), trimmed MFA
likelihood and the Alternating Expectation - Conditional Maximization (AECM) algorithm are
summarized. Section A.3 presents the wine dataset (Forina et al., 1986) and classification results
obtained performing a robust estimation of Gaussian mixtures of factor analyzers . Section A.4
reports a simulation study carried out employing parameters estimated from the model in
Section A.3, in a specific framework of contaminated dataset.
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The original contribution of the present Appendix is given in the benchmark study on unsuper-
vised methods, the adaptation of the robust Bayesian Information Criterion (BIC) introduced
in Cerioli et al., 2018a to MFA, and a first application of robust MFA in a somehow realistic
adulteration scenario.
An application on real data and some simulation results confirm the effectiveness of our ap-
proach in dealing with an adulterated dataset when compared to analogous methods, such
as partition around medoids and non robust mixtures of Gaussian and mixtures of patterned
Gaussian factors.

A.2 Mixtures of Gaussian Factors Analyzers

In this section we briefly recall the definition and some features of the mixture of Gaussian
Factor Analyzers (MFA) and its parameters estimation procedure. MFA is a powerful tool for
modeling unobserved heterogeneity in a population, as it concurrently performs clustering and
local dimensionality reduction, within each cluster. Let X1, . . . , XN be a random sample of size
N on a p-dimensional random vector. An MFA assumes that each observation Xn is given by

Xn = µg + ΛgUng + eng (A.1)

with probability τg for g = 1, . . . , G, with G total number of components in the mixture. µg

are p × 1 mean vectors, Λg are the p × d matrices of factor loadings, Ung
iid∼ N (0, Id) are the

factors, eng
iid∼ N (0, Ψg) are the errors, and Ψg are p × p diagonal matrices. Note that d < p,

that is the p observable features are supposed to be jointly explained by a smaller number of d
unobservable factors. Further, Ung and eng are independent, for n = 1, . . . , N and g = 1, . . . G.
Unconditionally, therefore, Xn has a density in the form of a G-components multivariate normal
mixture:

fXn(xn; θ) =
G

∑
g=1

τgφp(xn; µg, Σg) (A.2)

where the covariance matrix Σg has the form Σg = ΛgΛ′g + Ψg.
When estimating MFA through the usual Maximum Likelihood approach, two issues arise.
Firstly, departure from normality in the data may cause biased or misleading inference. Some
initial attempts in the literature to overcome this issue propose to consider mixtures of t-factor
analyzers (McLachlan et al., 2007), but the breakdown properties of the estimators are not
improved (Hennig, 2004). The second concern is related to the unboundedness of the log-
likelihood function (Day, 1969), which leads to estimation issues as the appearance of non-
interesting spurious maximizers and degenerate solutions. To cope with this second issue, Com-
mon/Isotropic noise matrices/patterned covariances (Baek et al., 2010) and a mild constrained
estimation (Greselin and Ingrassia, 2015) have been considered. The methodology considered
here employs model estimation, complemented with trimming and constrained estimation, to
provide robustness, exclude singularities and reduce spurious solutions, along the lines of
García-Escudero et al., 2016. Therefore, it overcomes both previously mentioned issues.
A mixture of Gaussian factor components is fitted to a given dataset x1, x2, . . . , xN in Rp by
maximizing a trimmed mixture log-likelihood (Neykov et al., 2007),

Ltrim =
N

∑
n=1

ζ(xn) log

[
G

∑
g=1

τgφp(xn; µg, Λg, Ψg)

]
(A.3)
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where ζ(·) is a 0-1 trimming indicator function, that tells us whether observation xn is trimmed
off or not. If ζ(xn)=0 xn is trimmed off, otherwise ζ(xn)=1. A fixed fraction α of observations,
the trimming level, is unassigned by setting ∑N

n=1 ζ(xn) = dN(1− α)e, where the less plausible
observations under the currently estimated model are tentatively trimmed out at each step of
the iterations that lead to the final estimate. In the specific application in the framework of wine
authenticity described in Section A.3, they are supposed to be originated by wine adulteration.
Then, a constrained maximization of (A.3) is adopted, by imposing ψg,ll ≤ c ψh,mm for 1 ≤
l 6= m ≤ p and 1 ≤ g 6= h ≤ G, where {ψg,ll}l=1,...,p are the diagonal element of the noise
matrices Ψg, and 1 ≤ c < +∞, to avoid the |Σg| → 0 case. This constraint can be seen as an
adaptation to MFA of those introduced in Ingrassia, 2004: the ones used throughout the present
manuscript. The Maximum Likelihood estimator of Ψg under the given constraints leads to a
well-defined maximization problem.
The Alternating Expectation - Conditional Maximization - an extension of the Expectation-
Maximization algorithm - is considered, in view of the factor structure of the model. The M-
step is replaced by some computationally simpler conditional maximization (CM) steps, along
with different specifications of missing data. The idea is to partition the vector of parameters
θ = (θ′1, θ′2)

′, in such a way that Ltrim is easy to be maximized for θ1 given θ2 and viceversa.
Therefore, two cycles are performed at each algorithm iteration:
1stcycle : we set θ1 = {τg, µg, g = 1, . . . , G}, here the missing data are the unobserved group
labels Z = (z′1, . . . , z′N). After applying a step of Trimming, by assigning to the observations
with lowest likelihood a null value of the “posterior probabilities", we get one E-step, and one
CM-step for obtaining parameters in θ1.
2ndcycle : we set θ2 = {Λg, Ψg, g = 1, . . . , G}, here the missing data are the group labels Z and
the unobserved latent factors U11, . . . , UNG. We perform a Trimming step, then a E-step, and a
constrained CM-step, i.e. a conditional exact constrained maximization of Λg, Ψg.
A detailed description of the algorithm is given in García-Escudero et al., 2016.

A.3 Wine recognition data

The wine recognition dataset, firstly reported and analysed in Forina et al., 1986, describes
results of a chemical and physical analysis for three different wine types, grown in the same
region in Italy. Originally, 28 attributes were recorded for 178 wine samples derived from three
different cultivars: Barolo, Grignolino and Barbera. A reduced version of the original dataset
with only thirteen variables is publicly available in the University of California, Irvine Machine
Learning data repository, commonly used in testing the performance of newly introduced su-
pervised and unsupervised classifiers. Particularly, in the unsupervised classification litera-

TABLE A.1: RobustBIC (Cerioli et al., 2018a) for different choices of the number
of factors d and the number of groups G for the robust MFA model on wine data,

trimming level α = 0.05 and c = 20.

