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A chi mette la testa fuori.
A chi ti spinge a farlo.

E a voi tutti, così comprensivi e pazienti.

“We all wanna be big, big stars
Yeah, but we got different reasons for that

Believe in me because I don’t believe in anything
and I want to be someone to believe.”

Mr. Jones - Counting Crows
(Sung somewhere in Irive, playing Rockband and drinking I.P.A.)

“C’è chi vuole che io taccia adesso
Bene, meglio fare un pezzo strumentale

Che un trattato che non faccia testo
L’importante è che si faccia presto!

Il testo che avrei voluto scrivere
Non è di certo questo.”

Il testo che avrei voluto scrivere - Michele Salvemini

“Bicocca, mein herz in flammen
Will dich lieben und verdammen

Bicocca, dein atem kalt
So jung, und doch so alt.”

Dutschland Bicocca - Rammstein
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Abstract

Francesco Denti

Bayesian Mixtures for Large Scale Inference

Bayesian mixture models are ubiquitous in statistics due to their simplicity and flexibility and can
be easily employed in a wide variety of contexts. In this dissertation, we aim at providing a few
contributions to current Bayesian data analysis methods, often motivated by research questions
from biological applications. In particular, we focus on the development of novel Bayesian
mixture models, typically in a nonparametric setting, to improve and extend active research
areas that involve large-scale data: the modeling of nested data, multiple hypothesis testing,
and dimensionality reduction. Therefore, our goal is two-fold: to develop robust statistical
methods motivated by a solid theoretical background, and to propose efficient, scalable and
tractable algorithms for their applications.
The thesis is organized as follows. In Chapter 1 we briefly review the methodological background
and discuss the necessary concepts that belong to the different areas that we will contribute to
with this dissertation.
In Chapter 2 we propose a Common Atoms model (CAM) for nested datasets, which overcomes
the limitations of the nested Dirichlet Process, as discussed in Camerlenghi et al. (2019b). We
derive its theoretical properties and develop a slice sampler for nested data to obtain an efficient
algorithm for posterior simulation. We then embed the model in a Rounded Mixture of Gaussian
kernels framework to apply our method to an abundance table from a microbiome study. In
Chapter 3 we develop a BNP version of the two-group model (Efron, 2004), modeling both
the null density f0 and the alternative density f1 with Pitman-Yor process mixture models.
We propose to fix the two discount parameters σ0 and σ1 so that σ0 > σ1, according to the
rationale that the null PY should be closer to its base measure (appropriately chosen to be a
standard Gaussian base measure), while the alternative PY should have fewer constraints. To
induce separation, we employ a non-local prior (Johnson and Rossell, 2010) on the location
parameter of the base measure of the PY placed on f1. We show how the model performs in
different scenarios and apply this methodology to data from microbiome and prostate cancer
experiments. Chapter 4 presents a second proposal for the two-group model. Here, we make use
of non-local distributions to model the alternative density directly in the likelihood. We propose
both a parametric and a nonparametric formulation of the model. We provide a theoretical
justification for the adoption of this approach and, after comparing the performance of our
model with several competitors, we present three applications on real, publicly available genomic
datasets. In Chapter 5 we focus on improving the model for intrinsic dimensions (IDs) estimation
discussed in Allegra et al. (2019). In particular, the authors estimate the IDs modeling the ratio
of the distances from a point to its first and second nearest neighbors (NNs). First, we propose
to include more suitable priors in their parametric, finite mixture model. Then, we extend the
existing theoretical methodology by deriving closed-form distributions for the ratios of distances
from a point to two NNs of generic order. We propose a simple Dirichlet process mixture model,
where we exploit the novel theoretical results to extract more information from the data. The
chapter is then concluded with simulation studies and the application to real data. Finally,
Chapter 6 presents the future directions and conclusions.
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Chapter 1

A review of paradigms and tools
used in the Dissertation

“Tu eri per me la consapevolezza
che con l’aiuto del tempo anche un Magikarp è in grado

di diventare Gyarados.”
Tetris – Pinguini Tattici Nucleari

“I’m Dr. Ross Geller.”
“Ross, please, this is a hospital, okay? That actually means something here.”

Friends, s10e13

1.1 Introduction
Bayesian statistics has experienced spectacular growth over the last few decades. There are mul-
tiple reasons for its popularity, ranging from its conceptually intuitive paradigm, the advances
in computational techniques, to the ease of the interpretation of its results. It is often noted
that the way a Bayesian learns from data naturally resembles the way knowledge evolves: an
initial (prior) belief, after observing data from real phenomena (likelihood), is updated into a
new, more complete idea (posterior) (Bain, 2016).
Despite its theoretical and methodological appeal, Bayesian statistics had fundamental break-
throughs only after the development of computational methods. Before the advent of MCMC
techniques for posterior inference, many Bayesian models for complex applications were often
analytically intractable.
The wide use of Metropolis Hasting and the Gibbs sampler algorithms (Metropolis et al., 1953;
Hastings, 1970; Geman and Geman, 1984; Gelfand, 1990) allows the possibility to apply the
Bayesian paradigm to investigate ever new and complex datasets, from different fields. It is no
exaggeration that the Metropolis–Hastings algorithm and its extensions transformed Bayesian
statistics from a theoretical curiosity to its modern place as the inferential paradigm of choice
(Dunson and Johndrow, 2019).
In this thesis, we will often focus on applications in biology: the advent of new generation
genome sequencing techniques and the objective of personalized medicine have revolutionized
the way scientific research is carried out, providing an abundance of data, which more and more
accurately describe the various facets of complex natural phenomena. This, in turn, raises many
new and interesting research questions. In Efron’s words, progress in statistics is usually at the
mercy of our scientific colleagues, whose data is the “nature” from which we work (Efron, 2012).
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Indeed, new research questions pose challenges and opportunities for statisticians, who are called
to devise new methods for capturing the hidden patterns in the data, oftentimes with algorithms
that can supply results in a timely manner. Therefore, we aim at providing a few contributions
to current Bayesian data analysis methods, often motivated by questions from biological ap-
plications. More specifically, our interest is in comparing and describing the heterogeneity of
samples from observed populations.
This chapter succinctly introduces some of the tools that we will use in later chapters. In detail,
in the next section we briefly summarize the Bayesian paradigm, and we consider several classes
of parametric priors that will turn out to be useful for our modeling purposes. In particular,
we will introduce the notion of non-local priors and repulsive distribution. We will then discuss
Bayesian nonparametric (BNP) priors, with a focus on models for partially exchangeable data.
In Section 3, we will present some introductory ideas about multiple hypothesis testing. More
specifically, we will introduce the two-group model, first discussed in Efron (2004), which will be
the focus of two of the projects in this dissertation, where we will use it for Bayesian Hypothesis
testing applied to large scale inference. In Section 4, we will examine the concept of the Intrinsic
Dimension (ID) of a dataset to pave the way for the last project, where we study how Bayesian
nonparametric mixture models can contribute to the analysis of heterogeneous IDs. A more
exhaustive outline of the dissertation projects concludes this chapter.

1.2 A review of the Bayesian paradigm and some relevant priors
Amidst all possible reasons that might persuade a statistician to undertake the Bayesian path,
the celebrated de Finetti’s representation theorem is one of the most convincing, giving a math-
ematical justification for this learning paradigm. Consider an ideally infinite sequence of ob-
servations {Xn}n≥1, defined on some probability space (Ω,F ,P) and taking values in (X,X ),
where X is a Polish space and X its associated Borel σ-field. We need to postulate some degree
of dependence among the data: we can perform inference and prediction only if the data show a
pattern that we can learn. A fairly reasonable assumption is the exchangeability of the data: for
every n ≥ 1 the distribution of the random vector (X1, . . . , Xn) is invariant under permutation
of its components. In other words, for any permutation σ of the indexes {1, . . . , n}, we have

(X1, . . . , Xn) d=
(
Xσ(1), . . . , Xσ(n)

)
.

In this way, we make a probability statement about the homogeneity of the observations, making
possible the extraction of some “common signal” the data may conceal. Now, let PX be the
space of all the probability measures on X and denote as PX its corresponding σ-field. The
so-called de Finetti representation theorem states that the sequence {Xn}n≥1 is exchangeable if
and only if, for any n ≥ 1 and Ai ∈ X ,

P (X1 ∈ A1, . . . , Xn ∈ An) =
∫

PX

n∏
i=1

p (Ai)Q(dp). (1.1)

The measure Q is a probability measure defined on (PX,PX), and it is usually referred to as de
Finetti’s measure. Q plays a pivotal role since it provides a formal justification of the existence
of prior distributions and, more generally, of the entire Bayesian paradigm. This is even more
evident if we rewrite the exchangeability assumption in the following hierarchical form:

Xi|p̃
i.i.d.∼ p̃, p̃ ∼ Q, (1.2)
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where p̃ is a random probability measure defined on (Ω,F ,P)1 . The representation theorem
shows how statistical models emerge in a Bayesian context: in fact, if (and only if) the ex-
changeability assumption on {Xi}ni=1 holds, then there exists a random quantity (parameter) p̃
that has law Q. Conditionally on G, {Xi}ni=1 is regarded as an i.i.d. sequence. The nature of
the model is then determined by the nature of the prior probability Q. If the distribution of
Q has finite-dimensional support, then we will call the model (1.2) parametric. Otherwise, the
model is called nonparametric.
The vast majority of Bayesian literature deals with parametric models (Ghosal and Vaart, 2017;
Lindley and Schervish, 2006; Robert et al., 2015). A common way to state a parametric model
is the following:

Xi|θ ∼ p̃θ, θ ∼ π,

for θ ∈ Θ ⊂ Rd, where π denotes a finite dimensional distribution. This parametric specification
can be re-expressed according to (1.2), once we assume that

Q ({pθ : θ ∈ Θ}) = 1. (1.3)

1.2.1 Two examples of parametric priors

A fundamental step in a Bayesian analysis is the choice of the prior distributions. Often con-
jugate priors are selected, mostly out of convenience. However, the particular nature of the
analysis at hand can raise some specific needs, either from the theoretical and computational
points of view. In those situations, it becomes necessary eliciting a clever, but still tractable and
admissible, prior distribution. In the remainder of the dissertation, we will make use, in addition
to conjugate and nonparametric priors, of two parametric distributions with useful properties,
that we now present.

Non-Local Distributions

Non-local distributions were introduced by Johnson and Rossell (2010). In the paper, the authors
provide the definition of non-local distribution as:

Definition 1. Consider a random variable defined on a support Θ and let Θ0 ⊂ Θ describe a
subset of the support. If for every ε > 0 there is ζ > 0 such that

πNL(θ) < ε for all θ ∈ Θ : inf
θ0∈Θ0

|θ − θ0| < ζ

then we define πNL to be a non-local prior density.

Let us call a distribution that does not satisfy the property stated in Definition 1 a local
distribution. In words, a non-local distribution is characterized by a density that vanishes
on a (pre-determined) subset of the support. This property is appealing in the context of
Bayesian Hypothesis Testing, formulated as H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 or, equivalently,
H0 : θ ∼ π(θ0) vs H1 : θ ∼ π(θ1) where the non-local distributions are used as priors for the
alternative scenario. The separation between the null distribution π0 and the alternative distri-
bution π1 is necessary. Quoting Johnson and Rossell (2010), we require this property because
on a philosophical level [. . .], an alternative hypothesis, by definition, should reflect a theory that
is fundamentally different from the null hypothesis. Local alternative hypotheses do not. In their
paper, the authors argue about the superiority of this prior specification by noting that local
alternatives induce an unappealing large sample behavior of the Bayes Factor: as the sample
size n increases, the evidence accumulates much more rapidly in favor of true alternative models

1
With a small abuse of notation, unless otherwise indicated, we denote a distribution via its name or its density

indistinctively in the model specifications that will follow.



4 Chapter 1. A review of paradigms and tools used in the Dissertation

than in favor of true null models. More precisely, for a true null hypothesis, the Bayes Factor in
favor of the alternative hypothesis decreases only at rate Op

(
n−1/2

)
while for a true alternative

hypothesis, the Bayes Factor in favor of the null hypothesis decreases exponentially fast. The
adoption of a non-local density for π(θ1) alleviates this problem.
Examples of non-local priors are the so-called Moment (MOM ) prior and the Inverse-Moment
(IMOM ) prior, characterized by the following forms:

πMOM(θ) = (θ − θ0)2k

K
πL(θ),

πIMOM(θ) = k τν/2

Γ(ν/2k)
{

(θ − θ0)2
}−(ν+1)/2

exp

−{(θ − θ0)2

τ

}−k ,
where k is a positive integer, τ, ν > 0, K is the normalizing constant of πMOM and πL denotes
a local density. We can see how πMOM → 0 as θ → θ0. The same happens with πIMOM .
Since the first seminal paper by Johnson and Rossell (2010), many authors have contributed
to this research area studying the properties of the non-local distributions in different settings.
For example, Johnson and Rossell (2012), Rossell et al. (2013), Rossell and Telesca (2017),
and Shi et al. (2019) extend the topic to model selection devising priors for the coefficients of
Bayesian regressions in numerous different contexts, Consonni et al. (2012) use non-local priors
for Directed Acyclic Graphs (DAGs), and Shi et al. (2019) provide results on model consistency
in non-local settings.

Repulsive Distributions

Consider the sample (X1, . . . , Xn) and suppose that the classical parametric distributions are not
flexible enough to describe the data-generating process. Bayesian mixture models constitute a
simple and flexible extension. Let f(·|θ) be a parametric kernel. We can express aK-components
mixture model as

Xi|π,θ
i.i.d.∼

K∑
k=1

πk f(·|θk) (1.4)

where π = (π1, . . . , πK) are the mixture weights and θ = (θ1, . . . , θK) is the vector of the
component-specific parameters. To adopt the Bayesian paradigm, we need to specify prior
distributions for π and θ. Usually the component-specific parameters {θk} are assumed to be
drawn independently from a common prior P0. However, it may happen that the estimation
process introduces redundant components. In other words, the Bayesian model might over-fit
the data making use of similar parameters for different components. These excessive parameters
are poorly informative, and have an adverse impact on density estimation, since this leads to
an unnecessarily complex model. A solution to address this issue is to introduce some sort of
repulsion among the parameters via suitable priors.
One of the approach used in the literature employs the determinantal point process, a stochastic
point process that favors configurations of well separated points (Affandi et al., 2013; Affandi
et al., 2014; Lavancier et al., 2015; Kulesza and Taskar, 2012; Xu et al., 2016).
Another approach consists in the definition of repulsive densities, and we will adopt this idea
in the following. Petralia et al. (2012) propose to jointly model the entire vector θ with a prior
that is chosen to assign low density to sets of θk’s located close together. Xie and Xu (2017)
extend this approach to the nonparametric case. The deviation from independence is specified
a priori by a pair of repulsion parameters. Formally, a repulsive density is defined as follows:



1.2. A review of the Bayesian paradigm and some relevant priors 5

Definition 2. A density π(θ) = π(θ1, . . . , θK) is repulsive if for any δ > 0 there is a corre-
sponding ε > 0 such that π(θ) < δ for all θ ∈ Θ\Gε, where

Gε = {θ : ∆ (θs, θj) > ε; s = 1, . . . ,K; j < s}

and ∆ is a distance.

Once we define a suitable distance ∆(·, ·), which measures the closeness between two mixture
component parameters θs and θj , a convenient repulsive prior that smoothly pushes components
apart can be obtained as

π(θ) = c1

(
K∏
k=1

g0 (θk)
)
h(θ), h(θ) = min

{(s,j)∈A}
g (∆ (θs, θj))

g {∆ (θs, θj)} = exp
[
−τ (∆ (θs, θj))−ν

]
, with τ, ν > 0,

(1.5)

where A = {(s, j) : s = 1, . . . ,K; j < s}. The repulsiveness is induced via the function h(·). The
multiplicative structure makes it easy to apply a slice sampler (Damien et al., 1999; Walker,
2007) to obtain samples from the prior and the posterior.

1.2.2 Bayesian Nonparametrics (BNP)

Based on (1.3), one can claim that – from a broader point of view – a parametric model assump-
tion corresponds to a strong prior opinion. Indeed, parametric modeling is equivalent to insist
on a prior that assigns probability one to a specific subset of the set of all densities. Parametric
models make restrictive assumptions about the data-generating mechanism, which may cause
serious bias in inference (Ghosal and Vaart, 2017).
The need to avoid such misspecifications and the increasing availability of high-dimensional
data, together with advancements in computational resources, have spurred recent interest in
the characterization of priors over infinite-dimensional spaces. BNP models can be thought of
as “infinite-dimensional priors” (BNP priors), i.e. distributions that cannot be described by a
finite number of parameters. Indeed, the use of the “nonparametric” terminology is somehow
misleading: to be precise, we should speak of “infinite-parametric” Bayesian statistics. Thus, the
objects of interest for the nonparametric Bayesian are the estimates (and the relative uncertainty
quantification) of functions of probability densities/distributions. Such a prior specification con-
sequently allows inferring the quantities of interest taking into account the uncertainty over the
distribution of the prior. This philosophically reflects the lack of prior information.
The entire concept of nonparametric prior could be easier to understand if we notice that a
BNP prior is essentially a stochastic process, reminding that a stochastic process can be seen as
a probability distribution over its paths. We refer to Hjort et al. (2010), Müller et al. (2015),
Mueller and Rodríguez (2013), and Ghosal and Vaart (2017) for the foundational concepts and
extended reviews of the basic BNP methods, along with the discussion of main research directions
and open questions. Here, we discuss a few most common and well-know BNP priors, i.e. the
Dirichlet and Pitman-Yor processes, which constitute the basic building blocks of BNP density
estimation and which we will use in later chapters.

Dirichlet Process

The Dirichlet Process (DP) has been broadly and deeply studied over the last few decades. The
DP is the most basic and popular model for random probability measures, and a large number
of refinements and extensions have been proposed in the literature. Multiple definitions and
characterizations of the DP can be provided, but here we will discuss only the most relevant for
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our discussion.

Consider two probability spaces: (X,B, P ) and (P, C, Q). The first one is called base space where
usually X ⊆ Rd and B is the corresponding Borel σ- algebra. The second space is referred to
as distributional space, where P is the set of probability measures over (X,B). The DP arises
as a measure on the latter space where P can be considered as one of its realizations. In other
words, the DP is actually a distribution over distributions.
Formally, the DP was originally defined in the seminal paper by Ferguson (Ferguson, 1973),
where the author construct the process via finite dimensional distributions satisfying the Kol-
mogorov’s consistency conditions:

Definition 3 (Dirichlet Process via finite dimensional distributions). Given a measurable set S,
a base probability distribution H and a positive real number α, the Dirichlet process DP (α,H)
is a stochastic process whose sample path is a probability distribution over S, such that, for any
measurable finite partition of S, denoted B1, B2, . . . , Bn, then

(X(B1), . . . , X(Bn)) ∼ Dir(αH(B1), . . . , αH(Bn)).

We indicate a Dirichlet Process with DP (α,H), to highlight that the DP is parameterized by
a precision parameter α ∈ R+, and by a probability measure H, called a base measure, around
which the DP is centered. It can easily be shown that, given A ⊆ X measurable set member of
a partition of X, if G ∼ DP (α,H), then E [G(A)] = H(A) and Var [G(A)] = G(A)(1−G(A))

α+1 .

A second characterization of the DP comes from its predictive rule, also called the Blackwell-
MacQueen formula (Blackwell and MacQueen, 1973).

Definition 4 (Dirichlet Process via predictive rule). Let Xi|G ∼ G. The following two are
equivalent:

G ∼ DP (α,H) ⇐⇒ Xn+1|X1, . . . , Xn ∼
αH +

∑n
i=1 δXi

α+ n
(1.6)

The discrete-time stochastic process induced by this formula is often referred to as the Chinese
Restaurant Process (expressed in a Pólya Urn Scheme), a distribution over partitions that em-
bodies the assumed prior distribution over the cluster structures (Pitman, 2002). The form of
the predictive rule in (1.6) shows that the presence of ties is allowed among the elements of the
random vector Xn+1 = (X1, . . . , Xn+1). As a consequence, a partition of the components of
Xn+1 is induced.
This formulation is the basis of numerous models in machine learning (Blei and Frazier, 2011;
Teh et al., 2006). The formula from Definition 4 describes what is typically called the rich
gets richer mechanism in the machine learning literature, and can be explained with a clever
metaphor. Imagine a Chinese restaurant with infinite tables. The first customer enters and sits
at the first table. The second customer can either sit at the first table or at a new one. Any
further customer can sit either at any of the previously occupied tables, or at a new one. How-
ever, the probability of sitting at an already occupied table depends positively on the number
of customers already sat at that table. Hence, larger tables tend to bring more customers.

The clustering behavior of the DP (1.6) can also be investigated studying the so-called exchange-
able partition probability function (EPPF), whose general definition is due to Pitman (Pitman,
1995). More formally, let us denote with Kn = k the number of distinct values in Xn and
with (N1,n, . . . , NKn,n) = (n1, . . . , nk) their relative frequencies. The EPPF is the probability
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of observing a specific sample (X1, . . . , Xn) characterized by k distinct values and frequencies
(n1, . . . , nk). It is defined as

Π(n)
k (n1, · · · , nk) := P ((Kn = k) ∩ (Nj,n = nj , j = 1, . . . , k))

:=
∫
Xk

E [Gn1 (dx1) · · ·Gnk (dxk)] .
(1.7)

Notice that this probability depends only on the cluster frequencies and not on the actual
values of the partition: this motivates the term exchangeable. For the DP, the previous formula
simplifies down to

Π(n)
k (n1, · · · , nk) = ck

(c)n

k∏
j=1

(nj − 1)! ,

where (c)n = Γ(c + n)/Γ(c) is the Pochhammer symbol (or rising factorial). The EPPF is an
extremely important object, and will be discussed more later, after introducing the concept of
partial exchangeability. Next, let us go back to other DP characterizations.

The last DP characterization of interest here is Sethuraman’s stick-breaking representation
(Sethuraman, 1994). It is a constructive definition, which is often the most intuitive and useful
from a practical point of view. One can build a DP (α,H) according to the following hierarchical
model:

Definition 5 (Dirichlet Process via stick-breaking construction). Consider the following stick-
breaking prior on the space P:

G(·) =
K∑
i=1

ωkδxk(·) ωk = uk

i−1∏
l=1

(1− ul)

xk ∼ H uk ∼
{
Beta(1, α), if k < K,

δ1, if k = K

A Dirichlet Process (DP), characterized by base measure H and precision parameter α, denoted
as DP (α,H) can be defined by adopting the former construction and letting K ↑ +∞.

This characterization helps us to understand some crucial properties of the DP. First of all, it
is evident that realizations G of a DP consist in a discrete probability distribution with proba-
bility 1, where the support is composed by points called atoms, i.e. G =

∑+∞
i=1 ωkδxk(·) almost

surely. The discrete nature of G remarks that ties are allowed among a random sample taken
from G, naturally inducing a partition as a byproduct. The distribution of the weights, on
the other hand, is influenced only by the concentration parameter α. We will summarize the
stick-breaking representation with ω ∼ SB(α) or with ω ∼ GEM(α) (named after Griffiths,
Engen, and McCloskey’s early work in this field).

The stick-breaking construction can be extended to show that the DP is part of the broader set
of random probability measures known as the species sampling models. The definition follows:

Definition 6 (Species Sampling model). Let {ωj}j≥1 be a sequence of non-negative random
weights with

∑
j≥1 ωj ≤ 1, and assume that {θj}j≥1 is a sequence of i.i.d. variables independent

of the ωj’s and distributed according to a non-atomic probability measure P0. Then the random
probability measure

P ∗ =
∑
j≥1

ωjδθj +

1−
∑
j≥1

ωj

P0
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is called a species sampling model (SSM). A sequence of random variables {Xn}n≥1 such that
Xn|P ∗

i.i.d.∼ P ∗ is termed a species sampling sequence.

In particular, the DP is a proper SSM, since by construction
∑
j≥1 ωj = 1.

Another property of the DP is its conjugacy. Consider the following model, where the DP is
used to model the data directly:

(X1, . . . , Xn) |G ∼ G
G ∼ Q
Q = DP (α,H).

(1.8)

Then, the posterior has the following distribution:

G|X1, . . . , Xn ∼ DP
(
α+ n,

α

α+ n
G0 + 1

α+ n

n∑
i=1

δXi

)
(1.9)

The resulting posterior distribution has a concentration parameter updated by the number of
observations in the sample. The new base measure is a convex combination between the prior
base measure and the empirical c.d.f. given by the sample.
It is important to note that the DP has many other properties (e.g. self-similarity). We refer
the interested reader to Ghosal and Vaart (2017), Müller et al. (2015), and Hjort et al. (2010)
for more details.

It can be proven that the expected number of (random) clusters E [Kn] in which the data in
(1.8) are partitioned grows proportionally to α logn. Such logarithmic growth rate might be
undesirable in some applications. Furthermore, the random sizes of these Kn clusters show an
exponential tail behavior that might be undesirable as well. For example, in a context like
language processing, image segmentation, etc., the cluster size distributions exhibit a power-law
tail decay (Sudderth and Jordan, 2009). There is a simple extension of the DP that offers a more
flexible clustering behavior, the 2 parameters Poisson-Dirichlet (2PPD) process, or Pitman-Yor
(PY) process. We will briefly discuss this DP extension before focusing on Dirichlet Process
Mixture models (DPMM).

Pitman-Yor Process

Despite being previously studied outside of statistics (Pitman, 1995; Pitman and Yor, 1997),
the PY process began to gain attention in the applied statistical community after Ishwaran
and James (2001) introduced flexible Gibbs sampling methods for posterior sampling in models
with a PY prior. We will let PY (θ, σ,H) denote a Pitman-Yor process characterized by base
measure H, mass parameter θ and discount parameter σ, where θ > −σ and σ ∈ [0, 1). Here,
we will report just two characterizations of the PY process that are of use in this dissertation:
the Generalized Pólya Urn characterization and the stick-breaking characterization. The first
follows from the PY predictive rule.

Definition 7 (Pitman-Yor via predictive rule). Let Xi|G ∼ G. The following two statements
are equivalent:
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G ∼ PY (θ, σ,H) ⇐⇒ Xn+1|X1, . . . , Xn ∼
θ + σKn

θ + (n+ 1)− 1H(·) +
Kn∑
j=1

n∗j − σ
θ + (n+ 1)− 1δX

∗
i
(·),

(1.10)
where

(
X∗1 , . . . , X

∗
Kn

)
denotes the Kn unique values in (X1, . . . , Xn), each occurring with fre-

quency n∗j for j = 1, . . . ,Kn.

From (1.10) one can see how the discount parameter affects the clustering behaviour directly. In
particular, it can be shown that E [Kn] � Γ(θ+1)

σΓ(σ+θ)n
σ. Essentially, the number of clusters under

a PY process prior grows much more rapidly than the logn rate offered by a DP. Moreover, the
clusters’ size distribution also shows a power law under the PY process.
The stick-breaking characterization of the PY process is very similar to (5):

Definition 8. Let Xi|G ∼ G. The following conditions are equivalent: G(·) ∼ PY (θ, σ,H) ⇐⇒

G(·) =
∞∑
i=1

ωkδxk(·), ωk = uk

i−1∏
l=1

(1− ul), uk ∼ Beta(1− σ, θ+ σk), xk ∼ H. (1.11)

Thus, the PY process is a straightforward and still tractable extension of the DP.

Dirichlet Process Mixture Model

Given its discrete nature, the DP is rarely used to model data directly. Instead, it is commonly
employed as mixing measure in mixture models with parametric kernel. This clever idea led
to the development of the Dirichlet Process Mixture Model (DPMM) (Ferguson, 1983; Lo, 1984;
Antoniak, 1974; Escobar and West, 1995)

Definition 9 (DPMM). Consider the exchangeable vector of data (X1, . . . , Xn). Suppose that
the distribution of the data can be modeled via a parametric density which depends on some
parameter θ. A Dirichlet Process Mixture Model is defined as follows:

Xi|θi
ind.∼ F (θi), θi|G

i.i.d.∼ G, G =
+∞∑
k=1

πkδθk ∼ DP (α,H).

As we can see, the DP is placed at the level of the parameters θi that characterize what will be
the kernel function of our mixture, F (θi). If we marginalize out θi, we get

Xi|G
ind.∼

∫
F (θ)G (dθ) , G =

+∞∑
k=1

πkδθk ∼ DP (α,H). (1.12)

Given the peculiar form of G, using the stick-breaking representation, (1.12) can be translated
in

Xi|G
i.i.d.∼

∞∑
k=0

πkF (θk) π ∼ SB(α), θk ∼ H, (1.13)

where we appreciate the fact that such formulation reveals the essence of a DPMM: an infinite
mixture model. Relying on an infinite mixture model grants important advantages in terms
of robustness and flexibility. Given a sufficient number of components, a mixture of simpler
densities can approximate every other distribution, under certain assumptions. Results that
discuss this idea can be found in Roberts (2017) and Bochkina and Rousseau (2017) and in the
references therein. An important advantage of infinite over finite mixture models is that we are
not required to specify a priori the number of mixture components K. In the finite case, either
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one fixes multiple values for K beforehand and then compares the goodness of fit of the different
models with suitable indexes (e.g. DIC, BIC, AICm, BICm, WAIC (Spiegelhalter et al., 2002;
Raftery et al., 2007; Hjort et al., 2010; Watanabe, 2013)) or one places a prior directly on K.
This, in turn, implies the usage of some non-trivial sampling scheme to estimate the model,
such as Reversible-Jump MCMC (Green, 1995). The former solution is easy to use, but it fails
to completely take into account the uncertainty regarding the unknown number of components.
The latter instead is coherent from a full-Bayesian modeling framework, but can experience
issues from the practical point of view due to its complexity (Bhattacharya, 2008), with chains
that exhibit poor mixing.

From (1.13) we can see how the model is still able to produce, as a byproduct, a clustering
among the data. This time the partition is induced by the ties that occur among the parameters.
Thus, the observations that are estimated to come from the same parametric kernel are grouped
together. This is possible since, trivially, P (θi = θi′ |G) > 0 for two indexes i 6= i′ both in
{1, . . . , n} , due to the discreteness of G.
In recent years, the DP and the DPMM have been widely employed in many applications, in
the Bayesian nonparametric literature. Moreover, the conceptual simplicity of this model makes
it a very convenient tool that can be combined in more involved structures to address complex
data analysis tasks. For heterogeneous and interesting applications see, for example, Canale and
Prünster (2017), Lennox et al. (2010), Guindani et al. (2014), Banerjee et al. (2013), Bandy-
opadhyay and Canale (2016), Hong and Martin (2016), and Shahbaba and Johnson (2013). As
an example of how the DPMM can be easily embedded in more complex models, we now discuss
the Rounded Mixture of Gaussian kernel model (Canale and Dunson, 2011), which we will apply
in Chapter 2.

A nontrivial example of DPMM application: the RGM-approach to count data
modeling. Consider a discrete random variable X taking values over a discrete set such as N,
and its probability mass function pX(x) = P (X = x). Canale and Dunson (2011) propose to
define a nonparametric prior distribution Π for the probability mass function pX(x). Instead
of specifying Π directly, they induce the prior distribution on pX(x) defining a prior Π∗ on the
space of the possible densities f of a continuous latent random variable X∗ and then rounding
X∗ to obtain X.
Formally, they first choose a sequence of fixed threshold a0 < a1 < a2 < . . . < a∞. For
example, if the support of X is the entire set N, one can simply choose the set {aj}+∞j=0 as
{−∞, 0, 1, 2, . . . ,+∞}. The probability mass function of X is defined via the rounding function
g : C̃ → D̃ where C̃ denotes the space of the densities w.r.t. the Lebesgue measure of the
continuous random variable X∗ and D̃ represents the space of probability mass functions of a
discrete random variable of interest X. We can define

pX [j] = g(f) [j] =
∫ aj+1

aj

f (x∗) dx∗ j ∈ N (1.14)

where a0 = min{x∗ : x∗ ∈ X ⊆ R} and a+∞ = max{x∗ : x∗ ∈ X ⊆ R}, so that∫ a+∞
a0

f (x∗) dx∗ = 1. In order to ensure flexibility, the density f is modeled as a nonparametric
mixture of kernels. In most applications, the Normal distribution represents a convenient but
still useful choice for the kernel function. Finally, the mixing measure denoted as P , is chosen
to be a DP (α,H), where H corresponds to a Normal-Inverse Gamma distribution to exploit
conjugacy.
To summarize, the model can be written as:

Xi
i.i.d.∼ pX pX = g(f)
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f =
∫
N
(
x∗;µ, σ2

)
dP

(
µ, σ2

)
P ∼ Π̃ = DP (α,H)

We will concisely indicate the previous model as Xi ∼ RGM(Π̃), where Π̃ = DP (α,H) and
H ∼ NIG(µ0, σ

2
0, a0, b0).

In the paper the authors show how this model, which suits the flexibility of a DPMM to the
discrete case via a simple deterministic rounding function, can outperform established competi-
tors among the models for discrete data, such as nonparametric mixture of Poisson kernels or
Negative Binomial kernels. Simulation studies also confirm that this model is useful to address
zero-inflated cases.

Posterior Computations

The flexibility of an infinite dimensional prior such as the DP comes at a price. In fact, it is not
obvious how to deal with an infinite dimensional object when it comes to real data applications.
Many MCMC sampling schemes have been proposed to obtain posterior inference from a DPMM
and its variants. We briefly discuss the main ones. The details of the various algorithms can be
found in the following chapters, where they are employed. The different methods can be divided
in two main categories: marginal samplers and conditional samplers.

Marginal samplers focus on models where the infinite dimensional random probability measure
is integrated out. In other words, they essentially exploit the Pólya-urn scheme provided by the
predictive rules of the processes (4 and 1.10). Once combined with the exchangeability assump-
tion on the data, they provide the full conditional distributions for the update of the parameters
of interest. This class of algorithms was introduced by Escobar (1988) and Escobar and West
(1995), where the authors study the case of Mixture of Gaussians kernels. Many extensions
and refinements have been proposed in the literature (Müller et al., 2015; MacEachern, 1994;
Maceachern and Müller, 1998; Müller et al., 1996; Favaro and Teh, 2013). Notably, Neal (2000b)
summarizes many strategies to deal with both conjugate and non-conjugate models. Marginal
methods devise MCMC schemes that explore the space of partitions of the data directly. Often-
times the chains can get stuck in some local modes, and the mixing can be negatively affected.
To obviate this issue, some authors propose steps that may increase the efficiency of the sampler.
For example, Jain and Neal (2004), Jain and Neal (2005), Dahl (2005), and Dahl (2003) propose
variants of the Split and Merge move. First, two observations are randomly sampled and the
current clusters they belong to are considered. Then, if the observations are allocated in the
same group, a splitting move is proposed. Alternatively, if the two clusters are different, they
are merged together. The new MCMC partition is then accepted or rejected according to the
result of a Metropolis-Hastings Step.

Conditional methods, on the other hand, rely on summaries of stochastic realizations of G,
the infinite dimensional prior. In this case, most of the samplers are devised starting from the
stick-breaking representation of G. Since dealing with an infinite dimensional object directly
is infeasible, many authors propose to rely on tractable truncation of the stick-breaking repre-
sentation. In this spirit, Muliere and Tardella (1998) introduce the ε-Dirichlet distribution, a
stochastic truncation (i.e. following a random stopping rule) of the DP useful for approximat-
ing classes of DP functionals. This truncation ensures that both the Total Variation and the
Prohorov metrics between the original DP and its approximation are controlled by an arbitrary
small ε > 0. Arbel et al. (2019) recently develop a similar construction for the PY process.
Ishwaran and James (2001) and Ishwaran and Zarepour (2002) propose to adopt a deterministic
truncation of the stick-breaking representation of a large class of random probability models.
They carefully studied the truncation error, providing upper bounds and rates of decay. Algo-
rithms that provide an exact truncation, exploiting a stochastic number of components at each
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iteration, are also available. Walker (2007) extend the Slice sampler of Damien et al. (1999) and
Neal (2003) to Bayesian nonparametric mixtures, while soon after Papaspiliopoulos and Roberts
(2008) introduce a similar idea, called Retrospective sampler. In a note (Papaspiliopoulos, 2008)
Papaspiliopoulos suggested a way to exploit both samplers’ strengths to devise a new, more
efficient, algorithm. Some years later, Kalli et al. (2011) improve Walker’s slice sampler by de-
veloping an Independent Slice-Efficient Sampler that is easy to implement and computationally
tractable.

Both marginal and classical methods have their pros and cons. Marginal methods explore the
partition space directly, and the number of parameters to be updated at each iteration is deter-
ministic and limited. However, performing posterior inference is not a trivial task. Conditional
methods are slightly more difficult to implement, but their MCMC output is considerably richer,
allowing for inference of many quantities of interest. Recently, Canale et al. (2019) propose the
Importance Conditional Sampler (ICS), a scheme that combines appealing features of both con-
ditional and marginal methods. Like marginal methods, ICS has a simple and interpretable
sampling scheme, reminiscent of the Blackwell-McQueen Pòlya urn, while, similarly to con-
ditional methods the algorithm allows for parallelizable parameters update and accounts for
straightforward posterior quantification.

1.2.3 Models for Partially Exchangeable Data

As was mentioned in Section 1, many recent datasets present complex structures for which
the assumption of “full” exchangeability of the observations is unrealistic and too limiting.
Specifically, some datasets present a nested structure where various individuals are organized
into different groups or units. Possible examples include patients organized into different
hospitals, or microbes recorded from different subjects, or students belonging to different classes.
In the BNP literature, many authors put considerable effort into building extensions of the DP
to model data that do not satisfy a simple exchangeability hypothesis. The dependent Dirichlet
Process (DDP) introduced in MacEachern (2000) and MacEachern (1999) may be considered
as the starting point for many developments in this direction. Loosely speaking, we desire to
accommodate the dependence among the same-group individuals while at the same time allowing
for the borrowing of information across different sub-populations.
A large number of authors contributed to this field: see for example De Iorio et al. (2004),
Dunson and Park (2008), Griffin and Steel (2006), Griffin et al. (2013), Lijoi et al. (2014), and
Duan et al. (2007). Formally, consider the grouped observations Xij , where j = 1, . . . , J denotes
the unit and i = 1, . . . , nj denotes the subject within unit j. Each term in the sequence {nj}Jj=1
represents the cardinality of the corresponding unit and

∑J
j=1 nj = N is the total number of

observations. Furthermore, let Xj =
(
X1j , . . . , Xnjj

)
represent the vector of random variables

belonging to unit j. It is reasonable to assume that the random variables within a group are
exchangeable and that they are characterized by a distribution Xij ∼ Gj for j = 1, . . . , J. At
the same time, observations across different units are assumed to be conditionally independent.
We refer to this setting as partial exchangeability. A nice review of mathematical properties of
partial exchangeability in the context of hierarchical and nested random probability measures
can be found in Camerlenghi (2017).
As in the fully exchangeable case, there exists a representation theorem for partially exchangeable
data (Finetti, 1938), that we now recall.
Consider J sequences

{
(Xij)i≥1 : j = 1, . . . , J

}
, defined on a probability space (Ω,F ,P) taking

values in (X,X ), for j = 1, . . . , J . By de Finetti’s representation theorem the collection of
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sequences
{

(Xij)i≥1 : j = 1, . . . , J
}
is partially exchangeable if and only if

P

 J⋂
j=1

{
X(nj) ∈ Aj

} =
∫
P JX

J∏
j=1

p
(nj)
j (Aj)QJ (dp1, . . . ,dpJ)

for any integer nj ≥ 1 and Aj ∈ X nj , whereX(nj) =
(
X1,j , . . . , Xnj ,j

)
and p(J) = p×· · ·×p is the

J-fold product measure on XJ , for any J ≥ 1. The de Finetti mixing measure QJ is a probability
measure on

(
P J
X ,PJX

)
. In order to adopt a hierarchical representation, let (G1, . . . , GJ) denote

a vector of random probability measures defined on (Ω,F ,P) taking values in
(
P J
X ,PJX

)
with

distribution QJ . Then, the notion of partial exchangeability can be re-expressed as

(X1, . . . ,XJ) | (G1, . . . , GJ) i.i.d.∼ G1 × · · · ×GJ

(G1, . . . , GJ) i.i.d.∼ QJ
(1.15)

All the models for partially exchangeable data we will present and use in the following are
merely different specifications of (1.15). Simply posed, partial exchangeability means modeling
data that are heterogeneous because they are generated by different but related distributions or
experiments.

First, a class of models that naturally considers partially exchangeable data is based on the
superposition of random measures. For example, Müller et al. (2004) – and, more recently,
Griffin and Kolossiatis (2010) and Kolossiatis et al. (2013)– define probability mass distributions
characterized by a shared part across different units, in order to create dependent measures. In
their proposal, each of the random probability measures Gj is defined as a combination of a
common F0 and a study-specific Fj :

(X1, . . . ,XJ) |(G1, . . . , GJ) ∼ G1 × · · · ×GJ
Gj |ε, Fj , F0 = εF0 + (1− ε)Fj ,

F0 ∼ DP (α,H), Fj ∼ DP(α,H),
π(ε) = π0δ0 + π1δ1 + (1− π0 − π1) Beta(a, b).

(1.16)

The prior on ε includes point masses on 0 and 1, allowing for the two extreme cases of common
and conditionally independent Gj across groups.

The idea of modeling dependent distributions has received a lot of attention in the machine-
learning community as well, especially for the development of language processing methods. A
fundamental model for clustering grouped data is the Hierarchical Dirichlet Process (HDP, Teh
et al., 2006). A shared grouping structure is induced among sub-populations using a discrete
base measure G0 in a Dirichlet Process DP (α,G0). However, choosing the base measure G0
to be a member of a discrete parametric family would be too restrictive. In order to force G0
to be discrete and yet have broad support, they refer to a nonparametric hierarchical model in
which G0 is itself a draw from another Dirichlet process DP (γ,H). The HDP can be expressed
as follows:

(X1, . . . ,XJ) |(G1, . . . , GJ) ∼ G1 × · · · ×GJ
Gj |G0 ∼ DP (α,G0), G0 ∼ DP (γ,H).

(1.17)

Alternatively, we can write Gj ∼ Q and Q ∼ HDP (γ, α,G0). The HDP allows the different
distributions to share the same set of atoms, sampled from G0, while letting every single set of
masses (sticks) be unconstrained. This implies that P (Gi = Gj) = 0 for i 6= j. However, ties
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between the parameters shared among sub-populations are induced, leading to a clustering of
individuals that takes into account the grouped structure of the data and shares information
across the units.

In some applications, it might also be interesting to detect sub-populations whose distributional
characteristics are similar. For that purpose, the nested Dirichlet Process (nDP) (Rodríguez
et al., 2008) allows us to describe two clustering processes: one at the level of the observed mea-
surements (observational clustering), the other on the level of the different units (distributional
clustering). We are going to discuss some details of this model, as it is related to one of our
applications.
When the nDP is directly applied to the data, we have

(X1, . . . ,XJ) |(G1, . . . , GJ) ∼ G1 × · · · ×GJ

G1, . . . , GJ |Q
i.i.d.∼ Q

Q =
∑
k≥1

πkδG∗
k

G∗k =
∑
l≥1

ωlkδθlk ∀k ≥ 1,

(1.18)

where the θlk’s are independently distributed as the base measure H, and where π and ωk are
distributed accordingly to SB(α) and SB(β), respectively. As in the DP case, rather than using
the nDP to model directly the data, one could employ a (nested) mixture representation:

Definition 10 (nested Dirichlet Processes Mixture Model, nDPMM). Consider Xj ∼ Fj ∀j.
A collection of distribution {F1, . . . , FJ} is said to follow a nDPMM if

Fj (·|φ) =
∫

Θ
p(·|θ, φ)Gj(dθ) Gj(·) ∼ Q ≡

∞∑
k=1

πkδG∗
k
(·)

G∗k(·) =
∞∑
l=1

ωlkδθlk(·) θlk ∼ H,

where ωlk = ulk
∏l−1
s=1 (1− usk), ulk ∼ Beta(1, β) and πk = vk

∏k−1
s=1 (1− vs), vk ∼ Beta(1, α).

We can also write Gj
i.i.d.∼ Q and Q ∼ DP (α,DP (β,H)).

Notice how different and independent stick-breaking prior formulations are considered for the
weights π and ωk ∀k. For any k ≥ 1, each G∗k is defined as a DP, while the distributions
Gj are sampled from a discrete distribution where the atoms constituting the support are the
aforementioned distributions G∗k. This allows P (Gi = Gj) > 0 for i 6= j, i.e. a partition among
the distributions is possible.
The nDP construction implies that either the distributions of two sub-populations share the
same atoms and the same probability weights simultaneously, or they do not share either of the
two. We further discuss the properties of the two-layered clustering structure of the nDP in the
next section.