d
G

1 2 3

1 9082.58 8282.92 8223.46
2 8560.62 8107.62 8112.90
3 8352.26 8042.02 8199.38
4 8160.77 7969.64 8315.23
5 8102.77 8044.03 8456.00
6 8097.06 8165.67 8735.63
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ture the wine recognition data has been considered to assess cluster analysis in information-
theoretic terms via minimization of partition entropy (Roberts et al., 2000), to prove the mod-
eling capabilities of a generalized Dirichlet mixture (Bouguila and Ziou, 2004), to evaluate the
efficacy of employing distances based on non-Euclidean norms (Doherty et al., 2007) and Ran-
dom Forest dissimilarity (Shi and Horvath, 2006). More recently, also parsimonious Gaussian
mixture models have been applied to the Italian wines dataset (McNicholas and Murphy, 2008).
Here our purpose is twofold: we want to explore the classification performance of a robust
estimation based on mixtures of Gaussian Factors Analyzers, and we aim at obtaining realistic
parameters for the subsequent simulation study. The dataset, available in the pgmm R package
(McNicholas et al., 2011), contains 27 of the 28 original variables, since the sulphur measure-
ments were not available. Initially, to perform model selection and detect the most suitable
values of factors d and groups G, an adaptation to the MFA framework of the robust Bayesian
Information Criterion, firstly introduced in Cerioli et al., 2018a, has been considered. That is,
BIC = −2Ltrim(x; θ̂)+ vc log n∗, where vc = (G− 1 + Gp + G(pd− d(d− 1)/2) + (Gp− 1)(1− 1/c) + 1)
denotes the number of free parameters in the model (depending on the value of the constraint
c) and n∗ = dN(1− α)e the number of non trimmed observations. Robust BIC for different
choices of the number of factors d and the number of groups G are reported in Table 1, con-
sidering a trimming level α = 0.05 and c = 20. The value of the robust BIC is minimized

TABLE A.2: Classification table for the robust MFA with number of factors d = 4,
number of groups G = 3, trimming level α = 0.05 and c = 20 on the wine data.

Trimmed observations are classified a-posteriori according to the Bayes rule.

1 2 3
Barolo 59 0 0
Grignolino 0 71 0
Barbera 0 0 48

for d = 4 and G = 2, suggesting a mixture with just two components. Careful investigation
on this result highlighted that robust MFA methodology tended to cluster together Barolo and
Grignolino samples as arising from the same mixture component, while clearly separating Bar-
bera observations. It is worth recalling (Forina et al., 1986) that the wines in this study were
collected over the time period of 1970-1979, and the Barbera wines are predominantly from
a later period than the Barolo or Grignolino wines. Therefore, considering the nature of the
phenomena under study and the risks related to rigidly selecting the number of components
in a mixture model only on the basis of the results provided by an information criteria, such
as BIC (Lee and McLachlan, 2016), we decided to employ a robust MFA with d = 4, G = 3
and α = 0.05, leading to the classification matrix reported in Table A.2. Employing a robust
MFA rather than a Gaussian mixture leads to a 60% reduction in the number of parameters
to be estimated (470 against 1217). Notice, in addition, that after robust estimation, also the
trimmed observations can be a-posteriori classified according to the Bayes rule, i.e assigning
each of them to the component g having greater value of Dg(x, θ) = τgφp(x; µg, ΛgΛ

′
g + Ψg).

Results in Table A.2 show that the robust MFA algorithm led to a perfect clusterization of the
samples according to their true wine type.
For completeness, the robust MFA algorithm is also applied to the more common thirteen vari-
able subset of the wine data and comparison with the existing literature is reported in Table
A.3. The clustering performance with respect to the true wine labels reports an Adjusted Rand
Index equal to 0.98 with just one Grignolino sample wrongly assigned to the cluster identify-
ing Barolo wines. Again then, the robust MFA methodology outperforms the results currently
present in the literature for unsupervised learning on this specific dataset.
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TABLE A.3: Comparison of performance metrics for different methodologies on
the thirteen variable subset of the wine data. Reported metrics come from the

original articles.

Methodology Performance Metric

Class Recovery Accuracy Adjusted Rand Index
Partition Entropy (Roberts et al., 2000) 0.977 -
Mixture of Generalized Dirichlet (Bouguila
and Ziou, 2004)

0.978 -

Neural gas (Doherty et al., 2007) 0.954 -
Random Forest predictors (Shi and Horvath,
2006)

- 0.93

Parsimonious Gaussian Mixture (McNicholas
and Murphy, 2008)

0.927 0.79

Robust MFA (García-Escudero et al., 2016) 0.994 0.98

A.4 Simulation Study

The purpose of this simulation study is to show the effectiveness of estimating a robust MFA
on a set of observations drawn from two luxury wines, Barolo and Grignolino, and identify-
ing units presenting an adulteration. Considering the parameters estimated obtained in Sec-
tion A.3, the artificial dataset is generated simulating 100 observations each, from Barolo and
Grignolino components. Afterwards, the “contamination" is created decreasing by 15% the
values of Fixed Acidity, Tartaric Acid, Malic Acid, Uronic Acids, Potassium and Magnesium
for 5 Barolo and for 5 Grignolino observations. This procedure resembles the illegal practice of
adding water to wine (Jackson, 2008). The problem of distinguishing adulterated observations

TABLE A.4: Average misclassification errors and ARI (percent average values on
1000 runs)

AECM pam Mclust pgmm
Misclassification error 0.0309 0.2935 0.2073 0.2314
Adjusted Rand Index 0.9362 0.5466 0.7184 0.6959

from the real mixture components is addressed, together with the algorithm performance in
correctly classifying the authentic units.

TABLE A.5: Bias and MSE (in parentheses) of the parameter estimators µ̂g and Σ̂g

AECM Mclust pam
µ1 -0.0019 -0.0194 0.0069

(0.0029) (0.0421) (0.1022)
µ2 -0.0011 0.1522 -0.0025

(0.0042) (0.2376) (0.1380)

AECM Mclust pgmm
Σ1 0.0001 -0.001 0.0257

(0.0004) (0.0022) (0.0079)
Σ2 -0.0156 -0.0164 0.0113

(0.0043) (0.0043) (0.0077)

We estimate a robust MFA with G = 2, p = 27, d = 4 and trimming level α = 0.05. We compare
our results with other popular methods: Partition around medoids, Gaussian mixtures esti-
mated via Mclust, and Mixtures of patterned Gaussian factors estimated by pgmm. To perform
each of the B = 1000 simulations, algorithms have been initialized following the indications
of their respective authors: say 10 random starts at each run of AECM, default setting for the
“build phase" of pam as in Maechler et al., 2017, applying model-based hierarchical clustering
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FIGURE A.1: Boxplots
of the simulated distribu-
tions of µ̂1[1], estimator
for µ1[1] = 10.45 (left
panel); Σ̂1[1, 1], estima-
tor for Σ1[1, 1] = 0.1214

(right panel).
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FIGURE A.2: Clustering
of the simulated data with
fitted trimmed and con-
strained MFA. Trimmed
observations are denoted

by “×".

as per default setting in Scrucca et al., 2016 for Mclust and 10 random starts at each run as
suggested in McNicholas and Murphy, 2008 for pgmm.
Table A.4 reports the average misclassification error and Adjusted Rand Index: the AECM algo-
rithm reports a superb classification rate, with smaller variability of the simulated distributions
for the estimated quantities, as shown in Figure A.1.
For a fair comparison of the performance of the algorithms, we consider 3 clusters for pam,
Mclust and pgmm; whereas we consider only 2 clusters for AECM, because in this approach
the adulterated group should ideally be captured by the trimmed units. A value of c = 20
allows to discard singularities and to reduce spurious solutions (García-Escudero et al., 2016).
The effects of the trimming procedure are shown in Figure A.2, where the different colors and
shapes represent the obtained classification. Table A.5 reports the average bias and MSE for the
mixture parameters (computed element-wise for every component).
The present simulations show initial promising results in adopting robust MFA as a tool for
identifying wine adulteration. Contrarily to the methods developed in the main chapters of
the thesis, here the problem is framed in a completely unsupervised scenario. Given that the
topic was somehow less related to the main core of the manuscript, we decided to include it as
an Appendix.
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Appendix B

Code details

This appendix provides the listings for the main routines developed in the thesis. Particu-
larly, Section B.1 reports the implementation used for enforcing the eigenvalues-ratio con-
straint in (1.20) under the different patterned models of Bensmail and Celeux, 1996. Such
routines rely on the .restr2_deter and .restr2_eigenv functions of the tclust R package
(Fritz et al., 2012). Sections B.2 and B.3 provide the EM algorithms for implementing the
transductive and inductive estimation for the RAEDDA model, respectively. As highlighted
in Section 3.2.7, the RAEDDA model is a generalization of the method developed in Chap-
ter 2, therefore, the same routines may be used for fitting a RUPCLASS model, by simply
setting E = G in the transductive approach. Here, only a subset of the functions necessary
to run the programs are reported. Nonetheless, the entire collection of (work in progress) R
packages related to the present manuscript are publicly available at the author’s github page:
https://github.com/AndreaCappozzo.

B.1 Code for Appendix C (Section 2.8)

# M a j o r i z a t i o n Min imiza t i on Algor i thm Browne 2014

MM1 <−
function (D_0 = diag ( dim (W) [ 1 ] ) ,

A,
W,
w,
c t r l _ r e s t r ) {

D <− D_0
F_ obj <− I n f
F_ obj _old <− I n f
i t e r <− 0
c r i t e r i o n <− TRUE
while ( c r i t e r i o n ) {

i t e r <− i t e r + 1
F_ t <−

matrix ( apply (
sapply ( 1 : dim (W) [ 3 ] , function ( g )

diag (1 / A[ , g ] ) %*% t (D) %*% W[ , , g ] − w[ g ] *
diag (1 / A[ , g ] ) %*% t (D) ) ,

1 ,
sum

) , dim (W) [ 1 ] , dim (W) [ 1 ] , byrow = F )

https://github.com/AndreaCappozzo
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SVD_F <− svd ( F_ t )
P <− SVD_F$u
R <− SVD_F$v
D <− R %*% t ( P )
F_ obj <−

sum( sapply ( 1 : dim (W) [ 3 ] , function ( g )
sum( diag (

W[ , , g ] %*% D %*% diag (1 / A[ , g ] ) %*% t (D)
) ) ) )

c r i t e r i o n <−
( ( F_ obj _old − F_ obj ) > c t r l _ r e s t r $MM_ t o l ) &
( i t e r < c t r l _ r e s t r $MM_max_ i t e r )

F_ obj _old <− F_ obj
}

D
}

# R e s t r i c t i o n s f o r EV_ , VE_ and VV_ mode l s −−−−
r e s t r _2_EV_ <− function ( f itm ,

r e s t r _ fac tor ,
e x t r a _groups ,
c t r l _ r e s t r ) {

e igenvalues <−
exp ( log ( f i tm $ parameters $ var iance $shape [ , e x t r a _groups , drop = FALSE ] ) +

log ( f i tm $ parameters $ var iance $ s c a l e ) )
i f ( i f e l s e (

i s . na (max ( e igenvalues ) / min ( e igenvalues ) <= r e s t r _ f a c t o r ) |
i s . i n f i n i t e (max ( e igenvalues ) / min ( e igenvalues ) ) ,
TRUE,
max ( e igenvalues ) / min ( e igenvalues ) <= r e s t r _ f a c t o r

) ) {
return ( f i tm )

}
i t e r <− 0
while ( ( max ( e igenvalues ) / min ( e igenvalues ) −

r e s t r _ f a c t o r > c t r l _ r e s t r $ t o l ) &
i t e r <= c t r l _ r e s t r $max_ i t e r ) {

i t e r <− i t e r + 1
eigenvalues <− r e s t r 2 _ eigenv (

autovalues = eigenvalues ,
ni . i n i = colSums ( f i tm $z [ , e x t r a _groups , drop = FALSE ] ) ,
r e s t r . f a c t = r e s t r _ fac tor ,
zero . t o l = . Machine$double . xmin

)

#2nd s t e p : . r e s t r 2 _ d e t e r
i f ( length ( e x t r a _groups ) == f i tm $G) {

# T r a n s d u c t i v e a p p r o a c h
eigenvalues <− r e s t r 2 _ deter _ (

autovalues = eigenvalues ,
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ni . i n i = colSums ( f i tm $z [ , e x t r a _groups , drop = FALSE ] ) ,
# n i . i n i = r e p ( 1 , f i t m $G) ,
r e s t r . f a c t = 1 ,
# I f o r c e t h e d e t e r m i n a n t s t o be e q u a l
zero . t o l = . Machine$double . xmin

)
} e lse {

# I n d u c t i v e a p p r o a c h

s c a l e _ e x t r a _group <− apply ( eigenvalues , 2 , function ( x )
exp (1 / f i tm $d * sum( log ( x ) ) ) )

shape_ e x t r a _group <− exp ( sweep (
x = log ( e igenvalues ) ,
2 ,
log ( s c a l e _ e x t r a _group ) ,
FUN = "−"

) )

e igenvalues <− exp ( sweep (
x = log ( shape_ e x t r a _group ) ,
2 ,
log ( f i tm $ parameters $ var iance $ s c a l e ) ,
# same volume o f t h e known groups
FUN = "+"

) )
}

}

s c a l e _RESTR <− apply ( eigenvalues , 2 , function ( x )
exp (1 / f i tm $d * sum( log ( x ) ) ) ) [ 1 ]

shape_RESTR <− exp ( log ( e igenvalues ) − log ( s c a l e _RESTR ) )

i f ( f i tm $modelName == "EVE" &
length ( e x t r a _groups ) == f i tm $G) {

# T r a n s d u c t i v e a p p r o a c h
W <−

mclust : : covw ( f i tm $X , Z = f i tm $z , normalize = F ) $W
# sample s c a t t e r m a t r i c e s f o r t h e un−trimmed o b s

E <−
apply (W, 3 , function ( x )

eigen ( x , only . values = T ) $ val ) # e i g e n v a l u e s o f W
w <− apply ( E , 2 , max ) # b i g g e s t e i g e n v o f W_g , g =1 , . . . , G
o r i e n t a t i o n _RESTR <−

MM1(
A = shape_RESTR ,
W = W,
w = w,
c t r l _ r e s t r = c t r l _ r e s t r

)
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f i tm $ parameters $ var iance $ o r i e n t a t i o n <− o r i e n t a t i o n _RESTR
}
# I u pd a t e t h e v a r i a n c e components in t h e ou t pu t o f t h e M−s t e p
f i tm $ parameters $ var iance $shape [ , e x t r a _groups ] <− shape_RESTR
fi tm $ parameters $ var iance $ s c a l e <− s c a l e _RESTR
fi tm $ parameters $ var iance $sigma <− mclust : : decomp2sigma (

d = f i tm $d ,
G = fi tm $G,
s c a l e = fi tm $ parameters $ var iance $ scale ,
shape = f i tm $ parameters $ var iance $shape ,
o r i e n t a t i o n = f i tm $ parameters $ var iance $ o r i e n t a t i o n

)
return ( f i tm )