Exchangeable Partition Probability Functions and the limitations of the nDP con-
struction

We have seen how, once a nonparametric prior with almost surely discrete realizations is used,
a partition in the data is induced and it is possible to derive the corresponding EPPF. A similar
result holds in the partially exchangeable setting, and we refer to it as a partially exchangeable
partition probability function(pEPPF). Let us limit ourselves to the nDP case and consider
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(1.18). In a recent work, Camerlenghi et al. (2019b) extensively study the properties of the
two-layered partition induced by the nDP. The authors are able to derive the pEPPF for the
nDP with J units. They also provide an example for J = 2 that we now report, adapting the
notation.
Consider two vectors of grouped data, X1 and X2, and define:

• Kn1 = k1 as the number of distinct values specific of X1 not shared with X2. Let n1 be
the vector of associated frequencies, with generic element nl,1, l = 1, . . . , k1.

• Kn2 = k2 as the number of distinct values specific of X2 not shared with X1. Let n2 be
the vector of associated frequencies, with generic element nl,2, l = 1, . . . , k2.

• K0 = k0 as the number of distinct values shared among X1 and X2. In particular, let qj
be the vector of frequencies for sample Xj , j = 1, 2.

By denoting π1 := P (G1 = G2), the pEPPF for the nDP can be rewritten as:

Π(n)
k (n1,n2, q1, q2) =π1Φ(n)

k (n1,n2, q1 + q2) +

(1− π1) Φ(n1+|q1|)
k0+k1

(n1, q1) Φ(n2+|q2|)
k0+k2

(n2, q2) I{0} (k0)
(1.19)

where Φ(n)
k (n1,n2, q1 + q2) is the partition probability function relative to the fully exchange-

able case, while Φ(nj+|qj |)
k0+kj (nj , qj) with j = 1, 2 are the two marginal EPPFs for each sub-

population Xj . This means that the pEPPF for the nested case when J = 2 can be rewritten
as a convex combination between independence and exchangeability. Interested readers can find
more details in Camerlenghi (2017).
The derivation of this result highlights a subtle but crucial drawback of the nDP: the second
part of eq. (1.19) vanishes as soon as k0 ≥ 1. This means that if any tie is present between X1
and X2, the model a posteriori collapses to the full-exchangeable case. The same problem is
present when J > 2 and unfortunately it also holds for the nDPMM, when the nonparametric
nested prior is placed over latent variables. In this latter case, it is not clear how the model
behaves a posteriori.
Let us consider the following simple example: suppose that the data are organized into two
groups of equal length n, namely X1 = (X1,1, . . . , Xn,1) and X2 = (X1,2, . . . , Xn,2), generated
from two simple mixtures:

Xi,1 ∼
1
2N

(
µ0, σ

2
0

)
+ 1

2N
(
µ1, σ

2
1

)
and Xi,2 ∼

1
2N

(
µ0, σ

2
0

)
+ 1

2N
(
µ2, σ

2
2

)
,

with i = 1, . . . , n, µ0, µ1, µ2 real values and σ2
0, σ

2
1, σ

2
2 in R+. The two mixtures share one atom,

namely
(
µ0, σ

2
0
)
. When the nDP is applied for the nested density estimation task, two possible

scenarios can occur:

• The nDP identifies two different sub-populations correctly, but it will provide at the same
time two different estimations for the atom

(
µ0, σ

2
0
)
.

• The nDP estimates the common atom
(
µ0, σ

2
0
)
correctly, but collapses the two sub-populations

into the same distributional cluster.

This behavior does not affect the marginal posterior density estimates drastically, but it may
have an effect on the parsimony of representation and the clustering. Thus, inference on the
partitions of the groups and the data will become unreliable. From another perspective, the
drawback of the nDP is due to the fact that there is no part of the model (1.18) that addresses
shared commonalities between the latent measures.



16 Chapter 1. A review of paradigms and tools used in the Dissertation

A Mixed nested Dirichlet Process approach

Our first proposal to fix the mentioned problems with the usual nDP formulation is now dis-
cussed. Specifically, we combine the idea of the nDP and the superposition of random measure,
by proposing a Mixed nDP model (MnDP). We will discuss an alternative solution in a later
chapter of the thesis.
To define the MnDP, we combine the various atoms at the distributional level, namely the
DP’s G∗k ∀k ≥ 1, with a distribution G∗0 common to all the possible units. Since the common
component acts at the individual/observational level, we modify the model in (1.18), replacing
the distributional atoms G∗k with G∗∗0k, defined as the following mixture:

G∗∗0k = ρkG
∗
k + (1− ρk)G∗0,

so the model becomes

(X1, . . . ,XJ) |(G1, . . . , GJ) ∼ G1 × · · · ×GJ

G1, . . . , GJ |Q
i.i.d.∼ Q

Q =
∑
k≥1

πkδ{ρkG∗k+(1−ρk)G∗0}

(1.20)

where the πk’s and the ρk’s are random weights and the distributions G∗k k ≥ 0 that appear in
the mixture distribution ρkG∗k + (1− ρk)G∗0 are Dirichlet Processes defined as:

G∗k =
∑
l≥1

ωlkδθlk ∀k ≥ 1, G∗0 =
∑
l≥1

ωl0δθl0 .

This model is similar to the one discussed in Camerlenghi (2017), with the difference that we
allow the proportion parameter ρk to vary across the different units. Evidently, Q is still a DP
where the realizations of its base measure are the mixtures described above. Choosing a mixing
parameter ρk that depends on the distributional index, ensures that

P (Gi = Gj |Q) > 0.

Hence, the distributional clustering property is maintained. We can prove that

P (Gi = Gj |Q) =
∑
k≥1

P (Gi = Gj = G∗∗0k|Q) =
∑
k≥1

P (Gi = G∗∗0k, Gj = G∗∗0k|Q)

=
∑
k≥1

P (Gi = G∗∗0k|Q)P (Gj = G∗∗0k|Q) =
∑
k≥1

π2
k > 0.

Introducing latent variables that control the assignments to the distributional clusters (Sj ∈
{1, 2, . . . ,K, . . .}) and observational clusters (Mij ∈ {1, 2, . . . , L, . . .}), we can rewrite the model
in (1.20) by employing the stick-breaking formulation. In this way, we provide an easy-to-
implement algorithm for posterior inference, which permits us to perform reasonably fast MCMC
estimation even when the number of groups is large. For the sake of brevity, in what follows we
directly report a deterministically truncated version of the model, in the spirit of Ishwaran and
James (2001). As in the original nDP paper, we cut the sequence of distributional labels at a
value K <∞, meanwhile, we let every G∗k, with k = 0, . . . ,K be composed by L <∞ atoms.
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Xij |S,M,µ,σ2 ∼ N
(
µSj ,Mij , σ

2
Sj ,Mij

)
,

Mij |S,ω, ξ0 ∼ (1− ξij0 )
(

L∑
l=1

ωl,Sjδl(·)
)

+ ξij0

 2L∑
l=L+1

ωl0δl(·)

 ,
ωk,0|S ∼ ωk,0 = (ωk,ω0) ∼ GEM(α)×GEM(α0),

Sj |π ∼
K∑
k=1

πkδk(·), π ∼ GEM(β), ξij0 |ρ,S ∼ Bern (ρSj) ,

ρSj ∼ Beta (A,B) ,
(
µlk, σ

2
lk

)
∼ NIG(m,κ, a, b).

(1.21)

When the stick-breaking representation is used, the differences with the nDP are even more
evident. Practically, in order to introduce a common probability distribution, a latent variable
ξij0 is introduced for each observation. If ξij0 = 0 the observation Xij is drawn from the common
mixing distributionG∗0, otherwise the observation is generated from the idiosyncratic distribution
indicated by the value assumed by the latent variable Sj . We can easily recover the plain nDP
setting ρk = 0 ∀k. The full conditionals of a collapsed Gibbs sampler, extended to take into
account covariates in the likelihood and to handle discrete data with (1.14), can be found in the
Appendix of this chapter.
Although the proposed Mixed nested Dirichlet Process approach aptly provides a solution to the
clustering behavior exhibited by the nDP, it may be unfeasible for complex high-dimensional
sharing structures, involving a larger number of groups, due to computational limitations. In-
deed, we observed in various experiments that the model struggles to recover the true common
mixture components when the number of groups is considerably high. In the next chapter of
this dissertation, we will introduce the Common Atom Model (CAM), which is proposed as an
efficient alternative to nDP as a model for distributional clustering. To conclude this section we
underline that there exist extensions of the different models we have presented so far. Admixture
models, for example, combine the idea of HDP and nDP, accounting for three layers (or more)
in the clustering structure (Paisley et al., 2015; Tekumalla et al., 2015).

1.3 Multiple Hypothesis testing
Chapter 3 and Chapter 4 will discuss methods for addressing the multiple comparison problem
with large-scale data. Advancements in technology have led us to an era where big data are
more easily available. Oftentimes, the principal goal of a study may be to discover a small
number of “interesting” units among numerous candidates, e.g. genes whose expression levels
differ between cancer-affected and healthy patients. Such units, once identified, might be further
investigated for causal links or to answer other research questions. The literature in this area
is vast, and we refer to Efron (2012) and Efron and Hastie (2016) for general introductions and
overviews. The classical frequentist hypothesis testing framework was not originally intended for
addressing large-scale inference problems. Controlling for an overall type I error α would lead to
a situation where the number of false positive is exceptionally large. Bonferroni (1936) proposes
to correct the type I error level by dividing α by the number N of hypotheses at hand, ensuring
that the overall type I error would not exceed α. A test of level α for a single null hypothesis H0
satisfies, by definition, α = P [ Reject H0 when true]. However, for a collection of null hypotheses
H0i , i = 1, . . . , N , one can only control for the family-wise error rate (FWER), the probability
of making even one false rejection, i.e. FWER = P [reject any true H0i] . Bonferroni’s procedure
controls the FWER at level α : let I0 be the indices of the true H0i, having say N0 members.
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Then

FWER = P

⋃
I0

(
pi ≤

α

N

) ≤∑
I0

P
[
pi ≤

α

N

]
= N0

α

N
≤ α,

where pi is the p-value associated with the i-th hypothesis. The immediate consequence of this
correction is that the new threshold α/N is too conservative, resulting in a number of statistical
findings that are too small.
Another widely used approach for addressing the multicomparison problem is based on the
control of the False Discovery Rate (FDR, Benajmini and Hochberg, 1995). Consider a decision
rule D, which classifies a hypothesis as null (0) or non-null (1), and suppose the ground truth
is known. We are then able to quantify the number of hypotheses declared significant by D,
although they are actually null (False Positives). The False Positive Rate (FPR) is defined as
the number of false positives divided by the total number of tests. The FDR is defined as the
expected value of the FPR seen as a function of D: FDR(D) = E [FDP (D)].
Following Benajmini and Hochberg (1995), we say that a decision rule D controls the FDR at
level q ∈ (0, 1) if

FDR(D) ≤ q.

Benajmini and Hochberg (1995) show that if the the p-values corresponding to valid null hy-
potheses are independent of each other, then

FDR (Dq) = π0q ≤ q, where π0 = N0/N,

where Dq is the decision that rejects H0i for i ≤ i∗ , being i∗ the largest index for which

p(i) ≤
i

N
q.

A different procedure for multiple hypotheses testing is represented by the two-group model
which Efron has developed in multilpe papers, along with the notion of local false discovery
rate, seen as the “Benjamini and Hochberg equivalent in the (Empirical) Bayesian setting”,
and focusing on densities rather than tail areas (i.e. p-values) (Efron et al., 2001; Efron and
Tibshirani, 2002; Efron, 2004; Efron, 2007). Indeed, the idea of employing mixture models
in the multiple hypothesis testing framework has been widely exploited in the literature, even
before Efron’s seminal papers, both from a Bayesian and a classical point of view (see, for some
examples, Pounds and Morris, 2003; Pan et al., 2003; Allison et al., 2002; Liao et al., 2004). In
the two-group model framework, each of the N cases, from now on represented by a test statistic
z, is modeled with a mixture model:

z ∼ f(x) = π0 f0(z) + (1− π0) f1(z)

where f0 is the density of the null distribution, from which the non-relevant cases are generated,
f1 is the alternative, non-null distribution, and π0 represents the proportion of null cases, which
is typically expected to be relatively large.
Let Fj be the c.d.f. of fj , with j = 0, 1. The goal of the model is to assign to each z score a
probability of being generated from f1. If the statistic is properly standardized, we expect f0 to
be a theoretical null, i.e. a standard Gaussian. However, Efron (2004) argues that some devia-
tions from the theoretical null should be allowed, since what we are able to observe is only the
empirical null. In fact, the observed null distribution can depart from the theoretical normality
because of measurement error, hidden correlation between the observations/scores, unobserved
covariates, large proportion of genuine but uninterestingly small effects. The difference between
the theoretical and the observed null distributions may affect the inference, so Efron (2004)
proposes to estimate an empirical null distribution as well, allowing for small differences from
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a standard Gaussian. In general, fewer constraints are imposed on f1, which also needs to be
estimated. The only requirement is that non-null realizations should occur further away from
zero than null realizations, meaning that f1 should have longer tails than f0. Of course, the
more f0 and f1 are separated (the less they overlap), the better the model estimates will be. In
the following, we will carefully address this point, employing the aforementioned PY mixture
models and non-local distributions to induce separation between f0 and f1.

Working in a Bayesian framework, we do not need to rely on tail-area statistics and can shift our
attention to the probability of the null hypothesis given the observed zi scores. To this purpose,
we define the local (Bayesian) false-discovery rate:

lfdr (z0) = P (case i is null |zi = z0) ,

as opposed to the tail-area false-discovery rate (the FDR equivalent in the Bayesian setting)

Fdr (z0) ≡ P (case i is null zi ≥ z0) = π0
1− F0 (z0)
1− F (z0) .

The previous expression of the lfdr can also be written as

lfdr (z) = π0f0(z)
π0f0(z) + (1− π0)f1(z) . (1.22)

Then, a decision rule to allocate an instance in the null or in the alternative group is needed.
One possibility is to apply the following criterion: a observation z is deemed as non-null if
lfdr(z) < 0.2. The condition, in turn, implies that

f1(z)
f0(z) ≥ 4π0

π1

so we can see that controlling the lfdr has a direct impact on the Bayes Factor (Kass and
Raftery, 1995).
Again, the crucial point here is how to estimate the two distributions and consequently, the
proportion π0. Efron proposes an empirical Bayes estimator for this model (Efron, 2007),
which estimates the mixture distribution f(z) assuming the following parametric form: f(z) =
exp

{∑J
j=0 βjz

j
}
. A default choice of J = 7 is often adopted. The problem of maximizing this

likelihood can be cast in a Poisson regression framework, using Lindsey’s method (Efron and
Tibshirani, 1996; Lindsey, 1974b; Lindsey, 1974a). The null distribution f0(z) is either selected
to be a standard Gaussian or, when an empirical null is required, the procedure selects a set A0
near z = 0 where it is assumed that all the zi in A0 are null; in terms of the two-group model,
the assumption can be stated as f1(z) = 0 ∀z ∈ A0.

A different empirical Bayes approach is the one proposed by Muralidharan (2012). The author
models the test statistics as zi ∼ fδi , so it is possible to rewrite the lfdr as P (δi = 0|zi). To do
so, Muralidharan (2012) propose the following hierarchical model

z|δ ∼ fδ(z) δ ∼ g(δ) =
J−1∑
j=0

πjgj(δ), (1.23)

where gj ’s are taken from some parametric family of priors for δ. In this context, g0 is assumed
to be a point mass at zero (to reflect the theoretical null) or it can be estimated, along with
putting a constraint on the weights π, forcing π0 > πj ∀j ≥ 0. The quantities of interest



20 Chapter 1. A review of paradigms and tools used in the Dissertation

are estimated by pj(z) = πjf
(j)(z)
f(z) , where f (j) =

∫
fδgj(δ)dδ is the j-th group’s marginal. In

particular, the lfdr can be recovered as p0(z).
Similarly, Martin and Tokdar (2012) develop a likelihood-based analysis of the two-group model,
where they consider a regularized estimation for the parameters of the null distribution (µ, σ)
and the null proportion π0, and a semiparametric specification of the non-null density f1. In
particular, they estimate the empirical null and employ a mixture representation of f1 that
results in heavier tails than f0 to reflect the belief that z-scores from the non-null cases are
likely to be larger in magnitude than those from the null cases:

f1(z) =
∫
U

N
(
z|µ+ τσu, σ2

)
ψ(u)du

with ψ a density with respect to the Lebesgue measure on U = [−1, 1] and τ > 1, a scaling factor.

Many other authors have built on this idea and improved the estimating procedure, choosing
a fully Bayesian approach. An important example is provided by Do et al. (2005), where the
authors propose to model both the densities f0 and f1 as infinite mixtures of Gaussians, using
two DPMMs:

fj(z) =
∫
N
(
z;µ, σ2

)
dGj(µ) Gj ∼ DP

(
M,G∗j

)
, j = 0, 1

G∗0 = N
(
b, σ2

0

)
G∗1 = 0.5N

(
−b1, σ2

1

)
+ 0.5N

(
b1, σ

2
1

)
,

(1.24)

and they complete the model with hyperpriors for the paramters b, b0, b1, σ, σ0, σ1. A mixture
in the base measure in the multiple hypothesis testing context is also employed in Guindani
et al. (2009). After developing a coherent decision framework for multiple comparisons, they
discuss a semi-parametric model for which they show that the Bayes rule can be approximated
by the Optimal Discovery Procedure (ODP) introduced in Storey (2007). In Chapters 3 and 4
we will contribute to the multiple hypothesis testing literature by introducing two extensions of
the two-group model framework described here.

1.4 The Estimation of the Intrinsic Dimension of a dataset
The final topic we investigate is the estimation of the Intrinsic Dimension (ID) of a dataset,
namely the dimension d of the latent manifold in which the statistical units, observed in a D-
dimensional space, lie. We expect some degree of dependency among the variables of a dataset,
thus usually d < D. More formally, we refer to the definition of ID provided by Bishop (1995): a
set in D dimensions has an intrinsic dimension equal to d if the data lies within a d -dimensional
subspace of RD entirely, without information loss. Another interpretation is provided in pattern
recognition literature, where a point set is viewed as a sample set uniformly drawn from an
unknown smooth (or locally smooth) manifold structure, eventually embedded in a higher dimen-
sional space through a non-linear smooth mapping; in this case, the ID to be estimated is the
manifold’s topological dimension (Campadelli et al., 2015).

The literature regarding this topic is extremely vast and many different approaches for ID
estimation have been proposed. We refer to Facco and Laio (2017) and Campadelli et al. (2015)
for comprehensive reviews. In general, ID estimation methods can be divided into four main
sub-categories:

• Projective Methods, such as Multidimensional Scaling (MDS) (Jolliffe, 2002) and Principal
Component analysis (PCA) (Cox and Cox, 2000). MDS tends to preserve the pairwise
distances among the data as much as possible, and is usually employed to provide a visual
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representation of high-dimensional data. PCA instead aims to reduce the data dimension-
ality deriving the best projection subspace based on the computation and the thresholding
of the N eigenvalues of the covariance matrix of the sample: the ID corresponds to the
number of most relevant eigenvectors (called the Principal Components). In both cases,
the goal is to find the best projection (w.r.t. some pre-specified loss function) of the data
onto a lower dimensional space.

• Fractal Methods. The basis of all fractal methods is that the volume of a d-dimensional
ball of radius r scales as rd (Falconer, 2003; Camastra and Vinciarelli, 2002). Thus, the
fractal dimension estimators are based on the idea of counting the number of observations
in a neighborhood of radius r to estimate its rate of growth r̂. Since the estimated growth
is assumed to resemble the theoretical growth rate rd, these methods exploit the connec-
tion between the empirical r̂ and rd to estimate the parameter d, regarded as the fractal
dimension of the data.

• Graph based methods. Theory and algorithms for graphs can be exploited in different
manners to estimate the ID of datasets. In particular, graph theory is useful when dealing
with non-linear subspaces. Building a graph linking points close to each other can provide
valuable insights regarding the geometry of the latent manifold where the data lie. Let
G (XN ) =

(
{xi}i=1,...,N , {ei,j}i,j=1,...,N

)
denote a graph characterized by points {xi}Ni=1

and edges {eij}Ni,j=1. Working with distances suited for graphs allows us to uncover a
data structure impossible to distinquish with the usual Euclidean methods. An important
quantity in this context is the geodesic distance, defined as follows. Consider the Riemann
manifold M , i.e. a smooth manifold equipped with differentiable inner product g, called
Riemann metric, and let γ(s) : [0, S] → M be a geodesic arc parametrized by s ∈ [0, S].
Then, the geodesic distance dM is defined as

dM (x, y) = inf{L(γ)|γ(0) = x, γ(S) = y} (1.25)

where L(γ) :=
∫ S
0 g {γ′(t), γ′(t)}1/2 dt is the length of curve γ (Li and Dunson, 2019a). This

can be applied by using the geodesic distance to recover the geodesic minimum spanning
tree and the ID d of the dataset via a linking equation (Costa and Hero, 2004).

• Nearest-Neighbors (NNs) methods. Consider a collection of data points {xi}, for i =
1, . . . , n. This class of methods comes from the idea that close points are uniformly drawn
from d -dimensional balls (hyperspheres) Bd(x, r) characterized by a small radius r →
0 ∈ R+ centered in point x. If ρ(x) is a density distribution defined on Rd, the following
approximation holds: k

n ≈ ρ(x)ωd rd, where k is the number of NNs of x within the
hypersphere Bd(x, r), while ωd is the volume of the d-dimensional unit sphere in Rd (Pettis
et al., 1979). Intuitively this tells that the proportion of points of a given sample which
fall into the ball B(x, r) is approximately ρ(x) times the volume of the ball. If the density
is constant, one can estimate the intrinsic dimension using only the average distances from
a point’s k NNs.

Additionally, some model-based geometrical approaches to explore the topology of datasets have
recently been proposed. Mukhopadhyay et al. (2019) use Fisher-Gaussian kernels to estimate
densities of data embedded in non-linear subspaces. Li et al. (2017) propose to learn the structure
of latent manifolds by approximating them with spherelets instead of locally linear approxima-
tion, developing a spherical version of PCA. In the same spirit, Li and Dunson (2019a) applies
this idea to the classification of data lying on complex, non-linear, overlapping and intersect-
ing supports. Finally, Li and Dunson (2019b) propose to use the spherical PCA to estimate a
geodesic distance matrix between the data, which takes into account the structure of the latent
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embedding manifolds and create a spherical version of the k-medoids algorithm (Kaufman and
Rousseeuw, 1987).
In Chapter 5 we contribute to the ID estimation literature extending the methodology developed
in Facco and Laio (2017), Facco et al. (2017), and Allegra et al. (2019). Their methods is based
on a property of homogeneous Poisson processes (HPP). Let ρ (x) be the density of the points
in a dataset and call ri,j the distance between a generic point xi and its NN of order j. The
authors have proved that if the density of the data can be deemed as constant in a neighborhood
Bd(xi, r) each point i (i.e. ρ (x) = ρ ∀x ∈ Bd(xi, r) ), all the volumes of the stochastic spherical
shells – defined as

vl = ωd
(
rdi,l − rdi,l−1

)
∀l = 2, . . . , n,

where d is the dimensionality of the space in which the points are embedded and ωd is the
volume of the d-sphere with unitary radius – are exponentially distributed with rate equal
to the density ρ. From this observation, which describes the inter-arrival times of HPP in a
multivariate setting, they develop a parametric model where the parameter of interest is exactly
the ID. Then, the ratio ri,2

ri,1
is Pareto distributed, with a shape parameter that is exactly d.

Moreover, their method was extended to a Bayesian setting mixture model to take into account
heterogeneous IDs in the same dataset. It is worth noticing that, to derive these last results,
the hypothesis of homogeneity of the density ρ(x) is required only on the scale of the second
NN of each point.

1.5 Outline and main contributions
Bayesian mixture models are ubiquitous in statistics, and they can be employed in many different
ways in a wide variety of contexts. In this first Chapter we briefly reviewed the methodological
concepts and discussed the necessary tools that belong to the different areas that we will con-
tribute to with this dissertation.

In Chapter 2 we propose a Common Atoms model (CAM) for nested datasets, which overcomes
the limitations of the nDP that we have outlined in Section 1.2.3. We derive its theoretical prop-
erties and develop a slice sampler for nested data to obtain an efficient algorithm for posterior
simulation. We then embed the model in a Rounded Mixture of Gaussian kernels framework to
recover a meaningful clustering structure among subjects of a microbiome study.

In Chapter 3 we develop a BNP version of the two-group model, modeling both f0 and f1 with
Pitman-Yor process mixture models. We propose to fix the two discount parameters σ0 and σ1
so that σ0 > σ1, according to the rationale that the null PY should be closer to its base measure
(appropriately chosen to be a standard Gaussian base measure), while the alternative PY should
have fewer constraints. We propose a marginal sampler and, to improve the computational effi-
ciency and speed, we also introduce a split and merge move. An important role is played by the
separation between the null and the alternative distribution. If the two distributions overlap,
the inferential process can be jeopardized. To induce separation, we employ a non-local prior on
the location parameter of the base measure of the PY placed on f1. We show how the model per-
forms in different scenarios and apply this methodology to microbiome and prostate cancer data.

Chapter 4 presents an alternative proposal for the two-group model. Here, we use a non-local
distribution to model the alternative density directly in the likelihood formulation. By multiply-
ing a weight function and a local density, we are able to induce separation between the models.
The local density is modeled both through a parametric model and a nonparametric model.
We are able to provide a theoretical justification for the adoption of the proposed likelihood
approach. After comparing the performance of our model with several competitors, we present
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three applications on real, publicly available datasets.

Finally, in Chapter 5 we examine different ways to extend the model for ID estimation discussed
in Allegra et al. (2019). First, we propose to include more suitable priors in their parametric
model, such as truncated and repulsive versions of the original priors to facilitate estimation
of the ID parameters in posterior inference. Then, we extend their theoretical methodology by
deriving distributions for a generic number of consecutive ratios of distances ri,j

ri,j−1
and we model

them to include more information in the estimation process. To overcome the choice of a fixed
number of K mixture components, we propose a simple Dirichlet process mixture model. The
chapter is then concluded with simulation studies and the application to real data.

Chapter 6 concludes the thesis with a few remarks and directions for future research.
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Appendix

1.A Gibbs sampler for the Mixed nested DP
Consider the model in (1.21), extended to the discrete data modeling case following (1.14). Let
X = {Xij} represent the discrete data and X∗ represent the corresponding continuous latent
variables. Moreover, we take into account the presence of group-specific covariates Zj , modeling
the continuous latent r.v.s as X∗ij ∼ N

(
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)
. We can rewrite the posterior as

proportional to the joint distribution, which in turn can be decomposed following the structure
of previous model.

p
(
X∗,M ,S,ω,π,µ,σ2,β, ξ0,ρ|X

)
∝p

(
X∗,M ,S,ω,π,µ,σ2,β, ξ0,ρ,X

)
∝p (X|X∗)× p

(
X∗|M ,S,µ,σ2,β

)
×

p (M |S,ω, ξ0)× p (ω)× p (S|π)×

p (π)× p
(
µ|σ2

)
× p

(
σ2
)
× p (β)

p (ξ0|ρ)× p (ρ) .

To derive the full conditionals, we will collapse some of the random variables whenever possible.

1. Full conditional for the latent random variable X∗:

p (X∗| · · · ) ∝ p (X|X∗) p
(
X∗|M ,S,µ,σ2,β

)
∝
∏
i,j

+∞∑
j=0

δj(·)1[aj ,aj+1)
(
X∗ij

)∏
i,j

N
(
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)
⇐⇒

p
(
X∗ij | · · ·

)
∝

+∞∑
j=0

δj(·)1[aj ,aj+1)
(
X∗ij

)
N
(
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)
⇐⇒

p
(
X∗ij |Xij = xij · · ·

)
∝ 1[

axij ,axij+1
) (X∗ij)N (

µSj ,Mij +Zjβ, σ2
Sj ,Mij

)
p
(
X∗ij |Xij = xij · · ·

)
∼ TN(µSj ,Mij +Zjβ, σ2

Sj ,Mij
; axij , axij+1)

2. Joint full conditional for M and ξ0.

p (M , ξ0| · · · −X∗) ∝
∫∫∫
p (M , ξ0,X

∗| · · · ) dX∗

∝
∫∫∫
p (X|X∗) p

(
X∗|M ,S,µ,σ2,β

)
p (M |S,ω, ξ0) p (ξ0|ρ) dX∗

∝
∫∫∫ ∏

i,j

+∞∑
j=0

δj(·)1[aj ,aj+1)
(
X∗ij

)∏
i,j

N
(
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)

×
∏
i,j

(1− ξij0 )
(

L∑
l=1

ωl,Sjδl(·)
)

+ ξij0

 2L∑
l=L+1

ωl0δl(·)
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×
∏
ij

(
ρ
ξij0
Sj

(
1− ρSj

)1−ξij0
)
dX∗ ⇐⇒

p
(
Mij , ξ

ij
0 | · · · −X

∗
ij

)
∝
∫ +∞∑

j=0
δj(·)1[aj ,aj+1)

(
X∗ij

)N (
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)

×

(1− ξij0 )
(

L∑
l=1

ωl,Sjδl(·)
)

+ ξij0

 2L∑
l=L+1

ωl0δl(·)


×
(
ρ
ξij0
Sj

(
1− ρSj

)1−ξij0
)
dX∗ij

Let ∆Φ (xij ;Sj ,Mij) = Φ
(
xij + 1;µSj ,Mij +Zjβ, σ2

Sj ,Mij

)
−Φ

(
xij ;µSj ,Mij +Zjβ, σ2

Sj ,Mij

)
,

where Φ(x;m, s2) is the c.d.f. of a Normal random variable characterized by mean m and
variance s2. Accordingly with the values assumed by Mij and ξij0 , four scenarios are
possible:

p
(
Mij = l ≥ L+ 1, ξij0 = 1|Xij = xij , · · · −X∗ij

)
∝ ρSjωl0∆Φ (xij ; 0, l) ,

p
(
Mij = l ≤ L, ξij0 = 1|Xij = xij , · · · −X∗ij

)
∝ 0,

p
(
Mij = l ≥ L+ 1, ξij0 = 0|Xij = xij , · · · −X∗ij

)
∝ 0,

p
(
Mij = l ≤ L, ξij0 = 0|Xij = xij , · · · −X∗ij

)
∝
(
1− ρSj

)
ωl,Sj∆Φ (xij ;Sj , l) .

M and ξ must be updated jointly, in order to avoid to be trapped into a deterministic
update step.

3. Full conditional for S:

p (S| · · · −X∗,−M ,−ξ0) ∝
∫∫∫ ∫∫∫ ∫∫∫

p (S,M ,X∗, ξ0| · · · ) dX∗dMdξ0

∝
∫∫∫ ∫∫∫ ∫∫∫

p (X|X∗) p
(
X∗|M ,S,µ,σ2,β

)
p (M |S,ω, ξ0)

× p (ξ0|ρ) dX∗dMdξ0

∝
∫∫∫ ∫∫∫ ∫∫∫ ∏

i,j

+∞∑
j=0

δj(·)1[aj ,aj+1)
(
X∗ij

)
×
∏
i,j

N
(
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)

×
∏
i,j

(1− ξij0 )
(

L∑
l=1

ωl,Sjδl(·)
)

+ ξij0

 2L∑
l=L+1

ωl0δl(·)


×
∏
j

(
K∑
k=1

πkδk(·)
)∏

ij

(
ρ
ξij0
Sj

(
1− ρSj

)1−ξij0
)
dX∗dMdξ0 ⇐⇒

p
(
Sj | · · · −X∗j ,−Mj ,−ξj0

)
∝
(

K∑
k=1

πkδk(·)
)∏

i

∫ ∫ ∫ +∞∑
j=0

δj(·)1[aj ,aj+1)
(
X∗ij

)
×N

(
µSj ,Mij +Zjβ, σ2

Sj ,Mij

)
dX∗ij
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×

(1− ξij0 )
(

L∑
l=1

ωl,Sjδl(·)
)

+ ξij0

 2L∑
l=L+1

ωl0δl(·)

 dMij

×
(
ρ
ξij0
Sj

(
1− ρSj

)1−ξij0
)
dξij0 ⇐⇒

Specializing the formula with the values assumed by the other variables, we obtain:

p
(
Sj = k| · · · −X∗j ,−Mj ,−ξj0

)
∝ πk

∏
i

1∑
zi=0

(
ρzik (1− ρk)1−zi

) 2L∑
m=1

∆Φ
(
xij ; k1{m≤L},m

)

×

(1− zi)
(

L∑
l=1

ωlkδl(m)
)

+ zi

 2L∑
l=L+1

ωl0δl(m)


∝ πk

∏
i

(
(1− ρk)

2L∑
m=1

∆Φ
(
xij ; k1{m≤L},m

)( L∑
l=1

ωlkδl(m)
)

+ ρk

2L∑
m=1

∆Φ
(
xij ; k1{m≤L},m

) 2L∑
l=L+1

ωl0δl(m)

)

∝ πk
∏
i

(
(1− ρk)

L∑
m=1

ωm,k∆Φ (xij ; k,m)

+ ρk

2L∑
m=L+1

ωm,0∆Φ (xij ; 0,m)
)

4. Full conditional for ρ:

p (ρ| · · · ) ∝ p (ξ0|ρ) p (ρ) ∝
∏
i,j

ρ
ξij0
Sj

(
1− ρSj

)1−ξij0 ∏
k

ρA−1
k (1− ρk)B−1 ⇐⇒

p (ρk| · · · ) ∝
∏
i

j:Sj=k

ρ
ξij0
k (1− ρk)1−ξij0 ρA−1

k (1− ρk)B−1 = ρ

∑
i

j:Sj=k
ξij0 +A−1

k (1− ρk)

∑
i

j:Sj=k
ξij0 +B−1

Define as nk the number of observations in groups indexed with j such that Sj = k.
Moreover, let nk0 =

∑
i

j:Sj=k
ξij0 denote the number of observations in groups indexed with

j such that Sj = k (in other words, the group of observation belonging to the same
distributional cluster) assigned to the shared distribution G∗0. Exploiting conjugacy, the
full conditionals for the ρj ’s will be

ρj ∼ Beta
(
nk0 +A,nk − nk0 +B

)
Let us focus on the stick-breaking priors and their corresponding full conditionals. The pro-
posed modification does not affect the full conditional for the weights π. We then recover the
same formulas proposed by Rodríguez et al. (2008), using the stick-breaking representation with
auxiliary variables Vk, U0

l , U�0
lk, a priori distributed respectively as Beta (1, β), Beta (1, α0) and
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Beta (1, α). Notice that – in this case – k = 1, . . . ,K, l = 1, . . . , L and l′ = L + 1, . . . , 2L.
We need to define m∗k as the number of groups assigned to the same cluster k, where

∑K
k=1m

∗
k

equals the total number of observed groups J .

5. Full conditional for π:

p (π| · · · ) ∝ p (S|π) p (π) ∝ p (π)πm
∗
1

1 · · ·πm
∗
K

K

which can be recovered with the stick-breaking construction, defining the full conditional
of Vk, ∀k = 1, . . . ,K:

Vk ∼ Beta

1 +m∗k, β +
K∑

s=k+1
m∗k

 .
6. The derivation of the full conditional for ω requires more care. Let us write down the full

conditional resembling the form stated in the previous full conditional.

(7) p (ω| · · · ) ∝ p (M |S,ω, ξ0) p (ω)

∝
K∏
k=1

p (ωk)
∏
i,j

(
(1− ξij0 )

(
L∑
l=1

ωl,Sjδl(·)
)

+ ξij0 δ0(·)
)

The previous formula can be decomposed into the product of K elements. We can then
focus for the case Sj = k. Let us define nk

�0
as the total number of observations assigned

to the distributional cluster k that do not come from the shared distribution G∗0. nk�0
can

be in turn decomposed as the sum nk
�0

=
∑L
l=1 n

lk

�0
, for i = 1, . . . , L. Define n0 and nl0

analogously.

p (ωk,0| · · · ) ∝ p (ωk,0)
∏
i

(1− ξik0 )
(

L∑
l=1

ωlkδl(·)
)

+ ξik0

 2L∑
l=L+1

ωl0δl(·)


∝ p (ωk)× p (ω0)× ω

n1,k

�01,k · · ·ω
nL,k

�0
L,k · ω

nL+1,0
L+1,0 · · ·ωn

2L,0
2L,0

Exploiting the prior independence of the two stick-breaking processes, this formula suggests
the following two representation:

U�0
lk ∼ Beta

1 + nlk
�0
, α+

L∑
r=l+1

nr,k
�0

 l = 1, . . . , L, ∀k = 1, . . . ,K.

and

U0
l ∼ Beta

1 + nl
′,0, α+

2L∑
r=l′+1

nr,0

 l′ = L+ 1, . . . , 2L.

The last two full conditionals for β and
(
µ,σ2) are easily recovered employing the usual conju-

gacy properties.

7. Full conditional for θ =
(
µ, σ2):

p
(
µ,σ2

)
∝ p

(
µ,σ2

)
p
(
X∗|M ,S,µ,σ2,β

)
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∝
∏
lk

(
σ2
lk

)−a−1
exp

(
−b/σ2

lk

) √
κ√

2πσ2
lk

exp
(
−κ (µlk −m)2

2σ2
lk

)

×
∏
ij

1√
2πσ2

Mij ,Sj

exp

−
(
x∗ij − µMij ,Sj −Zjβ

)2

2σ2
Mij ,Sj


Let us define x̃ij = x∗ij − Zjβ and nlk as the number of the observations assigned to the
observational cluster l = 1, . . . , L and the distributional cluster k = 1, . . . ,K. Moreover,
let ¯̃xlk represent the average of the values x̃lk that have been clustered together and nl′0
be the number of the observations that come from the shared distribution assigned to the
observational cluster l′ = L+ 1, . . . , 2L. We then obtain, for l ∈ {1, . . . , L}:

p
(
µlk, σ

2
lk

)
∝
(
σ2
lk

)−a−1
exp

(
−b/σ2

lk

) √
κ√

2πσ2
lk

exp
(
−κ (µlk −m)2

2σ2
lk

)

×
∏

ij:Mij=l,Sj=k

1√
2πσ2

lk

exp
(
−(x̃ij − µlk)2

2σ2
lk

)

∝
(
σ2
lk

)−a−1
exp

(
−b/σ2

lk

) √
κ√

2πσ2
lk

exp
(
−κ (µlk −m)2

2σ2
lk

)

×
(
2πσ2

lk

)−nlk/2 exp

− 1
2σ2

lk

∑
ij:Mij=l,Sj=k

(x̃ij − µlk)2


while for l′ ∈ {L+ 1, . . . , 2L}, similarly we get

p
(
µl′0, σ

2
l′0

)
∝
(
σ2
l′0

)−a−1
exp

(
−b/σ2

l′0

) √
κ√

2πσ2
l′0

exp
(
−κ (µl′0 −m)2

2σ2
l′0

)

×
∏

ij:Mij=l′

1√
2πσ2

l′0

exp
(
−(x̃ij − µl′0)2

2σ2
l′0

)

∝
(
σ2
l′0

)−a−1
exp

(
−b/σ2

l′0

) √
κ√

2πσ2
l′0

exp
(
−κ (µl′0 −m)2

2σ2
l′0

)

×
(
2πσ2

l′0

)−nl′0/2 exp

− 1
2σ2

l′0

∑
ij:Mij=l′

(x̃ij − µl′0)2


Following the usual conjugacy reasoning, we obtain(

µlk, σ
2
lk

)
∼ NIG

(
m∗, σ2∗, a∗, b∗

)
(
µl′0, σ

2
l′0

)
∼ NIG

(
m∗0, σ

2
0
∗
, a∗0, b

∗
0

)
where

m∗ = κm+ nlk ¯̃xlk
κ+ nlk

κ∗ = κ+ nlk

a∗ = a+ nlk/2

m∗0 = κm+ nl′0 ¯̃xl′0
κ+ nl′0

κ∗0 = κ+ nl′0

a∗0 = a+ nl′0/2
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and

b∗ = b+ 0.5

 ∑
ij:Mij=l,Sj=k

(
x̃ij − ¯̃xlk

)2 +
(

κnlk
κ+ nlk

)
(x̃lk −m)2


b∗0 = b+ 0.5

 ∑
ij:Mij=l′

(
x̃ij − ¯̃xl′0

)2 +
(

κnl′0
κ+ nl′0

)
(x̃l′0 −m)2


For computational and notational convenience, we can set up the following N × p matrix,
where N =

∑J
j=1 nj and nj is the number of observation inside group j. We can then

define
Z∗t =

(
Zt1, . . . , Zt1︸ ︷︷ ︸
n1times

, Zt2, . . . , Zt2︸ ︷︷ ︸
n2times

, . . . , ZtJ , . . . , ZtJ
)′︸ ︷︷ ︸

nJ times

and
Z∗ = (Z1, . . . ,Zt, . . . ,Zp) = (Z1, . . . ,Zi, . . .ZN )′ .

Define

ΣZ∗ =



σ2
M11,S1

0 · · · 0 · · · 0
0 σ2

M12,S1
· · · 0 · · · 0

...
... . . . ... . . . ...

0 0 · · · σ2
Mij ,Sj

· · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · σ2

MnJJ
,SJ


,

let dij = x∗ij−µMij ,Sj and denote by D the correspondent N ×1 vector. Now the distribu-

tion p
(
Z∗|M ,S,µ,σ2,β

)
=
∏
ij

1√
2πσ2

Mij,Sj

exp
(
−
(
y∗ij−µMij,Sj−Z

jβ
)2

2σ2
Mij,Sj

)
can be rewritten

as

∏
ij

1√
2πσ2

Mij,Sj

 exp
(
−0.5 (D −Z∗β)′Σ−1

Z∗ (D −Z∗β)
)

8. Finally, the full conditional for β is

p (β| · · · ) ∝ p
(
Z∗|M ,S,µ,σ2,β

)
p (β)

∝ c1exp
(
−0.5 (D −Z∗β)′Σ−1

Z∗ (D −Z∗β)
)

× c2 exp
(
−0.5 (β −mβ)′Σ−1

β (β −mβ)
)

∝ exp
(
−0.5

(
β′Z∗′Σ−1

Z∗Z
∗β − 2D′Σ−1

Z∗Z
∗β
))

× exp
(
−0.5

(
β′Σ−1

β β − 2m′βΣ−1
β β

))

∝ exp

−0.5

β′ (Z∗′Σ−1
Z∗Z

∗ + Σ−1
β

)
︸ ︷︷ ︸

V ∗

β − 2
(
m′βΣ−1

β +D′Σ−1
Z∗Z

∗
)

︸ ︷︷ ︸
d∗

β




We now employ the ellipsoidal rectification

u′Au− 2a′u =
(
u−A−1a

)′
A
(
u−A−1a

)
− a′A−1a,
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obtaining

p (β| · · · ) ∝ exp
(
−0.5

(
β − V ∗−1d∗

)′
V ∗

(
β − V ∗−1d∗

)
− 0.5d∗′V ∗−1d∗

)
∝ exp

(
−0.5

(
β − V ∗−1d∗

)′
V ∗

(
β − V ∗−1d∗

))
.

In the last expression we recognize a multivariate normal kernel, so we can write

β| · · · ∼MVN
(
V ∗−1d∗,V ∗−1

)





33

Chapter 2

Bayesian Nonparametric Analysis of
Nested Data via Common Atom
priors

“Chiunque crede che tutti i frutti maturino contemporaneamente come le fragole,
non sa nulla dell’uva.”