}

r e s t r _2_VE_ <−
function ( f itm ,

r e s t r _ fac tor ,
e x t r a _groups ,
c t r l _ r e s t r ) {

i f ( f i tm $modelName == " VII " ) {
f i tm $ parameters $ var iance <− SIGMA_COMP( f i tm $ parameters $ var iance )

}
e igenvalues <−

f i tm $ parameters $ var iance $shape %o%
fi tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ]

i f ( i f e l s e (
i s . na (max ( e igenvalues ) / min ( e igenvalues ) <= r e s t r _ f a c t o r ) |
i s . i n f i n i t e (max ( e igenvalues ) / min ( e igenvalues ) ) ,
TRUE,
max ( e igenvalues ) / min ( e igenvalues ) <= r e s t r _ f a c t o r

) ) {
return ( f i tm )

}

s c a l e _0 <−
s c a l e _RESTR <−
f i tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ] # o r i g i n a l s c a l e

shape_0 <−
shape_RESTR <− f i tm $ parameters $ var iance $shape # o r i g i n a l s h a p e

i t e r <− 0
while ( ( max ( e igenvalues ) / min ( e igenvalues ) −

r e s t r _ f a c t o r > c t r l _ r e s t r $ t o l ) &
i t e r <= c t r l _ r e s t r $max_ i t e r ) {

i t e r <− i t e r + 1
eigenvalues <−

r e s t r 2 _ eigenv (
autovalues = eigenvalues ,
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ni . i n i = colSums ( f i tm $z [ , e x t r a _groups , drop = FALSE ] ) ,
# t h e groups s i z e
r e s t r . f a c t = r e s t r _ fac tor ,
zero . t o l = . Machine$double . xmin

)

s c a l e _0 <− s c a l e _RESTR
shape_0 <− shape_RESTR

i f ( length ( e x t r a _groups ) == f i tm $G) {
# T r a n s d u c t i v e a p p r o a c h
shape_RESTR <−

apply ( sapply ( 1 : f i tm $G, function ( g )
exp (

log ( e igenvalues [ , g ] ) − log ( s c a l e _RESTR[ g ] )
) ) , 1 , sum) /

( exp (1 / f i tm $d * sum( log ( (
apply (

sapply ( 1 : f i tm $G, function ( g )
e igenvalues [ , g ] / s c a l e _RESTR[ g ] ) ,

1 ,
sum

)
) ) ) ) )

} e lse {
# I n d u c t i v e a p p r o a c h
shape_RESTR <− shape_0

}
s c a l e _RESTR <−

sapply ( 1 : length ( e x t r a _groups ) , function ( g )
sum( exp ( log ( e igenvalues [ , g ] ) − log ( shape_RESTR ) ) ) / f i tm $d )

eigenvalues <− shape_RESTR %o% s c a l e _RESTR
}
# I u pd a t e t h e v a r i a n c e components in t h e ou tpu t o f t h e M−s t e p
f i tm $ parameters $ var iance $shape <− shape_RESTR
fi tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ] <− s c a l e _RESTR
i f ( f i tm $modelName == " VII " ) {

# I a l s o u pd a t e s igmasq f o r VII model
f i tm $ parameters $ var iance $sigmasq [ e x t r a _groups ] <−

f i tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ]
}
f i tm $ parameters $ var iance $sigma <−

mclust : : decomp2sigma (
d = f i tm $d ,
G = fi tm $G,
s c a l e = fi tm $ parameters $ var iance $ scale ,
shape = f i tm $ parameters $ var iance $shape ,
o r i e n t a t i o n = f i tm $ parameters $ var iance $ o r i e n t a t i o n

)
return ( f i tm )



108 Appendix B. Code details

}

r e s t r _2_VV_ <−
function ( f itm ,

r e s t r _ fac tor ,
e x t r a _groups ,
c t r l _ r e s t r ) {

i f ( f i tm $modelName == "V" ) {
max_sigmasq <− max ( f i tm $ parameters $ var iance $sigmasq )
min_sigmasq <− min ( f i tm $ parameters $ var iance $sigmasq )
# u n i v a r i a t e ( d =1) c a s e
i f (max_sigmasq / min_sigmasq <= r e s t r _ f a c t o r ) {

return ( f i tm )
} e lse i f ( length ( e x t r a _groups ) == 1) {

i f ( a l l ( f i tm $ parameters $ var iance $sigmasq [ e x t r a _groups ] <
f i tm $ parameters $ var iance $sigmasq[− e x t r a _groups ] ) ) {

sigmasq_RESTR <−
min ( f i tm $ parameters $ var iance $sigmasq[− e x t r a _groups ] )

} e lse {
sigmasq_RESTR <−

f i tm $ parameters $ var iance $sigmasq [ e x t r a _groups ]
}

} e lse {
sigmasq_RESTR <− as . vector (

r e s t r 2 _ eigenv (
f i tm $ parameters $ var iance $sigmasq [ e x t r a _groups ] ,
ni . i n i = colSums ( f i tm $z [ , e x t r a _groups , drop = FALSE ] ) ,
r e s t r . f a c t = r e s t r _ fac tor ,
zero . t o l = . Machine$double . eps

)
)

}
f i tm $ parameters $ var iance $sigmasq [ e x t r a _groups ] <−

sigmasq_RESTR
fi tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ] <− sigmasq_RESTR
return ( f i tm )

}

i f ( f i tm $modelName == "VVV" ) {
f i tm $ parameters $ var iance <−

SIGMA_COMP( f i tm $ parameters $ var iance )
}

e igenvalues <−
exp ( sweep (

x = log ( f i tm $ parameters $ var iance $shape [ , e x t r a _groups , drop = FALSE ] ) ,
2 ,
log ( f i tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ] ) ,
FUN = "+"

) )
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i f ( i f e l s e (
i s . na (max ( e igenvalues ) / min ( e igenvalues ) <= r e s t r _ f a c t o r ) |
i s . i n f i n i t e (max ( e igenvalues ) / min ( e igenvalues ) ) ,
TRUE,
max ( e igenvalues ) / min ( e igenvalues ) <= r e s t r _ f a c t o r

) ) {
return ( f i tm )

}

e igenvalues _RESTR <−
r e s t r 2 _ eigenv (

eigenvalues ,
ni . i n i = colSums ( f i tm $z [ , e x t r a _groups , drop = FALSE ] ) ,
r e s t r . f a c t = r e s t r _ fac tor ,
zero . t o l = . Machine$double . eps

)

s c a l e _RESTR <− apply ( e igenvalues _RESTR , 2 , function ( x )
exp (1 / f i tm $d * sum( log ( x ) ) ) )

shape_RESTR <− exp ( sweep (
x = log ( e igenvalues _RESTR ) ,
2 ,
log ( s c a l e _RESTR ) ,
FUN = "−"

) )

i f ( f i tm $modelName == "VVE" &
length ( e x t r a _groups ) == f i tm $G) {

# T r a n s d u c t i v e a p p r o a c h
W <−

mclust : : covw ( f i tm $X , Z = f i tm $z , normalize = F ) $W
E <−

apply (W, 3 , function ( x )
eigen ( x , only . values = T ) $ val ) # e i g e n v a l u e s o f W

w <− apply ( E , 2 , max ) # b i g g e s t e i g e n v o f W_g , g =1 , . . . , G
o r i e n t a t i o n _RESTR <−