Paracelso

“Don’t mistake motion for progress.”
A FB poster hanging inside the Squeeze In, a breakfast place in Menlo park

Abstract
The use of high-dimensional data for targeted therapeutic interventions requires new ways to
characterize the heterogeneity observed across subgroups of a specific population. In particular,
models for partially exchangeable data are needed for inference on nested datasets, where the
observations are assumed to be organized in different units and some sharing of information
is required to learn distinctive features of the units. In this manuscript, we propose a nested
Common Atoms Model (CAM) that is particularly suited for the analysis of nested data sets
where the distributions of the units are expected to differ only over a small fraction of the
observations sampled in that unit. The proposed CAM allows a two-layered clustering at the
distributional and observational level and is amenable to scalable posterior inference through
the use of a computationally efficient nested slice-sampler algorithm. We further discuss how to
extend the proposed modeling framework to handle discrete measurements, and discuss posterior
inference on a real microbiome dataset from young children in Mali, to investigate how large-
scale alterations in intestinal microbiota composition can be associated with diarrhea onset. We
further study the performance of our model in capturing true distributional structures in the
population by means of a simulation study.
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2.1 Introduction
The use of high-dimensional data for targeted therapeutic interventions requires new ways to
characterize the heterogeneity observed across subgroups of a specific population. In particular,
models for partially exchangeable data are needed for inference on nested datasets, where the
observations are assumed to be organized in different units and some sharing of information
is required to learn distinctive features of the units. For example, in the application to a
microbiome dataset in Section 2.5, we have available sequence count measurements for 212
children (units) in Mali, and the interest is to describe the different patterns of microbial diversity
observed in the population of children, since those patterns could be exploited to inform future
interventions.
The description of microbial diversity requires investigating the structure, concentration, and
richness of microbiota in each subject and how the distributions of microbiota abundances vary
across units and subgroups of units. As the groups are typically unknown, they need to be
estimated from the data. A few approaches have been proposed in the literature for clustering
distributional features directly. For example, Irpino and Verde (2015) have recently proposed
clustering methods in symbolic statistics, by employing the Wasserstein distance on histograms
treated as units. Similarly, Batagelj et al. (2015) have proposed generalized leaders and Ward’s
hierarchical methods to cluster modal valued symbolic data. These are exploratory tools, which
extend usual multivariate clustering methods to the analysis of (empirical) probability distribu-
tions, but they do not allow for a probabilistic assessment of cluster uncertainty.
The nested Dirichlet Process (nDP, Rodríguez et al., 2008) and its extensions have been widely
employed to identify distributional groups in Bayesian Nonparametric model-based approaches.
For example, Rodriguez and Dunson (2014) have proposed a generalization of the nDP for func-
tional data analysis; Graziani et al. (2015) have investigated how the distribution of a targeted
biomarker changes due to treatment and whether it is associated with a clinical outcome; and
Zuanetti et al., 2018 have discussed a marginal nDP for clustering genes related to DNA mis-
match repair by the distribution of gene-gene interactions with other genes. The nDP leads
to a two-layered clustering: first, it allows grouping together similar distributions (distribu-
tional clustering), and then it clusters similar observations within each distributional cluster
(observational clustering).
However, Camerlenghi et al. (2019b) have recently proved that the inference obtained using the
nDP may be affected by a degeneracy property: if two distributions share even only one atom
in their support, the two distributions are automatically assigned to the same cluster. More
precisely, the partially exchangeable partition probability function (pEPPF), i.e. the function
which describes the probability of each clustering allocation for partially exchangeable data
modeled with a nDP, collapses to a fully exchangeable case when ties are present among the
observational atoms. To overcome this drawback, Camerlenghi et al. (2019b) propose a class
of latent nested processes, which relies on estimating a latent mixture of shared and idiosyn-
cratic processes across the subgroups. However, the computational complexity of the resulting
sampling scheme limits the applicability of the model to relatively small data sets.
The degeneracy of the nDP is particularly problematic when analyzing high-dimensional data,
such as those commonly encountered in genomics and microbiome studies. Here, the distribution
profiles of sequencing data are expected to be quite similar across individuals, and to vary only
for a small fraction of differentially abundant sequences, which directly intervene to regulate
the biological processes and their dysfunctions. Thus, the distributions of genomic sequences
across two population-subgroups are expected to be highly overlapping and correlated. In those
applications, the nDP may provide unreliable inferences when comparing distributional patterns
across individuals.
In this manuscript, we propose a nested Common Atoms Model (CAM) that is particularly suited
for the analysis of nested data sets, where the distributions of the units are expected to differ
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only over a small fraction of the observations. Although our proposal could be described as a
constrained modification of the nDP, where atoms are allowed to be shared across all subgroups,
the CAM does not suffer from potential degeneracy issues. One of the consequences of the
nDP degeneracy is that unit-level measurements can be clustered together only within units
that are assigned to the same group. The within-group clustering still contributes to a compact
representation of the data, but unit-level inference across subgroups is precluded. Instead, the
proposed CAM framework naturally allows unit-level inference and clustering of observations
across groups, since the common atoms structure allows mapping group-specific distributional
patterns to a shared support. With respect to the alternative proposal of Camerlenghi et al.
(2019b), our proposal is computationally more efficient and it allows to conduct inference on a
larger number of observations and population subgroups. We further develop a novel nested slice
sampler algorithm (Kalli et al., 2011), which allows sampling directly from the true posterior
distribution, without employing the standard truncation-based approximation, which is typically
used for posterior inference with nDP models.
We apply the proposed modeling framework to the analysis of a microbiome dataset. Here, a
primary goal is to study microbial diversity, i.e. how the distribution of microbial units varies
across subgroups of a population. A number of diseases have been associated with decreased
microbiome diversity (Morgan and Huttenhower, 2012). Typically, summary statistics are used
to capture characteristics of species’ distributions, e.g. α-diversity and β-diversity metrics such
as the Shannon’s entropy and Bray-Curtis dissimilarity indexes, respectively (Whittaker, 2006).
However, those metrics do not fully capture the complexity of microbiome data, which poses
distinctive statistical challenges (Mao et al., 2017). In particular, the data are recorded as counts
of the observed microbial genome sequences. The resulting histograms are highly skewed and
sparse, due to the many low- or zero- frequency counts and to the presence of a few dominant
sequences. Figure 2.1 reports a snapshot of the observed microbial distributions for two repre-
sentative individuals from the dataset we analyze in Section 2.5. The two subjects have been
assigned with high probability to two different population subgroups by the proposed CAM
model. In addition to the typical microbiome distributional features discussed above, we note
that the two distributions share many common atoms, and they are quite similar except for
the presence of a small set of sequences that appear with high frequency. In the microbiome
literature, ad-hoc solutions are sometimes adopted to address the challenges put forward by the
analysis of microbiome data. For example, when dealing with the excess of zero counts, some
authors simply add a small number (e.g. 1) to each count, thus generating “pseudo counts”.
Here, we propose to embed the proposed CAM framework within a rounded mixture of Gaus-
sians (RGM) model (Canale and Dunson, 2011). In this way, we effortlessly obtain a BNP
Nested model for count data that can naturally handle the sparsity and the zero-inflation typi-
cal of microbiome abundance tables. The resulting discrete CAM model allows to cluster rows
of an abundance table according to their distributional characteristics, providing a partition of
patients with similar microbiome distribution.
The remainder of the article is as follows. In Section 2 we introduce our model for continuous
measurements, and discuss its properties. In Section 3 we discuss how to adapt the model to
count data. In Section 4, we discuss posterior inference and outline the nested version of the slice
sampler. Section 5 applies our model to a publicly available microbiome dataset, which contains
the OTU counts observed in a sample of children from Mali. Section 6 presents a simulation
study to assess the clustering behavior of the model as the number of observations and groups
grow in different scenarios. Section 7 summarizes our contributions and discusses some future
directions of research.
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(a) Subject 1 (b) Subject 2

Figure 2.1: Histograms of the microbiome populations of two Mali children. As
we can see, the distributions appear very similar and extremely skewed.

2.2 Common Atoms Model for Continuous Measurements
We consider a nested dataset, where we have available continuous measurements yj = (y1,j , . . . , ynj ,j)
observed over J experimental units. We assume that each observation yi,j , i = 1, . . . , nj and
j = 1, . . . , J , takes values in a suitable Polish space X endowed with the respective Borel σ-field
X . Similarly as in the nDP (Rodríguez et al., 2008), our goal is to achieve a partition of the
vectors y1, . . . ,yJ into few, say L ≤ J , distributional clusters. However, Camerlenghi et al.
(2019b) have shown that the partially exchangeable partition probability function (pEFFP) of
the nDP implies that distributions collapse into a common cluster when they share even only
one atom. This unappealing behavior can be avoided if the prior explicitly models commonality
of atoms between groups. Here, we propose a common atoms model (CAM) such that distribu-
tions belonging to different clusters are characterized by specific weights assigned to a common
set of atoms. In this section, we define the model and investigate its properties for analyzing
high-dimensional data. More specifically, let Gj , j = 1, . . . , J denote the distribution of the j-th
experimental unit,

yi,1, . . . , yi,J |G1, . . . , GJ
ind.∼ G1 × · · · ×GJ i = 1, . . . , nj . (2.1)

Then, similarly as in the nested DP formulation, we assume that the Gj ’s are a sample from an
almost surely discrete distribution Q over the space of probability distributions on X , namely

G1, . . . , GJ |Q
i.i.d.∼ Q, Q =

∑
k≥1

πk δG∗
k
. (2.2)

where G∗k =
∑
l≥1, ωlk δθl , k ≥ 1, and the common atoms θ1, θ2, . . . are drawn from a non-

atomic, shared base measure H on (X,X ). We further assume the Griffiths-Engen-McCloskey
(GEM) distribution for the weights, which characterizes the stick-breaking (or Sethuraman’s)
construction of the Dirichlet process (Sethuraman, 1994), i.e. we consider Vk ∼ Beta(1, α),
k ≥ 1, and then set π1 = V1, and πk = Vk

∏k−1
r=1(1 − Vr), k > 1.We indicate this construction

writing π = {πk}k≥1 ∼ GEM(α). Similarly, ωk = {ωlk}l≥1 ∼ GEM(β) for all k ≥ 1.

Due to the commonality of the atoms at the unit level, our construction is reminiscent of the
Hierarchical Dirichlet process (HDP) of Teh et al. (2006). However, there are crucial differences
between the two constructions, and - to the best of our knowledge - the common atoms struc-
ture we propose has not been previously investigated in the literature. More specifically, the
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HDP does allow a flexible representation of each unit-level distribution Gj , but does not in-
duce distributional clusters among the units. Our formulation preserves a two-layered clustering
structure, across units (first layer) and between observations within each unit (second layer).
Thus, with reference to this structure, the proposed CAM model is close in spirit to recently
developed hierarchical topic models (Paisley et al., 2015; Tekumalla et al., 2015), where a HDP
is adopted as a base measure of an (outer) DP, in symbols Q ∼ DP (α,HDP (β,H)). However,
these nested HDP formulations aim at describing topic distributions which can be obtained as
mixtures of separate topics (i.e. a document may contain words typical of both medicine and
sport news), whereas our objective is to cluster individual distributions and the observations
therein (a patient-specific distribution is not obtained as a mixture of other patients’ distribu-
tions). In this regard, our proposal mimics the intended purpose of the original nDP model. We
also notice that the prior distribution on Q in (2.2) can be seen as a common atom Dependent
Dirichlet process. A similar structure is used in Hatjispyros et al. (2016), where pairwise depen-
dence between m random density functions is induced modeling each of them with a mixture of
DPs characterized by common atoms.

2.2.1 Properties of the Common Atoms model

In the following, we investigate the properties of the CAM model. More specifically, we show
how the model does not suffer from the theoretical degeneracy of the nDP and, consequently,
from the implied dependence between pairs of observations and distributions.
Combinatorial structure. The partitions defined by the model in (2.1)–(2.2) can be described
via the so–called partially Exchangeable Partition Probability Function (pEPPF). For notational
simplicity, we illustrate the main results by focusing on J = 2, but the results easily extend to
the general case. We further assume that there are s > 0 distinct measurements out of a sample
y1, . . . ,yJ , which will be denoted by y∗1, . . . , y∗s , with frequencies nj = (n1,j , · · · , ns,j), and with
ni,j indicating the number of times the i-th distinct value y∗i has been observed in the initial
sample from population j, i.e. the absolute frequencies of the distinct values. We indicate by PX
the space of all random probability measures on X. We first derive a result which is similar to
Camerlenghi et al. (2019b, Proposition 2), and characterizes the mixed moments of the random
probability measures G1 and G2 as a convex combination of fully exchangeable and independent
samples. The proof is given in the Appendix.

Proposition 1. Let f1 and f2 be two measurable functions defined on PX and taking values in
R+, then

E
[∫

P2
X

f1(g1)f2(g2)Q(dg1)Q(dg2)
]

= q1E[f1(G∗1)f2(G∗1)] + (1− q1)E[f1(G∗1)f2(G∗2)] (2.3)

where we have set q1 := P(G1 = G2).

Following Camerlenghi et al. (2019a), we formally define the pEPPF as the probability of the
observed allocation {n1, . . . ,nJ} of s > 0 distinct observations through the hierarchical struc-
ture,

Π(s)
n (n1, . . . ,nJ) = E

∫
Xs

J∏
j=1

s∏
i=1

G
ni,j
j (dy∗i ), (2.4)

with n =
∑J
j=1 nj . The i-th distinct value is shared by any two experimental units j and κ if and

only if ni,j ni,κ ≥ 1. If J = 1 one obtains the usual exchangeable partition probability function
(EPPF) for an individual sample, defined by (Pitman, 1995), and denoted here as Φ(s)

nj (nj). In
the case of the Dirichlet process, this coincides with the well–known Ewens’s sampling formula,
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Φ(s)
nj (nj) = αsΓ(α)

Γ(α+nj)
∏s
i=1(ni,j − 1)! (Ewens, 1972). The pEPPF for the CAM model is described

by the following theorem, for the case J = 2.

Theorem 1. Let y1 and y2 be samples from J = 2 experimental units under the CAM model
(2.1)–(2.2). Then, the induced random partition of s > 0 distinct observations may be expressed
as

Π(s)
n (n1,n2) = q1Φ(s)

n1+n2(n1 + n2) + (1− q1)
∫
Xs

E
2∏
j=1

s∏
i=1

(G∗j )ni,j (dy∗i ). (2.5)

Although a closed form expression is not available, due to the presence of the integral over Xs
on the right hand side, the result is important to show that the proposed CAM model does not
reduce to the fully exchangeable case in the presence of common observations across the two
samples. Indeed, we can prove the following

Proposition 2. Assume that two samples y1 and y2 share s0 > 0 distinct observations. Then,
necessarily, ∫

Xs
E

2∏
j=1

s∏
i=1

(G∗j )ni,j (dy∗i ) > 0.

In other words, the pEPPF (2.5) does not reduce to the EPPF of the full exchangeable model.
The proof of Proposition 2 is deferred to the Appendix, where we also provide an explicit
expression for the integral in (2.5) (see Equation 2.18).
Of course, ties among distributions at the outer level are still possible, since

P
(
Gj = Gj′ |Q

)
=
∑
k≥1

π2
k > 0, and P

(
Gj = Gj′

)
= 1

1 + α
. (2.6)

Moreover, the probability of a tie between two data points in two separate units can be computed
as

P
[
xij = xi′j′

]
= 1

1 + α

1
1 + β

+ 1
1 + α

1
2β + 1 . (2.7)

This shows that CAM induces a two-fold clustering structure: it clusters together experimental
units characterized by similar distribution profiles, and it also groups together observations,
allowing for borrowing information across the two layers.

Correlation between random probability measures. The covariance and correlation are
useful quantities to investigate the dependence of random probability measures and are also of
paramount importance in applications. For the CAM model, it can be shown that (Appendix
(Section 2.A))

Cov
(
Gj(A), Gj′(B)

)
= H(A ∩B)

(
q1

1 + β
+ 1− q1

1 + 2β

)
+H(A)H(B)

(
− q1

1 + β
− 1− q1

1 + 2β

)
,

ρij := Corr(Gj(A), Gj′(A)) = 1− β

2β + 1
α

1 + α
.

(2.8)

where q1 = 1
1+α . It is interesting to note that ρij ∈

(
1
2 , 1
)
, due to the commonality of the

atoms. In many applications, especially in genomics, distribution profiles are expected to be
quite similar across experimental units (e.g., subjects), and to vary only for a small fraction
of the observations (e.g., genes). For the nDP, Corr

(
Gj(A), Gj′(A)

)
= 1

1+α > 0, where the
expression does not depend on β: this is because the nDP assumes independence between atoms
in separate distributions.
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2.2.2 Common Atoms Mixture Model

The CAM model defined above assumes a.s. discrete distributions. For modeling continu-
ous distributions, one could follow established literature (Ferguson, 1983) and consider a non-
parametric mixture model where (2.1) is substituted by

yi,1, . . . , yi,J | f1, . . . , fJ
ind.∼ f1 × · · · × fJ i = 1, . . . , nj ,

fj (·) =
∫

Θ
p(·|θ)Gj(dθ), j = 1, . . . , J,

Gj |Q
i.i.d.∼ Q,

(2.9)

where p(·|θ) denotes an appropriate parametric continuous kernel density, and Gj |Q
i.i.d.∼ Q as

in (2.2). In the rest of the paper, we will adopt Gaussian kernels, i.e. we assume p (·|θ) to be
Normal and θ =

(
µ, σ2) is a vector of location and scale parameters.

To simplify the computational algorithm, we introduce an alternative representation using two
sequences of latent variables, {Sj}j≥1 and {Mij}i≥1,j≥1, describing – respectively – the clustering
process at the distributional level and at the observational level, i.e. Sj = k and Mij = l if the
observation i in unit j is assigned to the l-th observational cluster and the k-th distributional
cluster:

yij |M,θ ∼ N
(
·|θMij

)
, Mij |S,ω ∼

∞∑
l=1

ωl,Sjδl(·),

ωk|S = ωk ∼ GEM(α), Sj |π ∼
∞∑
k=1

πkδk(·),

π ∼ GEM(β), θl ∼ π(θl).

(2.10)

In the following, we assume θl =
(
µl, σ

2
l

)
∼ NIG(m0, κ0, α0, β0), i.e. µl|σ2

l ∼ N
(
m0, σ

2
l /κ0

)
and

σ2
l ∼ IG (α0, β0) .

2.3 Common Atoms Model for Count Data
In Section 2.5, we consider an application to microbiome data, which can be represented by
abundance tables, containing the observed frequency of a particular microbial sequence is in a
sample - or subject (unit). In this Section, we describe how the CAM model can be adapted to
take into account count data, characterized by skewness and zero-inflation as typically observed
in microbiome studies. Let zij ∈ N be the observed count of microbial sequence i = 1, . . . , n
in subject j = 1, . . . , J . Consequently, the vector zj = (z1j , . . . , znj) will denote the observed
microbiome of individual j. Here, we embed model 2.1–2.2 in the rounded mixture of Gaussians
framework of Canale and Dunson (2011). See also Bandyopadhyay and Canale (2016) and
Canale and Prünster (2017), where the rounded mixture framework is compared to less flexible
nonparametric mixtures of Poisson densities for count data. In order to define a probability
mass function for the discrete measurements z, Canale and Dunson (2011) consider a data
augmentation framework by latent continuous variables y, such that

pZ (Z = j) =
∫ aj+1

aj

f (y) dy, j ∈ N

for a sequence of thresholds a0 < a1 < a2 < . . . < a∞ and for some density function f(·),
such that

∫ a+∞
a0

f (y) dy = 1. Typically, the sequence of thresholds is set as a = {aj}+∞j=0 =
{−∞, 0, 1, 2, . . . ,+∞} and f(·) is a Dirichlet Process mixture density, to ensure a flexible rep-
resentation of the table of counts. Here, we propose a novel nested formulation, where f is
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modeled as a CAM mixture eq. (2.10) . More specifically, we consider

zij |yij ∼
+∞∑
g=0

δg(·)1[ag ,ag+1) (yij) , (2.11)

where yij is distributed as in (2.10). Thus,

π
(
z|M,µ,σ2

)
=
∫ az+1

az
φ
(
y;µMij , σ

2
Mij

)
dy

= Φ
(
az+1;µMij , σ

2
Mij

)
− Φ

(
az;µMij , σ

2
Mij

)
:= ∆Φ

(
az;µMij , σ

2
Mij

)
.

where φ and Φ denote the p.d.f. and the c.d.f. of a Gaussian r.v., respectively.
We will refer to this new setting as the Discrete Common Atom Model (DCAM).

2.4 Posterior Inference
Typically, posterior samples for the nDP have been obtained using a truncated version of the
Blocked-Gibbs Sampler (Ishwaran and James, 2001), i.e. by choosing proper upper bounds for
the infinite-sums. The model representation in eq. (2.10) is useful to obtain an algorithm, which
we detail in Appendix B, where we also provide upper bounds for the resulting truncation error.
Here, instead, we present a novel nested version of the independent slice-efficient algorithm
(Walker, 2007; Kalli et al., 2011). With respect to truncation-based algorithms, the proposed
slice sampler has two main advantages: it allows to sample from the true posterior distribution
and it considerably decreases the computational time. To the best of our knowledge, no slice
sampler has been proposed for nested-type models. The proposed slice sampling scheme can be
easily extended to the nDP, and is related to the sampling scheme in Banerjee et al. (2013),
although their model is substantially different from ours. In the following, we focus on the
Common Atoms Mixture model (2.9), as variations of the algorithm to accommodate count
data are straightforward.
Let f (yij |θ) denote a generic likelihood function for the observation yij , let π and ω = (ω1,ω2, . . .)
be the two sets of weights, one referred to the distributional clusters, the other referred to the
observational clusters. Then, we can write:

p (yij |θ,ω,π) =
∑
k≥1

πk
∑
l≥1

ωlk f (yij |θl) .

We augment the model introducing two sets of latent variables controlling which components
of the mixture are “active” and which can be ignored. More specifically, we introduce uO =(
uO1 , . . . , u

O
J

)
– where the O in the superscript stands for the “outer”– , i.e. the distributional,

model – and, within every unit j = 1, . . . , J , we define “inner” sets of latent variables, uIj =(
uI1j , . . . , u

I
njj

)
. Moreover, following Kalli et al. (2011) , we also consider the following determin-

istic sequences: ξO =
(
ξO1 , ξ

O
2 , ξ

O
3 , . . . , ξ

O
k , . . .

)
and, for every k, ξIk =

(
ξI1k, ξ

I
2k, ξ

I
3k, . . . , ξ

I
lk, . . .

)
.

Then the model can be rewritten as

pξO,ξI
(
Yij , u

O
j , u

I
ij |θ,ω,π

)
=
∑
k≥1

1{uOj <ξ
O
k
}
πk
ξOk

∑
l≥1
1{uIij<ξ

I
lk
}
ωlk
ξIlk

f (Yij |θl) . (2.12)
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Notice that if we assume ξOk = πk and ξIlk = ωlk, we recover the nested version of the efficient-
dependent slice sampler, as presented in (Kalli et al., 2011; Papaspiliopoulos and Roberts, 2008)
Introducing two sets of latent labels that identify the distributional (S) and observational (M)
cluster in which the observation is allocated, allows us to get rid of the infinite sums in the
previous equations. The distribution for a single observation becomes

pξO,ξI
(
Yij , u

O
j , u

I
ij ,Mij , Sj |θ,ω,π

)
= 1{uOj <ξ

O
Sj
}
πSj
ξOSj
1{uIij<ξ

I
MijSj

}
ωMijSj

ξIMijSj

f
(
Yij |θMij

)
, (2.13)

while the entire sample is modeled by:

pξO,ξI
(
Y ,uO,uI ,M ,S|θ,ω,π

)
=

J∏
j=1

1{uOj <ξ
O
Sj
}
πSj
ξOSj

nj∏
i=1
1{uIij<ξ

I
MijSj

}
ωMijSj

ξIMijSj

f
(
Yij |θMij

)
.

(2.14)
If we assume f (Yij |θl) = N(Yij |θl) we recover the CAM model listed in Equation (2.9). Oth-
erwise, if we postulated the existence of a latent variable as in Equation (2.11), we recover the
DCAM setting as in f (Yij |θl) = ∆Φ

(
ayij ;µMij , σ

2
Mij

)
.

In a general framework, the nested slice sampler is obtained by looping over the following full
conditionals:

1. Sample each uOj from a continuous uniform distribution U
(
0, ξOSj

)
.

2. Sample each uIij from a continuous uniform distribution U
(
0, ξIMijSj

)
.

3. The proportions v needed to compute the SB weights π are sampled independently: vk ∼
Beta (ak, bk), where ak = 1+

∑J
j=1 1{Sj=k} and bk = α+

∑J
j=1 1{Sj>k}. This full conditional

is recovered integrating uO out.

4. For each k, the proportions uk needed to compute the SB weights ωk are sampled in-
dependently: ulk ∼ Beta

(
akl , b

k
l

)
, where akl = 1 +

∑N
i=1 1{Mij=l,Sj=k} and bkl = β +∑N

i=1 1{Mij>l,Sj=k}. This full conditional is recovered collapsing both uO and uI .

5. Sample the distributional labels from the following full conditional distribution:

p (Sj = k| · · · ) ∝ 1{uOj <ξOk }
πk
ξOk

nj∏
i=1
1{uIij<ξ

I
Mijk

}
ωMijk

ξIMijk

.

Following Banerjee et al. (2013) and Porteous et al. (2006), we can obtain more efficient
updates trough partial collapsing integrating over the inner level slice variables:

p
(
Sj = k| · · · − uI

)
∝ 1{uOj <ξOk }

πk
ξOk

nj∏
i=1

ωMijk.

6. Sample the observational labels from the following full conditional distribution:

p (Mij = l| · · · ) ∝ 1{uIij<ξIlSj }
ωlSj
ξIlSj

f (Yij |θl)

7. Sample θl from its full conditional, which is a conjugate NIG.

For the DCAM, an additional step (Step 1 of the algorithm in Appendix 1.A) is added in order
to update the latent variable. At each step, to make the actual computation of steps 5, 6 and 7
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feasible, we need to stochastically truncate the number of mixture components to a sufficiently
high integer to ensure that the two steps can be carried out exactly. At each iteration we
sample among K∗ possible distributional cluster labels and L∗∗ = max{L∗1, . . . , L∗K∗} possible
observational labels. If ξOk = πk and ξIlk = ωlk, the values are the lowest integers that ensure,
respectively, that

K∗∑
k=1

πk ≥ 1− min
j=1,...,J

uOj and
L∗k∑
l=1

ωlk ≥ 1− min
i=1,...,nj

uIij ∀k = 1, . . . ,K∗. (2.15)

Instead of relying on the efficient-dependent version, according to Kalli et al. (2011) and Hong
and Martin (2016), we adopt the following geometric deterministic sequences. In this case, it is
sufficient to focus only on one Inner deterministic sequence, say ξI , being ξIk the same for every
k.

ξOk = (1− κO)κk−1
O , ξIlk = ξIl = (1− κI)κl−1

I .

In this case, denoting with uOmin = minj uOj and uImin = mini,j uIij we can compute the two
thresholds at each MCMC sweep:

K∗ =

 log
(
uOmin

)
− log (1− κO)

log (κO)

, L∗ =

 log
(
uImin

)
− log (1− κI)

log (κI)

.
Again, in case the precision parameters α and β of the two DPs are assumed stochastic, dis-
tributed as Gamma (aα, bα) and Gamma (aβ, bβ), the full conditionals distributions can be sam-
pled following a neat procedure, as suggested in Walker (2007) and Escobar and West (1995):
denote with c∗ the number of unique values sampled and with n the number of observations
(n = J when the Outer DP is considered, otherwise n =

∑J
j=1 nj ). Then the precision param-

eter of the DP γ (γ = α when Outer DP, γ = β otherwise), for both the DPs, can be sampled
in two stage, introducing another latent variable η: (a) sample η|γ, c∗ ∼ Beta (γ + 1, n) and (b)
sample a new γ from the mixture

γ ∼ πηG(a+ k, b− log(η)) + (1− πη)G (a+ k − 1, b− log(η)) ,

where πη = πη/ (1− πη) = (a+ k − 1)/{n(b− log(η)}.
The exploration of the space of cluster memberships (labels) is a delicate task. Differently from
the marginal specification, where simulation methods are devised in a way that the resulting
Markov Chain explores the space of the partitions as equivalence classes over cluster values,
a conditional/stick-breaking specification operates on the space of the explicit cluster labels
(Porteous et al., 2006). In this second scenario, it could easily happen that the chain exploring
the cluster membership shows poor mixing, being stuck in one of the local maxima of the
posterior. This happens more frequently when a quite large amount of data is available. To
overcome this issue, the label switching moves described in Papaspiliopoulos and Roberts (2008)
and Hastie et al. (2015) can be added to our setup to improve the mixing.

2.5 Analysis of microbial distributions of infants in low-income
countries

The increased availability of high-throughput sequencing techniques has allowed researchers to
investigate the impact of the human microbiome and its diversity on our health with increasing
detail (see, e.g., Dinan and Cryan, 2013; Ley, 2010; Goodman and Gardner, 2018; Kau et
al., 2011). A taxonomical classification of microbial species is typically conducted based on
sequence alignments, e.g. through the use of 16S rRNA sequences. More specifically, “practically
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identical” sequenced tags (95%, 97% or 99% of degree of similarity) are clustered together into
the same phylotype, and referred to as an operational taxonomic unit (OTU). Thus, for each
specimen (e.g. fecal sample) obtained from a particular ecosystem (e.g. the gut), the number of
recurrences of each OTU is recorded (Jovel et al., 2016; Kaul et al., 2017). Collecting samples
from distinct individuals leads to the construction of an abundance table, a matrix formed by
the OTU counts (taxa) observed in each sample.
Let Z indicate a J×n abundance table where each entry zij ∈ N is the frequency of the i-th OTU
observed in the j-th subject, i = 1, . . . , N , j = 1, . . . , N . Thus, the vector zj = (zij)i=1...,nj =(
z1j , . . . , znj

)
denotes the observed microbiome sample of individual j, j = 1, . . . , J . Due to the

sampling mechanism and the heterogeneity of the microbiome in the population, the observed
distribution of the OTU counts is typically skewed and over-dispersed: very few important
microbes show a very high frequency, while a vast number of OTUs have been recorded just a few
times or have never been observed at all (see Figure 2.1). Indeed, when compared across subjects,
microbiota abundance data show a characteristic zero-inflation. Kaul et al. (2017) identifies three
possible types of zero values in microbiome samples: structural zeros, which record truly absent
OTUs; sampling zeros, which are due to the sampling depth of the sequencing technique; and
outliers, which are due to extraneous reasons, independent of the sequencing depth. As a result,
only a few major bacterial taxa of the microbiota are shared across samples and the remaining
bacteria are detected only in a small percentage of the samples.
In order to understand the varying composition of the microbiome in the population, we apply
the DCAM model proposed in Section 2.3 to a publicly available dataset from the study of
Pop et al. (2014), which contains the OTU counts of young children from low-income countries.
The goal of the study was to understand how large-scale alterations in intestinal microbiota
composition can be associated with diarrhea onset. More specifically, we focus here on the 212
records of Mali children. We combine together the OTU at the species level, and subsequently
we follow standard preprocessing steps in microbiome analysis, by filtering out the species that
have more than 85% of zero entrances across all records in the datasets. This leaves us with 142
taxa from the 212 children, resulting in a total of 30,104 observations.
The varying sequencing depths results also affect the so-called library size, i.e. the total frequen-
cies of the observed species. Let Xj =

∑nj
i=1 zij indicate the library size for subject j and let

γj = Xj/X̄j denote the same quantity divided by the mean of all observed library sizes (Bullard
et al., 2010; Witten, 2011). We incorporate the library sizes as a regressor in the latent modeling
formulation of the DCAM, i.e. we consider

yij |M,µ,σ2 ∼ N
(
γj · µMij , σ

2
Mij

)
. (2.16)

The mean of the latent continuous random variable, which reflects the magnitude of the count
of a specific OTU, is decomposed multiplicatively in a term that captures the true intensity
underlying the process and a deterministic term that describes the depth of the sequencing.
We adopt standard prior settings for all the hyperparameters (m,κ, α0, β0, aα, bα, aβ, bβ). More
specifically, following an empirical Bayes rationale, we set m = 0 and κ equal to the inverse
of the overall sample variance. According to Rodríguez et al. (2008), we then set β0 = 1 and
α0 = aα = bα = aβ = bβ = 3. A MCMC sample of 50,000 iterations was collected after a burn
in period of the equal length. Convergence of the MCMC chain was assessed based on visual
inspection and standard convergence diagnostics (Plummer et al., 2006).
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Figure 2.1: Pairwise Posterior Probability matrix of coclustering among the 212
subjects. A partition of the subjects’ distributions into five clusters is obtained
after minimization of the posterior expected Variation of information loss function.

We first start investigating the heterogeneity of the distributions of taxa abundances among the
subjects. From the MCMC output, it is possible to obtain the posterior matrix of pairwise co-
clusterings, which provides an initial idea of the underlying structure of the data. We can further
estimate an optimal partition of the resulting distributions by considering a decision-theoretic
approach and minimizing the expected posterior loss under a specific loss function specification.
A widely used approach, defined directly on the space of the partitions, relies on the Binder
loss function (Binder, 1978; Lau and Green, 2007). However, the Binder loss has been shown to
exhibit asymmetrical behaviors, as it leads to split clusters more likely than merging them. This
behavior could result in the creation of many small clusters, often containing a single observation.
Thus, Wade and Ghahramani (2015) propose to rely instead on the minimization of the Variation
of Information loss function developed by Meilă (2007). The Variation of Information distance
compares the entropy information in two clusterings with the information shared between the
two clusterings. Applying this criterion to our MCMC output, we can find five main clusters
among the subjects, of different sizes, which are visualized in Figure 2.1.
The resulting clustering of the subjects’ abundance distributions appears to capture relevant
distributional characteristics. For example, the Shannon index (Shannon, 1948) is often used to
measure the α-diversity of a microbiome community, i.e. the richness (number) and evenness
(frequencies’ similarity) of the different OTUs observed in a sample. More in detail, the Shannon
index for an individual j is defined as Hj = −

∑nj
i=1 pij ln pij , where pij is the ratio of the abun-

dance of taxa i over the library size of individual j. Figure 2.2 (a) shows the violin and boxplots
of the α-diversity values for the five clusters identified by the optimal partition estimated using
the Variation of Information criterion. The identified clusters correspond to marked differences
in the α-diversity indexes and their distributions, whereby some clusters are less diverse than
others. Figure 2.2 (b) shows the distribution of the within-subject means of all non-zero counts.
This measure can be seen as a proxy to evaluate the richness of the distributions. Thus, clusters
characterized by high means correspond to low-diversity indices, due to the presence of a few
high-abundant microbe sequences. Similarly, Figure 2.2 (c) considers the percentage of non-zero
counts in the species, which can also provide some information about the richness and skewness
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(a) α-diversity (b) Mean of non-zero
abundances

(c) % of zero counts

Figure 2.2: Violin and boxplot combinations for three distributional summaries
stratified by the partition clusters estimated using the Variation of Information
criterion: a) α-diversity as measured by the Shannon entropy index; b) the mean
of the non-zero entries in the abundance table for each subject; c) the percentage

of OTU sequences with zero counts.

of the observed sample counts.

Diarrhea Onset ∼ Cluster Allocation
50% 2.5% 97.5% P(β > 0|data) > 0

β0 1.042 0.307 1.872 0.998
β1 −1.210 -2.150 -0.337 0.003
β2 −1.023 -1.943 -0.175 0.009
β3 −1.293 -2.934 0.277 0.053

Age ∼ Cluster Allocation
50% 2.5% 97.5% P(β > 0|data)

β0 10.883 7.646 14.116 1.000
β1 9.678 5.786 13.591 1.000
β2 0.119 -3.646 3.893 0.524
β3 8.653 1.617 15.703 0.992

Table 2.1: Posterior median, 95% credible intervals and posterior probability
P(β > 0|data) for each coefficient from a Bayesian regression models, to study
the association between diarrhea onset (left) and Age (right) with the estimated

cluster allocation.

To further investigate possible interpretations of the estimated distributional clusters, we have
fit two simple Bayesian regression models where we estimate the association between additional
variables, which are available in the dataset, and the estimated cluster allocations. More specif-
ically, we consider a logistic regression to study the association with the onset of diarrhea, a
dichotomous variable indicating if a child has suffered from disrupting diarrhea (Type=1) or not
(=0), and a linear regression model to study the association with the variable Age, which reports
the children’s age in month. Since there are only two observations clustered in one group, we
limited this study only to the four remaining clusters. We treat the cluster indicator variable as
a 4-levels factor, from which we recover 3 dummy variables. For both the regression models, we
run 5 different chains for 100,000 iterations in rstan (Stan Development Team, 2019), discarding
the first half as burn-in period.
Table 2.1 reports the posterior medians, 95% credible intervals and the estimated posterior
probabilities P(β > 0|data) for each of the coefficients. The first cluster from the left in Figure 2.1
is positively associated with the onset of diarrhea and characterizes children with a mean age
of 10.883 months (95% CI: 7.646, 14.116). All the other clusters are characterized by lower
odds of diarrhea onset and higher ages with respect to cluster one. However, the first and third
clusters are characterized by very similar ages. Albeit limited by the type of additional variables
available in the dataset, our exploratory analysis suggests that the distributional clusters may
highlight demographic or clinical differences in the studied population.
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Finally, we consider inference at the OTU (microbial sequence) level, by investigating the esti-
mated clustering of microbiome sequences, which we have previously referred to as observational
clustering, and by assessing the variability of the microbiome abundances across subjects. We
condition the OTU level inference on the optimal distributional cluster configuration estimated
in the previous paragraph. Let g = 1, . . . , G indicate the estimated distributional clusters (here,
G = 5) and let Sg = {1, 2, . . . , ng} denote a collection of indexes identifying the subjects as-
signed to each cluster g. In order to investigate how the observed abundance of a given microbial
sequence varies within a cluster of subjects, we assess if the abundance of each microbe appears
more similar within- than between- the estimated groups. If two microbes i and i′ are assigned
to the same observational cluster, we can expect µMij = µMi′j′ with high probability. Let Oi,gt
denote the set of allocation indicators (observational labels) which have been assigned to OTU
i across the different subjects that have been assigned to group g at iteration t = 1, . . . , T of the
MCMC sampler, for each g = 1, . . . , G. Since the allocation indicators are just computational
tools that inform about cluster frequencies and not parameter values, we apply a measure of
dissimilarity on Oi,gt to summarize how much the allocations of the OTUs agree between subjects
assigned to the same group. More specifically, we use again the Shannon index, by computing
H
(
Oi,gt , Sg

)
= −

∑
Sg p

i,g
t log pi,gt , appropriately normalized, where the pi,gt ’s denote the relative

frequencies of the observational labels of OTU i in cluster g at the t-th iteration. Then, we
compute the ergodic means, H̄ i,g =

∑T
t=1H

(
Oi,gt , Sg

)
, i = 1, . . . , N , g = 1, . . . , G. The results

are reported in Figure 2.3. Two clusters are characterized by low entropy, suggesting that most
of the microbial sequences in the groups are characterized by similar abundances. On the other
hand, two clusters are characterized by higher entropy, i.e. the abundances of the microbial
sequences vary across subjects assigned to the group. Results may vary for specific microbes.
For example, the Faecalibacterium prausnitzii is characterized by an entropy below 0.5 in three
of the five groups considered here. Upon further inspection, in the groups where the entropy
is high, the microbe abundances are characterized by high sampling variability, i.e. microbes
may have zero counts in some of the samples. We can also investigate the observational clus-
tering structure per se. Table 2.2 reports some summary statistics – average, median, standard
deviation and Shannon Index – computed on the OTU counts stratified by different clusters.

Observational Cluster 1 2 3 4 5

n 5586 20349 588 1966 1615
Average 2.460 0.000 1000.447 13.348 87.473
Median 2 0 626 11 66
Std. Dev. 2.003 0.000 980.670 7.801 64.977

Shannon Index 8.368 0.000 6.027 7.436 7.144

Table 2.2: Summary statistics stratified by observational cluster, considering the
> 30k OTU counts as units.

Among the others, Cluster 2 and 3 are particularly relevant. In fact, they contain the absent and
the most present OTUs, respectively. We further investigate the percentage of times a particular
OTU species is included in these two clusters, across all the 212 subjects. We report the top
three OTU species in terms of presence in Table 2.3.
Our analysis confirms the relevance of studying how microbiome abundances vary across sub-
jects, in order to capture microbial diversity, an important concept in microbiome analysis.
Further analysis is needed to associate the abundances of specific microbes to available clinical
or demographic variables.
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Cluster % of presence OTU species

2 92.4 Bacteroides sp. XO77B42
2 91.9 Catenibacterium mitsuokai
2 91.5 Prevotella sp. oral clone P4PB_83 P2

3 47.6 Escherichia coli
3 22.6 Prevotella sp. BI42
3 13.2 Prevotella sp. DJF_B112

Table 2.3: Top three OTU species in Observational Clusters 2 and 3 in terms of
presence across individuals.

Figure 2.3: The Entropy index H̄i,g described in Section 2.5: for each row,
representing a specific OTU, we observe the Entropy indexes stratified by the
optimal distributional allocation of subjects, which has been estimated using the

Variation of Information criterion.
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2.6 Simulation study
We study the clustering performance of the proposed methodology for continuous (CAM) and
discrete measurements (DCAM) in a simulation study. More specifically, we investigate how
our model is able to recover the true distributional clustering structure when the number of
observations within each unit, or the number of units itself, increase. The prior specifications
are similar as in the case study. We consider the following three scenarios:

• Scenario 1 - CAM. We consider two replications for each of the six units characterized
by the following distributions:

Y1 ∼ N(0, .6), Y2 ∼
1
2N(0, .6) + 1

2N(5, .6),

Y3 ∼
1
3N(0, .6) + 1

3N(5, .6) + 1
3N(10, .6),

Y4 ∼
1
4N(0, .6) + 1

4N(5, .6) + 1
4N(10, .6) + 1

4N(13, .6),

Y5 ∼
1
5N(0, .6) + 1

5N(5, .6) + 1
5N(10, .6) + 1

5N(13, .6) + 1
5N(16, .6),

Y6 ∼
1
6N(0, .6) + 1

6N(5, .6) + 1
6N(10, .6) + 1

6N(13, .6) + 1
6N(16, .6) + 1

6N(20, .6),

Since every unit is sampled two times, therefore J = 12. Notice how the supports of
these distributions overlap to a great extent. To assess how the model behaves with
asymmetries in the unit sample sizes, we simulate observations from the aforementioned
distributions following two different approaches. First, we generate the different units
with equal cardinality nA (Case A), where we consider nA ∈ {25, 50, 75}. Then, we
generate inhomogenous units fixing the number of observations per mixture component
nB (Case B). The cardinality of each center is nj = #Yj = nB · j for j = 1, . . . , 6, where
nB ∈ {5, 10, 20}. To assess the distributional clusters (DC), we verify if the couples with
identical distributional law are clustered together. We then study how the observations
are partitioned (OC) among the different components of the mixtures.

• Scenario 2 - CAM. We test the performance of our model in a challenging framework,
where four different distributions for the units are considered:

Y1 ∼ 0.75N(0, 1) + 0.25N(3, 0.6),
Y2 ∼ 0.50N(0, 1) + 0.50N(3, 0.6),
Y3 ∼ 0.33N(0, 1) + 0.34N(−2, 0.6) + 0.33N(2, 1),
Y4 ∼ 0.25N(0, 1) + 0.25N(−2, 0.6) + 0.25N(2, 1) + 0.25N(10, 1),

We keep the number of observation per unit constant, equal to n = 40. Instead, we vary
the number r of replications considered. Therefore, r = 1, . . . , 6 and Jr = 4 · r. Therefore,
the total number of considered units ranges from J1 = 4 to J6 = 24. In this way, we can
investigate the estimated distributional clustering structures as the total number of units
increases. Notice that, while the number of true DCs grows, the number of true OCs is
fixed to 2 for the first two distributions, 3 and 4 for the last two ones.

• Scenario 3 - DCAM. Let δx denote a point mass placed on x and let UD (q,Q) represent
a Uniformly Discrete distribution placed on the set of integers {q, . . . , Q}, where q < Q
and q,Q ∈ N. We consider three different possible unit distributions to sample J = 10
centers:

Yr,1 ∼ ω1δ0 + ω2δ1 + ω3UD [0, 10] , r = 1, 2
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Yr,2 ∼ ω1δ0 + ω2δ1 + ω3UD [0, 50] , r = 3, 4, 5, 6
Yr,3 ∼ ω1δ0 + ω2δ1 + ω3UD [0, 100] , r = 7, 8, 9, 10,

where ω1, ω2, ω3 are the mixture weights and r denotes the replication. We set ω1 =
ω2, generating the 50 observations equal to zero and 50 equal to one to simulate a case
of low value inflation. We investigate the performance of the model in 4 cases (I-IV),
differentiating by the number of observations assigned to the last mixture component:
10, 15 ,25 and 50 respectively. Notice that the number of true DCs is fixed, equal to
3. However, the assessment of the OCs requires more care since there is ground truth
available. We assume four different clusters: a first set of “low-expressed” observations
containing only zeros and ones, and three others, partitioning the support in [2, 10],(11, 50]
and (51, 100].

We report a picture of the densities of the distributions of each scenario in the Appendix. For
each scenario, we also run a nDP mixture model, indicated as nDP, in the case with biggest
sample size. We truncate the observational DP at 30 and the distributional DP at 25. In
Table 2.1 we assess the goodness of the estimated optimal partition with the ground truth via
Adjusted Rand Index (Hubert and Arabie, 1985) and Classification Error. We see how sometimes
the model detects the correct number of cluster, but misassigns some of the distributions. We
can appreciate how the model is able to recover the observational clusters when they are distinct
and separated (Scenario 1). In Scenario 2 and 3 the model correctly identifies the components
that are separated from the data while it struggles to distinguish between similar generating
distributions, tending to be parsimonious. However, very good results are recovered when we
focus on the distributional clustering. In fact, we can also appreciate how the model is able to
recover the truth as either nj or J increase, in some cases even with very small sample sizes.
Hence, these results are remarkable and promising: the CAM and the DCAM are able to allocate
the various units into the correct distributional clusters, even if the various distributions overlap.
Lastly, in each scenario it is evident how the overlap of the data impacts the estimated partition
of the vanilla nDP, which always collapses two units.

2.7 Discussion
We have introduced a nested nonparametric model that allows investigating distributional het-
erogeneity in nested data. The proposed Common Atom Model allows a two-layered clustering
at the distributional and observational level, similarly to the nDP of Rodríguez et al. (2008). By
construction, our model formulation allows sharing of atoms with different weights across dis-
tributions, and thus does not suffer from the degeneracy properties of the nDP whenever there
is a tie between atoms. The common atom model specification is appealing and convenient for
a variety of reasons: it is simple, allows a more refined description of distributional clusters,
and it is computationally efficient. We can extend the methodology to allow the modeling and
clustering of discrete distributions, by considering a rounded mixture of Gaussian kernels as
in Canale and Dunson (2011). A further contribution of this work is the implementation of
a nested version of the independent efficient slice sampler. We applied our methodology to a
real microbiome dataset, aiming to cluster patients characterized by similar taxa distributions.
Controlling for each subject’s library size (the total frequencies of the observed species), we
grouped the data minimizing the Variation of Information loss function and we showed how
the model is able to detect clusters catching main differences among the distributions. We also
assess the performance of our modeling approach by means of a simulation study, where the
overlap between different distributions is evident.
The application of the proposed model to the real data set is limited by the type and number of
clinical and demographic covariates that are available. If additional covariates were available,
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Scenario 1 - DC nA = 25 nA = 50 nA = 75 nB = 5 nB = 10 nB = 20 nDP

True Clusters 6 6 6 6 6 6 6
Clusters Detected 4 5 6 3 5 6 5
ARI 0.4210 0.7179 1.000 0.3333 0.7179 1.000 0.7179
Class Error 0.3333 0.1667 0.000 0.5000 0.1667 0.000 0.1667

Scenario 1 - OC nA = 25 nA = 50 nA = 75 nB = 5 nB = 10 nB = 20 -

True Clusters 6 6 6 6 6 6 -
Clusters Detected 5 5 6 5 7 6 -
ARI 0.9772 0.9813 0.9848 0.9617 0.9522 0.9691 -
Class Error 0.0433 0.0316 0.0144 0.0619 0.0261 0.0178 -

Scenario 2 - DC J1 = 4 J3 = 8 J3 = 12 J4 = 16 J5 = 20 J6 = 24 nDP

True Clusters 4 4 4 4 4 4 4
Clusters Detected 3 3 4 5 4 4 3
ARI 0.0000 0.5882 0.6393 0.6767 0.859 1.0000 0.6849
Class Error 0.2500 0.2500 0.1667 0.1250 0.050 0.0000 0.2500

Scenario 2 - OC J1 = 4 J3 = 8 J3 = 12 J4 = 16 J5 = 20 J6 = 24 nDP

True Clusters 6 6 6 6 6 6 -
Clusters Detected 4 4 4 4 6 5 -
ARI 0.6340 0.4318 0.5661 0.5347 0.5880 0.6355 -
Class Error 0.2062 0.2875 0.2270 0.2390 0.2187 0.1854 -

Scenario 3 - DC I II III IV - - nDP

True Clusters 3 3 3 3 - - 3
Clusters Detected 3 3 3 3 - - 2
ARI 0.7232 0.8258 0.8258 1.000 - - 0.6341
Class Error 0.1000 0.1000 0.1000 0.000 - - 0.2000

Scenario 3 - OC I II III IV - - -

True Clusters 4 4 4 4 - - -
Clusters Detected 4 5 5 5 - - -
ARI 0.9452 0.9667 0.9633 0.9592 - - -
Class Error 0.0163 0.0260 0.0392 0.0540 - - -

Table 2.1: True number of clusters, detected number of clusters, Adjusted Rand
Index and Classification Error computed in the three simulation scenarios to quan-

titatively compare the clustering performance

they could be used to model more complex dependencies, e.g. by constructing dependent ran-
dom measures with covariate-dependent weights as in MacEachern (2000) (see also Barrientos
et al., 2012), or to build risk-prediction models. Another interesting extension considers the
incorporation of a time dimension, and studying how distributional clusters vary across time.
These directions are left for future investigation.
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Appendix

2.A Proofs
Proof of Equation 2.6
Let Gi and Gj be two realizations from the random probability measure Q, as defined in eq. (2.1).
Then,

P (Gi = Gj |Q) =
∑
k≥1

P (Gi = Gj = G∗k|Q) =
∑
k≥1

P (Gi = G∗k, Gj = G∗k|Q)

=
∑
k≥1

P (Gi = G∗k|Q)P (Gj = G∗k|Q) =
∑
k≥1

π2
k > 0.

So,

P (Gi = Gj) = E [P (Gi = Gj |Q)] = E

∑
k≥1

π2
k

 =
∑
k≥1

E
[
π2
k

]
= 1

1 + α
.

where the last equality is motivated in one of the next proofs.

Proof of Equation 2.7
Let xij ∼ Gj and xi′j′ ∼ Gj′ be two realizations from two probability measures both sampled
from Q. Then,

P
[
xij = xi′j′

]
= E

[
P
[
xij = xi′j′ |Gj , Gj′

]]
= E

[ 1
1 + α

P
[
xij = xi′j′ |Gj = Gj′

]
+ α

1 + α
P
[
xij = xi′j′ |Gj 6= Gj′

]]

= 1
1 + α

E

∑
r≥1

ω2
rj

+ α

1 + α
E

∑
r≥1

ωrjωrj′


= 1

1 + α

1
1 + β

+ 1
1 + α

1
2β + 1 = Corr

(
xij , xi′j′

)
.

Covariance and Correlation among two measures
Suppose Gj ’s are defined on a Polish space (X,X ). Let us consider A,B ∈ X . Recall that
Gj , Gj′ |Q

i.i.d.∼ Q. In the following, to ease the notation, we assume without loss of generality
that j = 1 and j′ = 2. Denote with G∗k a realization of a Dirichlet Process and we will
differentiate among different realizations calling them G∗k1

and G∗k2
. Then

E [G1(A) ·G2(B)] =E [E [G1(A) ·G2(B)|Q]] =
P
[
G∗k1 = G∗k2 = G∗k

]
E [G∗k(A) ·G∗k(B)] + P

[
G∗k1 6= G∗k2

]
E
[
G∗k1(A) ·G∗k2(B)

]
.
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We then notice that P
[
G∗k1

= G∗k2
= G∗k

]
= E

[∑
l≥1 π

2
l

]
= 1

α+1 , so the previous equation be-
comes

E [G1(A) ·G2(B)] = 1
α+ 1E [G∗k(A) ·G∗k(B)] + α

α+ 1E
[
G∗k1(A) ·G∗k2(B)

]
.

The first expected value can be expressed as

E [G∗k(A) ·G∗k(B)] =E

∑
l≥1

ωl,kδxl(A) ·
∑
l≥1

ωl,kδxl(B)


=E

∑
l≥1

ω2
l,kδxk(A ∩B)

+ E

∑
l≥1

∑
r 6=l

ωl,kωr,kδxl(A)δxr(B)


=E

∑
l≥1

ω2
l,k

H(A ∩B) +

1−
∑
l≥1

E
[
ω2
l,k

]H(A)H(B)

= 1
β + 1H(A ∩B) + β

β + 1H(A)H(B),

while the second one

E
[
G∗k1(A) ·G∗k2(B)

]
=E

∑
r≥1

ωr,k1δxr(A) ·
∑
l≥1

ωl,k2δxl(B)


=E

∑
r≥1

ωr,k1ωr,k2δxr(A ∩B)

+ E

∑
r 6=l

ωr,k1ωl,k2δxr(A)δxl(B)


=E

∑
r≥1

ωr,k1ωr,k2

H(A ∩B) + E

∑
r 6=l

ωr,k1ωl,k2

H(A)H(B).

Then, we notice that the previous needs to hold also when A = B = X. In that case

1 = E
[
G∗k1(X) ·G∗k2(X)

]
=
∑
r≥1

E [ωr,k1 ]E [ωr,k2 ]H(X) +
∑
r 6=l

E [ωr,k1 ]E [ωl,k2 ]H(X)H(X)

⇐⇒

1−
∑
r≥1

E [ωr,k1 ]2
 =

∑
r 6=l

E [ωr,k1 ]E [ωl,k2 ] .

So we can conclude that

E
[
G∗k1(A) ·G∗k2(B)

]
=
∑
r≥1

E [ωr,k1 ]E [ωr,k2 ]H(A ∩B) +
∑
r 6=l

E [ωr,k1 ]E [ωl,k2 ]H(A)H(B)

i.i.d.=
∑
r≥1
{E [ωr,k1 ]}2H(A ∩B) +

1−
∑
r≥1
{E [ωr,k1 ]}2

H(A)H(B).

We then notice that

∑
r≥1
{E [ωr,k1 ]}2 =

∑
r≥1

E

vr r−1∏
q=1

(1− vq)


2

=
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=
∑
r≥1

[
1

(1 + β)2

(
β

1 + β

)2(r−1)]
= 1

2β + 1 .

So we can complete the derivation of E
[
G∗k1

(A) ·G∗k2
(B)

]
:

E
[
G∗k1(A) ·G∗k2(B)

]
= 1

1 + 2βH(A ∩B) + 2β
1 + 2βH(A)H(B).

Now let us define as q1 := 1
α+1 . Then we can write

E [G1(A) ·G2(B)] = H(A ∩B)
(

q1
1 + β

+ 1− q1
1 + 2β

)
+H(A)H(B)

(
q1

β

1 + β
+ (1− q1) 2β

1 + 2β

)
.

So we derive for two general indexes j and j′

Cov
(
Gj(A), Gj′(B)

)
= H(A ∩B)

(
q1

1 + β
+ 1− q1

1 + 2β

)
+H(A)H(B)

(
q1

β

1 + β
+ (1− q1) 2β

1 + 2β − 1
)

= H(A ∩B)
(

q1
1 + β

+ 1− q1
1 + 2β

)
+H(A)H(B)

(
− q1

1 + β
− 1− q1

1 + 2β

)
,

and in the case A = B, we have

Cov
(
Gj(A), Gj′(A)

)
=
(

q1
1 + β

+ 1− q1
1 + 2β

)
H(A)(1−H(A)).

Moreover, let us find Corr
(
Gj(A), Gj′(A)

)
= Cov(Gj(A),Gj′ (A))√

V ar(Gj(A))·V ar(Gj′ (A)) . We compute

V ar(Gj(A)) =E
[
Gj(A)2

]
− E [Gj(A)]2

=E
[
E
[
Gj(A)2|Q

]]
− E [Gj(A)]2 = E

[
G∗j (A)2

]
− E [Gj(A)]2

= 1
β + 1H(A) + β

1 + β
H(A)2 −H(A)2

= 1
β + 1H(A) (1−H(A)) .

Finally,

ρij := Corr(Gj(A), Gj′(A)) =
(

q1
β + 1 + 1− q1

2β + 1

)/ 1
β + 1

=q1 + β + 1
2β + 1(1− q1) = 1− β

2β + 1(1− q1)

=1− β

2β + 1 ·
α

1 + α
.

We underline that ρij ∈
(

1
2 , 1
)
.
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Proof of Proposition 1
Recalling the CAM model (2.1)–(2.2), we get

E
[∫

P2
X

f1(g1)f2(g2)Q(dg1)Q(dg2)
]

= E

∫
P2
X

f1(g1)f2(g2)
∑
k1≥1

πk1δG∗k1
(dg1)

∑
k2≥1

πk2δG∗k2
(dg2)


= E

∫
P2
X

f1(g1)f2(g2)
∑
k≥1

π2
kδG∗k(dg1)δG∗

k
(dg2)


+ E

∫
P2
X

f1(g1)f2(g2)
∑
k1 6=k2

πk1πk2δG∗k1
(dg1)δG∗

k2
(dg2)

 .
Observe that the G∗k’s are all Dirichlet processes having the same law on the space PX, which
will be denoted by P, depending on the total mass α and the base measure H. We also point
out that the G∗k’s are not independent random elements for different values of k, indeed they
share the same random atoms (θl)l≥1, nevertheless if k1 6= k2, the distribution of (G∗k1

, G∗k2
)

equals the distribution of (G∗1, G∗2), which will be denoted by P[2]. Therefore, by applying the
Tonelli–Fubini Theorem, we obtain

E
[∫

P2
X

f1(g1)f2(g2)Q(dg1)Q(dg2)
]

=
∑
k≥1

π2
kE
∫

P2
X

f1(g1)f2(g2)δG∗
k
(dg1)δG∗

k
(dg2)

+
∑
k1 6=k2

πk1πk2E
∫

P2
X

f1(g1)f2(g2)δG∗
k1

(dg1)δG∗
k2

(dg2)

= q1

∫
P2
X

f1(g)f2(g)P(dg) + (1− q1)
∫

P2
X

f1(g1)f2(g2)P[2](dg1, dg2),

and then the thesis follows.
Proof of Theorem 1
We first evaluate the expected value in the definition of pEPPF (2.4), for J = 2,

E
2∏
j=1

s∏
i=1

G
ni,j
j (dy∗i ) = E

E
 2∏
j=1

s∏
i=1

G
ni,j
j (dy∗i )

∣∣∣Q


= E

∫
P2
X

2∏
j=1

s∏
i=1

g
ni,j
j (dy∗i )Q(dg1)Q(dg2)

 .
Now we apply Equation (2.3) to the previous integral where the functions fj , as j = 1, 2, are
defined by

fj(gj) :=
s∏
i=1

g
ni,j
j (dy∗i ),

and then we get

E
2∏
j=1

s∏
i=1

G
ni,j
j (dy∗i ) = q1E

2∏
j=1

s∏
i=1

(G∗1)ni,j (dy∗i ) + (1− q1)E
2∏
j=1

s∏
i=1

(G∗j )ni,j (dy∗i ). (2.17)
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We finally integrate over the space Xs to get the result, i.e. (2.5).
Proof of Proposition 2
Assume that the two samples y1 and y2 share s0 > 0 distinct values denoted here as y∗1,0, . . . y∗s0,0
with frequencies (q1,j , . . . , qs0,j) in the j-th sample, as j = 1, 2. We further suppose that the j-th
sample contains exactly sj distinct observations not shared with the other one, and denoted here
by y∗1,j , . . . , y∗sj ,j , for j = 1, 2; besides the vector of corresponding frequencies will be denoted as
(r1,j , . . . , rsj ,j). We obviously have that s = s0 + s1 + s2.
Using the representation of the G∗k’s in the CAM model (2.1)–(2.2), we get

E
2∏
j=1

s∏
i=1

(G∗j )ni,j (dy∗i ) = E
2∏
j=1

s∏
i=1

∑
l≥1

ωl,jδθl(dy
∗
i )

ni,j .
Exploiting the partition of the data described at the beginning of the proof, we obtain

E
2∏
j=1

s∏
i=1

(G∗j )ni,j (dy∗i )

= E
2∏
j=1

sj∏
i=1

∑
l≥1

ω
ri,j
l,j δθl(dy

∗
i,j)

 s0∏
i=1

∑
l≥1

ω
qi,1
l,1 ω

qi,2
l,2 δθl(dy

∗
i,0)

+ o

 2∏
j=0

sj∏
i=1

H(dy∗i,j)


=
∑
6=

E

 2∏
j=1

sj∏
i=1

ω
ri,j
li,j ,j

s0∏
i=1

ω
qi,1
li,0,1ω

qi,2
li,0,2

 2∏
j=0

sj∏
i=1

H(dy∗i,j) + o

 2∏
j=0

sj∏
i=1

H(dy∗i,j)

 .
where the sum

∑
6= is extended over all possible vectors of distinct natural numbers (li,j)i=1,...,sj , j=0,1,2 ∈

N3. Integrating over Xs we get that

∫
Xs

E
2∏
j=1

s∏
i=1

(G∗j )ni,j (dy∗i ) =
∑
6=

E

 2∏
j=1

sj∏
i=1

ω
ri,j
li,j ,j

s0∏
i=1

ω
qi,1
li,0,1ω

qi,2
li,0,2

 (2.18)

which is positive whenever s0 > 0.

2.B Truncated Blocked Gibbs Sampler for CAM
The posterior distribution is analytically intractable, which forces us to develop sampling algo-
rithms to simulate from it. A Polya Urn representation would be too expensive in computational
cost. Instead, we provide two different algorithms: a Blocked Gibbs sampler (Ishwaran and
James, 2001), mimicking the one proposed in (Rodríguez et al., 2008) and a nested slice sampler
(Damien et al., 1999; Walker, 2007; Kalli et al., 2011). Here we discuss the former one. The
Truncated CAM model has the following form:

yij |M,θ ∼ N
(
·|θMij

)
, Mij |S,ω ∼

L∑
l=1

ωl,Sjδl(·),

ωk|S = ωk ∼ GEM(α), Sj |π ∼
K∑
k=1

πkδk(·),

π ∼ GEM(β), θl ∼ π(θl).

(2.19)

The Truncated version of CAM (TCAM) (2.19) can be extended to a Truncated version of DCAM
(TDCAM) once the likelihood is modified according to (2.11), In the following we report the
Gibbs Sampler for the TDCAM, the extension of the sampler to accomodate the presence of a
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covariate linearly introduced. Notice that some of the conditioning variables are collapsed (Liu,
1994), to enhance the speed of convergence and the mixing of the chains.

TDCAM: Gibbs Sampler
The steps of the MCMC are the following:

1. The full conditional for each yij , ∀i, j is Truncated Normal, with support
[
azij , azij+1

)
:

p (yij |zij , · · · ) ∼ TN(µMij , σ
2
Mij

; azij , azij+1).

This can be done easily with the help of the R package TruncatedNormal, which relies on
a recently improved algorithm exploiting minmax tilting (Botev, 2017).

2. The full conditional for the observational cluster labels Mij , once the latent variable y is
integrated out, is a discrete distribution, given by ∀i, j

p (Mij = l|yij , Sj = k, · · · − yij) ∝ ωl,Sj∆Φ
(
azij ;µMij , σ

2
Mij

)
.

3. The full conditional for the distributional cluster labels Sj is given by, ∀j:

p
(
Sj = k| · · · − y∗j ,−Mj

)
∝ πk

∏
i

(
L∑

m=1
ωm,k∆Φ

(
ayij ;µm, σ2

m

))
.

4. To sample the full conditional of the weights π at the distributional level, we first need
to define m∗k as the number of units assigned to the same distributional cluster k, where∑K
k=1m

∗
k = J the total number of observed units. Then,

p (π| · · · ) ∝ p (S|π) p (π) ∝ p (π)πm
∗
1

1 · · ·πm
∗
K

K .

Referring to the Stick Breaking representation, we can define the full conditional of the
various sticks vk, ∀k = 1, . . . ,K as:

vk ∼ Beta

1 +m∗k, β +
K∑

s=k+1
m∗k

 .
5. The derivation of the full conditional for ω is similar, even it requires more care. We have

p (ω| · · · ) ∝ p (M |S,ω, ξ0) p (ω) ∝
K∏
k=1

p (ωk)
∏
i,j

(
L∑
l=1

ωl,Sjδl(·)
)
.

The previous formula can be decomposed into the product of K elements and we can focus
only on the case Sj = k. Let us define nlk as the total number of observations assigned
to the distributional cluster k in the observational unit l. The full conditional has this
Stick-Breaking representation for ulk, ∀k:

ulk ∼ Beta

1 + nlk, α+
L∑

r=l+1
nrk

 , l = 1, . . . , L.
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6. Let us define nl· =
∑K
k=1 n

lk and denote with ȳl· = 1
nl·
∑
i,j:Mi,j=l yij . Exploiting the

conjugacy property, we obtain the full conditional for θl =
(
µl, σ

2
l

)
:(

µl, σ
2
l

)
| · · · ∼ NIG (m∗0, κ∗0, α∗0, β∗0) .

where
m∗0 = κ0m0 + nl·ȳl·

κ0 + nl·
κ∗0 = κ0 + nl· α∗0 = α0 + nl·/2

and

β∗0 = β + 0.5

 ∑
ij:Mij=l

(yij − ȳl·)2 +
(

κ0n
l·

κ0 + nl·

)
(ylk −m0)2

 .

7. In case the precision parameters α and β of the two DPs are assumed stochastic, dis-
tributed as Gamma (aα, bα) and Gamma (aβ, bβ), we can still exploiting conjugacy. The
full conditionals distributions are:

α| · · · ∼Gamma
(
aα + (K − 1), bα −

K−1∑
k=1

log(1− vk)
)
,

β| · · · ∼Gamma
(
aβ +K · (L− 1), bβ −

L−1∑
l=1

K∑
k=1

log(1− ulk)
)
.

Notice that we naturally set ayij = yij . As suggested in Rodríguez et al. (2008), each step of
this algorithm can be parallelized, in order to gain computational speed.

Linearly incorporating a covariate in the Likelihood

If we want to linearly add regressor to the mean, we update Equation (2.19) simply assuming:

zij |yij ∼
+∞∑
g=0

δg(·)1[ag ,ag+1) (yij) yij |M,µ,σ2 ∼ N
(
µMij + βXj , σ

2
Mij

)
. (2.20)

We espouse such representation because of its interpretability: the latent continuous random
variable yij can be decomposed as yij = µMij +βXj+εij , where ε ∼ N

(
0, σ2

Mij

)
. In other words,

we model the every single latent value as the sum of an effect specific for each observational
cluster, an effect due to the regressor value of each individual multiplied by a overall coefficient
and a completely random effect, whose entity still depends on the observational cluster. This
choice does not complicate the algorithm presented in the previous section: the full conditionals
1-3 are preserved if the mean is modified accordingly, switching from µMij to µMij + βXj . Step
6 remains the same once we substitute yij with dij = yij−βXj . Steps 4, 5 and 7 are not affected
by this change.
Finally, if we assume β ∼ N

(
mβ,

1
κβ

)
, we can perform inference on the introduced coefficient.

Define R1 =
∑
i,j

X2
j

σ2
Mij

and R2 =
∑
i,j

dij ·Xj
σ2
Mij

. The full conditional for β is:

β| · · · ∼ N
(
mβκβ +R2

κβ +R1 ,
1

κβ +R1

)
.
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This framework can be easily extended to accommodate for the presence of multiple covariates.

2.B.1 Error bounds estimation

Total Variation Distance (TVD). Let P,Q probability measures defined on the space (X,X ).
We define

dTV (P,Q) = sup
A∈X
|P (A)−Q(A)|.

If P,Q are absolutely continuous w.r.t. µ then

dTV (P,Q) = 1
2

∫
X

∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣dµ.
Moreover, if X is a discrete space or if P and Q are concentrated on Ω ⊂ X countable then

dTV (P,Q) = 1
2
∑
x∈Ω

∣∣∣∣P (x)−Q(x)
∣∣∣∣.

Consider then two sequences ai and bi such that |ai| ≤ 1 and |bi| ≤ 1 ∀i. Then the following
inequality holds:

(∗)
∣∣∣∣ n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣ ≤ n∑
i=1
|ai − bi|.

Approximation Error in CAM
Let us now consider

Q =
∑
k≥1

π̃kδ(∑
l≥1 ωlkδx̃l

)
and its truncated version

Q(K,L) =
K∑
k=1

π̃
(K,L)
k δ(∑L

l=1 ω
(K,L)
lk

δx̃l

).
This will induce truncated probability measures G(K,L)

1 , . . . , G
(K,L)
J , defined as follows. Consider

ξj |Q
iid∼
∑+∞
k=1 π̃kδk, a latent random variable that identifies the mixture component from which

Gj is generated, conditionally on Q.
So we define

G
(K,L)
j =


∑L
l=1 ω

(K,L)
lk δx̃l if ξj ≤ K∑L

l=1 ω
(K,L)
lK δx̃l if ξj > K

with

ω
(K,L)
lk = ωlk if l ≤ L− 1

ω
(K,L)
lK = 1− ωl1 − . . .− ωl(K−1)

π̃
(K,L)
k = π̃k if k ≤ K − 1

π̃
(K,L)
K = 1− π̃1 − . . .− π̃K−1

In this way, we can write G(K,L)
1 , . . . , G

(K,L)
J |Q(K,L) iid∼ Q(K,L).
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We adopt a fixed j and, conditioning on ξj = k, we compute the TVD between Gj and G(K,L)
j .

Case 1.1: ξj ≤ K. We compare Gj =
∑
l≥1 ω̃lkδx̃l and G

(K,L)
j =

∑L
l=1 ω̃

(K,L)
lk δx̃l . We get:

dTV (Gj , G(K,L)
j ) = 1

2

 L∑
l=1
|ω̃lk − ω̃

(K,L)
lk |+ |ω̃lk − ω̃

(K,L)
lk |+

∑
l≥L+1

|ω̃lk − 0|


= 1

2

|ω̃Lk − 1 + ω̃1k + . . .+ ω̃1(K−1)|+
∑

l≥L+1
ω̃lk


= 1

2

1−
L∑
l=1

ω̃lk +
∑

l≥L+1
ω̃lk

 =
(

1−
L∑
l=1

ω̃lk

)
.

Case 1.2: if ξj = k > K We compute

E
[
dTV

(
Gj , G

(K,L)
j

)]
= E

[
E
[
dTV

(
Gj , G

(K,L)
j

)
|ξ,Q

]]

=E

 K∑
k=1

π̃kE
[
dTV

(
Gj , G

(K,L)
j

)
|ξ = k,Q

]
+

+∞∑
k=K+1

π̃kE

dTV (Gj , G(K,L)
j

)
︸ ︷︷ ︸

≤1

|ξ = k,Q




≤E

 K∑
k=1

π̃k

(
1−

L∑
l=1

ω̃lk

)
+

+∞∑
k=K+1

π̃k

 = (indep+ linearity)

=E
[
K∑
k=1

π̃k

]
· E
[(

1−
L∑
l=1

ω̃lk

)]
+ E

 +∞∑
k=K+1

π̃k


≤1 · E

[(
1−

L∑
l=1

ω̃lk

)]
+ E

[
1−

K∑
k=1

π̃l

]

=
(

1−
(

α

1 + α

)K)( β

1 + β

)L
+
(

α

1 + α

)K
.

Se we can conclude that

E
[
dTV

(
Gj , G

(K,L)
j

)]
≤
(

1−
(

α

1 + α

)K)( β

1 + β

)L
+
(

α

1 + α

)K
.

Approximation Error in Mixture Models (CAMM)
Consider J units, each of them containing nj observations, j = 1, . . . , J . Denote with X =(
x1j , . . . , xnjj

)
for j = 1, . . . , J the observations from the j−th component of the mixture

model xij |θij ∼ f(·|θij) with θij |G1, . . . , GJ ∼ Gj where the Gj ’s are generated according to a
CAM.
The law of the data is given by:

π (X) = E

 J∏
j=1

nj∏
i=1

∫
Θ
f (xij |θij)Gj(dθij)

 ,
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and its truncated version is

π(K,L) (X) = E

 J∏
j=1

nj∏
i=1

∫
Θ
f (xij |θij)G(K,L)

j (dθij)

 .
The next step is to evaluate dTV

(
π, π(K,L)

)
. Let us define n := n1 + · · ·+ nJ . We obtain:

dTV
(
π, π(K,L)

)
=1

2

∫
Xn

∣∣∣∣ dπdX − dπK,L

dX

∣∣∣∣dX
=1

2

∫
Xn

∣∣∣∣E
 d∏
i=1

nj∏
j=1

∫
Θ
f (xij |θij)Gj(dθij)−

d∏
i=1

nj∏
j=1

∫
Θ
f (xij |θij)G(K,L)

j (dθij)

 ∣∣∣∣dX
= 1

2

∫
Xn

∣∣∣∣E
∫

Θn

d∏
i=1

nj∏
j=1

f (xij |θij)
d∏
i=1

nj∏
j=1

Gj(dθij)−
∫

Θn

d∏
i=1

nj∏
j=1

f (xij |θij)
d∏
i=1

nj∏
j=1

G
(K,L)
j (dθij)

 ∣∣∣∣dX.

First we apply Fubini, then we take advantage of the fact that the absolute value of an integral
in lower or equal to the integral of expected value

=1
2

∫
Xn

∣∣∣∣ ∫
Θn

d∏
i=1

nj∏
j=1

f (xij |θij)E

 J∏
j=1

nj∏
i=1

Gj(dθij)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)

 ∣∣∣∣dX
≤1

2

∫
Xn

∫
Θn

J∏
j=1

nj∏
i=1

f (xij |θij) dX
∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(dθij)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)

 ∣∣∣∣

=1
2

∫
Θn

∫
Xn

J∏
j=1

nj∏
i=1

f (xij |θij) dX︸ ︷︷ ︸
=1

∣∣∣∣E


J∏
j=1

nj∏
i=1

Gj(dθij)︸ ︷︷ ︸
m

−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)︸ ︷︷ ︸

m(K,L)


∣∣∣∣

=1
2

∫
Θn

∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(dθij)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)

 ∣∣∣∣ = dTV
(
m,m(K,L)

)

= sup
Aij∈Xn

|m(Aij)−m(K,L)(Aij)| = sup
Aij∈Xn

∣∣∣∣E
 J∏
j=1

nj∏
i=1

Gj(dθij)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)

 ∣∣∣∣.
Now notice that, in general, supA f(A, x) ≥ f(A, x) =⇒

∫
supA f(A, x)dx ≥

∫
f(A, x)dx =⇒∫

supA f(A, x)dx ≥ supA
∫
f(A, x)dx. Then

≤ sup
Aij∈Xn

E

∣∣∣∣ J∏
j=1

nj∏
i=1

Gj(dθij)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)

∣∣∣∣


≤E

 sup
Aij∈Xn

∣∣∣∣ J∏
j=1

nj∏
i=1

Gj(dθij)−
J∏
j=1

nj∏
i=1

G
(K,L)
j (dθij)

∣∣∣∣
 .

Then we apply (*), obtaining

≤E

 sup
Aij∈Xn

J∑
j=1

nj∑
i=1

∣∣∣∣Gj(dθij)−G(K,L)
j (dθij)

∣∣∣∣
 ≤ E

 J∑
j=1

nj∑
i=1

sup
Aij∈Xn

∣∣∣∣Gj(dθij)−G(K,L)
j (dθij)

∣∣∣∣
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where we recognize supAij∈Xn
∣∣∣∣Gj(dθij)−G(K,L)

j (dθij)
∣∣∣∣ = dTV

(
Gj , G

(K,L)
j

)
, so

=E

 J∑
j=1

nj∑
i=1

dTV
(
Gj , G

(K,L)
j

) =
J∑
j=1

nj∑
i=1

E
[
dTV

(
Gj , G

(K,L)
j

)]

≤n
[(

β

1 + β

)L
+
(

α

1 + α

)K]
.

2.C Summary of Differences between nDP, HDP and CAM

Level HDP nDP CAM
Data Fj(·|φ) =

∫
Θ p(·|θ, φ)Gj(dθ) Fj(·|φ) =

∫
Θ p(·|θ, φ)Gj(dθ) Fj(·|φ) =

∫
Θ p(·|θ, φ)Gj(dθ)

I-LL
Gj(·) ∼ DP (αG0)

Gj(·) =
∑
l w
∗
l (α)δθ∗

l
(·) Gj(·) ∼ Q Gj(·) ∼ Q

θ∗l ∼ G0

II-L
Q =

∑
k π
∗
k(α)δG∗

k
(·) Q =

∑
k π
∗
k(α)δG∗

k
(·)

G0 =
∑
k w
∗
k(β)δθ∗

k
(·) G∗k(·) =

∑
l w
∗
lk(β)δ∗(·)θlk

G∗k(·) =
∑
l w
∗
lk(β)δ∗(·)θl

θ∗k ∼ H θlk ∼ H θl ∼ H
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2.D Densities of the three scenarios considered in the simulation
study

Figure 2.D.1: The densities distributions of each unit in three scenarios consid-
ered.
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Chapter 3

Two-group Poisson-Dirichlet
mixtures for multiple testing

“Ogni volta che spiego la geometrica agli studenti, dico sempre che è come la vita:
il numero di possibili fallimenti è infinito.”

“Sì, ma lo è anche il numero di prove!”
L’ottimo Bvignone, saggio collega

“People love to say, ‘Give a man a fish, and he’ll eat for a day.
Teach a man to fish, and he’ll eat for a lifetime.’

What they don’t say is, ‘And it would be nice if you gave him a fishing rod.’
That’s the part of the analogy that’s missing.”

Born a crime – Trevor Noah

Abstract
The simultaneous testing of multiple hypotheses is common to the analysis of high-dimensional
data sets. The two-group model, first proposed in Efron (2004), identifies significant compar-
isons by allocating observations to a mixture of an empirical null and an alternative distribution.
In the Bayesian nonparametrics literature, many approaches have suggested using mixtures of
Dirichlet Processes in the two-group model framework. Here, we investigate employing instead
mixtures of two-parameter Poisson Dirichlet Processes (2PPD), and show how they provide a
more flexible and effective tool for large-scale hypothesis testing. Our model further employs
non-local prior densities to allow separation between the two mixture components. We obtain
a closed form expression for the exchangeable partition probability function of the two-group
model, which leads to a straightforward MCMC implementation. We compare the performances
of our method for large-scale inference in a simulation study and illustrate its use on a case-
control microbiome study of the gastrointestinal tracts in children from underdeveloped countries
who have been recently diagnosed with moderate to severe diarrhea.
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3.1 Introduction
The availability of high-dimensional data in domains as diverse as genomics, imaging, and as-
tronomy, has brought the necessity to screen a large number of hypotheses simultaneously. Here,
we focus on the two-group modeling framework (Efron, 2004; Efron, 2008). To illustrate, we
assume that the observations are suitably defined difference scores zi, i = 1, . . . , n over a large
number of distinct hypotheses. The two-group model assumes that the zi’s are drawn either
from a null (f0) or a non-null (f1) distribution, i.e., each score is drawn from a mixture,

zi ∼ f(zi) = (1− ρ)f0 + ρf1, (3.1)

for some weight ρ ∈ (0, 1), and some probability (density) functions f0 and f1. The null compo-
nent is typically assumed standard normal; however, the true null distribution may differ from
the theoretical null, e.g., due to limited sample size or unaccounted correlation. Thus, Efron
proposes the estimation of an “empirical null” distribution to adequately capture the range
of parameter values coherent with the null hypothesis and accordingly evaluate each testing
decision.
In Bayesian nonparametrics, the Dirichlet process (DP) has been extensively used to provide
flexible estimates of f0, or f1, or both, as well as for clustering the zi’s into common “expres-
sion” levels (Do et al., 2005; Dahl and Newton, 2007; Kim et al., 2009; Kottas and Fellingham,
2012). Martin and Tokdar (2012) develop a flexible hierarchical nonparametric approach where
f0 is assigned a Normal distribution with unknown mean and variance, whereas f1 is a location
mixture of normals. One appealing feature of the two-group model is that the resulting infer-
ence is immediately amenable to interpretation in a decision theoretic framework. For example,
Efron (2004) describes a local version of the false discovery rate (local fdr), which represents
the posterior probability that a difference score zi is generated according to the null hypothesis,
fdr(zi) = (1 − ρ) f0(zi)/f(zi). The selection of interesting scores is conducted by flagging all
zi’s such that fdr(zi) < α, α ∈ (0, 1), allowing control of the Benjamini–Hochberg FDR (Be-
najmini and Hochberg, 1995) at level α. More generally, the decision problem could minimize
loss functions that compound expected false positive and false negative decisions. The optimal
decision would then lead to thresholding the posterior probability of the alternative (e.g., see
Muller et al., 2006).

In this manuscript, we investigate the use of a mixture prior of two–parameter Poisson–Dirichlet
(2PPD) processes (Pitman, 1996) in lieu of the commonly used DPs. The 2PPD process, also
known as the Pitman-Yor process, is a generalization of the DP and is characterized by two
parameters: a “concentration” parameter θ (analogous to the single parameter of the DP), and
a “discount” parameter σ. The additional parameter allows for more flexible clustering behavior
than the DP and can be used to tune the reinforcement mechanism of large clusters (Lijoi et al.,
2007). We show how the proper choice of σ can be used to model the empirical null distribution
f0 and the uncertainty related to the non-null distribution in the two-group model, leading to
improved testing procedures. Our modeling framework further employs non-local prior densi-
ties for the base measure of the random probability measures under the alternative hypothesis
to allow better separation between the two mixture components. We derive the expression of
the exchangeable partition probability function (EPPF), induced by the proposed two-group
2PPD mixture process and observe that, conditional on the assignment of the observations to
the null or the alternative hypothesis, the respective random partitions are independent. This
property conveniently facilitates posterior inference obtained via MCMC algorithms, which take
into account the conditional independence of the partitions. By means of a simulation study,
we discuss the performances of our method with respect to the commonly used mixture of DPs
and existing state-of-the-art approaches for large-scale multiple comparison problems. We also
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illustrate the use of the proposed 2PPD processes mixture model on a publicly available dataset
from a microbiome study, where the aim was to characterize the microbial composition of the
gastrointestinal tracts of children from underdeveloped countries who have been diagnosed with
moderate to severe diarrhea. Our study suggests that mixture of DPs should be used with
some caution in large scale multiple-testing, and that the use of 2PPD processes could lead to
improved operating characteristics.

3.2 A review of the 2PPD process
In this Section we provide an overview of the 2PPD process with particular regard to its use for
density estimation and its clustering properties. Let Z1, . . . , Zn be a sample of n data measure-
ments (e.g. raw observations or summary statistics), drawn from a sequence of exchangeable
random elements Z1, Z2, . . ., taking value in a complete and separable metric space Z endowed
with its Borel σ-algebra Z. By virtue of the de Finetti representation theorem,

Zi | p̃ ∼ p̃ i = 1, . . . , n,
p̃ ∼ Q,

(3.2)

for any n ≥ 1, and for p̃, a random probability measure, with distribution Q defined on the space
P(Z) of probability measures on Z. In a Bayesian framework, Q represents the prior distribution
and the model is said to be parametric whenever Q degenerates on a finite dimensional subspace
of P(Z); otherwise, the model is denoted as nonparametric.

Here, we consider the 2PPD process for the random probability measure p̃, which can be repre-
sented almost surely as an infinite mixture, i.e.,

p̃ =
∞∑
k=1

w̃k δYk ,

where δc denotes the point mass at c, the w̃k’s are random weights obtained as w̃1 = V1 and
w̃k = Vk

∏k−1
j=1 (1−Vj), k ≥ 2 with Vj

ind∼ Beta(1−σ, θ+jσ), j ≥ 1 (Pitman, 1995; Pitman, 1996),
for some σ ∈ [0, 1) and θ > −σ. The Yk’s are random locations in Z, independent of the weights
w̃k’s, and assumed as random draws from a non-atomic base measure P ∗, i.e., Yk

i.i.d.∼ P ∗, k ≥ 1,
which represents the prior expected value of the random distribution p̃, i.e., E[p̃(A)] = P ∗(A) for
any A ∈ Z. We should note that the 2PPD process is also well defined for σ < 0 and θ = r|σ|,
with r being an integer; however, in such case the process reduces to the parametric Fisher
model (Ghosal and Vaart, 2017). Hereafter, we will use Zi | p̃

iid∼ p̃, with p̃ d= 2PPD(σ, θ, P ∗),
i = 1, . . . , n to indicate a sample from a 2PPD with parameters σ and θ, and base measure P ∗.
If Z1, . . . , Zn is a realization from an exchangeable sequence driven by a 2PPD process, there
is a positive probability of ties, i.e., P[Zi = Zj ] > 0 for any i 6= j. This clustering property
often motivates the use of the 2PPD process in statistical applications, e.g. to model data from
heterogeneous populations.

The clustering behavior of the 2PPD process can also be investigated by considering the ex-
changeable partition probability function (EPPF), which defines the probability that Z1, . . . , Zn
are partitioned into K distinct clusters with respective sizes n1, . . . , nK . For the 2PPD process,
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such probability is

Π(n)
K (n1, . . . , nK) =

∏K−1
j=1 (θ + jσ)
(θ + 1)n−1

K∏
j=1

(1− σ)nj−1 (3.3)

for any choice of positive integers n1, . . . , nK such that
∑K
i=1 ni = n, with K ∈ {1, . . . , n} and

(a)q = Γ(a+ q)/Γ(a), for any non-negative integer q. The expression highlights how the values
of the parameters σ and θ affect the clustering structure induced by the 2PPD process. It is
well-known that if Kn denotes the number of distinct values recorded in a sample Z1, . . . , Zn
of an exchangeable sequence drawn according to a 2PPD(σ, θ) process, then Kn/n

σ → Sσ,θ as
n→∞ (almost surely) for some positive random variable Sσ,θ when σ ∈ (0, 1)(see Theorem 3.8
in Dümbgen, 1994). When σ = 0, we recover the clustering behavior of the Dirichlet process,
obtaining Kn/ logn → θ as n → ∞ (almost surely). Hence, the larger σ is, the larger the
number of clusters. Moreover, σ controls the reinforcement of the partition, i.e., the ability of
big clusters to attract even more observations, as highlighted by the predictive distribution of
the 2PPD process,

P[Zn+1 ∈ A | Z1, . . . , Zn] = θ + σKn

θ + n− 1 P
∗ +

Kn∑
j=1

nj − σ
θ + n− 1 δZ

∗
j
(A), (3.4)

where the probability that a new observation is assigned to an existing cluster, and assumes
value Z∗j , j = 1, . . . ,Kn, is proportional to nj − σ. Therefore, values of σ close to 1 favor the
formation of a large number of clusters, most of which are singletons (Lijoi et al., 2007).
Finally, we consider the variability of realizations from a 2PPD process around the base measure
P ∗. The variance of the process is Var[p̃(A)] = 1−σ

θ+1 P
∗(A)[1−P ∗(A)], for any A ∈ Z and j = 0, 1.

Large values of σ correspond to random probability measures which are more concentrated
around the base measure P ∗. Therefore, one should expect that the empirical distribution
function of any sample Z1, . . . , Zn drawn from a 2PPD process with high values of σ, Fn(b) =
p̃(∞, b] =

∑∞
k=1 w̃k δZ∗k (∞, b], would be characterized by a large number of weights w̃k of similar

size. In the next Sections we will exploit these properties to guide the use of the 2PPD process
in the two-group model for multiple testing.

3.3 Methods

3.3.1 A two-group 2PPD model

The different clustering behavior that the 2PPD process exhibits as a function of σ can be
exploited for distinguishing between the null and alternative distributions in the two-group
model. More precisely, we first rewrite model (3.2) as the two–component mixture,

p̃ = (1− ρ) p̃0 + ρ p̃1, (3.5)

where p̃j ∼ 2PPD(σj , θj , P ∗j ) represents the unknown distribution under the null and the alter-
native hypotheses, for j = 0 and j = 1, respectively. Similarly as in (3.1), the mixture weight
ρ is a random variable independent of the p̃j ’s and takes values in [0, 1]. We further introduce
an auxiliary binary random variable γi, i = 1, . . . , n, such that Zi ∼ p̃0 if γi = 0 and Zi ∼ p̃1 if
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γi = 1. Thus, conditionally on the γ′is, we can rewrite (3.2)–(3.5) as

Zi | γi
ind∼ p̃γi , i = 1, . . . , n,

γi | ρ
iid∼ Bernoulli(ρ),

ρ ∼ Beta(a, b),
p̃γi ∼ 2PPD(σγi , θγi , P ∗γi),

(3.6)

with p̃0 and p̃1 independent, and assuming a Beta distribution on ρ.