MM1(
A = shape_RESTR ,
W = W,
w = w,
c t r l _ r e s t r = c t r l _ r e s t r

)
f i tm $ parameters $ var iance $ o r i e n t a t i o n <− o r i e n t a t i o n _RESTR

}
# I u pd a t e t h e v a r i a n c e components in t h e ou tpu t o f t h e M−s t e p
f i tm $ parameters $ var iance $shape [ , e x t r a _groups ] <− shape_RESTR
fi tm $ parameters $ var iance $ s c a l e [ e x t r a _groups ] <− s c a l e _RESTR
fi tm $ parameters $ var iance $sigma <−

mclust : : decomp2sigma (
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d = fi tm $d ,
G = fi tm $G,
s c a l e = fi tm $ parameters $ var iance $ scale ,
shape = f i tm $ parameters $ var iance $shape ,
o r i e n t a t i o n = f i tm $ parameters $ var iance $ o r i e n t a t i o n

)
# c h o l s i g m a f o r VVV
i f ( f i tm $modelName == "VVV" ) {

f i tm $ parameters $ var iance $ cholsigma <−
tryCatch (

array ( as . vector (
apply ( f i tm $ parameters $ var iance $sigma ,

3 , chol )
) ,
dim = c ( f i tm $d , f i tm $d , f i tm $G) ) ,
e r r o r = function ( e )

NA
)

}
f i tm

}

B.2 EM algorithm for RAEDDA transductive (Section 3.2.2)

while ( c r i t e r i o n ) {
i t e r <− i t e r + 1
f i t e <−

tryCatch (
do . c a l l ( mclust : : estep , c ( l i s t ( data = X_ t e s t ) , f i tm ) ) ,
e r r o r = function ( e ) {

l i s t ( z = NA)
}

) # E−s t e p

emptyz <− TRUE
i f ( ( a l l ( ! i s . na ( f i t e $z ) ) ) &

( a l l ( colSums ( f i t e $z ) > . Machine$double . eps ) ) ) { # e r r o r c h e c k i n g
emptyz <− FALSE
z <− f i t e $z
z_ f i t <− f i t e $z

# C o n c e n t r a t i o n St ep Y t e s t
i f ( alpha _ t e s t ! = 0) {

D <−
do . c a l l ( mclust : : dens , c ( l i s t (

data = X_ t e s t ,
# compute t h e Dens i ty f o r p a t t e r n e d
# MVN Mixtures f o r e a c h o b s
logarithm = T

) , f i tm ) )
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# t e m p o r a r i l y d i s c a r d s t h o s e a l p h a _ t e s t%
# o f o b s whose d e n s i t y i s l o w e s t

pos_trimmed_ t e s t <−
which (D <= ( s o r t (D, decreas ing = F )
[ [ c e i l i n g (N_ t e s t * alpha _ t e s t ) ] ] ) )

z_ f i t <− z[−pos_trimmed_ t e s t , , drop = F ]
X t e s t _ f i t <− X_ t e s t [−pos_trimmed_ t e s t , , drop = F ]

}

# C o n c e n t r a t i o n St ep Xtr a i n
i f ( alpha _ t r a i n ! = 0) {

D_ Xtra in _cond <−
do . c a l l ( mclust : : cdens , c ( l i s t (

data = X_ t r a i n , # computing t h e component d e n s i t y
logarithm = T

) , f i tm ) )
ind _D_ Xtra in _ cdens <−

cbind ( 1 :N_ t r a i n , mclust : : map( l t r a i n ) )
D_ Xtra in <−

D_ Xtra in _cond [ ind _D_ Xtra in _ cdens ]
pos_trimmed_ t r a i n <−

which (D_ Xtra in <= ( s o r t (D_ Xtrain , decreas ing = F )
[ [ c e i l i n g (N_ t r a i n * alpha _ t r a i n ) ] ] ) )

l t r a i n _ f i t <− l t r a i n [−pos_trimmed_ t r a i n , , drop = F ]
Xtra in _ f i t <− X_ t r a i n [−pos_trimmed_ t r a i n , , drop = F ]

}

X a l l <− rbind ( Xtra in _ f i t , X t e s t _ f i t )
z a l l <− rbind ( l t r a i n _ f i t , z_ f i t )
f i tm <−

mclust : : mstep (
modelName = model_name ,
data = Xall ,
z = z a l l

)
i f ( ! any ( i s . na ( f i tm $ parameters $ var iance $sigma ) ) ) {

i f ( f i tm $modelName == "VVE" | f i tm $modelName == "EVE" ) {
f i tm $X <−

X a l l
# I add t h e d a t a on which t h e M−s t e p i s computed
# s i n c e I need them f o r t h e MM

}
suppressWarnings (

f i tm <−
c o n s t r _Sigma (

f i tm = fitm ,
r e s t r _ f a c t o r = r e s t r _ fac tor ,
e x t r a _groups = 1 : f i tm $G,
# i t i d e n t i f i e s t h e t r a n s d u c t i v e a p p r o a c h
c t r l _ r e s t r = c t r l _ r e s t r
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)
) # t h i s p e r f o r m s c o n s t r a i n e d e s t i m a t i o n o f Sigma

# a c c o r d i n g t o t h e s e l e c t e d model
}

l l <−
logLik _ raedda (

X_ t r a i n = Xtra in _ f i t ,
l t r a i n = l t r a i n _ f i t ,
X_ t e s t = X t e s t _ f i t ,
f i tm = fi tm

)

l l s t o r e <− c ( l l s t o r e [−1] , l l )
i f ( a i tken ) {

c r i t e r i o n <− ( Aitken ( l l s t o r e ) $ l i n f − l l ) > EM_ t o l
} e lse {

c r i t e r i o n <− ( l l − l l o l d ) > EM_ t o l
}
c r i t e r i o n <− ( c r i t e r i o n ) & ( i t e r < EM_max_ i t e r )
l l o l d <− l l

} e lse {
c r i t e r i o n <− FALSE

}
}

B.3 EM algorithm for RAEDDA inductive (Section 3.2.3)

while ( c r i t e r i o n ) {
i t e r <− i t e r + 1
f i t e <−

tryCatch (
do . c a l l ( mclust : : estep , c ( l i s t ( data = X_ t e s t ) , f i tm ) ) ,
e r r o r = function ( e )

l i s t ( z = NA)
) # E−s t e p

emptyz <− TRUE
i f ( a l l ( ! i s . na ( f i t e $z ) ) )
{

emptyz <− FALSE
z <− f i t e $z
z_ f i t <− f i t e $z
# C o n c e n t r a t i o n St ep
# f o r t h e augmented t e s t s e t
i f ( alpha _ discovery ! = 0) {

D <−
do . c a l l ( mclust : : dens , c ( l i s t (

data = X_ t e s t ,
logarithm = F

) , f i tm ) )
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pos_trimmed_ t e s t <−
which (D <= ( s o r t (D, decreas ing = F ) [ [
c e i l i n g (N_ t e s t * alpha _ discovery ) ] ] ) )

z_ f i t <− z[−pos_trimmed_ t e s t , , drop = F ]
X_ t e s t _ f i t <− X_ t e s t [−pos_trimmed_ t e s t , , drop = F ]