We exploit the properties of the 2PPD process discussed in Section 3.3.1 and propose to specify
the hyper-parameters of the null and non-null random probability measures in (3.6) as follows.
In accordance with Efron’s idea that the empirical null distribution should capture only small
departures from the theoretical null, we let p̃0 concentrate around the theoretical null. Further-
more, we assume that there’s no good model a priori for the non-null distribution. Therefore, p̃1
is allowed to vary more freely on the space of the alternative distributions. Under the null distri-
bution, the process should encourage the creation of a large number of clusters each composed by
few observations, so that the empirical distribution well approximates the theoretical null. For
the non-null distribution, we should expect a more uneven distribution of the realizations. Based
on those considerations, we propose to set σ0 > σ1. We will discuss how such a choice might
help discriminating between the null and the alternative distribution in the multi-comparison
problem.

We conclude this Section by considering the joint partition structure induced by model (3.6) for
a sample Z1, . . . , Zn | p̃ ∼ p̃. Let Π(n)

K,j(n1, . . . , nK) denote the EPPF of process p̃j , j = 0, 1, that
is the probability that n observations are assigned to K different clusters of sizes (n1, . . . , nK).
For notational simplicity, we assume that

Π(n)
K+1,j(n1, . . . , ni−1, 0, ni+1, . . . , nK) ≡ Π(n)

K,j(n1, . . . , nK),

for any j = 0, 1 and n1, . . . , nK ≥ 1 such that
∑K
i=1 ni = n. Then the following result provides

the EPPF of the mixture of 2PPD processes as below:

Proposition 1. The EPPF associated to the mixture of 2PPD processes in (3.6) is given by:

Π(n)
K (n1, . . . , nK) = 1

(a+ b)n

∑
i∈×Kj=1{0,nj}

(a)|i|(b)n−|i| ×

Π(|i|)
K0,0(i1, . . . , ik) Π(n−|i|)

K1,1 (n1 − i1, . . . , nK − iK) (3.7)

where i = (i1, . . . , iK), |i| = i1 + · · ·+ ik, K0 = card{j : ij = nj} and K1 = K −K0.

Direct use of (3.7) is far from trivial. Nonetheless, the expression lends itself to an interesting
interpretation: conditional on the assignment of the clusters to either p̃0 or p̃1, the respective
random partitions are still independent. This remark is useful for devising a suitable computa-
tional algorithm for posterior inference.

3.3.2 Bayesian hierarchical two-group mixture model

In many applications, the discreteness of the realizations of the 2PPD process may be considered
inadequate. Thus, in lieu of (3.6), it is often common to assume for a sample Z1, . . . , Zn a
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hierarchical mixture model with continuous components, i.e.

Zi|p̃
iid∼ p̃, withp̃ = (1− ρ)

∫
k0(Zi, ϑ) p̃0(dϑ) + ρ

∫
k1(Zi, ϑ) p̃1(dϑ), (3.8)

that is the two-group model is characterized by a null and non-null distributions which are each
defined as a 2PPD process mixture. Here, fp̃(Zi) is the random density induced by the random
probability measure p̃, while kj : Z×Θ→ R+, j = 0, 1 are general kernels such that for ϑ ∈ Θ
and some σ–finite measure λ on (Z,Z) one has

∫
Z kj(x,ϑ)λ(dx) = 1, j = 0, 1. For our purposes,

it is convenient to set Z = R and let λ coincide with the Lebesgue measure on R so that the
previous model defines a prior on the space of density functions on R. By conditioning on the
auxiliary group indicator variables γi, i = 1, . . . , n, we can rewrite model (3.8) as a hierarchical
Bayes two-group 2PPD process mixture,

Zi | ϑi, γi
ind∼ kγi(Zi | ϑi), i = 1, . . . , n

ϑi | γi, p̃
ind∼ p̃γi ,

γi | ρ
iid∼ Bernoulli(ρ),

ρ ∼ Beta(a, b)
p̃γi ∼ 2PPD(σγi , θγi , P ∗γi),

(3.9)

where ϑi may indicate either a scalar or a vector parameter. In general, k0(·) and k1(·) could be
different. Here, we assume kγ0(·) = kγ1(·) = k(·) to be a Normal kernel and set ϑi = (µi, τ2

i ). For
notational simplicity, in (3.9) we have omitted additional hyper-parameters which may feature
in the kernel function k(·) but are not relevant for the decision problem and thus are assigned
separate priors.
We conclude the specification of the two-group model (3.9) by discussing the choice of the base
measures P ∗0 and P ∗1 . On the one hand, we achieve flexible estimation of the so-called “empirical
null” distribution by setting

P ∗0

(
µ, τ2

)
= π (µ)× π (τ) = N (0, 1)× IG (a0, b0) .

where the parameters of the IG on τ2 are chosen so to allow relatively small deviations from the
theoretical null distribution. For example, by assuming a0 = 5, b0 = .2, the induced marginal
distribution on µ has only slightly fatter tails than the standard normal.
Moreover, P ∗0 and P ∗1 should not have significantly overlapping supports, i.e. they should assign
high probability to regions of the parameter space that are consistent with the null and the
alternative hypotheses, respectively. In the Bayesian multiple hypotheses testing framework,
this requirement has sometimes been advocated to ensure enough separation between the null
and the alternative models. Thus, we first model P ∗1 as a symmetric bimodal mixture of Normal-
Inverse Gamma (NIG) distributions, as P ∗1 = 1

2NIG(−|m1|, k1, α1, β1) + 1
2NIG(|m1|, k1, α1, β1),

with m1 ∈ R, and k1, α1, β1 ∈ R+. Marginally,

π (µ1|m1) = 1
2

[√
β1
α1
t2α1 − |m1|

]
+ 1

2

[√
β1
α1
t2α1 + |m1|

]
.

We further achieve separation in the multiple hypotheses testing problem by modeling the loca-
tion parameter m1 with a non-local prior (NLP), i.e. a prior that assigns vanishing density to
small neighborhoods of the null hypothesis (Johnson and Rossell, 2010). Several types of NLP
have been proposed in the literature. See, for instance, Johnson and Rossell (2012) and Rossell
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and Telesca (2017). Here, we adopt a r-th moment prior for m1, with

πMOM

(
m1; 0, κ2, r

)
= m2r

1
ξ

e−m
2
1/2κ2

√
2πκ2

, (3.10)

where ξ is the normalizing constant, and we write m1 ∼ NLPMOM

(
0, κ2, r

)
. Specific hyper-

parameter specifications will be detailed in Section 3.4. Here, we only note that our choice
of base measures favors large effect sizes for the alternative hypothesis. The non-local prior
specification in P ∗1 should provide enough separation at the origin to ensure good estimation of
the posterior probability of the alternative.
Finally, the other parameters of the 2PPD processes are set such that θ0 = θ1 and σ0 > σ1. In
general, θ0 and θ1 are chosen relatively small, in order to enforce coarser clustering structures,
especially under the alternative hypothesis. Typically, in Dirichlet-Process two-groups models,
θ0 = θ1 = 1 (see, e.g. Do et al., 2005). From the discussion at the end of Section 3.2, it follows
that realizations of the 2PPD null process are expected to be more concentrated around the base
measure. In the next Sections we will investigate the effect of different choices for the parameter
values of the 2PPD processes for the multiple comparison problem.

3.3.3 Posterior inference

Posterior inference for model (3.6) or (3.9) relies on Markov Chain Monte Carlo techniques,
since the posterior distributions are not available in closed form. Our primary interest is in
the group indicators γi’s, which uniquely identify the random probability measure from which
the data Zi’s were generated, and, correspondingly, the probability of group membership, ρ.
For the sampling of the γi’s, we exploit the independence of the random partitions implied by
the EPPF (3.7) of the proposed mixture of 2PPD processes. More specifically, if Z1, . . . , Zn
are a random sample from (3.6) and P ∗j , j = 0, 1 are non-atomic base measures with common
support, then P[Zi = Zj | γi 6= γj ] = 0 for i 6= j. Thus, all the Zi’s in a cluster are generated by
the same 2PPD process. The details of the MCMC algorithms are provided in the Appendix.
In particular, we employ a split-merge move to speed up computations for large sample sizes
(Dahl, 2003; Dahl, 2005). The computational burden of the MCMC algorithm increases for
higher values of either θ0, θ1, σ0 or σ1 due to the increased number of latent clusters generated
by the 2PPD process. A discussion of the computational efficiency of a plain Polya-Urn sampler
versus the split-merge implementation is also provided in the Appendix.
Posterior inference on the weight ρ in (3.6) is conducted by means of post-MCMC analysis,
by approximating the posterior expected value E[ρ | data] using auxiliary indicators, say γ∗t =
(γ∗1,t, . . . , γ∗K(t),t

), which denote if cluster k ∈ 1, . . .K(t) at iteration t = 1, . . . , T is a realization
from p̃0 or p̃1. More precisely, if we denote by B < T the burn-in period of the chain, we can
compute the following Monte Carlo approximation of the posterior expected value E[ρ | data] ≈

1
T−B

∑T
t=B+1

a+
∑K

k=1 nk,t(1−γ
∗
k,t)

a+b+n .
Similarly, the posterior probability that an observation belongs to the non-null group can be
obtained from the MCMC output as PP 1

i = p(γi = 1 | data) ≈ 1
T−B

∑T
t=B+1 γi,t, where the γi,t’s

indicate the MCMC draws of the component indicators γi’s. Then, a score Zi’s is considered
significant if the corresponding PPI1

i is larger than a threshold, say κ, chosen to control the

Bayesian FDR at a pre-assigned α × 100% level , BFDR (κ) =
∑V

ν=1(1−PP1
i )I(PP1

i >κ)∑V

ν=1 I(PP1
i >κ)

< α

(Newton et al., 2004; Muller et al., 2006).
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3.4 Applications

3.4.1 Simulation study

We investigate the performances of the Bayesian hierarchical 2PPD mixture modeling framework
described in (3.8)–(3.9) for large-scale multiple hypothesis testing by means of a simulation
study under S = 5 scenarios. More specifically, we simulate z-scores from mixture (3.1), where
f0(x) = N(x | 0, σ2

s). We set σ2
s = 1 for s = 1, . . . 4. For the fifth scenario, we set σ2

5 = 1.5
to model the effect of hidden correlation among observations and association with unobserved
covariates, that may lead to departures from standard gaussianity. For f1 we choose:

• Scenario 1: f1(x) = 0.67 · N (x| − 3, 2) + 0.33 ·N(x|3, 2),

• Scenario 2: f1(x) = N (x | ui, 1) with u ∼ Uniform(2, 4),

• Scenario 3: f1(x) = N (x | ui, 1) with u ∼ Uniform([−4,−2] ∪ [2, 4]),

• Scenario 4: f1(x) = Gamma((−1)vi · x | a, b) with a = 4, b = 1 and vi ∼ Bernoulli(0.5),

• Scenario 5: f1(x) = 0.5 · N (5, 1) + 0.5 · N (−5, 1) .

i.e. f1 is assumed asymmetric unimodal (scenario 1), symmetric bimodal (scenarios 2 and 5),
asymmetric bimodal (scenario 3) and symmetric bimodal with fat tails (scenario 4), thus mim-
icking typical high-dimensional testing situations. An illustrative plot of data generated under
the five scenarios is provided in the Appendix. In all scenarios, we set ρ = 0.05, since typically
only a small proportion of the comparisons is expected to be significant in large-scale inference
hypothesis testing. Each simulation includes n = 1, 000 simulated scores and is replicated 30
times to allow quantification of posterior uncertainty and of the frequentist operating charac-
teristics of the testing procedures.

For model fitting, we employ the mixture model (3.8)–(3.9), where we assume k(· | θi) =
Normal(· | ϑi), with ϑi = (µi, τ2

i ). The base measure of the 2PPD process p̃0 is chosen as
described in Section 3.3.2, with a0 = 5, b0 = .2. For P ∗1 , we set k1 = 1/3, α1 = 1, β1 = 1. A
NLPMOM prior is assumed for m1, with r = 3 and κ = 2. For the parameters characterizing
the clustering behavior of the 2PPD process priors, we investigate the effect of different choices
of (σ0, σ1) on the inference, with σ0 > σ1. More specifically, here we report the inference for
the following values for the pair (σ0, σ1): (0.75, 0), which corresponds to assuming a DP on the
non-null component; in addition to (0.75, 0.1), (0.75, 0.25), (0.9, 0.25) to investigate the effect of
decreased prior uncertainty, V ar(p̃), on the components of the two-group 2PPD mixture. We
further set the concentration parameters θ0 = θ1 = 1 (Do et al., 2005). For the Beta prior on
ρ, we set a = 1 and b = 9. For each dataset, the MCMC algorithm was run for 2,500 iterations
after a 2,500 iterations burn-in period. The evaluation of posterior convergence was conducted
using standard Bayesian convergence diagnostics on the chains of the traceable parameters, m1
and ρ, by monitoring the number of group components and by inspecting the estimated densities
of the null and non-null processes.

We compare the performance of our modeling approach with five alternative methods for large-
scale hypothesis testing: (a) a two-group DP mixture model, which can be seen as a special
case of the modeling framework proposed here, obtained by setting σ0 = σ1 = 0, with a non-
local prior on the base measure for the alternative distribution (b) the local false discovery
rate of Efron (2004); (c) the Benjamini and Hochberg procedure (BH, Benajmini and Hochberg,
1995); (d) the empirical Bayes mixture model of Muralidharan (2012), which allows simultaneous
estimation of the effect size and of the local false discovery rate, and (e) the empirical Bayes
semi-parametric approach of Martin and Tokdar (2012).
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Table 3.1: Simulation study: sensitivity results across different settings for σ0
and σ1 for the five simulation scenarios considered in Section 3.4.1 (ρ = 0.95). The
values in the table represent the averageMCC and F1 scores, the average precision
(PRE), specificity (SPEC), accuracy (ACC) and the area under the curve (AUC)
of the corresponding receiver operating characteristic curve, over 30 replicates with

corresponding standard deviations between brackets.

σ0 = 0.75 σ0 = 0.9

σ1 = 0 σ1 = 0.1 σ1 = 0.25 σ1 = 0.25

Scenario 1
AUC 0.9095 (0.0245) 0.9143 (0.0224) 0.9201 (0.0253) 0.9200 (0.0207)
PRE 0.9775 (0.0357) 0.9773 (0.0333) 0.9713 (0.0346) 0.9776 (0.0328)
SPEC 0.9995 (0.0007) 0.9995 (0.0007) 0.9994 (0.0008) 0.9995 (0.0007)
ACC 0.9676 (0.0049) 0.9680 (0.0052) 0.9690 (0.0048) 0.9683 (0.0049)
MCC 0.5777 (0.0903) 0.5833 (0.0940) 0.6020 (0.0835) 0.5893 (0.0876)
F1 0.5197 (0.1125) 0.5269 (0.1169) 0.5520 (0.1051) 0.5342 (0.1095)
Scenario 2
AUC 0.9526 (0.0218) 0.9563 (0.0185) 0.9581 (0.0170) 0.9523 (0.0183)
PRE 0.9710 (0.0338) 0.9725 (0.0373) 0.9680 (0.0396) 0.9712 (0.0384)
SPEC 0.9993 (0.0008) 0.9994 (0.0009) 0.9993 (0.0009) 0.9993 (0.0009)
ACC 0.9703 (0.0043) 0.9703 (0.0044) 0.9701 (0.0043) 0.9696 (0.0040)
MCC 0.6249 (0.0673) 0.6242 (0.0695) 0.6212 (0.0681) 0.6135 (0.0644)
F1 0.5809 (0.0831) 0.5796 (0.0855) 0.5771 (0.0835) 0.5665 (0.0808)
Scenario 3
AUC 0.9335 (0.0235) 0.9401 (0.0238) 0.9477 (0.0180) 0.9452 (0.0209)
PRE 0.9721 (0.0438) 0.9714 (0.0425) 0.9682 (0.0402) 0.9772 (0.0360)
SPEC 0.9995 (0.0007) 0.9995 (0.0007) 0.9994 (0.0007) 0.9996 (0.0006)
ACC 0.9624 (0.0044) 0.9624 (0.0045) 0.9638 (0.0045) 0.9631 (0.0043)
MCC 0.5081 (0.0842) 0.5080 (0.0847) 0.5340 (0.0797) 0.5224 (0.0808)
F1 0.4320 (0.1053) 0.4320 (0.1056) 0.4659 (0.1001) 0.4489 (0.1018)
Scenario 4
AUC 0.9552 (0.0162) 0.9627 (0.0119) 0.9685 (0.0107) 0.9661 (0.0087)
PRE 0.9787 (0.0264) 0.9736 (0.0284) 0.9532 (0.0312) 0.9657 (0.0289)
SPEC 0.9993 (0.0009) 0.9991 (0.001) 0.9984 (0.0013) 0.9988 (0.0010)
ACC 0.9789 (0.0034) 0.9792 (0.0035) 0.9797 (0.0035) 0.9794 (0.0036)
MCC 0.7513 (0.0462) 0.7554 (0.0462) 0.7625 (0.0461) 0.7572 (0.0478)
F1 0.7354 (0.0538) 0.7413 (0.0528) 0.7535 (0.0518) 0.7449 (0.0542)
Scenario 5
AUC 0.9985 (0.0010) 0.9985 (0.0011) 0.9984 (0.0013) 0.9985 (0.0011)
PRE 0.8170 (0.0334) 0.7560 (0.0330) 0.8257 (0.0365) 0.7856 (0.0326)
SPEC 0.9885 (0.0025) 0.9832 (0.0029) 0.9892 (0.0026) 0.9859 (0.0026)
ACC 0.9875 (0.0028) 0.9831 (0.0030) 0.9881 (0.0031) 0.9855 (0.0029)
MCC 0.8832 (0.0249) 0.8529 (0.0232) 0.8879 (0.0280) 0.8694 (0.0241)
F1 0.8860 (0.0241) 0.8534 (0.0235) 0.8908 (0.0271) 0.8710 (0.0238)

For each simulation replicate, results were compared using several performance measures: the
Matthews Correlation Coefficient (MCC), which can be computed from a confusion matrix as
MCC = (TP ×TN −FP ×FN)/

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN), where TP ,
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TN , FP , and FN are the number of true positive, true negative, false positive and false nega-
tive results, respectively; the F1 score, 2TP/(2TP + FP + FN); as well as precision, specificity,
accuracy and the area under the curve (AUC) of the corresponding receiver operating charac-
teristic curve. For each simulation, we identify significant scores by controlling the Bayesian
false discovery rate (Newton et al., 2004), the local false discovery rate (Efron, 2004) and the
frequentist false discovery rate (Benajmini and Hochberg, 1995) at the 10% level.

Table 3.2: Simulation study: performance metrics for five other multiple compar-
ison methods in the five simulation scenarios considered in Section 3.4.1 (ρ = 0.05).
The values in the table represent the average MCC and F1 scores, the average
precision (PRE), specificity (SPEC), accuracy (ACC) and the area under the curve
(AUC) of the corresponding receiver operating characteristic curve, over 30 repli-

cates with corresponding standard deviations between brackets.

DPmix local fdr (Benajmini and Hochberg, 1995) (Muralidharan, 2012) (Martin and Tokdar, 2012)

Scenario 1
AUC 0.9053 (0.0301) 0.8869 (0.0365) 0.9237 (0.0205) 0.9242 (0.0230) 0.9230 (0.0216)
PRE 0.1113 (0.0092) 0.9897 (0.0216) 0.9974 (0.0019) 0.9915 (0.0227) 0.9825 (0.0284)
SPEC 0.6150 (0.0432) 0.9998 (0.0004) 0.9726 (0.0044) 0.9999 (0.0004) 0.9996 (0.0006)
ACC 0.6297 (0.0396) 0.9671 (0.0042) 0.9141 (0.0603) 0.9653 (0.0043) 0.9679 (0.0044)
MCC 0.2329 (0.0209) 0.5708 (0.0721) 0.6629 (0.0648) 0.5379 (0.0804) 0.5835 (0.0757)
F1 0.1980 (0.0145) 0.5067 (0.0932) 0.6427 (0.0736) 0.4643 (0.1023) 0.5251 (0.0962)
Scenario 2
AUC 0.9524 (0.0218) 0.9231 (0.0428) 0.9544 (0.0169) 0.9668 (0.0174) 0.9762 (0.0087)
PRE 0.1140 (0.0087) 0.9796 (0.0304) 0.9974 (0.0018) 0.9895 (0.0216) 0.9698 (0.0332)
SPEC 0.6033 (0.0364) 0.9995 (0.0008) 0.9729 (0.0042) 0.9998 (0.0004) 0.9993 (0.0008)
ACC 0.6213 (0.0339) 0.9694 (0.0048) 0.9129 (0.0556) 0.9676 (0.0040) 0.9715 (0.0044)
MCC 0.2506 (0.0180) 0.6088 (0.0773) 0.6674 (0.0638) 0.5805 (0.0667) 0.6435 (0.0686)
F1 0.2037 (0.0138) 0.5578 (0.0991) 0.6486 (0.0721) 0.5194 (0.0857) 0.6048 (0.0846)
Scenario 3
AUC 0.9400 (0.0206) 0.9069 (0.0359) 0.9500 (0.0191) 0.9481 (0.0197) 0.9481 (0.0182)
PRE 0.1085 (0.0079) 0.9759 (0.0424) 0.9972 (0.0020) 0.9901 (0.0328) 0.9707 (0.0437)
SPEC 0.5679 (0.0349) 0.9995 (0.0008) 0.9710 (0.0040) 0.9999 (0.0005) 0.9994 (0.0010)
ACC 0.5880 (0.0330) 0.9641 (0.0050) 0.9089 (0.0561) 0.9611 (0.0043) 0.9652 (0.0044)
MCC 0.2337 (0.0195) 0.5397 (0.0854) 0.6544 (0.0578) 0.4840 (0.0883) 0.5591 (0.0740)
F1 0.1948 (0.0129) 0.4708 (0.1087) 0.6342 (0.0670) 0.3973 (0.1080) 0.4970 (0.0948)
Scenario 4
AUC 0.9612 (0.0156) 0.9406 (0.0246) 0.9709 (0.0085) 0.9627 (0.0159) 0.9658 (0.0139)
PRE 0.1217 (0.0099) 0.9919 (0.0172) 0.9965 (0.0023) 0.9972 (0.0106) 0.9953 (0.0123)
SPEC 0.6288 (0.0345) 0.9998 (0.0005) 0.9812 (0.0036) 0.9999 (0.0003) 0.9999 (0.0004)
ACC 0.6459 (0.0325) 0.9758 (0.0033) 0.9136 (0.0502) 0.9741 (0.0034) 0.9741 (0.0032)
MCC 0.2671 (0.0194) 0.7080 (0.0474) 0.7849 (0.0443) 0.6840 (0.0486) 0.6831 (0.0470)
F1 0.2161 (0.0156) 0.6801 (0.0586) 0.7853 (0.0448) 0.6492 (0.0602) 0.6485 (0.0595)
Scenario 5
AUC 0.9980 (0.0012) 0.7885 (0.0449) 0.9986 (0.0010) 0.8128 ( 0.0430) 0.8185 (0.0364)
PRE 0.3622 (0.0163) 0.9998 (0.0005) 0.6433 (0.0531) 0.9999 ( 0.0003) 0.9999 (0.0003)
SPEC 0.9058 (0.0155) 0.9652 (0.0036) 0.9705 (0.0067) 0.9645 ( 0.0037) 0.9644 (0.0036)
ACC 0.9104 (0.0385) 0.9879 (0.0258) 0.9710 (0.0064) 0.9954 ( 0.0185) 0.9926 (0.0234)
MCC 0.5715 (0.0361) 0.5379 (0.0661) 0.7861 (0.0361) 0.5240 ( 0.0685) 0.5236 (0.0667)
F1 0.5303 (0.0420) 0.4650 (0.0870) 0.7792 (0.0395) 0.4451 ( 0.0877) 0.4453 (0.0845)

In Table 3.1 we report the performance metrics achieved in the different simulation scenarios
as a function of the combinations of hyper-parameters of the 2PPD process. Overall, the per-
formances of the proposed 2PPD process are similar, as long as σ1 < σ0. Higher values of σ0
lead to draw samples from f0 which are closer to the theoretical null, but the implied tighter
control of the variance of the null process may lead to a slightly decreased performance in some
scenarios. If σ1 > σ0, the performances can deteriorate considerably (see Appendix).
Table 3.2 reports the results from the comparison with alternative multiple testing methods. The
method of Martin and Tokdar (2012) performs quite well in all scenarios, comparably with our
method, except in the fat tails Scenario 4, where our 2PPD model outperforms the competitors.
The BH procedure also performs quite well, although with slightly lower specificity, in the first
four scenarios. However, small departures from the standard Gaussian null assumption (scenario
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5) considerably affect the performance of the BH procedure. The performance of two-group DP
mixtures is impacted by the flexible modeling of both the null and alternative distribution, which
leads to a relatively high number of false assignments. The result is remarkable as various types
of mixture of DP processes have been often proposed for hypothesis testing in the two-group
modeling framework.

3.4.2 Case study: Microbiome data

We illustrate the applicability of the proposed two-group 2PPD process model for large-scale
inference on a publicly available dataset of microbial abundances from a case-controlled study
on post-diarrheal disruption in children from low-income countries. Microbial community com-
positional data are obtained by sequencing highly variable regions of the 16S rRNA gene. Most
bacterial species have specific instances of this marker gene. Therefore, the 16S rRNA gene can
be used to map, at least approximately, individual sequences obtained from a sample into an
individual bacterium of a given Operational Taxonomic Unit (OTU, Morgan and Huttenhower,
2012). Thus, the observed sequenced abundance is used as a proxy for OTU abundance.
The purpose of the study was to identify potential microbiota which may be responsible for
exacerbating clinical conditions by showing positive associations with presence of moderate-to-
severe diarrhea (MSD) in the case group. Taxa with negative associations are also of interest
since they may indicate potential target treatments for recovery from dysbiosis.
Stool samples were obtained from 992 children between the ages of 0 and 59 months, 508 of whom
had recently suffered from moderate to severe diarrhea, with the remaining 484 children acting
as age-matched controls. The samples were obtained in Mali (M), the Gambia (G), Kenya (K),
and Bangladesh (B) and case/control proportions were approximately equal from each country.
We aggregate OTUs at the Species Level. In our dataset, 535 taxa have been measured and the
number of non-null taxa per sample ranged from 14 to 184, with a median of 64 and an average
of 64.53.
Due to the nature of the sampling mechanism, the distribution of the microbiome counts is
highly skewed, i.e., there are few taxa present in very high abundances and many taxa with low
frequencies (Chen and Li, 2016; Shi et al., 2016). Here, we are interested in evaluating the ability
of our model to identify taxa which may differently abundant in healthy and MSD subjects.
Therefore, we employ a Negative-Binomial regression model on the taxonomic abundances yij ,
where j = 1, . . . , Ji indexes the taxa, and i = 1, . . . , n indexes the observations. As it is typical
when dealing with sequencing data (Anders and Huber, 2010; Witten, 2011; Love et al., 2014),
we let si denote an estimate of a sample-specific size factor, in order to take into account the
different sequencing depths of the samples. Also, we let xcaseij , xageij and xcountryij denote three
available covariates for the MSD status, age and country. More specifically, xcaseij = 1 for cases
and xcaseij = 0 for the matched controls. In this analysis, we adopt Gambia as the reference value
for the other countries., and indicate with xKij , xBij , and xMij the dummy variables for the other
countries. Then, we consider the following model:

yij ∼ NB(µij , αj), j = 1, . . . , Ji; i = 1, . . . , n,
log(µij) = log(si) + β0,j + β1,j x

case
ij + β2,j x

age
ij + β3,j x

M
ij + β4,j x

B
ij + β5,j x

K
ij + εij ,

where αj represents a taxon-specific dispersion parameter, and β0,j represents a taxon-specific
effect, which captures the abundance of taxon j in the control group, and the βk,j ’s represent
the effects of each covariate on the taxon abundance. The Negative Binomial distribution was
chosen due to its flexibility over the Poisson alternative. The model was fitted using the glmmTMB
(Brooks et al., 2017) package. To illustrate our multiple testing procedure, we consider the fixed
case-control effect captured by the estimates of the coefficients β1,j ’s, which provide the z-scores
for testing the differences in abundance between healthy and MSD subjects. A histogram of the
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Figure 3.1: Microbiome data case study: Histogram of 535 z-scores obtained
from the case term (β1) in the Negative Binomial generalized linear mixed effects
model. We superimpose the posterior probabilities of the events {γi = 1|z} and

the threshold corresponding to a Bayesian FDR of 1%.

535 z-scores from the data is given in Figure 3.1. It is important to note that since the estimated
coefficients are a function of the original data, the independence assumption may not be satisfied
if the original taxonomic abundances are correlated. Indeed, the presence of hidden correlation
among the observables, or unknown associations with unobserved covariates, has been one of
the major motivations for the two-group model formulation in (Efron, 2004).

In the two-group model (3.8)–(3.9), we fix the hyper-parameters for the prior processes as
θ0 = θ1 = 1, σ0 = 0.75, σ1 = 0.10 and a = 1 and b = 99. This choice allows to describe
small departures from the theoretical null, while maintaining computational feasibility in the
generation of the latent clusters from the null. The hyper-parameters of the base measures
were set to the same values as in Section 3.4.1. For the results provided here, we run the
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MCMC algorithm described in Section 3.3.3 for 20,000 iterations after a 20,000 iteration burn-
in period. No evidence of lack of convergence was observed by running standard diagnostic
procedures. Figure 3.1 overlays the Monte Carlo estimates of the posterior probability of each
taxon belonging to the non-null distribution to the histogram of the z-scores. By thresholding
the Monte Carlo estimate of posterior probability of the non-null process at a value corresponding
to a Bayesian false discovery rate (Newton et al., 2004) of 1%, we identify a total of 74 non-null
taxa. The locfdr model detects as relevant only 6 taxa. On the contrary, the BH procedure
leads to 143 significant microbes, when controlling the FDR at the 1% level.Tables 1 and 2 in
the Appendix report the taxa with the highest discovery probabilities, separately for positive
and negative z-scores.
A close inspection of our results reveals some interesting biological findings. Among the species
which were identified by our method as having significantly less abundance in MSD children,
we found Prevotella species and Clostridium species (see Table 1 in the Appendix). Prevotella
spp. are common bacteria in the gut and are commonly found in children from rural and
underdeveloped areas (Di Paola et al., 2010) as well as children whose diets predominantly
consist of carbohydrates and fiber (Chen et al., 2011). Thus the severely decreased abundance
of the Prevotella spp. is reasonable in light of the gastrointestinal disruption the children
experienced. As for the Clostridium spp., it is well-known that C. difficile is a toxigenic bacteria
in adults but it is also found asymptomatically in large proportions in infants and neonates
(Jangi and Lamont, 2010). Another interesting species is Megasphaera, which was recently
suggested for reclassification to Clostridium (Yutin and Galperin, 2013). Finally, Eubacterium
rectale, Bacteroides, and Faecalibacterium prausnitzii, have all been shown a marked reduction
in concentrations in patients affected by chronic idiopathic diarrhea (Swidsinski et al., 2008).
Of the species identified as significantly more abundant in the MSD children, many of them be-
long to the Streptococcus species. Some Streptococcus species are well known human pathogens
causing conjunctivitis, respiratory infections and urinary tract infections. Other species in the
genus are opportunistic pathogens, meaning they are asymptomatically present in healthy indi-
viduals but will flourish in individuals with weakened immune systems such as the patients in
this dataset. The pathogenic genus Shigella is present and is well-known for causing dysentery.
It has been suggested that the Shigella spp. are closely related to another well-known pathogen,
Escherichia coli (Lan and Reeves, 2002) which is also differentially abundant in these patients.
A Granulicatella species has also been identified as differentially abundant. However, these
bacteria are usually implicated in childhood infective endocarditis or infection of the heart.

3.4.3 Case study: Prostate Cancer Dataset

To assess how our model performs in large-sample cases, we apply our methodology also to the
widely known Prostate dataset of Singh et al. (2002). See also Efron (2009). We introduce a
split-merge move in the MCMC to reduce the computational cost. The dataset is composed
of 6,033 genes for 102 observations from 52 prostate cancer patients and 50 healthy men. We
adopt the same prior specification as in the microbiome case study, with the exception of choosing
b = 9 to further encourage sparsity of discoveries. Figure 3.2 reports the posterior probabilities
of discovery for this dataset. When thresholding the BFDR at the 20% level, our method flags
only 18 genes as relevant. Similarly, the locfdr procedure flags 19 genes. On the contrary, the
BH procedures identifies 60 genes as significant, when thresholding the FDR at the 10% level.

3.5 Discussion and Conclusion
We have considered the two-group model by Efron (2004) for multiple hypotheses testing and
we have proposed the use of a mixture prior of two–parameter Poisson–Dirichlet processes as a
flexible class of prior processes in that framework. In particular, an appropriate choice of the



76 Chapter 3. Two-group Poisson-Dirichlet mixtures for multiple testing

Figure 3.2: Prostate dataset: Histogram of 6033 z-scores obtained from a two-
groups comparison. We superimpose the posterior probabilities of the events {γi =

1|z} and the threshold corresponding to a Bayesian FDR of 20%.

hyper-parameters of the 2PPD processes allows the characterization of small departures from
the theoretical null in the estimation of the empirical null distribution, while leaving flexibility
in the modeling of the non-null distribution. We have also employed a mixture of non-local
prior densities as base measure for the alternative distribution, to improve separation and fa-
cilitate the estimation and identifiability of the mixture components. We have characterized
the behavior of the 2PPD mixture prior by deriving its exchangeable partition probability func-
tion, and highlighted the conditional independence assumptions in the clustering of the mixture
process. The proposed approach has been shown to provide a robust testing procedure, which
compares favorably with recently proposed methods for estimating the components of the two-
group model, including the widely-used DP mixture models. Finally, we have illustrated the
use of the proposed 2PPD process mixture model on two publicly available datasets, one from
a benchmark microarray study and one from a more recent microbiome study.
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One limitation of our analysis of the microbiome data is related to the fact that many of the
species which can now be sequenced using 16S technologies remain relatively unknown in the
microbiology literature, since they cannot be cultured in the lab. Indeed, it is common for
microbiome studies to assign taxa to the genus or even family level and the interpretation is
often conducted at those taxonomic levels. Since the specific functions of many taxa are still
poorly understood, the interpretation of findings at the species level remains difficult.
Another limitation is related to the computing effort, since Markov chain Monte Carlo algo-
rithms for Bayesian nonparametric models typically require considerable computational time
for posterior inference. While the data sizes considered in this manuscript are typical of current
microbiome studies, a full MCMC approximation of the posterior distributions may become
less appealing as sequencing techniques improve. Metagenomics shotgun sequencing has been
increasingly adopted in lieu of 16S rRNA sequencing in human microbiome studies, thus requir-
ing software able to handle the large amount of genomic information being sampled (Sharpton,
2014). To provide an illustration of current capabilities, in the analysis of the Prostate cancer
dataset of Section 3.4.3, it took approximately 56 hours to run 20,000 MCMC iterations on
a Xeon(R) E5-2640 v4, 2.40GHz Linux sever, with the computational bottleneck being repre-
sented by the iterations requiring a full Polya-Urn sampling. Variational Bayes techniques have
been developed for many Bayesian nonparametric models, including the 2PPD process (see, e.g.
Jordan and Blei, 2006; Sudderth and Jordan, 2009). However, the speed up of MCMC algo-
rithms for Bayesian nonparametric models in high-dimensional settings is still a topic of ongoing
research (see, e.g., Canale et al., 2019).
A careful choice of the hyperparameters of the two-group 2PPD model is essential to ensure
good operating characteristics of the testing procedures. We have followed prevailing practices
and set θ0 = θ1 = 1 in both the simulations and the data analyses. Of course, larger values of
θ0 could also be considered to improve the identification of the null distribution. However, the
specification of the parameter θ0 > 0 to that purpose is not straightforward and in our experience
the performances may vary considerably for different choices of the parameters. Similarly, priors
on θ0 and θ1 would need to incorporate constraints to facilitate the identification of the two-group
components.
Finally, in our data analyses, we have proposed a two-group model for the analysis of data
observed under two conditions. However, often the interest is in studying longitudinal changes of
repeated measurements within a subject. Therefore, models that take into account the temporal
dependence of the hypotheses are required. Our model could also be employed as an alternative
to Bayesian nonparametric DP mixtures for finding subsets of variables discriminating between
two groups of observations (Kim et al., 2006). These directions will be explored in future
research.





79

Appendix

3.A Posterior inference
In this section, we detail the MCMC algorithm for posterior inference for model (3.6) and model
(3.8)–(3.9), with particular regards to inference on the auxiliary variable indicators γi’s and the
two-group components’ weight ρ.
Before deriving the full conditional distributions, we first need to outline a few properties of
the clustering implied by the EPPF (3.7). More specifically, an underlying assumption of the
two-group model is that if two observations assume the same value, they should not be assigned
to different groups. For the 2PPD processes, the following result holds

Lemma 1. If Z1, . . . , Zn are a random sample from an exchangeable sequence Z governed by a

random probability measure as defined in (6), with P ∗j , j = 0, 1, being non-atomic base measures
with common support, then

P[Zi = Zj | γi 6= γj ] = 0

for i 6= j.

The result follows directly from the characterization of the 2PPD process as an infinite mixture
and the fact that P ∗j is non-atomic. A notable consequence of this result is that Zi’s belonging
to the same cluster are generated by the same PD process and distinct clusters are generated by
distinct random probability measures. In the case of the 2PPD mixture models (9), Lemma 1
applies to the atoms generated by the nonparametric priors. Given the same set of hypotheses,
we have that

P[ϑi = ϑj | γi 6= γj ] = 0.

As we outline below, this result is crucial for a proper characterization of the full conditionals
of each model.

• MCMC for model (6): At any iteration of the MCMC algorithm, the vector of obser-
vations Z = (Z1, . . . , Zn) is partitioned into K separate clusters, K ≥ 1. Let Z∗1 , . . . , Z∗K
denote the K ≤ n unique values in Z. We denote the corresponding partition sets by
Ck,n = {i : Zi = Z∗k}, k = 1, . . . ,K, and by nk = |Ck,n|, the cardinality of each set.
By virtue of Lemma 1, two observations assigned to the same cluster are also assigned to
the same random probability measure. Therefore, let γ∗k be an auxiliary random variable
such that γ∗k = 0 if the partition set Ck,n contains draws from p̃0 and γ∗k = 1 otherwise.
Then, for any i ∈ Ck,n, one has γi = γ∗k , and, conditional on the partition sets Ck,n,
k = 1, . . . ,K, the K-tuple γ∗ = (γ∗1 , . . . , γ∗K) ∈ {0, 1}K describes the solution of the multi-
ple testing problem, analogously to the vector γ = (γ1, . . . , γn) ∈ {0, 1}n. Then, posterior
samples for γ can be immediately derived from the posterior samples of the vector γ∗ and
the configuration of the partition sets Ck,n, k = 1, . . . ,K, which can be obtained by means
of a Gibbs sampling scheme.
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More specifically, let us consider the joint probability distribution of the vector γ =
(γ1, . . . , γn), and the partition Cn = {C1,n, . . . , CK,n},

L(γ, C1,n, . . . , CK,n) = L(γ)L(C1,n, . . . , CK,n | γ).

The joint distribution of γ can be obtained as

L(γ) =
(a)|γ|(b)n−|γ|

(a+ b)n
, (3.11)

where |γ| =
∑
γi. Here, |γ| indicates the number of observation currently assigned to

the non-null process. By Lemma 1 and Proposition 1, the conditional distribution of
C1,n, . . . , CK,n given γ can be written as

L(C1,n, . . . , CK,n | γ) = L(C1,n, . . . , CK,n | γ∗)

= Π(n−|γ|)
K0,0 (n1(1− γ∗1), . . . , nK(1− γ∗K))

× Π(|γ|)
K1,1(n1γ

∗
1 , . . . , nKγ

∗
K)

K∏
k=1

∏
i∈Ck,n

1{γ∗
k
}(Ki),

(3.12)

where K1 =
∑K
k=1 γ

∗
k and K0 = K−K1 indicate the number of clusters belonging to p̃1 and

to p̃0, respectively. Expression (3.11) and (3.12) emphasize that it is sufficient to consider
only the cluster-based vector of indicators γ∗ in order to determine the joint probability
distribution of the γ and the partitionCn. Therefore, in order to obtain the full conditional
distribution of the γi’s, we may focus only on the γ∗k ’s and the vector ofK ≤ n observations
in Z∗. Let γ∗−k denote the γ∗ vector with the kth entry removed. Similarly, we define
γ−i as the vector where the ith entry is deleted. This implies that γ∗−k ∈ {0, 1}K−1 and
that γ−i ∈ {0, 1}n−1. Also let n−k,1 =

∑K
l 6=k nlγ

∗
l denote the number of observations not

included in Ck,n which at the same time come from the non-null process. Furthermore, for
any k = 1, . . . ,K, let K−k,1 = |γ∗−i| =

∑K
l 6=k γ

∗
l indicate the number of clusters assigned to

the non-null distribution p̃1 after removing cluster Ck,n.
We can now write the full conditional of the γ∗k ’s. For notational simplicity, let γ∗k = ξ,
where ξ ∈ {0, 1}. Then, the full conditional Lk(ξ | γ∗−k,Z∗,Cn) ∝ pk,ξ where

pk,ξ = (a)n−k,1+nkξ(b)n−n−k,1−nkξ P
∗
ξ (dZ∗k)

∏
j 6=k

P ∗γ∗j
(dZ∗j )

∏
l∈Ck,n

1{γ∗
k
}(γl)

× Π(n−n−k,1−nkξ)
K−K−k,1−ξ,0 (n1(1− γ∗1), . . . , nk(1− ξ), . . . , nK(1− γ∗K))

× Π(n−k,1+nkξ)
K−k,1+ξ,1 (n1γ

∗
1 , . . . , nkξ, . . . , nKγ

∗
K).

In particular, the probability P (γ∗k = 1 | γ∗−k,Z∗,Cn) determines the probability that for
any i ∈ Ck,n, the observations Zi = Z∗k are assigned to the non-null distribution, and can
be obtained as

Lk(ξ = 1 | γ∗−k,Z∗,Cn) = 1
1 + (pk,0/pk,1) ,

where the ratio

pk,0
pk,1

= P ∗0 (dZ∗k)
P ∗1 (dZ∗k)

Γ(a+ n−k,1)
Γ(a+ n−k,1 + nk)

Γ(b+ n− n−k,1)
Γ(b+ n− n−k,1 − nk)
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×
Π(n−n−k,1)
K−K−k,1,0(n1(1− γ∗1), . . . , nk, . . . , nK(1− γ∗K))

Π(n−n−k,1−nk)
K−K−k,1−1,0 (n1(1− γ∗1), . . . , nK(1− γ∗K))

×
Π(n−k,1)
K−k,1,1(n1γ

∗
1 , . . . , nKγ

∗
K)

Π(n−k,1+nk)
K−k,1+1,1 (n1γ∗1 , . . . , nk, . . . , nKγ

∗
K)
.

The previous expression is valid for all normalized random measures with independent
increments. If p̃j is a 2PPD(σj , θj , P ∗j ), j = 0, 1 process, then the above ratio further
simplifies as:

pk,0
pk,1

= P ∗0 (dZ∗k)
P ∗1 (dZ∗k)

(b+ n− n−k,1 − nk)nk
(a+ n−k,1)nk

(1− σ0)nk−1
(1− σ1)nk−1

× θ0 + (K −K−k,1 − 1)σ0
θ1 +K−k,1 σ1

(θ1 + n−k,1)nk
(θ0 + n− n−k,1 − nk)nk

. (3.13)

It is worth noting that if the two base measures coincide, i.e., P ∗0 = P ∗1 , then the full
conditional does not depend on Z∗k ; therefore, the probability that Z∗k is a draw from the
non-null depends only on the clustering behavior of the 2PPD process implied by the pa-
rameters characterizing p̃0 and p̃1.

To summarize, in order to implement a Gibbs sampler for sampling the auxiliary indi-
cators in (6), at each iteration t = 1, . . . , T , we draw each γ∗k , from the full conditional
Lk(ξ = 1 | γ∗−k,Z∗,Cn). The vectors γ∗t , t = 1, . . . , T , can then be mapped to the vector
γ using the partition sets Cn.

• MCMC for model (8)–(9): The full conditionals for the vectors γ∗k are derived in a
similar way as above. More specifically, for γ∗k = ξ, let ϑ∗k,ξ ∼ P ∗ξ , indicate an atom of p̃ξ,
ξ ∈ {0, 1}, k = 1, . . .K. Then,

L[ξ | γ∗−k, C1,n, . . . , CK,n,Z]

∝
{∫ ∏

l∈Ck,n

kξ
(
Zl|ϑ∗k,ξ

)
P ∗ξ (dϑ∗k,ξ)

}
Γ(a+ n−k,1 + nkξ)Γ(b+ n− n−k,1 − nkξ)

× Π(n−n−k,1−nkξ)
K−K−k,1−ξ,0 (n1(1− γ∗1), . . . , nk(1− ξ), . . . , nK(1− γ∗K))

× Π(n−k,1+nkξ)
K−k,1+ξ,1 (n1γ

∗
1 , . . . , nkξ, . . . , nKγ

∗
K)

∏
l∈Ck,n

1{ξ}(γl),

If we denote with fk,ξ the marginal likelihoods

π
(
Zl∈Ck,n

)
=
{∫ ∏

l∈Ck,n

kξ
(
Zl|ϑ∗k,ξ

)
P ∗ξ (dϑ∗k,ξ)

}

we can recover an expression similar to (3.13):

pk,0
pk,1

= fk,0
fk,1

(b+ n− n−k,1 − nk)nk
(a+ n−k,1)nk

(1− σ0)nk−1
(1− σ1)nk−1
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× θ0 + (K −K−k,1 − 1)σ0
θ1 +K−k,1 σ1

(θ1 + n−k,1)nk
(θ0 + n− n−k,1 − nk)nk

. (3.14)

Since ρ is conditionally independent from the observations Zi’s given the γi’s and the
parameter ϑi, we can obtain the full conditional distribution of ρ as

L[dρ | Z1, . . . , Zn,ϑ1, . . . ,ϑn, γ1, . . . , γn]

= Γ(a+ b+ n)
Γ(a+ n∗)Γ(b+ n− n∗)ρ

a+n∗−1(1− ρ)b+n−n∗−1 1(0,1)(ρ),

that is, as a sample from a Beta(a+ n∗, b+ n− n∗), with n∗ =
∑K
j=1 njγ

∗
j . The sampling

algorithm is then completed by drawing samples of the ϑ∗i ’s from the respective full con-
ditionals.

The full conditional of ϑi is obtained as

L[dϑi,γi | ϑ−i,γ∗,Cn,Z] ∝ q(i)
0

kγi(Zi | ϑi,γi)P ∗γi(dϑi,γi)∫
R×R+ kγi(Zi | ϑi,γi

)P ∗γi(dϑi,γi
)

+
κ

(−i)
γi∑
j=1

q
(i)
j δϑ∗j,γi

(dϑi,γi)

where ϑ−i = {(µj , τ2
j )γj : j 6= i} and κ

(−i)
γi is the number of unique values in ϑ−i that

share the same generating random probability measure p̃γi with ϑi,γi . Correspondingly,
the respective frequencies are denoted as n(−i)

γi =
(
n

(−i)
1,γi , . . . , n

(−i)
κγi ,γi

)
with weights q(i)

0 and

q
(i)
j as follows

q
(i)
0 ∝ Π(|n(−i)

γi
|+1)

κ
(−i)
γi

+1,γi
(n(−i)

1,γi , . . . , n
(−i)
κγi ,γi

, 1) kγi(Zi | ϑi)

q
(i)
j ∝ Π(|n(−i)

γi
|+1)

κ
(−i)
γi

,γi
(n(−i)

1,γi , . . . , n
(−i)
j,γi

+ 1, . . . , n(−i)
κ

(−i)
γi

,γi
)

Specializing the previous formula to the 2PPD process, we obtain:

q
(i)
0 ∝

(
θγi + κ(−i)

γi σγi

) ∫
kγi (Zi | ϑi)P ∗γi (dϑi) ,

q
(i)
j ∝

(
n

(−i)
j,γi
− σγi

)
kγi

(
Zi | ϑ∗j,γi

)
.

where
∫
kγi (Zi | ϑi)P ∗ (dϑi) is the marginal likelihood based only on the observation Zi

Finally, the full conditional for m1 is sampled with a simple adaptive Metropolis Hasting
step (Roberts and Rosenthal, 2007; Roberts and Rosenthal, 2009). Here, we can take
advantage of the conjugacy properties of the model and employ a marginal Gibbs sampler
as discussed in Ishwaran and James (2001). Alternatively, for non-conjugate models, a
Metropolis-Hastings algorithm would be equivalently straightforward to implement, and
mimic widely used algorithms for Dirichlet Process mixture models (Neal, 2000a).
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3.B Proof of Proposition 1.
We first evaluate the probability distribution of the Zi’s, partitioned into K distinct clusters
with representatives located at infinitesimal intervals dz1, . . . ,dzK , around points z1, . . . , zK ,
with respective multiplicities n1, n2, . . . , nK .

P[Z∗1 ∈ dz1, . . . , Z
∗
K ∈ dzK , n1, . . . , nK ]

= E

 K∏
j=1

{
w
µ0(dzj)
µ0(Z) + (1− w)µ1(dzj)

µ1(Z)

}nj
=

n1∑
i1=0
· · ·

nK∑
iK=0

(
n1
i1

)
· · ·
(
nK
iK

)
wi1+···+iK (1− w)n−(i1+···+iK) ×

E

 K∏
j=1

(
µ0(dzj)
µ0(Z)

)ij (µ1(dzj)
µ1(Z)

)nj−ij
From Lemma 1, it follows that for any ij 6∈ {0, nj} the expected value above vanishes. Hence,
for ij ∈ {0, nj} one has

E

 K∏
j=1

(
µ0(dzj)
µ0(Z)

)ij (µ1(dzj)
µ1(Z)

)nj−ij =
K∏
j=1

[P ∗0 (dzj)]
ij
nj [P ∗1 (dzj)]

nj−ij
nj

Π(n′i)
|i|,0 (i1, . . . , iK) Π(n−n′i)

K−|i|,1 (n1 − i1, . . . , nK − iK)

The representation in Proposition 1, then, follows when integrating out with respect to ρ and
z1, . . . , zk.

3.C Split-Merge move for the two-group 2PPD model
In the cases of Dirichlet and Pitman-Yor process mixture models, posterior sampling is often
performed via Gibbs sampler. Unfortunately, especially in marginal models, the Gibbs sampler
explores the state space by means of conditional updates cycling through all observations and
can get stuck in local modes. Thus, it can mix poorly across modes that have high probability
(Dahl, 2003). To address the deficiencies of the Gibbs sampler, Jain and Neal (2004) and Jain
and Neal (2005) propose a split-merge (SM) algorithm which greatly improves the mixing. To
obtain the best performance, they recommend to cycle between the usual Gibbs sampler and
their SM proposal. Nevertheless, their sampler is known to be computationally demanding. To
obviate this problem, Dahl proposes an enhanced versions of the first split-merge sampler, called
SAMS, that can be used in conjugate cases (Dahl, 2003) and in non-conjugate cases (Dahl, 2005)
for Dirichlet Process mixture models.
In the following, we adapt the conjugate version of Dahl’s SM sampler to be employed in
Pitman-Yor mixture models. In particular, according to Lemma 1, given the process alloca-
tion variables γ, the two processes are independent. This allows us to perform two separate
Split and Merge steps, one per process. In the following, we present the sampler for the
generic process γ′, γ′ = 0, 1. Let us denote the partition observed among the observations
with η = {S1, S2, . . . , SK∗}, where Sl denotes the subset of indexes assigned to the l-th cluster
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and K∗ denotes the number of subsets in the partition.

Steps

1. Among the observations assigned to the same process γ′, uniformly select a pair of distinct
indices i and j.

2. If i and j belong to the same component in η , propose η? by attempting a split move:

S1 For convenience, denote the common component containing indexes i and j as S.
Remove the indexes i and j from S and form singleton sets Si = {i} and Sj = {j}.

S2 Letting k be successive values in a uniformly-selected permutation of the indexes
in S, add k to Si with probability

Pr (k ∈ Si|Si, Sj , y) = (ni,γ − σγ)
∫
F (yk;ϑ) dHSi(ϑ)

(ni,γ − σγ)
∫
F (yk;ϑ) dHSi(ϑ) + (nj,γ − σγ)

∫
F (yk;ϑ) dHSj (ϑ)

where HS is the posterior distribution of a component location ϑ based on the prior
P ∗γ′ and the data corresponding to the indices in S . Otherwise, add k to Sj . Note
that, at each iteration above, either Si or Sj gains an index resulting in ni,γ′ or
nj,γ′ increasing by 1 . Further, HSi and HSj evolve to account for each additional
index. We remark how our model employs non-conjugate base measures for the
Null process. However, it is straightforward to perform precise numerical integration
over the parameters’ space. Working with marginal distributions mγ′ (Sl) of all the
observations in the l-th cluster, we can rewrite∫

F (yk;ϑ) dHSi(ϑ) =
∫
F (yk;ϑ)

F (Si;ϑ)P ∗γ′(ϑ)dϑ
mγ′ (Si)

= mγ′ (yk, Si)
mγ′ (Si)

and consequently

Pr (k ∈ Si|Si, Sj , y) =

(
ni,γ′ − σγ′

) mγ′ (yk,Si)
mγ′ (Si)(

ni,γ′ − σγ′
) mγ′ (yk,Si)

mγ′ (Si)
+
(
nj,γ′ − σγ′

) mγ′ (yk,Sj)
mγ′ (Sj)

(3.15)

Alternatively, one can employ the steps presented in Dahl (2005) for non-conjugate
cases.

S3 Compute the Metropolis-Hastings ratio and accept η∗ as the current state η with
probability given by this ratio. The calculation of the Metropolis-Hastings ratio is
discussed below.

3. Otherwise, i and j belong to different components in η. Propose η? by attempting a merge
move:

M1 For convenience, let Si and Sj denote the components in η containing i and j, respec-
tively.

M2 Form a merged component S = Si ∪ Sj .
M3 Propose the following set partition: η? = η ∪ {S}\ {Si, Sj} .
M4 Compute the Metropolis-Hastings ratio and accept η? as the current state η with

probability given by this ratio. Again, the calculation of the Metropolis-Hastings
ratio is discussed below.
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Computing the Metropolis Ratio The MH ratio for the SAMS sampling algorithm is given
as:

a (η?|η) = min
[
1, p (η?|y)

p(η|y)
Pr (η|η?)
Pr (η?|η)

]
where p (η?|y) is the partition posterior distribution evaluated at η? and Pr (η?|η) is the proba-
bility of proposing η? from the state η.

We have that p(η|y) ∝ p(y|η)p(η), where p(η) =
∏K−1
j=1 (θγ′+jσγ′ )
(θγ′+1)nγ′−1

∏K
j=1(1−σγ′)nj,γ′−1 is the 2PPD

process EPPF and

p(y|η) =
K∏
l=1

p (Sl) =
K∏
l=1

∫ ∏
k∈Sl

F (yk;ϑ)P ∗γ′(ϑ)dϑ =
K∏
l=1

m (Sl)

.
Finally, let us focus on p(η?|η). When the proposal η? is a split update, Pr(η?|η) is merely the
product of the probabilities in (3.15) associated with the chosen allocations. Since these two
split components could only be merged in one way, Pr(η|η?) = 1. Conversely, when the proposal
η? is a merge update, Pr(η?|η) is 1, but Pr(η|η?) is the product of the probabilities in (3.15)
associated with the allocation choices that would need to be made to obtain the split partition
η, although no actually splitting is performed. Dahl underlines that it is critical that a random
permutation of the indexes is used when performing this imaginary split.
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3.D Microbiome data case study: list of differentially abundant
taxa

Table 3.D.1: Microbiome data case study: differentially abundant taxa with
negative z-scores indicating less abundance in the children with moderate to severe
diarrhea. Most are well known commensal bacteria, e.g. Prevotella spp. and
Clostridium spp. Posterior probability that the z-score belongs to the non-null
group is given for each taxa. The dotted line highlights the difference between the
genes flagged as relevant by our method and the ones found with the locfdr model.

Taxon z-score p(Ki = 1|data) Efron LocFdr
Prevotella copri -10.13 1.00 0.99
Prevotella sp. DJF_RP53 -9.76 1.00 0.98
Prevotella sp. BI-42 -9.72 1.00 0.98
Prevotella sp. DJF_B112 -9.64 1.00 0.98
Clostridium lituseburense -8.53 1.00 0.86
Clostridium paraputrificum -7.78 1.00 0.62
Faecalibacterium prausnitzii -7.49 1.00 0.50
Prevotella sp. oral clone BP1-28 -7.38 1.00 0.46
Clostridium bartlettii -7.01 1.00 0.33
Clostridium sp. FRC_Cl1 -6.80 1.00 0.27
Faecalibacterium sp. DJF_VR20 -6.59 1.00 0.23
Clostridium disporicum -6.33 1.00 0.19
Collinsella sp. CB20 -6.26 1.00 0.19
Ruminococcus gnavus -6.02 1.00 0.18
Bacteroides fragilis -5.90 1.00 0.18
Clostridium butyricum -5.90 1.00 0.18
Enterococcus sp. L2 -5.78 1.00 0.18
Prevotella intermedia -5.68 1.00 0.18
Clostridium glycolicum -5.29 0.99 0.20
Bacteroides sp. CJ78 -5.22 0.99 0.21
Collinsella aerofaciens -5.19 0.99 0.21
Eubacterium rectale -5.06 0.99 0.21
Bacteroides xylanisolvens -4.95 0.98 0.21
Clostridium hathewayi -4.86 0.98 0.22
Collinsella sp. HA6 -4.69 0.97 0.21
Turicibacter sanguinis -4.68 0.97 0.21
Clostridium sp. CJ66 -4.66 0.97 0.21
Prevotella sp. oral clone AO009 -4.65 0.97 0.21
Enterococcus gallinarum -4.59 0.96 0.21
Megasphaera sp. TrE9262 -4.53 0.96 0.20
Bacteroides ovatus -4.52 0.96 0.20
Clostridium difficile -4.30 0.95 0.19
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Table 3.D.2: Microbiome data case study: differentially abundant taxa with
positive z-scores indicating greater abundance in the children with moderate to
severe diarrhea. Most are well known pathogenic bacteria, e.g. Shigella spp. and
E. coli. Posterior probability that the z-score belongs to the non-null group is
given for each taxa. The dotted line highlights the difference between the genes
flagged as relevant by our method and the ones found with the locfdr model.

Taxon z-score p(Ki = 1|data) Efron LocFdr
Escherichia coli 8.48 1.00 0.83
Streptococcus sp. C101 7.66 1.00 0.70
Haemophilus haemolyticus 7.62 1.00 0.69
Streptococcus mitis 7.48 1.00 0.65
Erwinia chrysanthemi 7.18 1.00 0.58
Streptococcus sp. oral clone ASCE09 7.10 1.00 0.55
Enterobacter cloacae 6.87 1.00 0.49
Acinetobacter sp. SF6 6.56 1.00 0.40
Granulicatella sp. oral clone ASCG05 6.34 1.00 0.33
Streptococcus sp. oral clone ASCC04 6.18 1.00 0.28
Shigella boydii 5.93 1.00 0.20
Streptococcus sp. oral clone ASCC01 5.82 1.00 0.17
Streptococcus peroris 5.81 1.00 0.17
Rothia mucilaginosa 5.76 1.00 0.15
Streptococcus oralis 5.75 1.00 0.15
Escherichia sp. oral clone 3RH-30 5.58 1.00 0.11
Citrobacter freundii 5.58 1.00 0.11
Granulicatella adiacens 5.54 1.00 0.10
Streptococcus sanguinis 5.47 1.00 0.08
Escherichia albertii 5.24 1.00 0.03
Escherichia sp. EMB 210 5.08 1.00 0.01
Granulicatella elegans 5.04 1.00 0.00
Streptococcus pneumoniae 5.03 0.99 0.00
Fusobacterium nucleatum 5.03 1.00 0.00
Serratia marcescens 4.97 1.00 0.00
Streptococcus sp. oral strain T4-E3 4.86 0.99 0.00
Streptococcus sp. oral clone DP009 4.84 0.99 0.00
Shigella sonnei 4.79 0.99 0.00
Fusobacterium periodonticum 4.76 0.99 0.00
Neisseria sp. oral clone BP2-82 4.62 0.99 0.00
Actinobacillus pleuropneumoniae 4.59 0.99 0.00
Streptococcus parasanguinis 4.52 0.99 0.00
Streptococcus sp. C163 4.50 0.99 0.00
Fusobacterium sp. oral clone BS011 4.48 0.99 0.00
Haemophilus sp. oral clone BJ021 4.39 0.98 0.00
Streptococcus sp. oral clone BP1-49 4.25 0.98 0.00
Abiotrophia defectiva 4.24 0.98 0.00
Streptococcus sp. oral clone MCE7_144 4.19 0.98 0.00
Haemophilus influenzae 4.11 0.97 0.00
Campylobacter jejuni 4.11 0.97 0.00
Citrobacter sp. SVUB3 4.07 0.97 0.00
Enterobacter sp. CRRI 3 3.89 0.95 0.00
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3.E Plots of the five scenarios considered in the simulation study

Figure 3.E.1: The five Scenarios considered in the simulation study in Section
4.1. We plot the histograms of the simulated data and superimpose the null (blue)

and alternative (red) density functions.

We recall here the five scenarios that we investigate in our simulation study:
We simulate z-scores from mixture (1), where f0(x) = N(x | 0, 1) and for f1 we choose:

• Scenario 1: f1(x) = 0.67 · N (x| − 3, 2) + 0.33 · N (x|3, 2),

• Scenario 2: f1(x) =
mathcalN(x | ui, 1) with u ∼ Uniform(2, 4),

• Scenario 3: f1(x) = N (x | ui, ) with u ∼ Uniform([−4,−2] ∪ [2, 4]),

• Scenario 4: f1(x) = Gamma((−1)vi · x | a, b) with a = 4, b = 1 and vi ∼ Bernoulli(0.5),

i.e. f1 is assumed asymmetric unimodal (scenario 1), symmetric bimodal (scenario 2), asym-
metric bimodal (scenario 3) and symmetric bimodal with fat tails (scenario 4), thus mimicking
typical high-dimensional testing situations. Moreover, we also considered the following case

• Scenario S5: zi ∼ 0.90N (0, 1.5) + 0.05N (5, 1) + 0.05N (−5, 1) ,

where the null distribution departs from the theoretical standard Gaussian and the alternative
distribution is chosen to be easily detectable, being very separated from the null one. Figure
3.E.1 shows the histograms of data simulated under the five scenarios.

3.F Computational Burden
We perform a simulation study where we investigate the computational time needed by the
algorithm in its original specification (Polya Urn scheme - PUS) compared to the Split-Merge
(SM) alternative proposed in the previous subsection. More precisely, we keep track of the time
in seconds that the model needs to run 100 iterations. For the SM case, we perform 10 SM
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moves per iterations, and full sweep is executed every 10 steps.
We study how the computational time varies as the sample size and the discount parameter
of the null process change. These two quantities play a pivotal role in the sampler efficiency,
since the expected number of clusters grows as both n and σ0 increase. This in turn means
more clusters to update at each iteration. Table 3.F.1 reports the results in seconds. We can
appreciate how the burden becomes more consistent with the growth of the sample size. The
impact of σ0 on the computational time is amplified with the sample size. We see how, for
sample sizes beyond 1,000 observations, the PUS sampler becomes extremely inefficient, making
the inference infeasible. Relying on the SM moves seems to solve this issue, consistently speeding
up the algorithm. We also notice how the value of σ0 has a small impact on the SM sampler.

σ0 = 0.5 σ0 = 0.75 σ0 = 0.9
n = 100 PUS 5.480 5.916 6.007

SM 6.373 5.625 5.614

n = 200 PUS 12.396 14.498 15.009
SM 10.448 10.625 10.696

n = 500 PUS 51.319 58.532 61.201
SM 22.625 23.585 18.599

n = 1, 000 PUS 186.226 221.853 236.200
SM 54.390 52.042 42.521

n = 2, 000 PUS 914.227 1137.689 1160.732
SM 145.904 146.850 144.341

Table 3.F.1: Computational time in seconds for 100 iterations with the Polya
Urn Scheme (PUS) sampler, compared with the Split-Merge (SM) scheme. We
investigate how the time varies as the sample size n and the discount parameter

of the null process change.

3.G Additional simulation study
In this Section, we study the effect of considering discount parameters σ0, σ1 with σ0 < σ1.
More specifically, we assume σ0 = 0.1 and σ1 = 0.75. The remaining hyper-parameters are set
according to the simulation scenarios in Section 3.4.1. When thresholding the BFDR at 10%,
all the observations are flagged as interesting, since all the posterior probability of inclusion
too high. To exemplify, Figure 3.G.1 reports the posterior probability of inclusion for all the
observations of one of the datasets in the five different scenarios. To obtain the results reported
in Table 3.G.1, we set the threshold at the 1% level. We see how the model fails to recognize
the two underlying distributions, since the null distribution is free to vary and even the values
around zero are taken over by the alternative.
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Figure 3.G.1: Posterior probability of inclusion for observations sampled in
the first dataset of the five different scenarios, estimated adopting σ0 = 0.1 and

σ1 = 0.75

Scenario MCC F1 SPEC ACC PRE AUC

1 0.1569 (0.0147) 0.1409 (0.0062) 0.3823 (0.0272) 0.4114 (0.0258) 0.0760 (0.0035) 0.9189 (0.0213)
2 0.1668 (0.0136) 0.1436 (0.0066) 0.3792 (0.0312) 0.4096 (0.0296) 0.0774 (0.0038) 0.9477 (0.0168)
3 0.1664 (0.0131) 0.1468 (0.0064) 0.3724 (0.0320) 0.4042 (0.0302) 0.0793 (0.0037) 0.9448 (0.0178)
4 0.1697 (0.0168) 0.1445 (0.0094) 0.3765 (0.0459) 0.4075 (0.0436) 0.0779 (0.0055) 0.9656 (0.0100)
5 0.1157 (0.0125) 0.1183 (0.0048) 0.2138 (0.0363) 0.2531 (0.0345) 0.0629 (0.0027) 0.9867 (0.0026)

Table 3.G.1: Simulation study: sensitivity results across the five simulation
scenarios considered in Section 4.1 (ρ = 0.95), modeled with PYs processes char-
acterized by θ0 = θ1 = 1 and σ0 = 0.1 < σ1 = 0.75. The values in the table rep-
resent the average MCC and F1 scores, the average precision (PRE), specificity
(SPEC), accuracy (ACC) and the area under the curve (AUC) of the correspond-
ing receiver operating characteristic curve, over 30 replicates with corresponding

standard deviations between brackets.
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Chapter 4

Bayesian Two-Group Model: a
Non-Local Likelihood Approach

“Non aver paura di invecchiare.
L’età che si dimostra attrae, vedi Persepoli.

Non avere paura di stonare.
Non le popstar, le campane suonano per secoli.”

Migliora La Tua Memoria Con Un Click – Michele Salvemini feat. Max Gazzé

“Stay out of my territory.”
Breaking Bad s2e10 – The null distribution Heisenberg

Abstract
The two-group model of Efron (2004) discriminates among interesting and uninteresting test
statistics by assigning instances to either a null or an alternative density, whose mixture de-
scribes the data distribution. The amount of separation between these two competing densities
can crucially affect the performance of the classification, and the assumed mixture distribution
poses no control on a possible detrimental overlap. In this work, we employ non-local distribu-
tions (Johnson and Rossell, 2010) as an important device to model the non-null density in the
two-group model, with the purpose of reducing the overlap with the null distribution. We pro-
vide a theoretical justification in terms of improved false discovery rate, false negative rate, and
statistical power. Moreover, we develop efficient Gibbs Sampler algorithms for both parametric
and nonparametric model specifications. We illustrate the performance of our methodology in
an extensive simulation study and employ it on several publicly available genomics datasets
including the analysis of microarray data, microbiome abundance tables, and proteomics mea-
surements. In one of these applications, we extend the model to account for data grouped by
different experiment conditions.
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4.1 Introduction
With the increasing availability of large datasets, many researchers have addressed the prob-
lem of multiple hypotheses testing (MHT), both in a classical setting as well as in a Bayesian
framework. An important branch of the literature has been developed starting from the seminal
paper of Benajmini and Hochberg (1995), where the concept of False Discovery Rate (FDR)
was introduced to control the Type-I error when conducting multiple comparisons. Numerous
authors devoted to this topic, see Goeman and Solari (2014) for a review. In particular, Efron
extended the idea of FDR in an Empirical Bayes setting, introducing the concepts of Local
FDR (lfdr, Efron 2004), then formalized in his famous two-group model (Efron, 2004; Efron,
2007; Efron, 2008), a milestone in the MHT literature. The two-group model assumes that the
distribution of the data - which are often in the form of test statistics properly standardized- is a
mixture between the null distribution, f0 and the alternative distribution, f1. The observations
(estimated to be) generated from the null distribution (namely, under H0) are then labeled as
“irrelevant”, whilst those attributed to the alternative (under H1) are regarded as “relevant”.
Identifying the relevant observations by deconvoluting the two-group model is the main goal of
this methodology.
Numerous efforts have been dedicated to providing reliable estimates for f0 and f1. Some au-
thors opted for finite mixtures defined directly on p-values (Pounds and Morris, 2003; Liao et al.,
2004; Allison et al., 2002). Martin and Tokdar (2012) develop a likelihood-based analysis of the
two-group model, imposing regularization on the parameters of the empirical null distribution
and the mixture weight, and by modeling semiparametrically the alternative density f1. Mu-
ralidharan (2012) proposes a hierarchical model, estimated in an empirical Bayes framework,
to describe simultaneously the effect size and the local or tail-area false discovery rate for each
observed test statistic. Do et al. (2005) employ Dirichlet Processes Mixture Models to estimate
separately f0 and f1, adopting a Standard Gaussian and a mixture of two Gaussians centered
in ±2 as base measures, respectively.
The idea of employing mixture models for the two unknown densities is appealing, but it may
cause a lack of separation between the null and the alternative model: without any constraint,
the two distributions might freely overlap, jeopardizing the classification. In fact, we should
require f1 to be longer-tailed than f0, with the non-null zi’s tending to occur far away from the
origin (Efron, 2007). Generally, if the sample space X is partitioned into two complementary
parts, say X = X0 ∪ X1, relative to two different scenarios S0 and S1, we propose to achieve
the desired separation between the two competing distributions by imposing what we call a
non-local density (NLD) on f1, having the property of assigning very low or null probability to
the portion of the sample space X0 under the scenario S1.
The concept of a non-local version of distributions was first proposed by Johnson and Rossell
(2010) for the prior of the parameters of interest, introducing the so-called non-local Prior (NLP),
with the scope of performing (non-multiple) hypothesis testing and variable selection. The prop-
erties of NLDs have been studied in numerous works, e.g. Johnson and Rossell (2012), Consonni
et al. (2012), Zhu et al. (2013), and Rossell and Telesca (2017). In particular, Johnson and
Rossell (2010) introduce the Moment (MOM) and Inverse Moment (iMOM) NLD specifications,
while Johnson and Rossell (2012) prove the consistency of a model selection procedure for linear
model settings when the number of possible covariates p is bounded by the number of observa-
tions n, once NLDs are imposed on the model parameters. Consonni et al. (2012) adopt NLD
to perform model selection for DAGs: starting from a MOM prior under the full, unconstrained
model, they use the fractional Bayes factor for comparisons with restricted nested models. More
recently, Shin et al. (2015) employ NLDs for variable selection in high dimensional settings
and Zhu et al. (2013) use NLDs on the parameters of a generalized linear model in the con-
text of admixture mapping. Finally, Rossell and Telesca (2017) develop a NLD-based Bayesian
model averaging framework, where NLD is expressed as a mixture of truncated distributions
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that facilitates posterior sampling.
Generalizing the structure of the MOM density we propose a new class of NLDs as members of
a family of weighted densities that encompasses numerous other distributions. We employ our
new class of NLDs in the definition of f1 for the two-group model, to perform MHT with an
appropriate degree of separation among the two densities under the two competing hypotheses.
For the problem of detecting relevant z-scores, we fix in the sequel X0 to be a region of the
sample space around zero, implying that the scenario S0 coincides with the null hypothesis, i.e.
S0 = H0, and consequently assuming S1 = H1. However, the proposed framework does not
prevent the inclusion of data-driven external information for the choice of a different sample
space partition.
We then develop a parametric, interpretable, yet flexible Bayesian two-group model and provide
an estimate of lfdr naturally constrained in [0, 1]. Following the same rationale, we also propose
a nonparametric alternative. By choosing a threshold on the posterior probability of inclusion
in the alternative scenario (1 − lfdr) that ensures a Bayesian FDR bounded above by a user-
defined constant α (Newton et al., 2004; Do et al., 2005), a critical region [z1, z2] is derived,
outside of which a z-score is labeled as “relevant”. To conduct posterior inference, we propose
a collapsed Gibbs sampler, and compare our methodology in simulated data in four different
scenarios against established alternatives.
The article proceeds as follows: in Section 2 we introduce the NLDs as members of the weighted
distributions family and develop the modeling framework.
Section 3 discusses posterior inference building the required algorithm, whilst Section 4 contains
a simulation study and the real-data applications on three freely available biostatistical datasets:
a microarray experiment, a microbiome abundance table, and a grouped proteomics data frame.
Section 5 discusses and concludes.

4.2 Non-local Likelihood

4.2.1 Weighted densities and Non-local Distributions

A density πNL (x) is a NLD with respect to the sample space partition {X0,X1} if, for some
ε, ζ > 0,

πNL(x) < ε for all x ∈ X0 : inf
x∈X0

|x− x0| < ζ, (4.1)

therefore attributing low density to the sample subspace corresponding to the null scenario
(Johnson and Rossell, 2010).A density that does not satisfy (4.1) is referred to as local density.
Consider an univariate random variable X with density function π(x;λ) parameterized by some
λ. A MOM distribution (Johnson and Rossell, 2010) has density

πMOM (x, λ, x0, k) ∝ (x− x0)2kπ(x;λ), (4.2)

a weighted version of π(x;λ) (Consonni et al., 2012; Rossell and Telesca, 2017). It is evident
that the MOM is an NLD, where a quadratic weight constrains the density to be close to zero
in a neighborhood of x0 which we name the origin.
In the same way, starting from a generic density and a suitable weight function w, we can define
a family of weighted distributions:

Definition 2 (Weighted Density). Consider a random variable X, with support X and (proper)
probability density function π (x; ξ). For a non-negative function w (x; ξ), with Eπ [w (x; ξ)] <∞,
the corresponding weighted density is

πW (x; ξ, λ) = w(x; ξ)∫
w(x; ξ)π(x;λ)dxπ(x;λ) = w(x; ξ)

Eπ(x;λ) [w(x; ξ)]π(x;λ). (4.3)
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Most NLDs in the literature can be viewed as weighted densities characterized by specific weight
functions. For example, if w(x;x0, k) = (x− x0)2k we obtain the MOM distribution, while if
we set w(x;x0, φ, τ) = exp

(√
2− τφ

(x−x0)2

)
we recover the eMOM (Rossell et al., 2013). More

generally, following Rossell and Telesca (2017) we can obtain a non-local Distribution around
x0 imposing that w (x; ξ)→ 0 as x→ x0, regardless the form of π(x;λ).
The family of weighted distributions defined in (4.3) is very general and encompasses many
known statistical distributions besides the non-local ones. For instance, the choice w(x; ξ) =
I{x∈[a,b]} or the sum of indicator functions on disjoints sets recovers all the truncated distri-
butions; using a Gaussian c.d.f. as weight for a Gaussian density results in a Skew Normal
distribution (Capitanio, 2011; O’Hagan and Leonard, 1976); multivariate repulsive priors of
Petralia et al. (2012) can also be shown to be in this family.
Furthermore, the broad class of weighted distributions can also be linked to regularized methods.
Writing the log-posterior of the model highlights how the prior can be seen again as a penalty
term: log π (θ|x) ∝ logL (x|θ) + log π (θ). Adopting a weighted density πW (θ) adds an extra
term in the log-posterior, introducing extra flexibility in the way the shrinkage is performed:
log π (θ|x) ∝ logL (x|θ) + log π (θ) + logw(θ; ξ). Then specifying an observations-dependent or
group-dependent weight function would be an interesting way to improve penalization methods,
achieving a combination between local and global shrinkage, in the spirit of Carvalho et al.
(2009). We leave this open issue for future research and, for the rest of the paper, we focus on
non-local distributions, that can be seen as a particular subset of the weighted density family,
and their use for likelihood specification.

4.2.2 Non-local two-group Model

In a multiple hypotheses testing framework, let us denote the set of N hypotheses with H =(
H(1), . . . ,H(N)

)
. Often, we reduce the evaluation of each hypothesis H(i), i = 1, . . . , N , to a

corresponding test statistic zi, sometimes opportunely transformed in a way that

H
(i)
0 : zi ∼ f0 vs H

(i)
1 : zi ∼ f1. (4.4)

where f0 and f1 are referred as the null distribution ad the alternative distribution, respectively.
Assuming the exchangeability of the test statistics, the two-group model rephrases (4.4) into the
following mixture:

zi|ρ, f0, f1
iid∼ f = (1− ρ)f0 + ρf1 (4.5)

where ρ ∈ (0, 1) is the mixture proportion. Theoretically, if all the common Normal sampling
assumptions are met, the distribution f0 should coincide with a N(0, 1) under the null scenario.
However, a theoretical null density φ0(z; 0, 1) = 1√

2πe
−x

2
2 could be too restrictive in practice,

because of failed model assumptions, unobserved covariates, correlation of the measurements
across subjects and within the same subject (Efron, 2007). Thus, we estimate an empirical
null distribution, which should be “close” to a Gaussian but with estimated mean and variance.
From now on, to ease the notation, we will drop the z variable when referring to the Normal
density: φ(z;µ, σ2) = φ(µ, σ2).
We model f0 as a Normal distribution φ0

(
µ0, σ

2
0
)
, with Normal-Inverse Gamma prior concen-

trated around (0, 1) for
(
µ0, σ

2
0
)
. In contrast, we model f1 with a non-local distribution of the

form πW (z;λ) = w(z; ξ)π (z;λ), employing a weighted density properly chosen to induce null
mass in the origin to ensure separation from f0. For the cases under study, we noticed that par-
simonious models are sufficient to ensure the desired amount of flexibility. To balance flexibility
and tractability, we then adopt π (z;λ) = (1− α)φ1

(
z;µ1, σ

2
1
)

+ αφ2
(
z;µ2, σ

2
2
)
, with α ∈ (0, 1)

to be a mixture of two different Normals, in order to account for asymmetries in the tails of
f . But in principle, nothing prevents from resorting to more flexible priors if suggested by the
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application, for instance with π (z;λ) modeled by Dirichlet Process Mixture Model (Escobar
and West, 1995; Antoniak, 1974), since whichever distribution we choose, the weight will ensure
separation in a neighborhood of the origin as long as w → 0 if z → 0.

Let z = (z1, . . . , zN ) be a collection of test statistics. For exchangeable data, the likelihood can
be written as L

(
z|θ̃

)
=
∏N
i=1 L

(
zi|θ̃

)
, where

L
(
zi|θ̃

)
= (1− ρ)φ0 + ρ

[
w(z; ξ)
K̃(θ̃1)

[(1− α)φ1 + αφ2]
]

︸ ︷︷ ︸
πW

(4.6)

where θ̃ =
(
ρ, α, {µj , σ2

j }2j=0, ξ
)

is the vector that collects all the parameters of the model,

θ̃1 =
(
α, {µj , σ2

j }2j=1, ξ
)
is the subvector that contains all the parameters that pertain to the

alternative distribution, and K is the normalizing constant of the latter, given by

K̃ = K̃(ξ, α, µ1, µ2, σ
2
1, σ

2
2) =

∫
R
w(z; ξ) [(1− α)φ1 + αφ2] dz.

The proportion parameters ρ and α belong to (0, 1). To proceed in a fully Bayesian setting,
we need to provide prior distributions for all the parameters contained in θ̃. We introduce,
for inference and computational advantages, the following latent variables: Λ = (λ1, . . . , λN )
and Γ = (γ1, . . . , γN ), where each λi is binary and γi ∈ {−1, 0, 1}. For all i = 1, . . . , N ,
these variables indicate from which model the observation is extracted namely: from φ0 when
(λi = 0, γi = −1), from φ1 when (λi = 1, γi = 0) or from φ2 when (λi = 1, γi = 1). The
remaining configurations are assumed to have null probability. Consequently we redefine θ̃ and
θ̃1 as θ =

(
{µj , σ2

j }2j=0, ξ,Γ,Λ
)
and θ1 =

(
{µj , σ2

j }2j=1, ξ,Γ
)
, respectively. The likelihood can

be rewritten as

L (zi|θ) = (1− λi)φ0 + λi

[
w(z; ξ)
Kγi(θ1) [φ1δ0 (γi) + φ2δ1 (γi)]

]
, (4.7)

where δx(y) is the usual Dirac delta, non-null and equal to one only when y = x. We call the
distribution stated in Equation (4.7) non-local likelihood (NoLLik). Thanks to the introduction
of the latent variables γi, we are able to simplify the expression of the normalizing constant as
Kγi(ξ, µj , σ2

j ) = Eφ(µj ,σ2
j ) [w(z; ξ)], where j = 1 if γi = 0 and j = 2 if γi = 1. The model is

formulated as follows:

zi|θ
i.i.d∼ NoLLik

(
·|λi, γi, {µj , σ2

j }2j=0, ξ
)

π (γi|λi, α) i.i.d= δ−1 (·) δ0 (λi) + δ0 (·) δ1 (λi) (1− α) + δ1 (·) δ1 (λi)α;

λi|ρ
i.i.d∼ Bern(ρ);(

µj , σ
2
j

)
∼ NIG (mj , κj , aj , bj) Iµj∈Mj , j = 0, 1, 2

ρ ∼ Beta(aρ, bρ), α ∼ Beta(aα, bα), ξ ∼ Ξ

(4.8)

where M0 = R, M1 = R−, M2 = R+ and Ξ is the law that describes the distribution of the
parameters in the weight function. The indicator functions over {Mj}2j=0 for µj separate the
location parameters of the mixture of Normals in f1: one component on the negative semi-axis,
one component on the positive one, avoiding identifiability problems.
Let us underline the hierarchical dependence among the latent indicators Γ and Λ. According
to the data generating mechanism, the observation i is assigned either to the null (λi = 0) or to
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the alternative distribution (λi = 1). If it is assigned to the null, the second indicator loses its
meaning, so we set γi = −1. On the other hand, if λi = 1, then observation i con be allocated
to the positive (γi = 1) or to the negative (γi = 0) component of the mixture. Figure 4.1 helps
visualize this scheme, reporting the a priori joint probabilities of each couple of values.

λi

γi

0

1

0
0

1− ρ

φ0

-1

0
γi

ρα

φ2

1

ρ(1− α)

φ1

0

0

-1

1

Figure 4.1: Visualization of the dependence between the latent variables. The
rectangular leaves of the tree report the variables of the model. The bottom line of
rectangular leaves contains the r.v.s representing probabilities: connected to them
we find circular leaves, containing the corresponding densities for each scenario.

A Bayesian Nonparametric Alternative

The model in eq. (4.8) is efficient and parsimonious. However, one could argue that the alter-
native distribution a priori should be unknown and thus estimated in a more flexible way. We
can employ a weighted Dirichlet Process Mixture Model (DPMM) for the distribution of f1.
To build the model we first consider a classical DP prior and then apply our weight function,
properly normalized:

f1 = w(z; ξ)
K̃(θ̃1)

∫
φ(ϑ)P (dϑ), P ∼ DP (a,G)

where ϑ =
(
µ, σ2) and DP is the Dirichlet Process with concentration parameter a and base

measure G (Ferguson, 1973). Adopting the DP Stick Breaking representation of Sethuraman
(1994), we can extend the likelihood in (4.6) writing

L
(
zi|θ̃

)
= (1− ρ)φ0 + ρ

w(z; ξ)
K̃(θ̃1)

+∞∑
j=1

πjφj

 (4.9)

where θ̃ =
(
ρ,π = {πj}j≥1, ϑj = {µj , σ2

j }
+∞
j=0, ξ

)
, θ̃1 contains only the parameters relative to f1,

π ∼ SB(a), meaning that πj = uj
∏j−1
l=1 (1 − ul) with ul ∼ Beta(1, a) for l ≤ J , and ϑj ∼ G.

The normalizing constant can be rewritten as

K̃ =
∫
R
w(z; ξ)

+∞∑
j=1

πjφjdz =
+∞∑
j=1

πj

∫
R
w(z; ξ)φjdz =

+∞∑
j=1

πjEφj [w(z, ξ)] .

applying the Dominated Convergence Theorem for series of probability densities, assuming
boundedness of the weight function.
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We remark that the model still consists of two nested mixtures: one between f0 and f1, the
other one defining f1. Again we introduce latent allocation variables to ease the computational
aspects of the model. The only difference with eq. (4.7) is the support of the variables γi, that
we opportunely change in γi ∈ {0, 1, 2, . . .}, being zero whenever λi = 0. Then the likelihood
becomes

L (zi|θ) = (1− λi)φ0 + λi

 w(z; ξ)
Kγi(θ1)

+∞∑
j=1

φjδj(γi)

 (4.10)

or, shortly, L (zi|θ) = (1− λi)φ0 + λi
[
w(zi;ξ)
Kγi (θ1)φγj

]
. We name this density BNP-Nollik. The

formulation in (4.10) allows us to rephrase the normalizing constant K in simple terms. In fact

K̃γi(θ1) =
∫
w(z; ξ)

+∞∑
j=1

φjδj(γi)dz = (θ1) =
∫
w(z; ξ)φjdz

letting us integrate one mixture component at a time, greatly simplifying the posterior simula-
tion. Model eq. (4.8) becomes

zi|θ
i.i.d∼ BNP-NoLLik

(
·|λi, γi, {µj , σ2

j }2j=0, ξ
)
,

π (γi|λi, α) i.i.d= δ0 (·) δ0 (λi) + δ1 (λi)

∑
j≥1

πjδj(·)

 ,
λi|ρ

i.i.d∼ Bern(ρ), ρ ∼ Beta(aρ, bρ), π ∼ SB(a), ξ ∼ Ξ(
µ0, σ

2
0

)
∼ NIG (m0, κ0, a0, b0) ,

(
µj , σ

2
j

)
∼ G = NIG (mG, κG, aG, bG) ,

(4.11)

where mG, κG, aG, bG denote the hyperparameters of the base measure.

Extensions to a covariate-based MHT framework can be achieved without increasing the com-
plexity of the model, introducing Λ dependent on some covariatesX = (X1, . . . , Xp). Specifying
for every i:

λi ∼ Bern (pi) , pi = g(Xi,η), (4.12)

where Xi = (Xi1, . . . , Xip) is the vector of covariate values for individual i. This formulation
has two main advantages. First, the tractability of the MCMC is not altered, being Λ separated
from the other parameters in the hierarchical structure. Second, with this formulation, the
covariates impact directly the parameters that drive the allocation to the two latent classes.
The function g can be assumed to be a Gaussian process accordingly constrained (Riihimäki
and Vehtari, 2010; Tolvanen, 2014) or, more commonly, a link function as the Logistic or the
Probit (Normal c.d.f., denoted with Φ(x)). The latter case is particularly appealing, since it has
been recently proven in Durante (2019) that for Probit regression g = Φ (X ′iη), if we assume
Gaussian distribution for every component of η, the posterior has a closed form and belongs to
the Unified Skew-Normal (SUN) family.

4.2.3 On the choice of the weight function

Quite generally, to impose non-locality around the origin, we only need: (i) w(0; ξ) = 0; (ii)
w(z, ξ) non-decreasing for z > 0 and non-increasing for z < 0; (iii) weight that shrinks the
density towards zero in its neighborhood, without over-inflating the density far away from zero:
weight function whose growing rate to infinity is higher than the decreasing rate to zero of
the local distribution should be avoided; (iv) w bounded by a constant K, even if not strictly
necessary. Without loss of generality, we assume K = 1 (the difference will be embodied in the
normalizing constant K); (v) w(z; ξ) continuous, to avoid discontinuity points in the resulting
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likelihood; (vi) w symmetric w.r.t. 0, in the case we have no a priori information, avoiding to
favor deviations of one direction over the other. We call a weight function satisfying properties
(i)-(v) a smooth weight function, and smooth symmetric if (vi) is also satisfied.
Following the above requirements, we will consider and suggest smooth symmetric weight func-
tions, bounded between [0, 1]. Two functions appear particularly well behaved, and we will
compare their performance in the simulation study below:

w1(z; ξ, k) = 1− exp
[
−
(
z

ξ

)2k
]
, w2(z; ξ, k) = exp

[
−
(
z

ξ

)−2k
]
. (4.13)

Apparently similar, the two functions behave differently in the way they approach the origin:
w1 has the same behavior of a Gaussian density, whilst w2 mimics an Inverse Gamma. The
latter approaches faster zero, leading to bigger areas of low density for the same value of k and
ξ. Notice that the second weight is exactly the eMOM term, up to a proportionality constant
c = e

√
2 that cancels out with the normalizing constant.