}

# For e x t r a _ groups I manual ly u pda t e pro , mean and v a r i a n c e
pro_ e x t r a <− colMeans ( z_ f i t [ , e x t r a _groups , drop = F ] )
f i tm $ parameters $pro <−

c ( f i t _ l earn ing $ Best $ parameters $pro *
(1 − sum( pro_ e x t r a ) ) , pro_ e x t r a )

# p r o p o r t i o n s a r e re−e s t i m a t e d f o r e a c h c l a s s
i f ( f i tm $d == 1) {

f i tm $ parameters $mean [ e x t r a _groups ] <−
mclust : : covw (X = X_ t e s t _ f i t ,

Z = z_ f i t ,
normalize = F ) $mean [ , e x t r a _groups ]

} e lse {
f i tm $ parameters $mean [ , e x t r a _groups ] <−

mclust : : covw (X = X_ t e s t _ f i t ,
Z = z_ f i t ,
normalize = F ) $mean [ , e x t r a _groups ]

# I u pd a t e t h e mu v e c t o r j u s t f o r t h e e x t r a groups
}

f i tm $ parameters $ var iance <−
UPDATE_SIGMA( # f u n c t i o n t h a t imp l ements f o r m u l a e in S e c t i o n 3 . 6

f i tm = fitm ,
e x t r a _groups = e x t r a _groups ,
z = z_ f i t ,
X = X_ t e s t _ f i t

)

i f ( ! ( any ( i s . na ( f i tm $ parameters $ var iance $sigma ) ) |
any ( i s . na ( f i tm $ parameters $ var iance $ cholsigma ) ) ) ) {

i f ( f i tm $modelName=="VVE"|f i tm $modelName=="EVE" ) {
f i tm $X <− X_ t e s t _ f i t

}

suppressWarnings ( f i tm <−
c o n s t r _Sigma (

f i tm = fitm ,
r e s t r _ f a c t o r = r e s t r _ f a c t o r _d ,
e x t r a _groups = e x t r a _groups ,
# c o n s t r a i n t s e n f o r c e d on ly on
# t h e e x t r a groups ( I n d u c t i v e a p p r o a c h )
c t r l _ r e s t r = c t r l _ r e s t r

) )
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# t h i s p e r f o r m s c o n s t r a i n e d e s t i m a t i o n o f Sigma
# a c c o r d i n g t o t h e s e l e c t e d model
# f o r t h e e x t r a groups

}

l l <−
suppressWarnings ( tryCatch (

sum( do . c a l l ( mclust : : dens , c (
l i s t ( data = X_ t e s t _ f i t , logarithm = TRUE) ,
f i tm

) ) ) ,
e r r o r = function ( e )
− I n f

) )
# v a l u e o f t h e trimmed log− l i k e l i h o o d

l l <−
i f e l s e ( i s . nan ( l l ) |

i s . na ( l l ) , −Inf , l l )
# I f l l i s NA or Nan i t p r o c e e d s
# t i l l t h e nex t e s t e p and then t h e l o o p b r e a k s

l l s t o r e <− c ( l l s t o r e [−1] , l l )
i f ( a i tken ) {

c r i t e r i o n <− ( Aitken ( l l s t o r e ) $ l i n f − l l ) > EM_ t o l
} e lse {

c r i t e r i o n <− ( l l − l l o l d ) > EM_ t o l
}
c r i t e r i o n <− ( c r i t e r i o n ) & ( i t e r < EM_max_ i t e r )
l l o l d <− l l

}
e lse {

c r i t e r i o n <− FALSE
}

}
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Appendix C

Details on computing time

This appendix provides some details related to the computing time required by the novel rou-
tines developed in the present manuscript. All the simulated experiments and real data analy-
ses in the thesis were run on a computer cluster with 12 processors Intel MKL Intel(R) Xeon(R)
E5-2697 @2.60GHz. Tables C.1 and C.2 report the average computing time in seconds and rela-
tive time with respect to the EDDA model for the two simulation studies discussed in Chapter
2: Section 2.3.1 and Section 2.3.2, respectively. Tables C.3 and C.4 report the average computing
time in seconds for the simulation study in Chapter 3 (see Section 3.3), for the two different
group proportions respectively. Table C.5 provides the average computing time in seconds for
the variable selection methods considered in the simulation study of Chapter 4 (see Section
4.3). Lastly, the computing time for robustly selecting the relevant variables in the starches
discrimination problem of Section 4.4 was equal to 21460.44 and 3556.75 seconds for the robust
stepwise greedy-forward approach via TBIC (Section 4.2.1) and the maximum likelihood sub-
set selector (Section 4.2.2), respectively. As expected, the price to pay, in terms of additional
time, for achieving robust estimates is of several orders of magnitude larger than that required
for non-robust methodologies. Although much care and effort have been put on code profiling
and efficient implementation, the developed procedures intrinsically necessitate extra comput-
ing power in order to be robust against contamination. Some specific comments follow, with
reference to the main differences between the classical and the robust approach.

1. to obtain a robust estimation on the learning set, multiple initializations are unavoidable.
They are needed to prevent noisy units to spoil the starting values, and henceforth driving
the entire algorithm to reach uninteresting solutions.

2. to enforce a restriction on the eigenvalue-ratio (when it is active, i.e., c = 3), as it can
be seen in Table C.2, requires extra computing time than fitting an unconstrained model,
even though all routines in Section 2.8 rely on the optimal truncation operator efficiently
implemented in the tclust package (Fritz et al., 2012).

3. the inductive estimation of the RAEDDA model is substantially faster than its transduc-
tive version (see Tables C.3 and C.4), since parameters for the known groups need not
be updated when fitting the model to the test set. This behavior is even more apparent
when flexible covariance models are already selected in the learning phase, thanks to the
partial-order structure of Figure 3.4.

4. wrapper methods are by their very nature computationally intensive, as the selected
model needs to be fitted multiple times while looking for relevant features. Unsurpris-
ingly therefore, the robust procedures of Chapter 4 require a non-negligible amount of
time for performing variable selection resistant to outliers and label noise.

As a last worthy note, we mention the fact that all the novel routines developed for this thesis
(some of which are reported in Appendix B) have been written in pure R, which is known to
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TABLE C.1: Average computing time (in seconds) on B = 1000 runs for the sim-
ulation study I (Section 2.3.1) of Chapter 2, varying method and contamination
rate η. Average relative time with respect to the EDDA model is reported in

parenthesis.

η 0 0.05 0.10 0.15 0.20 0.25

EDDA 0.014 0.015 0.015 0.015 0.015 0.015
(1) (1) (1) (1) (1) (1)

UPCLASS 0.485 0.765 1.004 1.161 1.214 1.238
(34.512) (52.103) (68.119) (76.573) (81.053) (83.68)

RMDA 0.25 0.275 0.3 0.309 0.327 0.33
(17.777) (18.734) (20.35) (20.37) (21.859) (22.294)

RLDA 0.628 0.563 0.478 0.387 0.471 0.54
(44.73) (38.351) (32.413) (25.54) (31.426) (36.494)

REDDA 4.402 4.101 3.88 3.943 4.212 4.204
(313.291) (279.327) (263.247) (260.079) (281.184) (284.249)

RUPCLASS 5.409 5.084 4.821 4.884 5.486 6.034
(384.969) (346.339) (327.08) (322.151) (366.194) (408.011)

be slower than compiled languages. Fairly evaluating the effective runtime and speed of an
algorithm is not an easy task, as anytime a comparison is performed software implementation,
programming language and computational resources are (often unknowingly) not taken into
account: a provocative discussion about this topic can be found in Kriegel et al., 2017.
All in all, despite the undeniable additional computational burden, we argue here that a robust
procedure should always be preferred whenever contaminated units are likely to be present
in the data, as a reliable and noise resistant solution tends to be well worth the required extra
computing time.
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TABLE C.2: Average computing time (in seconds) and relative time with respect
to the EDDA model on B = 1000 runs for the simulation study II (Section 2.3.2)

of Chapter 2.