Both ξ and k are parameters useful to tune the amount of separation. As they increase, the
weight function decreases faster towards zero. Examples are reported in Figure 4.2, where
different behaviors corresponding to different values of ξ and k are reported. The first two
panels show the weight function w1 when the values of ξ (I), and k (II) vary between 1 and
4, fixing the other parameter equal to 2. The second two panels show the same for the weight
function w2. We can appreciate the different effects the two parameters induce on the chosen
functions: while ξ (left column) affects the functions globally imposing a milder growth as the
parameter increases, k (right column) instead affects the function only in a neighborhood of the
origin.

Figure 4.2: The panel in the first row report the different behaviours of the
weight function w1 when the value of ξ (I) and k (II) changes, keeping the other
parameter fixed equal to 2. The second row shows the same for the weight function

w2.
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Outside the multiple hypotheses testing framework, a NLD can be employed to model multi-
variate data. Because of their quadratic structure, the weight functions can be readily extended
to the multivariate case, following Johnson and Rossell (2010). Given a d−dimensional vector
z, we can define the quantity

Q(z) = (z − z0)
′
Σ−1 (z − z0)
nξσ2 ,

where Σ is a positive definite matrix and σ2 and ξ are scalars. The latter controls the dispersion
around z0. For example, it is straightforward to extend the weight functions in (4.13) to the
multivariate case:

w1 (z; ξ) =1− exp
[
−Q(z)k

]
, w2 (z; ξ) = exp

[
−Q(z)−k

]
. (4.14)

4.3 Theoretical justifications
In the present section we show that the NLD under the alternative hypotheses improves the
performance of the two-group model, in terms of lower False Discovery Rate (FDR), lower False
Negative Rate (FNR), and lower Type II Error (β), relative to the same model with unweighted
alternative hypotheses. This is always true for a smooth symmetric alternative multiplied by a
symmetric weight function, and we provide guidance and conditions for the more general asym-
metric case.
Consider a generic density - also called local density as opposed to NLD - f1(z) for the al-
ternative distribution, and its weighted counterpart fW1 (z) = w(z; ξ)f1(z)/K, where K =∫∞
−∞w(z; ξ)f1(z)dz and w(z; ξ) is a non-local weight function. Let F1(z) and FW1 (z) the cor-
responding c.d.f.s. The decision process reduces to the specification of an interval A = [z1, z2]
outside which z-scores are flagged as interesting. Without loss of generality, we assume z2 > 0
and z1 < 0. We call A the acceptance region of the decision process.
Recall that FDR(A) = P [H0|z /∈ A], FNR(A) = P [H1|z ∈ A] and β(A) = P [z ∈ A|H1]. Define
the following differences: ∆FDR = FDR(A)− FDRW (A), ∆FNR = FNR(A)− FNRW (A),
and ∆β = β(A) − βW (A), i.e. the discrepancies between the aforementioned indexes in their
unweighted and weighted versions. In the Appendix, we show that all these differences simplify
to the sum of two discrepancies among the alternative c.d.f. F1 and the weighted alternative
c.d.f. FW1 :

FDR(A)− FDRW (A) ≥ 0
⇐⇒ FNR(A)− FNRW (A) ≥ 0
⇐⇒ β(A)− βW (A) ≥ 0
⇐⇒ F1(z2)− FW1 (z2) + FW1 (z1)− F1(z1) ≥ 0. (4.15)

Then a sufficient condition for Equation (4.15) to hold is that the weighted c.d.f. has to be lower
than its unweighted counterpart in z2, and higher in z1.

Proposition 3. Given a smooth symmetric weight function w, a symmetric density f1, an
acceptance region A, and a null hypothesis H0 : z ∼ f0, the test HW

1 : z ∼ fW1 has higher power,
lower FDR and lower FNR than the test H1 : z ∼ f1.

Proof. Consider a generic random variable Z, characterized by a local density f(z) and its
weighted, non-local version ZW , with fW (z). Let ZT = |Z| and ZTW = |ZW | denote the trun-
cations of the r.v.s on the positive semi-axis. Thanks to the symmetry of the distributions, we
can state that fT (z) = 2f(z)I[0,+∞) and let F T (z) = 2F (z) − 1 for z > 0 be its c.d.f. The
same can be said about fTW (z). Applying Lemma 2 in Dharmadhikari and Joag-Dev (1983) –
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reported in the Appendix – we want to conclude that ZTW stochastically dominates (I order) ZT ,
i.e. ∀z [0,+∞), meaning that F T (z) ≥ F TW (z) and F T (z) > F TW (z) for at least one z.
To verify condition (a) of the Lemma, we need to study the sign of ∆(z) = fT (z) − fTW (z) =
(1 − w(z; ξ)/K)fT (z). The function g(z) = 1 − w(z, ξ)/K is monotone decreasing, given the
monotonicity of w(z, ξ) on the positive semi-axis. Moreover, K ≤ K. Thus, g(z) is 1 in zero
and for z → +∞ it tends to 1−K/K ≤ 0 and admits an unique root z∗. The monotonicity of
g and the positivity of fT imply that ∆(z) = g(z) · fT (z) has only one zero, occurring in z∗ as
well. Since limz→z∗+ ∆(z) = 0− and limz→z∗−∆(z) = 0+, we can conclude that f crosses fT
just once and from above, so the condition is satisfied.
This in turn implies that, ∀z ≥ 0, F T (z) ≥ F TW (z) ⇐⇒ 2F (z)− 1 ≥ 2FW (z)− 1 ⇐⇒ F (z) ≥
FW (z), showing that, on the positive semi-axis, the c.d.f. of Z is always greater than its weighted
counterpart. Exploiting the symmetry of the densities of the two random variables Z and ZW ,
the converse holds on the negative semi-axis, implying (4.15).

Note that for this proof to hold, the conditions (iv) and (v) stated in Section 4.2.3 are not
strictly necessary, and can be dropped as long as the resulting weighted density is proper.
When the alternative density is regular but asymmetric, we need to introduce further assump-
tions. The following proposition provides guidance in this case.

Proposition 4. Consider a symmetric weight function, monotone on both the semi-axes and
bounded by a positive constant K. Denote with g(z) = 1−w(z; ξ)/K and with ±z∗ the solutions
of the equation g(z) = 0. Moreover, let

H(z) = F1(z)− FW1 (z) =
∫ z

−∞
g(x)f1(x)dx

and call ẑ the unique point where H(ẑ) = 0. Then (4.15) holds if A is such that such that
z1 < ẑ < z2. A stronger condition for (4.15) to hold is z1 < −z∗ and z∗ < z2.

Proof. We have that lim
x→±∞

w(x; ξ) = K. Let ±z∗ = ± sup{z ≥ 0 : g(z) > 0}. If w is monotone
on both the semi-axes, then ±z∗ = ±w−1 (K). Now consider the function H(z) = F1(z) −
FW1 (z) =

∫ z
−∞ g(x)f1(x)dx. In general, lim

x→−∞
H(z) = 0− and lim

x→+∞
H(z) = 0+. We can study

the sign of the derivative H ′(z) = g(z)f1(z): H starts negative, decreases until its point of global
minimum −z∗, then increases until its point of global maximum z∗ and finally decreases towards
zero from above as z → +∞. Let us call ẑ the unique point where H (ẑ) = 0. It must be that
ẑ ∈ [−z∗, z∗]. Since (4.15) can be reprhased as H(z2) −H(z1), the previous conditions ensure
that this difference is positive.

For (4.15) to hold, we can assess, a posteriori, if the obtained A satisfies the following condition:
z1 < ẑ < z2. Or, if more caution is needed, we can tune the weight function so that z1 < −z∗
and z∗ < z2, an even more conservative requirement .
We remark that these guidelines are extremely general, holding every time a two-tailed test is
adopted: given a fixed acceptance region, the NLD performs better.

In Bayesian MHT, we recover A thresholding the a posteriori probability of inclusion in the al-
ternative distribution , which, in the two-group model, is equivalent to thresholding the posterior
lfdr, defined as

lfdr(z) = (1− ρ)f0(z)
f(z) = (1− ρ)f0(z)

(1− ρ)f0(z) + ρf1(z) . (4.16)
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In detail, A is defined as

A =
{
z ∈ R : lfdr(z) = (1− ρ)f0(z)

f(z) ≤ ν∗
}

=
{
z ∈ R : P1(z) = ρf1(z)

f(z) ≥ ν
}
, (4.17)

where ν∗ and ν are two suitable thresholds on (0, 1) such that ν = 1−ν∗ and P1(z) is the (local)
posterior probability of inclusion in the alternative scenario when the value z is observed.

Example. Consider a generic alternative density f1 with c.d.f. F1 and the weight function
w(z; ξ) = 1R, where R = (−∞,−δ) ∪ (δ,+∞). This gives us K = F1(−δ) + 1 − F1(δ) and
z∗ = ±δ. We can derive a close expression for H(z):

H(z) = F1(z)− 1
K

[
1z<−δF1(z) + 1z∈(−δ,δ)F1(−δ) + 1z>δ (F1(z)− F1(δ) + F1(−δ))

]
.

Knowing that the only root ẑ can only be in (−δ, δ), we can compute

ẑ = F−1
1

(
F1(−δ)
K

)
.

In this particular example, applying the criterion showed in (4.17) we conclude that ∀z ∈ R we
have that PW1 = 0. Thus, we are sure that, for ν > 0, A can be either (−δ, δ) or wider. This
means that condition (4.15) is respected and that FNR, FDR and β are lower in this weighted
case.

4.4 Posterior Computation
The posterior distribution π (θ|z) for model (4.8) is not analytically tractable and we need to
rely on MCMC sampling techniques. To this extent, we propose a Gibbs sampler (Gelfand
et al., 1990). The details of the full conditional distributions are reported in section 4.4.2. For
the parametric model, the full conditional distributions for ξ and

(
µj , σ

2
j

)
j = 1, 2 require a

Metropolis step (Metropolis et al., 1953). In particular, we employ a random walk Metropolis
algorithm (RWM), with Gaussian proposal distribution, for the means and the log-variances.
We also adopt an adaptive strategy, to better tune the variance of the proposal during the run of
the algorithm, as suggested in Roberts and Rosenthal (2007). Starting from covariance matrices
Σ(µ1,σ2

1),Σ(µ2,σ2
2) and the scalar σ2

ξ , every nbatch MCMC samples the values are updated in the
following way: at the t-th iteration if the acceptance rate in the last examined batch is lower
than the optimal rate of 0.44, the logarithm of the standard deviation is lowered by the quantity
δ(t) = min

(
0.01, t−1/2

)
, otherwise it is increased of the same quantity. Notice that the adaptive

term is vanishing, so the convergence to the desired target distribution is preserved (Roberts
and Rosenthal, 2007; Roberts and Rosenthal, 2009).

4.4.1 Inference on f0 and f1

The fully Bayesian specification of the model allows the estimation of the parameters and their
functions, along with their uncertainty quantification. In particular, we are interested in P1,
the a posteriori probability that an observation is marked as relevant, i.e. generated from f1.
A simple way to estimate P1 exploits the presence of latent variables in our MCMC scheme
and permits the computation of an estimate for each of the observations, namely P̂1i. We only
need to evaluate the ergodic mean P̂1i =

∑T
t=1 λit/T , where T is the number of iterations and

λit is the value of the chain for the parameter λi at the t-th MCMC sweep. Another solution
involves the local FDR (lfdr). Once f0 and f1 are given after imputing the posterior means of
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the parameters, we can compute the lfdr. It is easy to show that, applying Bayes theorem to
eq. (4.5), it holds that 1−P1(z) = lfdr(z). This means that we are able to estimate the lfdr as
a function of the z-score and, more importantly, we can effortlessly derive P1(z), the probability
of the alternative hypothesis, also as a function of z. Moreover, we underline that the adoption
of a non-local likelihood makes the function in (1.22) assume all the values in [0, 1) reflecting the
rationale that if z = 0 is observed, we want to, almost surely, mark it as “irrelevant”. Do et al.
(2005) argue that this second estimate is preferable since it is the Rao-Blackwellized version
(where the λi’s are integrating out) of the previous one (Casella and Robert, 1996).

The next step is to classify the observations according to their distribution of origin. We can
accomplish this task thresholding the point-wise estimates for Pi1. Thresholding the function
P1(z) we are able to derive the corresponding critical values (z1, z2) on the z-scores domain. We
choose a threshold that guarantees to control, at a given level α, the Bayesian FDR (BFDR,
Newton et al. 2004), defined, as a function of the threshold ν, as

BFDR = E(FDR|Y) =
∑N
i=1 (1− P (zi)) I{P (zi)>ν}∑N

i=1 I{P (zi)>ν}
. (4.18)

Given a specified level of α, we obtain the threshold ν∗ solving the inequality BDFR(ν) < α for
ν. Thresholding P1(z) is equivalent to thresholding the lfdr, a procedure that mimics the Bayes
oracle rule (Efron, 2008; Muralidharan, 2012; Sun and Cai, 2007; Martin and Tokdar, 2012).

4.4.2 Gibbs Sampler

Parametric model specification

In what follows, we detail the steps of the Gibbs sampler for the Nollik model in (4.8). The
algorithm proceeds iteratively sampling from the following full conditionals:

1. The full conditional of ρ is Beta
(
aρ +

∑N
i=1 λi, bρ +N −

∑N
i=1 λi

)
, due to conjugacy.

2. Given their dependence, we sample together (Λ,Γ) from their joint full conditional, given
by:

π ((Λ,Γ) | · · · ) =
N∏
i=1

Bern(λi; ρ) · π (γi|λi, α)×(
(1− λi)φ0 + λi

[
w(z; ξ)
Kγi(θ1) [φ1δ0 (γi) + φ2δ1 (γi)]

])
We can update each component of (Λ,Γ) individually, rewriting:

π ((λi, γi) | · · · ) ∝ ρλi(1− ρ)1−λiπ (γi|λi, α) ·

φ1−λi
0 ·

[
w(z; ξ)
Kγi(θ1)

[
φ
δ0(γi)
1 · φδ1(γi)

2

]]λi .
In particular, the only scenarios with non-null probabilities are:

π (λi = 0, γi = −1| · · · ) ∝ (1− ρ)φ0

π (λi = 1, γi = 0| · · · ) ∝ (1− α) · ρ
[
w(z; ξ)
K0(θ1)φ1

]
π (λi = 1, γi = 1| · · · ) ∝ α · ρ

[
w(z; ξ)
K1(θ1)φ2

]
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3. Let n0,1 =
∑N
i=1 I{γi 6=−1}. The full conditional of α is

Beta
(
aα +

∑N
i=1 γi, bα + n0,1 −

∑N
i=1 γi

)
, due to conjugacy.

4. Let n0 =
∑N
i=1 Iλi=0. Let us define z̄0 =

∑N

i=1 zi·Iλi=0
n0

and SQ2
0 =

∑N
i=1 (zi − z̄0)2 Iλi=0.

The full conditional for
(
µ0, σ

2
0
)
, is given by

π
((
µ0, σ

2
0

)
| · · ·

)
∼ NIG(m∗0, κ∗0, a∗0, b∗0)

where m∗0 = κ0m+n0z̄0
κ+n0

, κ∗ = κ0 + n0, a∗0 = a0 + 1
2n0

and b∗0 = b0 + 1
2SQ

2
0 + n0κ0

n0+κ0
(z̄0−m0)2

2 .

5. Let n1j =
∑N
i=1 Iλi=1 · Iγi=j−1.

Define z̄1j =
∑N

i=1 zi·Iλi=1·Iγi=j−1
n1j

and SQ2
1j =

∑N
i=1 (zi − z̄1j)2 Iλi=1 · Iγi=j−1

The full conditional for
(
µj , σ

2
j

)
, for j = 1, 2 is given by

π
((
µj , σ

2
j

)
| · · ·

)
∝ NIG(mj , κj , aj , bj) · I(−1)jµj>0 ·

∏
λi=1,γi=j−1

φj
Ki(θ1)

∝ NIG(m∗j , κ∗j , a∗j , b∗j ) · I{(−1)jµj>0} ·
1

Kj−1(θ1)n1j

where m∗j = κjm+n1j z̄1j
κj+n1j

, κ∗j = κj + n1j , a∗j = aj + 1
2n1j

and b∗j = bj + 1
2SQ

2
1j + n1jκj

n1j+κj
(z̄1j−mj)2

2 .

6. The full conditional of ξ is given by:

π (ξ| · · · ) ∝ π (ξ)
∏
λi=1

w(zi; ξ)
Kγi(θ1) =

π (ξ) ·
∏
λi=1w(zi; ξ)

K0(θ1)n11 · K1(θ1)n12
.

Notice that Steps 2 and 5 are embarrassingly parallelizable. We observed that, in some real ap-
plications, this Gibbs sampler shows poor mixing, especially when the tails of the distribution f
are light. To improve the mixing and, at the same time, to provide an alternative for practition-
ers, we also implement Nollik with Stan, the probabilistic programming language which resorts
on a no-U-turn sampler (NUTS) Hamiltonian Monte Carlo algorithm (Hoffman and Gelman,
2014; Carpenter et al., 2017).

Nonparametric model specification

To implement the sampling algorithm for the Bayesian nonparametric version of Nollik model,
we use the truncated representation of Ishwaran and James (2001), where the infinite sum in
(4.6) is substituted with a big enough number of mixture components J . The collapsed Gibbs
sampler we employ mimics the finite-dimensional case with few modifications. Recall that now
γi ∈ {0, 1, 2, . . .}. Steps 1 and 4 are unchanged, whilst the others become:

2. The non-null scenarios for (Λ,Γ) are

π (λi = 0, γi = 0) ∝ (1− ρ)φ0,

π (λi = 1, γi = j) ∝ ρπj

[
w(z; ξ)
Kγi

φ(µγi , σ2
γi)
]
for j ∈ {1, 2, . . . , J}.
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3. Let n1j =
∑N
i=1 Iλi=1Iγi=j . The Stick-Breaking weights are constructed with the auxiliary

variables uj , which in turn have full conditionals of the form

uj ∼ Beta
(
1 + n1j , a+

∑
l<j n1l

)
for j ∈ {1, 2, . . . , J}.

5. With reference to step 5. in the previous algorithm, now we have:

π
((
µj , σ

2
j

)
| · · ·

)
∝ NIG(m∗j , κ∗j , a∗j , b∗j ) ·

1
Kγi(θ1)n1j

.

6. Lastly,

π (ξ| · · · ) ∝
π (ξ) ·

∏
λi=1w(zi; ξ)

K1(θ1)n11 · · · KJ(θ1)n1J
.

7. We can place a conjugate Gamma prior, Gamma(αa, βa), on the concentration parameter
a, obtaining a| · · · ∼ Gamma

(
αa + (J − 1), βa +

∑J−1
j=1 log(1− uj)

)
.

The code of the Gibbs samplers and the Stan model are available at the this page.
The proposed algorithms are efficient and able to handle large datasets. To provide evidence
for this claim, Table 4.1 reports the mean and the standard deviation of the running times
(in seconds) that the model takes to complete 1,000 iterations for different sample sizes on an
i7-5500U – 2.40GHz laptop, computed over 20 different runs. To compare with, we report the
running times in seconds of the BNP version of the model, truncated ad J = 20. The parametric
model is from 6 to 10 times faster than the BNP version.

n = 100 n = 500 n = 1, 000 n = 5, 000 n = 10, 000 n = 50, 000

Nollik 1.038 1.4444 1.8858 5.9271 10.2036 45.8604
(0.088) (0.2031) (0.1942) (0.7047) (0.8043) (1.8636)

BNP-Nollik 6.5350 10.4658 15.2201 50.8832 96.2305 451.3572
(0.1187) (0.1242) (0.1542) (0.2324) (0.5391) (2.8465)

Table 4.1: Elapsed time in seconds of the Nollik parametric and nonparametric
models using w1 as weight function to obtain 1,000 iterations for different values

of the sample size.

4.5 Applications

4.5.1 Simulated Data

We test the model on 50 datasets generated under 4 scenarios. Each dataset contains 1,000
observations: 90% of the sample is drawn from f0, the remaining 10% from f1. The four
scenarios distributions are:

• Scenario S1: zi ∼ 0.90N (0, 1.5) + 0.05N (5, 1) + 0.05N (−5, 1).

• Scenario S2: zi ∼ 0.90N (0, 1) + 0.05N (3, 1) + 0.05N (−5, 1.5).

• Scenario S3: each zi ∼ N (γi, 1), where γi is sampled from the mixture

0.90δ0 + 0.1N (−3, 1) .

This scenario was proposed in Efron (2008), equations (6.1) and (7.1).
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• Scenario S4: zi ∼ N (γi, 1), where γi is sampled from the mixture:

0.90δ0 + 0.10
(
0.5U[−4,−2] + 0.5U[2,4]

)
.

This scenario is similar to the one proposed in Muralidharan (2012).

The hyperprior parameters’ specification is described in what follows.
Parametric case. Regarding ρ and α: on one hand, we first set aρ = 1 and bρ = 9 to follow
the rationale that only a small proportion of the observations is of interest. On the other hand,
we have no a priori information about the inner mixture proportions, so we set aα = bα = 1.
For simplicity, we fix k = 2, instead of letting it be random since the fourth power 2k provides a
good reduction of the weight in a reasonably large neighborhood of the origin. We then assume
ξ to be Inverse gamma with hyperparameters aξ = 20 and bξ = 57. This choice, a priori, ensures
E [ξ] = 3, while the variance is reasonably low and equal to 0.5: in this manner, we enforce
a decent level of “repulsion” from the origin. Regarding

(
µi, σ

2
i

)
, for i = 1, 2, we set κi = 1,

ai = 2, bi = 5. This implies that E
[
σ2
i

]
≈ 1.67 and V ar

[
σ2
i

]
= 6.25. In this way we are

fairly uninformative while keeping the values of the variances on reasonable levels helping the
stability of the simulations. Moreover, we adopt m1 = 3 and m2 = −3. For the Empirical Null
distribution, we need to be informative: we set a0 = b0 = 10 to induce a density for σ2

0 peaked
around 1. We finally set κ0 = 100 and m0 = 0. The initial covariance matrices of the jumps or
the random walk Metropolis steps are all fixed equal to Σ(µ1,σ2

1) = Σ(µ2,σ2
2) = diag(0.5, 0.5) and

σ2
c = 0.5. nbatch is fixed to 50 iterations.
Nonparametric case. We truncate the SB process at J = 30, we fix the concentration param-
eter to 1 and as base measure for DP we choose NIG(0, 100, 3, 1). All the other specifications
are equal to the parametric case.

We ran 50,000 iterations as a burn-in period. We then run the algorithm for 150,000 sweeps and
thin the output every 30 iterations to annihilate the autocorrelation, obtaining a sample of 5,000
MCMC sweeps. Visual inspection of the traceplots reveal good mixing and the convergence of
the chains was tested by visual inspection and with the help of the usual diagnostics (Plummer
et al., 2006). In each scenario, we compute the mean lfdr as a function of the z-score. To
evaluate this function in the nonparametric case, instead of saving all the parameters estimated
during the MCMC iterations, we evaluate the posterior densities f0 and f1 on a grid of points
and then we consider their pointwise mean: for T MCMC sweeps, then

f̂post0 (x) = 1
T

T∑
t=1

φ0(x;µ0,t, σ
2
0,t) f̂post1 (x) = 1

T

T∑
t=1

 J∑
j=1

πjφj(x;µj,t, σ2
j,t)


and we recover all other values by interpolation.

We classify the observations as “interesting” vs “uninteresting” thresholding the posterior prob-
ability of inclusion with a value that controls the BFDR (4.18) at a level of 0.05. We compare
our method, adopting three different weight functions (quadratic (MOM), w1, and w2 as in
(4.13)), with the Mixfdr model (Muralidharan, 2012), the LocFdr model (Efron, 2004) and the
Benjamini-Hochberg (BH) procedure for adjusting p-values (Benajmini and Hochberg, 1995).
For the first two competitors, we threshold the estimated lfdr at 0.20, as suggested in the re-
spective papers. We threshold the BH adjusted p-values at 0.05.
To assess the performance we compute several indexes from the confusion matrix between the
predicted and actual classes. Denoting the number of false positive with FP, of false negative
with FN, etc, we report the model’s Accuracy (ACC), Specificity (SPE), Precision (PRE), and
AUC. Moreover, we compare Matthew’s Correlation Coefficient (MCC) and the F1 score, defined
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as

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, F1 =
( 2

REC −1 + PRE −1

)
,

since more comprehensive measures of the overall binary classification performance. All the
indexes are then synthesized by their mean and standard deviation across the 50 repetitions.
Table 4.1 reports the results. In the same way, we report the average of the posterior means of
the parameters ρ, α and ξ.

Table 4.1: Simulation study. Posterior Probability of Inclusion thresholded for
BFDR=0.05. The locfdr and MixFDR provide estimates for the lfdr, with thresh-
old at 0.2 as suggested in Efron (2007) and Muralidharan (2012). BH adjusted
p-values thresholded at 5%. The table shows the performance of 7 different mod-
els: Nollik with quadratic (MOM), w1 and w2 - as in (4.13) -as weight functions,
the BNP Nollik with w1, the MixFDR of Muralidharan (2012), the LocFDR of
Efron (2007) and the classical BH procedure. The performances have been mea-
sured in terms of Accuracy (ACC), Specificity (SPE), Precision (PRE), and AUC.
Moreover, we compare the Matthew’s Correlation Coefficient (MCC) and the F1
score. The highest MCC and F1 scores among the Nollik models and among the

competitors are highlighted.

Nollik: MOM Nollik: w1 Nollik: w2 BNP-Nollik: w1 MixFDR LocFDR BH

Scenario 1
MCC 0.9327 (0.0168) 0.9348 (0.0161) 0.9359 (0.0184) 0.9367 (0.0173) 0.9163 (0.0266) 0.9281 (0.0224) 0.8846 (0.0228)
F1 0.9392 (0.0152) 0.9411 (0.0145) 0.9421 (0.0166) 0.9428 (0.0157) 0.9219 (0.0256) 0.9340 (0.0211) 0.8925 (0.0221)
SPEC 0.9907 (0.0033) 0.9916 (0.0030) 0.9932 (0.0029) 0.9937 (0.0028) 0.9983 (0.0015) 0.9968 (0.0023) 0.9749 (0.0064)
ACC 0.9876 (0.0032) 0.9880 (0.0030) 0.9884 (0.0033) 0.9886 (0.0031) 0.9854 (0.0045) 0.9873 (0.0039) 0.9761 (0.0055)
PRE 0.9206 (0.0255) 0.9271 (0.0242) 0.9403 (0.0239) 0.9441 (0.0230) 0.9830 (0.0149) 0.9693 (0.0212) 0.8156 (0.0377)
AUC 0.9985 (0.0007) 0.9985 (0.0007) 0.9985 (0.0007) 0.9983 (0.0009) 0.9985 (0.0007) 0.9968 (0.0031) —
ρ̂ 0.1105 (0.0053) 0.1062 (0.0043) 0.0991 (0.0046) 0.1150 (0.0102) — — —
α̂ 0.4993 (0.0239) 0.4991 (0.0207) 0.5013 (0.1900) — — — —
ξ̂ — 3.9882 (0.1810) 3.9346 (0.5068) 3.0076 (0.0386) — — —

Scenario 2
MCC 0.8130 (0.0414) 0.8117 (0.0423) 0.7977 (0.0410) 0.7899 (0.0436) 0.7591 (0.0513) 0.7104 (0.0462) 0.8207 (0.0309)
F1 0.8180 (0.0453) 0.8167 (0.0457) 0.8001 (0.0455) 0.7920 (0.0496) 0.7519 (0.0605) 0.6937 (0.0563) 0.8280 (0.0313)
SPEC 0.9966 (0.0024) 0.9967 (0.0021) 0.9975 (0.0019) 0.9971 (0.0021) 0.9993 (0.0010) 0.9997 (0.0006) 0.9959 (0.0024)
ACC 0.9685 (0.0064) 0.9684 (0.0065) 0.9662 (0.0062) 0.9650 (0.0066) 0.9604 (0.0076) 0.9533 (0.0065) 0.9697 (0.0048)
PRE 0.9600 (0.0247) 0.9605 (0.0225) 0.9695 (0.0215) 0.9650 (0.0234) 0.9911 (0.0126) 0.9959 (0.0088) 0.9530 (0.0260)
AUC 0.9827 (0.0061) 0.9827 (0.0061) 0.9785 (0.0081) 0.9787 (0.0068) 0.9833 (0.0063) 0.9683 (0.0138) —
ρ̂ 0.1019 (0.0087) 0.0926 (0.0075) 0.0849 (0.0069) 0.0869 (0.0096) — — —
α̂ 0.5004 (0.0371) 0.4752 (0.0356) 0.4440 (0.0356) — — — —
ξ̂ — 3.0292 (0.2023) 2.6954 (0.2357) 2.9065 (0.2391) — — —

Scenario 3
MCC 0.7124 (0.0475) 0.7111 (0.0462) 0.7039 (0.0479) 0.6965 (0.0541) 0.6428 (0.0461) 0.6827 (0.0468) 0.6686 (0.0356)
F1 0.7049 (0.0569) 0.7039 (0.0549) 0.6935 (0.0577) 0.6836 (0.0669) 0.6125 (0.0593) 0.6656 (0.0591) 0.6538 (0.0443)
SPEC 0.9972 (0.0020) 0.9972 (0.0019) 0.9977 (0.0017) 0.9979 (0.0017) 0.9994 (0.0009) 0.9984 (0.0016) 0.9974 (0.0018)
ACC 0.9536 (0.0078) 0.9534 (0.0075) 0.9524 (0.0078) 0.9515 (0.0082) 0.9440 (0.0078) 0.9494 (0.0079) 0.9475 (0.0058)
PRE 0.9596 (0.0282) 0.9582 (0.0269) 0.9655 (0.0252) 0.9681 (0.0244) 0.9893 (0.0156) 0.9752 (0.0240) 0.9566 (0.0288)
AUC 0.9503 (0.0154) 0.9466 (0.0159) 0.9337 (0.0163) 0.9401 (0.0159) 0.9535 (0.0180) 0.9059 (0.0250) —
ρ̂ 0.0851 (0.0118) 0.0790 (0.0110) 0.0726 (0.0105) 0.0823 (0.0123) — — —
α̂ 0.0304 (0.0109) 0.0321 (0.0109) 0.0278 (0.0081) — — — —
ξ̂ — 2.6198 (0.2256) 2.3663 (0.1832) 2.3845 (0.1294) — — —

Scenario 4
MCC 0.6641 (0.0585) 0.6538 (0.0559) 0.6314 (0.0599) 0.6149 (0.074) 0.5602 (0.0726) 0.6349 (0.0581) 0.6635 (0.0424)
F1 0.6490 (0.0716) 0.6339 (0.0708) 0.6042 (0.0762) 0.5816 (0.0966) 0.5059 (0.0940) 0.6093 (0.0736) 0.6471 (0.0513)
SPEC 0.9968 (0.0027) 0.9974 (0.0023) 0.9980 (0.0020) 0.9982 (0.0022) 0.9996 (0.0008) 0.9979 (0.0019) 0.9974 (0.0022)
ACC 0.9477 (0.0093) 0.9463 (0.0090) 0.9435 (0.0094) 0.9416 (0.0105) 0.9349 (0.0111) 0.9439 (0.0094) 0.9475 (0.0075)
PRE 0.9476 (0.0383) 0.9570 (0.0336) 0.9643 (0.0333) 0.9686 (0.0343) 0.9905 (0.0172) 0.9622 (0.0326) 0.9555 (0.0347)
AUC 0.9565 (0.0118) 0.9566 (0.0119) 0.9510 (0.0148) 0.9568 (0.0121) 0.9556 (0.0118) 0.9199 (0.0209) —
ρ̂ 0.0960 (0.0145) 0.0816 (0.0118) 0.0705 (0.0106) 0.0801 (0.0126) — — —
α̂ 0.4946 (0.0695) 0.4946 (0.0627) 0.4992 (0.0604) — — — —
ξ̂ — 2.8631 (0.1689) 2.6092 (0.2119) 2.521 (0.110) — — —

The highest MCC and F1 scores among the Nollik models and among the competitors are high-
lighted. All the considered weight functions in the simulated scenarios obtain similar results
that are favorable to our proposal. This is interesting because, even if an unbounded weight
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function as wMOM = x2k is not optimal for density estimation (since it tends to over-inflate
the mass far away from the origin), the posterior probability of inclusion is correctly estimated.
Nollik performs better than its direct competitor, the two-group model locfdr. That being
said, we have to underline that Efron’s method, employing an empirical Bayes methodology re-
quires a very short time for the estimation. Also, Nollik performs better than the MixFDRF when
the performance is assessed with more complete indexes like the MCC and the F1 score. The
only alternative that obtains comparable results with the Nollik models is the BH procedure.
However, the output of our procedure is richer, being able to provide uncertainty estimation for
each observation. Moreover, the BH procedure performs well only when the null distribution
resembles the theoretical one, the Standard Gaussian. Whenever the null distribution departs
from the theoretical case, BH method struggles, as we can see in Scenario 1. The nonparametric
model seems to perform (slightly) worse than the Nollik parametric models. This is due to the
fact that the scenarios in use are suited for the parametric model, while the BNP alternative
is more useful in cases where the tails of the distribution in use are more problematic (multi-
modal/heavy). The posterior mean of α reveals that the model is capable to correctly estimate
the proportion of the inner mixture. The same can be said about ρ, but this was expected since
we placed a slightly informative prior on that parameter. We can also appreciate how ξ̂ varies
to accommodate the differences in the distributions of the data.

4.5.2 Gene Expression Case Studies

We apply our model to three different measurements of gene expressions, using the weight
function w1 (4.13). The runs where we employed the weight function w2 are not reported
since we obtained similar results. We compare the results with the locfdr model and the BH
procedure. We adopt the same hyperparameters already discussed in Section 4.5.1 and collect
a sample of 10,000 MCMC sweeps thinned every 50 iterations, after a burn-in period of 50,000
iterations, if not differently reported. In all the applications, N gene expressions between two
groups are compared: the case group, composed of n1 units, and the control group, composed of
n2 units. In the first example, the statistics are the result of a two-sample t-test t1, . . . , tN and we
map them with an inverse c.d.f. transformation to obtain Normality: zi = Φ−1

(
F Tn1+n2−2(ti)

)
.

In the second case, the statistics come from a series of Wald tests that are asymptotically Normal,
so we do not perform any transformation. In the last example, we again apply the inverse c.d.f.
transform to moderated t-statistics, characterized by a non-integer value of degrees of freedom
(Smyth, 2004).

Alon Microarray Data

A classical example of gene expressions dataset is given by the Alon microarray matrix, which was
collected originally for the study of Alon et al. (1999). We consider the publicly available version
of the dataset contained in the dglars R package. The data consist of gene expression values
of 2,000 microarray genes from 62 patients. Forty patients are diagnosed with colon cancer,
and the remaining twenty-two serve as the control group. These 62 samples from colon-cancer
patients were analyzed with an Affymetrix oligonucleotide Hum6000 array. Two-thousand out
of around 6500 genes were selected based on the confidence in the measured expression levels.
Microarray data are continuous, so for each gene, we compute the corresponding t-statistics to
test the difference of expression among the two-group. We transform the data using the c.d.f.
of a Student T with 60 degrees of freedom. Our model estimates ρ̂ = 0.116 (s.e. 0.024) to be
the proportion of genes flagged as interesting. α̂ = 0.91 (s.e. 0.082) is the estimated proportion
of the over-expressed genes among the flagged ones. The parameter of the weight function is
estimated as ξ̂ = 3.158 (s.e. 0.63).
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The number of selected genes varies between the methods. On one hand, thresholding the
adjusted p-values with the BH procedure at 0.05 gives us 365 flagged genes. On the other
hand, Efron’s lfdr methods (thresholded at 0.20 as suggested) finds no interesting genes. Our
methods, controlling the Bayesian FDR at the level of 0.05 agrees with Efron. If instead we
allow for a Bayesian FDR at the level 0.15, we obtain a threshold on the posterior probability
of inclusion at 0.8092, flagging 87 genes as interesting. They are all over-expressed genes.

Figure 4.1: Alon Dataset. Left panel: Density estimation a posteriori of the
global density f (black), the null density f0 (blue) and the alternative density
f1 (red). Right panel: Histogram of the data with the Posterior Probability of
Inclusion function (1 − locfdr(z)) superimposed, for both Efron’s locfdr (blue)
and Nollik (red). The dashed line represents the threshold controlling for a BFDR

of 5%.

Microbiome Abundance table: Kostic Dataset

Many different models have been developed by bioinformaticians to address the challenges that
a differential expression study can raise in this setting (see, for example, edgeR and baySEQ
(Hardcastle and Kelly, 2010; Robinson and Smyth, 2007)). Recently, Love et al. (2014) propose
Deseq2, a method for differential analysis of count data. In particular, Deseq2 models the count
data, Kij , with negative binomial distribution with mean µij and dispersion αi. The mean is
taken as a quantity proportional to the concentration of cDNA fragments from the gene in the
sample qij , scaled by a normalization factor. Then, a logarithmic link is used to model qij :
log2 qij =

∑
r xjrβir, where xjr are the design matrix elements and βir is the coefficients. In

the simplest case of a comparison between two groups, such as treated and control samples, the
design matrix elements indicate whether a sample j is treated or not, and the GLM fit returns
coefficients indicating the overall expression strength of the gene and the log-2 fold change
between treatment and control. In this framework, it is common to fit the model, collect the
test statistics on the coefficients and apply a Bonferroni correction or the BH procedure to the
derived adjusted p-values. Instead, we propose to fit our model to the estimated test statistics.
The Wald statistics provided as output are known to be asymptotically Normal. For this reason,
we do not employ Efron’s transform.
The kostic dataset is an abundance table with frequency counts of 2505 taxa that appeared in
190 different samples, originally used in Baselga et al. (2012). Out of the 190 samples, 95 are
labeled as Healthy, 90 as Tumoral and 5 are not labeled at all. We first removed the five samples
with missing labels, along with the ones that contain more than 95% zero entrances. Moreover,
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we prune the taxa that were observed less than 50 times in the entire dataset. We remain with
708 taxa and 184 samples (94 vs 90). We then apply the Deseq2 model to this count table,
obtaining a vector of 708 test statistics.
Given the peculiar shape of the tails of the data (see Figure 4.2) we use the BNP version of
our model, with weight function w1. We found that ρ̂ = 0.0276(s.e. 0.0288) is the proportion
of interesting genes, while ξ̂ = 3.001 (s.e. 0.71). The number of genes marked as interesting by
our method with a threshold of 0.68 is 170, Efron’s locfdr found 76 interesting genes while BH
only found 26. This is due to the peaked shape of the null distribution, which is ignored by
BH procedure and that misleads the estimation of Efron’s lfdr, as we can appreciate in the left
panel of Figure 4.2. In fact, the competitor’s lfdr function (in blue) is not monotone.

Figure 4.2: Kostic Dataset. Left panel: Density estimation a posteriori of the
global density f (black), the null density f0 (blue) and the alternative density
f1 (red). Right panel: Histogram of the data with the Posterior Probability of
Inclusion function (1 − locfdr(z)) superimposed, for both Efron’s locfdr (blue)
and Nollik (red). The dashed line represents the threshold controlling for a BFDR

of 5%.

Grouped Proteomics Data: Ubiquitin-protein interactors

Sometimes in real-case scenarios the differential expression analysis may be conducted separately,
stratifying the subjects for some characteristics. For example, the data at hand could be the
results of different models fitted using genes belonging to subgroups of subjects characterized
by different age, gender, tumor gravity, etc. We can rephrase the model Equation (4.8) to
accommodate this grouped setting, allowing the sharing of information across the various groups.
The idea is to use all the observations to estimate the distributions f0 and f1 while taking into
account the grouped structure in the parameters of main interest for us, Γ and Λ.
Let us denote with zij the statistics related to the i-th measurement (i = 1, . . . , Nj) found the
j-th group (j = 1, . . . , J). We can rewrite the likelihood as:

L (z|θ) =
∏
i,j

(1− λij)φ0(zij ;µ0, σ
2
0) + λij

w(z; ξ)
K(θ∞)

[
δ0(γij)φ1(zij ;µ1, σ

2
1) + δ1(γij)φ2(zij ;µ2, σ

2
2)
]
.

(4.19)
Consequently, new priors distributions for Λ = (λ11, . . . , λNJ ,J), Γ = (γ11, . . . , γNJ ,J), ρ =
(ρ1, . . . , ρJ) and α = (α1, . . . , αJ) are needed. We adopt:
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λij ∼ Bern (ρj) ,
γij ∼ δ−1 (·) δ0 (λij) + δ0 (·) δ1 (λij) (1− αj) + δ1 (·) δ1 (λij)αj ,
αj ∼ Beta(aαj , bαj ), ρj ∼ Beta(aρj , bρj ).

(4.20)

This means that we will be able to estimate a lfdr function, and consequently a posterior
probability of inclusion, for each group. Doing so, we can assess the proportion of “significant”
observation in each group.
We analyze a proteomics dataset where Ubiquitin-protein interactors with different Ubiquitin
lengths are characterize in three different experimental conditions: Ubi1, Ubi4, and Ubi6. See
Zhang et al. (2017) for more details on the data. The raw mass spectrometry data were first
analyzed using MaxQuant (Cox and Mann, 2008). Then we follow the same pre-processing
pipeline indicated in the manual of the R package DEP (Smits and Huber, 2017), remaining with
1899 values of genes for the three experimental conditions and a control group. The package
uses the model Limma, an Empirical Bayes procedure that produces moderate t-statistics, in
the form tg,mod = d

s+s0
, where d is the difference in the sample means, s is the pooled standard

deviation and s0 is a small constant, added to avoid divisions by an extremely small variance
estimate (Ritchie et al., 2015). For each experimental condition, we run the model and collect
the statistics for j = 1, 2, 3, computing

zij = Φ−1
(
F Tg (tg,modij )

)
,

where tg,modij and the estimate of g are provided by the DEP methodology. We adopt aαj = bαj =
1, aρj = 1 and bρj = 9 for all j = 1, 2, 3. We also fix a = 2.5 to improve the mixing. Differently
from what stated before, we run 400,000 MCMC iterations and, after discarding the first 100,000
as burn-in period, we thin the remaining chain every 30 iterations. Figure 4.3 shows the three
histograms of the data under the different conditions and the non-null posterior probability
functions. We can see how Ubi4 and Ubi6 generated similar statistics, while the observations
under Ubi1 are less spread away from zero. In fact, the three estimated proportions of non-null
statistics are 0.104, 0.484, and 0.456 respectively. The three thresholds are all very close to each
other, being 0.8357, 0.859, and 0.862. The numbers of non-null protein genes are 95, 492 and
445 respectively.