Computing time Relative time w.r.t. EDDA
EDDA 0.27 1.00
UPCLASS 1.51 5.68
RLDA 6.00 22.52
SVM 1.14 4.28
AdaBoost 9.33 35.06
RSIMCA 0.21 0.80
REDDA (αl = 0.05) 13.40 50.35
REDDA(αl = 0.1) 15.86 59.60
RUPCLASS (c = 30, αl = 0.05, αu = 0) 117.29 440.61
RUPCLASS (c = 30, αl = 0.1, αu = 0) 67.54 253.72
RUPCLASS (c = 10, αl = 0.1, αu = 0.05) 49.32 185.28
RUPCLASS (c = 3, αl = 0.1, αu = 0.05) 73.80 277.24
RUPCLASS (c = 30, αl = 0.15, αu = 0.1) 40.10 150.66
RUPCLASS (c = 10, αl = 0.15, αu = 0.1) 34.48 129.54
RUPCLASS (c = 3, αl = 0.15, αu = 0.1) 72.42 272.03
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TABLE C.3: Average computing time (in seconds) on B = 1000 runs for the sim-
ulation study in Chapter 3 (see Section 3.3), under different covariance structure

and contamination rate. Equal groups proportion.

Method Ql = Qu = 0 Ql = 10, Qu = 40 Ql = 20, Qu = 80 Ql = 30, Qu = 120
EII QDA-ND 0.01 0.01 0.01 0.01

SVM-ND 57.83 52.43 52.33 52.90
AMDAt 2.97 3.97 7.86 6.69
AMDAi 0.75 1.03 1.78 1.54
RAEDDAt 23.20 31.01 25.04 25.02
RAEDDAi 17.20 25.68 22.81 22.79

EEI QDA-ND 0.01 0.01 0.01 0.01
SVM-ND 51.94 49.70 50.71 52.18
AMDAt 2.15 3.21 10.42 6.70
AMDAi 0.68 0.96 1.46 1.55
RAEDDAt 60.66 63.45 68.98 66.98
RAEDDAi 28.70 22.87 23.35 28.83

EVV QDA-ND 0.01 0.01 0.01 0.01
SVM-ND 40.20 39.73 40.70 41.66
AMDAt 1.69 2.75 8.60 4.70
AMDAi 0.50 0.92 1.16 1.16
RAEDDAt 36.19 44.57 38.99 37.08
RAEDDAi 18.71 17.35 15.49 15.94

VVV QDA-ND 0.01 0.01 0.01 0.01
SVM-ND 39.82 39.50 40.76 41.76
AMDAt 1.93 3.71 12.44 6.67
AMDAi 0.59 0.83 1.05 1.19
RAEDDAt 60.18 62.37 64.34 63.85
RAEDDAi 2.32 3.98 4.20 4.37

VVV QDA-ND 0.01 0.01 0.01 0.01
Overlap SVM-ND 40.11 39.93 41.00 42.02

AMDAt 2.26 4.12 13.65 6.83
AMDAi 0.77 0.98 1.28 1.50
RAEDDAt 66.90 75.46 75.11 69.13
RAEDDAi 2.32 4.27 4.47 4.65
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TABLE C.4: Average computing time (in seconds) on B = 1000 runs for the sim-
ulation study in Chapter 3 (see Section 3.3), under different covariance structure

and contamination rate. Unequal groups proportion.

Method Ql = Qu = 0 Ql = 10, Qu = 40 Ql = 20, Qu = 80 Ql = 30, Qu = 120
EII QDA-ND 0.01 0.01 0.01 0.01

SVM-ND 53.17 49.06 51.33 53.85
AMDAt 2.88 3.52 8.28 5.15
AMDAi 0.60 1.00 1.50 1.54
RAEDDAt 27.53 31.26 25.76 26.38
RAEDDAi 15.61 25.08 24.45 23.84

EEI QDA-ND 0.01 0.01 0.01 0.01
SVM-ND 52.84 53.04 52.19 53.57
AMDAt 2.06 2.85 10.02 6.58
AMDAi 0.76 1.12 1.22 1.35
RAEDDAt 62.78 64.46 68.96 66.47
RAEDDAi 20.47 20.33 20.18 20.54

EVV QDA-ND 0.01 0.01 0.01 0.01
SVM-ND 40.32 39.80 40.97 41.81
AMDAt 1.50 2.72 8.73 5.65
AMDAi 0.42 0.75 0.97 0.92
RAEDDAt 38.45 44.36 40.80 38.22
RAEDDAi 14.67 18.19 18.96 18.91

VVV QDA-ND 0.01 0.01 0.01 0.01
SVM-ND 40.12 40.00 41.11 41.95
AMDAt 1.83 3.65 14.29 7.74
AMDAi 0.59 0.70 0.99 1.09
RAEDDAt 67.71 70.45 71.76 70.62
RAEDDAi 2.27 4.11 4.21 4.41

VVV QDA-ND 0.01 0.01 0.01 0.01
Overlap SVM-ND 40.60 40.16 41.48 42.36

AMDAt 2.20 3.93 16.68 8.41
AMDAi 0.73 0.89 1.26 1.27
RAEDDAt 69.36 80.10 79.84 77.90
RAEDDAi 2.32 4.25 4.46 4.68

TABLE C.5: Average computing time (in seconds) on B = 100 runs for the simula-
tion study in Chapter 4 (see Section 4.3), for different variable selection methods.

SelvarMix SRUW TBIC ML subset (p=3) ML subset (p=6) ML subset (p=9)
5.80 62.22 577.41 243.40 314.88 339.97
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Appendix D

A note on trimmed information criteria
for robust model selection

This appendix provides a discussion and some initial attempts to justify the usage of trimmed
information criteria in the context of robust model selection. Model selection criteria are pe-
nalized MLE’s designed to decide between one of several proposed statistical models. The
penalty term is subtracted from the log-likelihood. It depends on the model dimension, pe-
nalizing methods with higher number of free parameters thus balancing a parsimonious use
of parameters with goodness of fit. Quite naturally, the rationale behind trimmed information
criteria like the ones in Sections 2.2.4 and 3.2.5 stems from the need of defining a model se-
lection procedure whose output should result close to that obtained by standard methods on
the genuine part of the data only. Indeed, robustly estimated parameters are not sufficient to
provide reliable model selection if the maximized likelihood is subsequently evaluated on the
entire dataset: noisy units still contribute to the value of standard criteria and their effect, albeit
small, could still badly affect the overall behavior. This had been directly experienced by the
author within a germinal (and naive) structure of the robust variable selection procedure in
Section 4.2.1, in which a non-robust model selection criterion had been initially employed for
model comparison. Another example of such undesirable outcome, in a weighted likelihood
framework, is reported in Section 5 of Greco and Agostinelli, 2019.
Firstly proposed by Neykov et al., 2007, the authors asserted that the trimmed BIC (TBIC)
could be employed for robustly assessing the number of mixture components and the per-
centage of contamination in the data. Since its first introduction, trimming criteria have been
extensively employed in the literature for providing a general way to perform robust model
selection. García-Escudero et al., 2010a suggested its usage for selecting the trimming lev-
els in robust clusterwise linear regression, Gallegos and Ritter, 2010 devised a “corrected BIC”
for model selection with trimming in cardinality-constrained clustering, García-Escudero et al.,
2016 adopted the TBIC for choosing both the number of components and latent factors in robust
mixtures of Gaussian factor analyzers while García-Escudero et al., 2017 proposed to employ
it as a data-dependent diagnostic for tuning number of groups, trimming level and constraints
value in a robust cluster weighted model. A whole new set of trimmed information criteria
based on the original idea of Neykov et al., 2007 were developed by Li et al., 2016: they all were
applied in simulation results with the purpose of robustly estimating the number of compo-
nents in a mixture of regression model. More recently, the novel penalized likelihood criterion
for constrained mixtures, introduced in Cerioli et al., 2018a, is expected to be extended to ac-
count for the trimming level α in the TCLUST framework García-Escudero et al., 2008. Such
proposal is favorably endorsed by García-Escudero et al., 2018a within a contributed comment
on “The power of monitoring: how to make the most of a contaminated multivariate sample”
(Cerioli et al., 2018b).
Even though the TBIC is shown to work well in all the methodologies described above and in



122 Appendix D. A note on trimmed information criteria for robust model selection

the applications treated in this manuscript, a more general consideration on the usage of trim-
ming criteria to perform model selection in robust mixture learning is in order. Despite their
effective adoption in performing robust model selection, a proper theory corroborating such
practice is still missing in the literature: Ritter, 2014 deems the trimmed BIC and the corrected
BIC as to be “heuristics that work well when the true groups are well separated”. Providing
the formal theory underlying such methods is not an easy task and goes beyond the scope of
the present manuscript, nevertheless an attempt of delineating a possible research direction
is outlined at the end of Section 4.2.1, where the spurious outlier model (see Section 1.3.1) is
proposed as the underlying probability density for the contaminated dataset. A more general
argument in favor of this framework is provided in the upcoming Section: notice however that
it is only meant to scratch the surface of the (still under development) theory of robust infor-
mation criteria, and therefore shall be regarded as a possible starting point for more thorough
research, rather than be treated as a formal result.

D.1 Formalizing the Trimmed BIC derivation: an initial attempt

Consider a sample of N observations to be partitioned into N1 “regular” and N0“non-regular”
units, such that N = N1 + N0. Generalizing the spurious-outlier model (Gallegos and Ritter,
2005), firstly introduced in the context of robust clustering, let the regular sample xi ∈ Rp,
i = 1, . . . , N1 to be an i.i.d. realization of a probability density function f (·|θ1) parametrized by
θ1 ∈ Θ1 with prior probability π(θ1). The non-regular units yj ∈ Rp, j = 1, . . . , N0 are assumed
to be a realization of independent subject-specific probability density functions wj(·|ψj), each
one parametrized by ψj ∈ Ψj with prior probabilities πj(ψj), j = 1, . . . , N0. The likelihood for
the given sample therefore reads:

L(θ1, ψ1, . . . , ψN0
|X, Y) =

N1

∏
i=1

f (xi|θ1)
N0

∏
j=1

wj(yj|ψj) (D.1)

Assuming independence for the prior distributions π(θ1), π1(ψ1), . . . , πN0(ψN0
), the integrated

likelihood of (D.1) factors as follows:

f (X)
N0

∏
j=1

wj(Yj) =
∫

Θ1

N1

∏
i=1

f (xi|θ1)π(θ1)dθ1

N0

∏
j=1

∫
Ψj

wj(yj|ψj)πj(ψj)dψj. (D.2)

The following proposition justifies the employment of the Trimmed BIC (Neykov et al., 2007)
for approximating the integrated likelihood in (D.2), henceforth favoring its usage in the con-
text of robust model selection.

Proposition D.1: Assume that the Trimmed Likelihood Estimator (TLE) correctly partitions
the observed dataset into N1 regular and N0 outlying units, and that the model assumed for
the regular part is well-specified. Then, the Schwarz approximation (Schwarz, 1978) for the
integrated likelihood in (D.2) agrees with the TBIC of Neykov et al., 2007.

Proof: The log model evidence (i.e., the logarithm of the integrated likelihood) is approximated
by the Bayesian information criterion (BIC):

log

(
f (X)

N0

∏
j=1

wj(Yj)

)
= log f (X) +

N0

∑
j=1

log wj(Yj) ≈ BIC(X) +
N0

∑
j=1

BIC(Yj) (D.3)
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where

BIC(X) =
N1

∑
i=1

log f (xi|θ̂1)−
1
2

vx log N1 (D.4)

is the standard BIC computed on the regular part of the data only, with θ̂1 maximum likelihood
estimator (MLE) of θ1 and vx the dimension (i.e., number of parameters) for θ1. This is due to
the fact that, under the considered assumptions, TLE and MLE computed on the subset of N1
regular units coincide. The quantity in (D.4) is equivalent to the TBIC defined in Neykov et al.,
2007 (up to a multiplicative constant), thus, for concluding the proof, it suffices to show that
the approximation of the log model evidence for the non-regular units is equal to 0. Start by
noticing that:

BIC(Yj) = log wj(yj|ψ̂j) j = 1, . . . , N0 (D.5)

with ψ̂j MLE for ψj, since just a single observation contributes to the log maximized likelihood
∀j, j = 1, . . . , N0, so that the penalization term disappears. Further, since the probability density
functions wj(·|ψj) are specific for each contaminated unit yj, the estimator of wj(·|ψj) is given
by the Dirac delta in yj. Therefore, at the MLE, the likelihood contribution for each contami-
nated unit yj is equal to 1: taking the logarithm nullifies the value of (D.5), proving the initial
statement.

�

The reasoning employed in proving Proposition D.1 justifies, in principle, the usage of the
Trimmed BIC in selecting model parameters as well as the percentage of contamination in the
data. One of the major criticism moved against TBIC is that different subsets of units may
be considered when computing it for different models, even in the case of a fixed trimming
level: this could be improperly seen as comparing models with BIC calculated on different data
points. However, under the specification in (D.1), models comparison is actually always con-
ducted via BIC on the whole dataset, but, as stated in the proof above, the likelihood for each
contaminated unit is equal to 1 at the MLE and its contribution in the BIC calculation equals 0,
thus retrieving the TBIC definition. Notice that the same reasoning holds even when models
with different trimming levels are compared. Notwithstanding, as already mentioned at the
end of the previous Section, this is just an initial result developed by the author at the very end
of his PhD program, and further studies are hence needed for corroborating the validity of the
presented argument. A limit of the result derived in Proposition D.1 lies on the assumption
that the trimmed units are precisely the ones not belonging to the regular model. Clearly, the
identification of the non-regular units is itself an output of the inferential procedure: consid-
ering it deterministic is a strong assumption that needs to be relaxed. Active research on this
topic is currently ongoing.
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