4.6 Discussion
In the Bayesian MHT, the two-group model of Efron (2004) is one of the most diffused ap-
proaches for distinguishing interesting, non-null observations, from the null ones. It postulates
that the data generating process is a mixture of two distributions: the null, centered in zero,
and the alternative on the tails. Multiple hypotheses testing without further constraints can
lead to wide overlaps between the two distributions, compromising data classification. Inspired
by the MOM non-local priors (Johnson and Rossell, 2010), we derive a class of weighted dis-
tributions that adjusts the likelihood with appropriate weight functions, with the purpose of
better discriminating between interesting and uninteresting instances. We propose to model the
alternative distribution of the two-group model as a weighted distribution, and we show that
under reasonable assumptions the weighted version of the model leads to better results in terms
of false discovery rate, false negative rate, and statistical power.
Future research will be focused on how this general class of weighted densities can be employed
as prior distributions, contributing to the current literature of regularization methods. Guidance
is provided for the choice of the weight function, and parametric and nonparametric sampling
schemes are developed for posterior computation. The parametric case turns out to be an ef-
ficient, reliable and flexible enough specification. A possible immediate extension, to let the
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Figure 4.3: Ubiquitin-protein interactors dataset. Histograms of the three
groups present in the data with the Posterior Probability of Inclusion function
(1 − locfdr(z)) superimposed, one for each experiment. The three dashed lines

represent the thresholds for each group, controlling for a BFDR of 5%.

parametric model handle more complex tails, would be to use a mixture of Gamma densities or
Skewed Normals for modeling f1.
We assessed the performance of our model on four different scenarios in an extensive simulation
study, where it is clear that the model performs comparably or even better than the alternatives
in the literature and efficiently. We finally apply our model to open source genomics datasets,
and extend the methodology to also account for grouped data.
We finally want to underline that a weighted likelihood, especially a non-local one, can be useful
also in contexts outside the MHT. The weight function can be properly chosen to reflect exter-
nal information on the data, like spatial boundaries or penalize for implausible values, and the
duality between null and non-null distributions can be used to perform classification tasks.
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Appendix

4.A Sampling from Weighted Distributions
We can take advantage of the product form of the NLD to introduce a general Slice Sampler
to generate random variates from the distribution of interest with bounded weight. Rossell and
Telesca (2017), showing that every NLD can be seen as a mixture of truncated distributions,
propose intuitive sampling schemes (Algorithm 1 and 2) which make simple the posterior sim-
ulation in a wide variety of cases. However, their result can be seen as a particular version of
the Slice Sampler (Damien et al., 1999; Neal, 2003), exploited also in Petralia et al. (2012).
We rephrase and adapt the algorithm in our framework, whenever a bounded weight function
w : R → [0,K] is assumed. Without loss of generality, we set K = 1. Using the idea of data
augmentation, we introduce a Uniform latent variable in the weighted density, obtaining:

πW (θ, u; ξ, λ) ∝ π (θ;λ) I{w(θ;ξ)>u}. (4.21)

Notice that
∫ 1

0 πW (θ, u; ξ, λ) du = πW (θ; ξ, λ).
Let us denote with (θ0, u0) the current values for the parameters of interest and let (θ∗, u∗) their
updated version. The Slice Sampler algorithm for the NLD is composed by two steps:

1. Sample u∗ from a U (0, w (θ0; ξ))

2. Sample θ∗ from π (θ;λ) I{A∗}, i.e. sample the new value from the distribution π (θ;λ)
truncated on A∗ = {θ : w (θ; ξ) > u∗}

This algorithm is trivial to implement every time the weight function w is invertible and a
sampler for a truncated version of the local density π (θ;λ) is available. If a NLD is used as a
prior, as long as the local distribution is conjugate with the likelihood distribution f (z; θ), the
derivation of a sampler for the posterior is immediate. In fact, we can recover the same structure
of Equation (4.21) writing

πW (θ, u|z; ξ, λ) ∝ π (θ;λ) I{w(θ;ξ)>u}f (z; θ) = π (θ|z;λ) I{w(θ;ξ)>u}

and then applying the algorithm using π (θ|z;λ) as new local distribution.

As an example, consider these two different weighted distributions: a NLD defined by the
product of a Standard Gaussian with the weight function w1 and a Skew-Normal(α):

(S1) πW (θ) = w1 (θ; a, k)N (θ; 0, 1) (S2) πW (θ) = 2Φ (αθ)N (θ; 0, 1)

To implement the algorithm, we just need to compute the set A∗ for both cases. Simple algebra
provides the answer:

(S1) A∗ =
{
θ : |θ| > a 2k

√
− log (1− u) ·

}
(S2) A∗ =

{
θ : θ > 1

a
Φ−1

(
u

2

)
·
}

Both of the scenarios involve sampling from a Truncated Normal distribution. A recent R
library, TruncatedNormal Botev (2017) makes this operation extremely smooth. To actually
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simulate the values, we assumed a = 5, k = 1 and α = 2. Figure 4.A.1 shows the histograms
of 10,000 random instances sampled with the described algorithm, where the true density has
been superimposed.

Figure 4.A.1: Histograms referring to the two distributions adopted in (S1) and
(S2)

4.B FDR, FNR, Type II error as function the Acceptance Re-
gion

Let A = (z1, z2). Recall that FDR(A) = P [H0|z /∈ A], FNR(A) = P [H1|z ∈ A] and β(A) =
P [z ∈ A|H1]. Let also P [H0] = (1−ρ), F (z) = (1−ρ)F0(z)+ρF1(z) and FW (z) = (1−ρ)F0(z)+
ρFW1 (z). Then,

FDR(A)− FDRW (A) ≥ 0 ⇐⇒
P [z /∈ A|H0] (1− ρ)

P [z /∈ A] − PW [z /∈ A|H0] (1− ρ)
PW [z /∈ A] ≥ 0 ⇐⇒

F0(z1) + 1− F0(z2)(1− ρ)
F (z1) + 1− F (z2) − F0(z1) + 1− F0(z2)(1− ρ)

FW (z1) + 1− FW (z2) ≥ 0 ⇐⇒

FW (z1) + 1− FW (z2)− (F (z1) + 1− F (z2)) ≥ 0 ⇐⇒
(1− ρ)F0(z1) + ρFW1 (z1) + 1− (1− ρ)F0(z2)− ρFW1 (z2)−

(1− ρ)F0(z1)− ρF1(z1)− 1 + (1− ρ)F0(z2) + ρF1(z2) ≥ 0 ⇐⇒
F1(z2)− FW1 (z2) + FW1 (z1)− F1(z1) ≥ 0

Similarly, we have

FNR(A)− FNRW (A) ≥ 0 ⇐⇒
P [z ∈ A|H1] (ρ)

P [z ∈ A] − PW [z ∈ A|H1] (ρ)
PW [z ∈ A] ≥ 0 ⇐⇒

F1(z2)− F1(z1)
F (z2)− F (z1) −

FW1 (z2)− FW1 (z1)
FW (z2)− FW (z1) ≥ 0 ⇐⇒
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1− F0(z2)− F0(z1)
F (z2)− F (z1) − 1 + F0(z2)− F0(z1)

FW (z2)− FW (z1) ≥ 0 ⇐⇒

F (z2)− F (z1)− FW (z2) + FW (z1) ≥ 0 ⇐⇒
F1(z2)− FW1 (z2) + FW1 (z1)− F1(z1) ≥ 0

and

β(A)− βW (A) ≥ 0 ⇐⇒
P [z ∈ A|H1]− PW [z ∈ A|H1] ≥ 0 ⇐⇒

F (z2)− F (z1)− FW (z2) + FW (z1) ≥ 0 ⇐⇒
F1(z2)− FW1 (z2) + FW1 (z1)− F1(z1) ≥ 0

So we showed as the conditions that the discrepancies in the FDR, FNR and β between un-
weighted and weighted case all simplify into this expression F1(z2)−FW1 (z2)+FW1 (z1)−F1(z1),
which is the difference in the areas under the densities f1 and fW1 computed over A.

Lemma 1 (Lemma 2 in Dharmadhikari and Joag-Dev (1983)). Let X and Y be real random
variables with c.d.f.’s F and G and densities f and g, respectively. Either of the following
conditions imply that F stochastically dominates by G, i.e. ∀x, F (x) 6 G(x):
a. The density g crosses f only once and from above.
b. For all t ∈ (F (0), 1), d

dt
{
F−1(t)−G−1(t)

}
> 0 or, equivalently f

[
F−1(t)

]
6 g

[
G−1(t)

]
.
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Chapter 5

Bayesian Mixture Models for
Intrinsic Dimension Estimation

“Sono piccolissimi i conigli quando nascono
era semplicissima la via quando la trovi

Non fa più freddissimo quando hai vestiti nuovi
I superlativi, banalissimi quando li scrivi.”

Depressissimo – Rancore

“If it’s bad, then I hate it because I hate bad writing.
If it’s good, then I’ll be envious and I’ll hate it all the more.”

Midnight in Paris – Hemingway Woody Allen

Abstract
Even if they are defined on a space with a large dimension D, data points usually lie onto a
hypersurface, or manifold, with a much smaller intrinsic dimension (ID). Data points with ID
d can be deemed as a configuration of a Poisson Process (PP) with an intensity proportional
to the true underlying density. Postulating the local homogeneity of the PP on the scale of
the second nearest neighbor (NN), the ratio of the distances between the second and first NNs
follows a Pareto distribution parametrized only by d. Following this rationale, the recent TWO-
NN method (Facco et al., 2017) and Hidalgo model (Allegra et al., 2019) allow for estimating
the ID when all points lie onto a single subspace or K manifolds, respectively. In particular,
the latter setting employs a Bayesian finite mixture of K components. In this paper we extend
this theoretical framework, obtaining a closed-form density for the ratio of the distances of L
consecutive NNs under the assumption that the homogeneity of the density holds on the scale
defined by the distance of the L-th NN of a point. More generally, we are able to provide a
distribution for the ratio of the distances of two NNs of general order. These extensions lead
to a refined estimator of the data intrinsic dimension, which we name CRIME (Consecutive
Ratios Intrinsic Manifold Estimator). Hidalgo obtains remarkable results, but its limitation
consists in fixing a priori the number of components in the mixture. To adopt a fully Bayesian
nonparametric approach, we letK → +∞, using a Dirichlet Process Mixture Model as an infinite
mixture of Pareto distributions. Since the posterior distribution has no closed-form expression,
to sample from it we rely on the slice sampler algorithm (Kalli et al., 2011). From preliminary
analyses on simulated and well-known datasets, our method provides promising results allowing
us to uncover a rich data structure starting from the intrinsic dimension, a pure geometric data
feature, and only requires the definition of a distance measure.
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5.1 Introduction
In recent years we have witnessed an unimaginable growth in the production of data: from
genomics to personalized medicine, from sports to finance, datasets of important dimensions
are now widely available. This poses new interesting challenges for the statistical community,
which is called to devise new techniques to analyze this type of data in a reasonable amount
of time. The collective behavior of a dataset can be often described by a handful of variables.
Thus, one key aspect of statistical analyses nowadays is the estimation of the Intrinsic Dimen-
sion (ID) of a dataset, which can be seen as the number of relevant variables that are needed
to completely describe entirely the data-generating process, i.e. the dimension of all the non-
redundant information contained in a table. The ID can be also seen as the minimum number of
parameters needed to accurately describe the important characteristics of a system (Fukanaga,
1972). More formally, the ID d is defined as the dimension of the subspace of RD where the
data entirely lies, without information loss (Bishop, 1995). The literature regarding methods
for ID estimation is vast. We refer to Campadelli et al. (2015) for an extensive review. In the
same paper, the authors provide another useful interpretation of the ID in a context of pattern
recognition: a point set is viewed as a sample set uniformly drawn from an unknown smooth (or
locally smooth) manifold structure, eventually embedded in a higher-dimensional space through
a non-linear smooth mapping; in this case, the ID to be estimated is the manifold’s topological
dimension.

In this framework, many modeling and exploratory techniques are based on some concept of
distance between the data. Recently, Duan and Dunson (2018) have propose to model in a
Bayesian setting the pairwise distances among distributions to coherently estimate a clustering
structure. One drawback of this method is that it involves the computation of each pairwise
distance among the data points, which can be extremely computationally expensive. Amsaleg
et al. (2015), exploiting results from Houle (2013), suggest modeling a distance random variable
using a Generalized Pareto Distribution (Coles and Davison, 2008), a milestone of Extreme
Value Theory, since they show that the ID can be recovered, asymptotically, as a function of its
parameter. Classical projective methods, such as Principal component analysis (PCA – Jolliffe,
2002), postulate that the sub-manifold where the data lie is linear, but this can be a simplis-
tic hypothesis. To capture the non-linearity of the subspaces - also called manifold learning,
Granata and Carnevale (2016) provide a method to estimate a global ID starting from the
distribution of distances on graphs, or geodesic distance, since it is being “shape-aware”, i.e.
capable of measuring the length of paths completely contained in the manifold, and to analyze
the scaling behavior of the distance probability distribution at intermediate length-scales. Li
et al. (2017) propose a Spherical version of the PCA, where the latent manifolds are locally
approximated with the use of Spherelets (pieces of spheres). This idea has been extended in
other works: Mukhopadhyay et al. (2019) use a Fisher-Gaussian Kernel to estimate densities on
highly non-linear supports, Li and Dunson (2019a) extend the idea to clustering methods and Li
and Dunson (2019b) use the Spherical PCA to efficiently estimate the geodesic distances among
the points.

The aforementioned methods are based on the assumption that the ID d is constant through-
out the entire dataset. However, recent literature discusses that the observations of complex
datasets could show more than one ID. We build on the idea of the TWO-NN estimator and its
Bayesian version, Hidalgo (Facco et al., 2017; Allegra et al., 2019), extending both the underly-
ing theoretical framework and modeling approach. In detail, we first propose to adopt different
parametric prior specifications to improve Hidalgo’s performance. Then, we extend the existing
theoretical methodology, by deriving closed-form expressions for the distribution for more then
one ratio of distances between NNs. Finally, we propose a novel Bayesian nonparametric model
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that is able to estimate the ID for each data point.

The paper is organized as follows. In Section 2 we introduce the original estimators TWO-NN
and Hidalgo, revisiting some of the theoretical results found in Allegra et al. (2019), and we
propose two simple but effective modifications. In Section 3, we extend Hidalgo’s theoretical
framework and propose a Bayesian Nonparametric model. Section 4 presents an efficient MCMC
algorithm for posterior simulation and discusses methods for postprocessing the MCMC output.
Section 5 contains applications to both simulated data and real datasets. Section 6 presents
future research directions and concludes.

5.2 Background: the TWO-NN estimator and Hidalgo
Consider a dataset X, composed of n D-dimensional observations x1, . . . ,xn, where xi ∈ RD.
Let us assume that the data are realization from a Poisson point process, characterized by a
density ρ (x), defined on a manifold of unknown intrinsic dimension d ≤ D. In general, we
expect d << D.

For any point xi, we can define vi,l = ωd
(
rdi,l − rdi,l−1

)
as the volume of the spherical shell

enclosed between two successive neighbors, where d is the dimensionality of the space in which
the points are embedded, ωd is the volume of the d-dimensional sphere with unitary radius, and
ri,j defines the value of a distance in R+ between observation i and its j-th nearest neighbor
(NN). Note that in the univariate case, vi,l is usually referred to as inter-arrival time.

xi

xj

xj′

xj′′

ri,1

ri,2

ri,3

Figure 5.1: A pictorial example in R3 of the quantities involved. The points
represent the data. The selected observation, xi is connected by dashed lines
representing the distances ri,j , j = 1, 2, 3 to its first three NNs. The different

spherical shells, characterized by different colors, have area vi,j , j = 1, 2, 3.

In the univariate case it is well known that, if the density is constant (i.e. ρ(x) = ρ ∀x), all the
vl’s are independently drawn from an Exponential distribution with rate equal to the density ρ
(Kingman, 1992). Building on the work of Moltchanov (2012), Facco et al. (2017) have extended
this result to the multivariate case, where hyperspherical shells are the proper extension of the
inter-arrival times. Then, the following Lemma holds:
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Lemma 2. Consider a distance taking values in R+ defined among the data points and let ri,j
be the value of this distance between observation i and its j-th NN. If we assume that the density
ρ is approximately locally constant on the scale defined by the distance of the first two neighbors
ri,2, it follows that

µi = ri,2
ri,1
∼ Pareto(1, d). (5.1)

Proof. A detailed proof of this result is contained in Facco and Laio (2017). In the Appendix,
we provide an equivalent but simper proof based on the properties of distributions of random
variables. We underline that

X ∼ Pareto(1, α) ⇐⇒ Y = Xq ∼ Pareto(1, α/q).

This property, used in the proof, is straightforward to prove. However, to the best of our
knowledge, no reference in the literature mentioned it.

In other words, using only basic properties of the Homogeneous Poisson point process, Facco
et al. (2017) showed that the ratio of the distances between a point and, respectively, its first
and second NN is Pareto distributed, with scale parameter equal to 1 and shape parameter d, i.e.
the Intrinsic Dimension of the dataset. We remark that this result holds every time a distance
taking values in R+ is adopted.
The TWO-NN estimator treats the ratios µi’s as independent, i = 1, . . . , n, and estimates
an overall d on the entire dataset following a least-squared approach, linearizing the Pareto
c.d.f. (Facco et al., 2017). However, assuming d to be unique on the entire dataset could be
limiting. Moreover, the independence assumption is clearly too restrictive. To overcome these
issues, Allegra et al. (2019) propose Hidalgo (Heterogeneous Intrinsic Dimension Algorithm), a
Bayesian finite mixture model, where the data, treated as exchangeable, have density ρ that is
assumed to arise as a convex linear combination of different densities with support on different
manifolds of heterogeneous dimension: ρ (x) =

∑K
k=1 πkρk (x), where the k-th manifold has

weight πk. To reflect this assumption in the data, we can extend eq. (5.1) writing µi as a
mixture of Pareto(1, d), distributions:

L(µi|d) =
K∑
k=1

πkP(µi|dk) (5.2)

where P(µi|d) = dµ
−(d+1)
i is the usual Pareto density, d = (d1, . . . , dK) are the intrinsic di-

mensions and π = (π1, . . . , πK) are the mixture weights. The model is completed assuming
independent Gamma priors for each dk and a Dirichlet prior for the mixture weights π. To ease
the posterior computation, it is common to augment the model introducing latent indicators
z = {z}ni=1 which denote the mixture component for µi, i.e. the lower-dimensional manifold
to which observation xi has been assigned. Conditionally on the z, the likelihood (5.2) can be
re-expressed as f(µi|d, z) = P(µi|dzi) and zi ∼

∑K
k=1 πkδk(·). However, in this classical formu-

lation the estimation of the parameters d is difficult and the presented model can be inaccurate
since there is no clear separation between different Pareto distributions. In fact, even when
considering very different shape parameters, Pareto distributions overlap in the right-hand side
tail to a great extent. Figure 5.2 provides an example.
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Figure 5.2: The graphs reports four Pareto densities characterized by the same
scale parameter equal to 1 and different shape parameters, ranging from 0.1 to 2.

Even for very different shapes, the densities overlap to a great extent.

In other words, the clustering induced in the data by the latent variables z is of paramount
importance: the observations within each group concur to the estimation of a different value of
dzi . If the clustering is inaccurate, so is the estimate. It is crucial to include a source of local
homogeneity in the model, and this can be obtained via the following

Assumption: the different manifolds are separated in the space, and the neighborhood of a
point should be more likely to contain points sampled from the same manifold than points sam-
pled from a different manifold.

Therefore, Allegra et al. (2019) propose to extract from the original data x another source of
information that can be used to penalize for local inhomogeneities: the n× n proximity matrix
N (q), that we now introduce. The (i, j) entry N (q)

ij of this binary matrix is 1 only if the observa-
tion j is one of the first q NNs of observation i, 0 otherwise. Notice that

∑
j N

(q)
ij = q. To induce

local uniformity, we can model f
(
N (q)
ij = 1|zi = zj

)
= ζ0, and that f

(
N (q)
ij = 1|zi 6= zj

)
= ζ1,

where the probabilities ζ0, ζ1 are such that ζ0 > 0.5 and ζ1 < 0.5. These inequalities imply that
points assigned to the same manifold have more chances to be neighbors.
We underline that the events {N (q)

ij = 1|zi = zj} and {N (q)
ij = 1|zi 6= zj} are not complementary,

therefore in general ζ0 6= 1− ζ1. However, for simplicity, the authors propose to set ζ0 = ζ and
ζ1 = 1− ζ. Denote with N (q)

i the i-th row of the adjacency matrix. We can regard the rows of
N (q) as independent and adopt the following distribution:

f
(
N (q)|z, ζ

)
=
∏
i

f
(
N (q)
i |z, ζ

)
=
∏
i

ζn
in
i (z)(1− ζ)q−nini (z)

Z (ζ,Nzi)
(5.3)

with ζ ∈ (0.5, 1) is the parameter enforcing uniformity between neighbors (ζ = 0.5 implies no
additional term in the likelihood), nini (z) =

∑
j nijIzj=zi is the number of the q NNs of xi that

are clustered together with observation i, Nzi is the cardinality of cluster of instances grouped
with xi and

Z (ζ,Nzi) = (1− ζ)q
(
n−Nzi

q

)
2F1

(
−q, 1−Nzi , n−Nzi − q,

ζ

1− ζ

)
is the normalization constant, involving the ordinary hypergeometric function 2F1. Details of its
derivation can be found in Facco and Laio (2017). The assumption of independence among the
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rows of the matrix N q is convenient from a computational point of view. However, it may be not
completely satisfactory. We leave this research question open for future investigation, noticing
that models for graphs and networks can be employed to better represent the aggregating process
behind the data. In any case, this additional term removes the independence between the
cluster labels and helps to recover a more precise estimate of the ID. The resulting likelihood
for µ = (µ1, . . . , µn) is

L
(
µ,N (q)|d, z, ζ

)
=

n∏
i=1
P (µi|dzi)× f

(
N (q)
i |z, ζ

)
. (5.4)

The number of mixture components is chosen ex-post, adopting some postprocessing procedure.
Allegra et al. (2019) compare the average likelihood estimated over the MCMC sweeps. Another
approach could be comparing the average posterior values for different K. Alternatively, one
could use more complete measures of model comparisons, like DIC, BIC, AICm, BICm, or WAIC
(Spiegelhalter et al., 2002; Raftery et al., 2007; Hjort et al., 2010; Watanabe, 2013).

5.2.1 Alternative parametric prior specifications for d

Various immediate and simple extensions for improving the prior on the intrinsic dimension
parameters d are possible. We discuss their introduction with two examples.
Truncated Support. First, we consider the iris dataset, where D = 4 measurements of
n = 150 iris flowers are recorded. The flowers belong to three species: setosa, versicolor and
virginica. We remove one observation, being the exact replica of another: the model cannot
handle cases where two points coincide, resulting in a distance equal to zero in the denominator
of (5.1). After 10000 iterations used as burn-in period and we collect 5000 MCMC samples.
According to BICm and AICm, the best value for the number of mixture components is K = 3.
We derive each observation Intrinsic Dimension using the following estimators, where T denotes
the number of MCMC sweeps:

d̂i = 1
T

T∑
t=1

dzti
, d̂i = median {dzti}

T
t=1. (5.5)

Tracking the chains of parameters actually assigned to each observation via zti is a simple way
to deal with the label switching problem. More refined methodologies have been proposed
for handling this non-identifiability issue (Robert, 2010; Rodríguez and Walker, 2014; Celeux,
1998; Sperrin et al., 2010). However, for the current illustration, the solution we adopt suffices.
Similarly, we derive the two quantiles of order 0.05 and 0.95, to provide Bayesian credible sets.
The top left panel of Figure 5.3 reports the estimated median IDs for the iris dataset and the
corresponding credible sets. It is interesting how the three different Species of flowers show
different intrinsic dimensions. However, an interpretation problem is clear: some of the upper
bounds of the credible sets for the IDs are above the maximum dimension D. To obviate
this issue, we propose to substitute the Gamma prior on dk with a Uniform distribution or a
Truncated Gamma over (0, D). Alternatively, if one wants to include the case where d = D, we
can employ the following density, with mixture proportion ρ̂:

π(dk) ∝ ρ̂
ba

Γ(a)d
a−1
k exp{−bdk}I(0,D) + (1− ρ̂)δD(dk) ∀k. (5.6)

The results with these new priors are reported in Figure 5.3. We see how the estimates are now
coherent with the theoretical framework, while the differences between groups are preserved.
In detail, the right-hand panels show that adopting a truncated Gamma or a Uniform on the
interval (0, D) leads to similar results. The bottom-left panel presents the estimated median ID
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when a point mass is placed on D and ρ̂ is set to 0.9. In this case, all the setosa flowers are
estimated to be characterized by an ID equal to the upper-bound dimension of the dataset D.
Another simulation study, involving Uniform distributions, is reported in the Appendix.

Figure 5.3: iris dataset. The top-left panel reports the posterior means and
the 90% credible sets for each observation, after applying Hidalgo with K=3. The
panels on the right show the same output when a truncated Gamma (top) or a
Uniform (bottom) prior on d is adopted. The bottom-left panel shows the results
when a Truncated Gamma is mixed with a point mass in D, with prior mixture

proportion equal to ρ̂ = 0.9

Repulsive Distribution. Dealing with mixture models could lead to overfitting, in the sense
that the model tends to create more components than the ones that are actually needed. Then, in
some application one may observe different clusters of observations characterized by very similar
ID. This distinction, instead of reflecting a real difference in the latent manifold dimensions, could
be simply due to noise in the observed data or small curvatures in the latent geometry. To avoid
the creations of redundant components and shrink to zero the fluctuations in the estimation, we
employ a repulsive density of the following form as in Petralia et al. (2012):

π(d) = c1

(
K∏
k=1

g0 (dk)
)
h(d), h(d) = min

{(s,j)∈A}
g (∆ (ds, dj)) (5.7)

where ∆ is a suitable distance in R+, g0 is a univariate density function for dk, and A = {(s, j) :
s = 1, . . . ,K; j < s}. Instead of specifying the function g as in the aforementioned paper,
i.e.g (∆) = exp

[
−τ (∆)−ν

]
with τ, ν > 0, we adopt the following sigmoidal function:

g(∆) = 1
1 + exp

[
−∆−τ

ν

] τ, ν > 0. (5.8)

This sigmoidal function is convenient because it allows to directly specify the magnitude of the
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repulsion. For ν → 0 the sigmoid approaches a step function, where the jump is exactly at τ . In
other words, choosing a parameter ν small enough, we can induce a distance of at least τ between
the realizations of the vector d. Sampling from the full conditional induced by the repulsive
prior requires to be able to sample from truncated distributions. To this extent, we implement
a simple, general algorithm that allows us to sample from interval-truncated random variables,
starting from the inverse c.d.f. method. The details are reported in figure 5.C.1 in the Appendix.

To show how this prior works, we apply Hidalgo to the famous growth dataset, a collection of
93 growth curves that track children’s heights over time (Tuddenham and Snyder, 1954). As
usually done in functional data analysis, we employ a basis function representation to smooth the
data. In this case, we use B = 50 b-splines bases (Ramsay and Silverman, 2005). The smoothed
functions are reported in the left panel of Figure 5.4. The dataset contains growth curves of 54
females and 39 males. Once we smooth the functions, we are left with a dataset of 50 spline
coefficients for 93 individuals. We apply Hidalgo with K = 2 to this dataset, looking for the ID
of the spline coefficients. As we can see from the right panel of Figure 5.4 two groups, reflecting
the gender partition are evident, but not very well separated: the males are characterized by an
ID roughly equal to 4.75 while the ID is approximately 4.9 for the females. When the repulsive
prior is applied with τ = 0.5 and ν = 0.001, the two clusters are “pushed apart” from each other
favoring more distant realizations of the ID. Namely, in this particular case, the two repulsive
IDs are around 4.5 an 5.1.

Figure 5.4: growth dataset. The left panel shows the smoothed growth curves
for both male (1, in blue) and female (2, in red). The right panel reports the
posterior median of the IDs obtained with Hidalgo, where K = 2, comparing the
output when a classical independent prior (circles) is adopted against when d is

modeled with a repulsive prior (triangles).

5.3 Extending Hidalgo to Consecutive Ratios (CRIME)
We now show how the theoretical results of the previous section can be extended, under the
assumption that the homogeneity of the density holds on the scale defined by the distance of
the first L neighbors of a point xi. Let us define Vi,l = ωdr

d
i,l as the volume of the hypersphere

centered in xi with radius equal to the distance to its l-th NN. Notice that, for l = 2, . . . , L, vi,l
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and Vi,l−1 = vi,1 + · · ·+ vi,l−1 are independent. Moreover, Vi,l ∼ Erlang(1, l− 1). The essential
point is to notice that we can write

vi,l
Vi,l−1

=
ωd
(
rdi,l − rdi,l−1

)
ωdr

d
i,l−1

=
(

ri,l
ri,l−1

)d
− 1

which means

µi,l = ri,l
ri,l−1

=
(

vi,l
Vi,l−1

+ 1
)1/d

∼ Pareto(1, (l − 1)d)) (5.9)

or equivalently

γi,l = log
(

ri,l
ri,l−1

)
∼ Exp((l − 1)d). (5.10)

Given these premises, the following Lemma holds.

Lemma 3. Consider a suitable distance in R+ between the data points and let ri,j be the value of
this distance between observation i and its j-th NN. Assume that the density ρ is approximately
locally constant on the scale defined by the distance of the first L neighbors, and let µi,l = ri,l

ri,l−1

and γi,l = log (µi,l), for an integer l ∈ {2, . . . , L}. It follows that

γi,L = (γi,2, . . . , γi,L) ∼ Exp(d)× · · · × Exp ((L− 1)d) ,
µi,L = (µi,2, . . . , µi,L) ∼ Pareto(1, d)× · · · × Pareto(1, (L− 1)d).

(5.11)

Proof. See Appendix.

In this way, we are able to characterize the distributions of the ratio of consecutive distances. All
of them depend on the same parameter d, which can now be estimated using more information
extracted from the data. Another important advantage is that now we have a way to justify the
choice of the hyperparameter q in

(
N (q)
i |z, ζ

)
: if we set q = L, it can be interpreted as our prior

guess about how diffuse (in terms of number of neighbors) is the postulated local uniformity of
the Poisson Process density ρ(x).
Alternatively to the equations in (5.11), that suggests a multivariate model, one could apply the
following transformation to recover an univariate distribution:

Γi,L =
L−1∑
l=1

l · γi,l+1 ∼ Erlang
((L− 1)L

2 , d

)
, i = 1, . . . , n. (5.12)

Notice that many other distributions can be employed using the properties of the Exponential
random variables. For a generic observation i and a generic ratio of order l, the following
statements are equivalent

(I) γi,l ∼ Exp ((l − 1)d) , (II) exp (−γi,l) ∼ Beta (1, (l − 1)d) ,

(III) γ2
i,l ∼Weibull

(1
2 ,

1
(l − 1)2d2

)
,

(IV ) µ− σ log ((l − 1)dγi,l)) ∼ GEV (µ, σ, 0) (Gumbel),

(5.13)

where GEV indicates the Generalized Extreme Values distribution (McFadden, 1978). Equa-
tions (5.12)-(5.13) provide alternatives to the modeling and the estimate of the ID. Distributions
(III) and (IV ) are linked to the Extreme Value Theory (EVT). Other authors have recently
developed an ID estimator in an EVT framework (Amsaleg et al., 2015; Houle, 2013): we leave
for future research the investigation of potential connections among the two fields. From now on,
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we proceed considering only the vectors µi,L, i = 1, . . . , n, i.e. working with Pareto distributions.

Deriving a least-square estimator from (5.11) as in Facco et al. (2017) is not immediate. However,
it is straightforward to derive a Maximum likelihood Estimator (MLE) for the parameter d:

d̂MLE = n(L− 1)∑n
i=1

∑L
l=2 log (µi,l)

. (5.14)

The theoretical results rely on the fact that the different consecutive ratios are independent of
each other. In real applications, this is hardly the case. To assess if considering more than
one ratio provides an actual improvement, we simulate 50 independent datasets from Gaussian
random variables of dimensions 2, 5, 10, 15, and 20. For each of these 5 simulation scenarios, we
consider 4 different sample sizes: (A) n = 22, (B) n = 100, (C) n = 500,(D) n = 1000. We are
then left with 20 datasets replicated 50 times. For each of the 50 replicates, we compute d̂MLE

and then we pool the results, computing the average estimates and the 10th and 90th quantile,
to provide a measure of uncertainty estimation.

Figure 5.1: Each panel shows the MLE of the ID for an increasing number of
consecutive ratios µl,i considered in the estimation. The five lines correspond to
the average d̂MLE , while the shaded area highlights the interval between the 10th

and 90th quantile.

Figure 5.1 shows some important insights. The lower the sample size, the greater is the under-
estimation of the true ID. There are multiple reasons for this behavior.
First, since (5.11) is a result based on local homogeneity, we need to consider the curse of di-
mensionality and the frontier effects that can affect the most extreme points. In fact, it is known
that the number of points missing from the neighborhood of the frontier scales exponentially
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with the ID (Smith, 1988; Granata and Carnevale, 2016). These are two intrinsic limitations
of general ID estimation. In general, the model is capable of correctly estimate the true values
the IDs when dealing with low-dimensional manifolds. Also, as n grows, the underestimation of
higher IDs reduces.
A second reason is given by the model formulation. The fewer the data points, the less realistic
is the hypothesis of independence of the observations.Introducing more than one ratio when the
sample size is limited is counterproductive when the ID is high. However, even if considering
more consecutive ratios does not improve the point estimation, it is effective in reducing the es-
timator variability, as shown by the shaded bands that shrink as L grows. To better investigate
this behavior, we run a more complete simulation study. We consider 50 replications of inde-
pendent gaussian datasets in dimension d = 2, 5, 10, 15, 20, respectively. The ID is estimated
considering a varying number of consecutive ratios L = 1, 2, 3, 5, 10 5 different sample sizes
(ranging from n1 = 50 to n5 = 10000 instances). For each case, we compute the median and
the width of the interval given between the 10th and the 90th percentile of the MLEs obtained
on 50 different sample replicates. The results are reported in Table 5.1. The values confirm
our claim: for low ID and high sample size, considering a higher number of consecutive ratios
is beneficial, leading to more precise estimates. When the ID is higher (10 or above) increasing
L induces a greater underestimation, while increasing n fights this tendency. The study shows
the presence of a trade-off between precision in the estimates and underestimation. In general,
considering values of L > 1 can be beneficial but, especially for small datasets, we suggest to fix
its value not above 5. We finally mention that Facco et al., 2017 propose to trim the 10% of the
most extreme values of the vector of ratios µ to recover an estimate less prone to fluctuations
given by the presence of outliers. We do not perform trimming, since it is not immediate how
to perform it in multidimensional frameworks.

Finally, we derive the distribution of the ratio of the distances between two nearest neighbors
of generic order n1 and n2, where n2 > n1 are integers. This is particularly useful to investigate
how the ID changes as different scales are considered when studying the data.

Lemma 4. Consider a suitable distance in R+ between the data points and let ri,j be the value of
this distance between observation i and its j-th NN. Assume that the density ρ is approximately
locally constant on the scale defined by the distance of the first n2 neighbors, and let x = µi,n1,n2 =
ri,n2
ri,n1

. It follows that

fµi,n1,n2
(x) = (n2 − n1)

(
n2 − 1
n1 − 1

)
d(xd − 1)n2−n1−1

x(n2−1)d+1 , x > 1. (5.15)

If we set n1 = n0 and n2 = 2n0 we obtain

fµi,n0,2n0
(x) = (2n0 − 1)!

(n0 − 1)!2 ·
d(xd − 1)n0−1

x(2n0−1)d+1 , x > 1. (5.16)

Proof. See Appendix.

5.3.1 Extension to the Nonparametric Case

One of the major limitations of Hidalgo is that the number of components K must be spec-
ified beforehand, or estimated via cross-validation or by using some information criteria (e.g.
BICm) However, this approach does not take into account the uncertainty in the number of
mixture components which corresponds to the number of sub-manifolds. A way to overcome
this issue would be placing a prior on K: however, having a random dimension would require a
Reversible Jump Step (Green, 1995) in the Gibbs Sampler, which is known to be sophisticated
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d = 2 d = 5 d = 10 d = 15 d = 20

L = 1 2.1875 (0.9885) 4.9243 (2.0925) 8.7124 (2.3071) 12.0778 (4.1211) 14.3320 (4.5960)
L = 2 2.1005 (0.6013) 4.8265 (1.3165) 8.3014 (1.5790) 11.4484 (3.4586) 13.5916 (3.4765)

n1 L = 3 2.1119 (0.6011) 4.7786 (0.9773) 8.0889 (1.5058) 10.9846 (2.5534) 13.1396 (2.4620)
L = 5 2.0702 (0.3993) 4.6742 (0.6537) 7.7210 (1.0096) 10.2892 (1.8154) 12.3440 (1.7075)
L = 10 1.9996 (0.2820) 4.2974 (0.5527) 7.0115 (0.5632) 9.2108 (1.0515) 10.7797 (1.0844)

L = 1 2.0148 (0.2953) 4.9410 (0.6809) 9.4148 (1.1357) 13.1085 (1.4120) 16.2261 (2.3103)
L = 2 2.0241 (0.2154) 5.0049 (0.4823) 9.2663 (0.8204) 12.7952 (1.0518) 15.7747 (1.4639)

n2 L = 3 2.0259 (0.1996) 5.0065 (0.4242) 9.1604 (0.7242) 12.6396 (0.8196) 15.5256 (1.0295)
L = 5 2.0268 (0.1332) 5.0018 (0.2702) 9.0978 (0.5042) 12.3173 (0.7196) 15.1243 (0.7873)
L = 10 2.0375 (0.0977) 4.9261 (0.2510) 8.8030 (0.4324) 11.8869 (0.4216) 14.4834 (0.5023)

L = 1 1.9920 (0.1487) 5.0505 (0.3154) 9.7230 (0.5976) 13.8044 (0.7947) 17.2314 (0.8853)
L = 2 2.0045 (0.0940) 5.0544 (0.2052) 9.6435 (0.3509) 13.5955 (0.4831) 16.9371 (0.5743)

n3 L = 3 2.0017 (0.0690) 5.0516 (0.1936) 9.5906 (0.3281) 13.4748 (0.4386) 16.7916 (0.5515)
L = 5 2.0055 (0.0516) 5.0424 (0.1463) 9.5001 (0.2200) 13.2479 (0.3287) 16.5205 (0.3409)
L = 10 2.0116 (0.0376) 5.0477 (0.1058) 9.3639 (0.1703) 12.9496 (0.2454) 16.0101 (0.2764)

L = 1 2.0138 (0.0896) 5.0502 (0.2165) 9.7686 (0.4388) 13.9549 (0.5241) 17.5438 (0.6003)
L = 2 2.0079 (0.0750) 5.0496 (0.1724) 9.7262 (0.2913) 13.8367 (0.3740) 17.2710 (0.4460)

n4 L = 3 2.0045 (0.0566) 5.0445 (0.1595) 9.6866 (0.2519) 13.7021 (0.3087) 17.1169 (0.4554)
L = 5 2.0053 (0.0343) 5.0454 (0.1214) 9.6145 (0.1851) 13.5431 (0.2686) 16.8715 (0.3377)
L = 10 2.0112 (0.0250) 5.0439 (0.0702) 9.5053 (0.1275) 13.2669 (0.1743) 16.4809 (0.2204)

L = 1 1.9981 (0.0522) 5.0628 (0.1518) 9.8562 (0.3239) 14.1140 (0.4256) 17.8752 (0.5633)
L = 2 1.9988 (0.0385) 5.0598 (0.0970) 9.8045 (0.2179) 13.9763 (0.3282) 17.6310 (0.3447)

n5 L = 3 2.0005 (0.0373) 5.0586 (0.0812) 9.7758 (0.1795) 13.8842 (0.2766) 17.4826 (0.2885)
L = 5 2.0024 (0.0283) 5.0559 (0.0612) 9.7402 (0.1261) 13.7624 (0.1996) 17.2772 (0.1995)
L = 10 2.0062 (0.0205) 5.0568 (0.0459) 9.6624 (0.0716) 13.5372 (0.1363) 16.9074 (0.1537)

Table 5.1: Median values of the estimated ID and corresponding width of the
credible set between the 10th and 90th quantile across 50 different samples, varying
the sample size from n = 50 to n = 10000. In particular, n1 = 50, n2 = 500,
n3 = 2500, n4 = 5000, and n5 = 10000. As expected, the underestimation typical
of higher dimensionality is less evident as more data are used. Using more than

one ratio helps lowering the variance of the estimates.

and computationally expensive (Bhattacharya, 2008). Instead, we propose a Bayesian nonpara-
metric Intrinsic Dimensions Estimator, adopting a Dirichlet Process Mixture Model to describe
the distribution of the transformed data as an infinite components mixture. Letting K → ∞
introduces more flexibility avoiding limiting parametric assumptions and makes the estimation
algorithm feasible. Additionally, it is reasonable to think that the number of hidden manifold
in the dataset may increase with the advent of new data points.
Let us denote with P̂ (µi,L|d) the density of the vector µi,L, containing L consecutive distance
ratios for observation i. The classical DPMM (Dirichlet Process Mixture Model) (Antoniak,
1974; Lo, 1984) is defined as, for i = 1, . . . , n:

f(µi|G) =
∫
P̂ (µi,L|d) dG(d), G ∼ DP (α,G0) , (5.17)

where DP (α,G0) is the usual Dirichlet Process, a random probability measure characterized
by a base measure G0 and concentration parameter α. Following Sethuraman’s stick-breaking
representation (Sethuraman, 1994), we can write G =

∑+∞
k=1 πkδdk , where dk’s are i.i.d. from G0

and π = (π1, π2, . . .) is obtained as

πk = uk

k−1∏
l=1

(1− ul) uk ∼ Beta(1, α) k ≥ 1.
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We will refer to this representation writing π ∼ SB(α). Given this characterization, we can
write model eq. (5.17) as

f(µi|G) =
+∞∑
k=1

πkP̂ (µi,L|dk) , dk
i.i.d.∼ G0, π ∼ SB(α). (5.18)

As in the finite case, we introduce a set of latent allocation variables to ease the computa-
tional part. Likewise, the problem of the overlapping densities is still present, therefore we need
to also introduce the homogeneity-inducing term in the likelihood f

(
N (q)
i |z

)
. So the previ-

ous parametric-single ratio model in (5.4) is extended to a nonparametric Consecutive Ratios
Intrinsic Manifolds Estimator (CRIME) as:

L
(
µi,L,N (q)

i |z,d
)

= P̂ (µi,L|dzi)× f
(
N (q)
i |z

)
,

zi|π
ind∼

+∞∑
k=0

πkδk, π ∼ SB(α), dk ∼ G0.
(5.19)

Again, G0 can be chosen to be a Gamma density to exploit conjugacy or a Repulsive distribution
to avoid redundancies in the estimates. Alternatively, as we already discussed, a mixture between
a distribution of a bounded support (Truncated Gamma or Uniform on (0, D)) and a point mass
in D is especially useful when D is low or a high ID is expected in the data.

5.4 Posterior Inference
The posterior distribution for model (5.19) has no closed-form expression, so we need to rely
on posterior simulation techniques to perform inference. A simple solution would be employing
the Blocked-Gibbs Sampling scheme illustrated in Ishwaran and James (2001). Notice that
adopting the stick-breaking representation allows us to effortlessly extend the DPMM to other
stick-breaking prior, like the Pitman-Yor Processes. The algorithm presented in Ishwaran and
James (2001) is based on an approximation since it relies on the truncation of an infinite series.
Alternatively, we can overcome this issue using a slice sampler (Kalli et al., 2011; Walker, 2007)
to sample from the exact posterior. To implement an independent slice-efficient sampler, we
augment the model introducing two new quantities: a latent variable ui for each observation
and a deterministic sequence ξ = {ξ1, ξ2, . . . , }, where each term is defined as ξj = κ (1− κ)j−1.
The likelihood of model eq. (5.19) becomes:

f
(
µ,N (q), z,u|π,d

)
=

n∏
i

πzi
ξzi

1{ui<ξzi}L
(
µi,L,N (q)

i |z,d
)
. (5.20)

Notice that, if we integrate out u = (u1, u2, . . . , un), we get back to our original model. The
introduction of the latent variables u allows for a stochastic truncation at each iteration of the
sampler. This sets a finite number of mixture components needed at each MCMC sweep, making
computations feasible.

5.4.1 MCMC algorithm

The full conditionals are the following:

1. The full conditional of each ui is uniformly distributed: ui| · · · ∼ U (0, ξzi)

2. Sample the Stick Breaking variables uk| · · · ∼ Beta (1 +
∑n
i=1 1zi=k, α+

∑n
i=1 1zi>k)
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3. Let z−i denote the vector z without its i-th element. Sample the cluster indicators zi
according to:

P (zi = k|z−i, · · · ) ∝
πzi
ξzi
1{ui<ξzi}f

(
µi,L,N (q)

i |z1, . . . , zi−1, k, zi+1, . . . , zn,d
)

We underline that, given the new likelihood we are considering, now the cluster labels are
not independent given all the other parameters. Let us define

zki = (z1, . . . , zi−1, k, zi−1, . . . , zn) .

Then, let Nzi(z−i) be the number of elements in the n − 1-dimensional vector z−i that
are assigned to the same manifold (mixture component) as zi. Moreover, let min

i =∑
lN

(q)
li Izl=zi be the number of points sampled from the same manifold of the i-th ob-

servation that have xi as neighbor, and let nini (z) =
∑
lN

(q)
il Izl=zi ≤ q be the number

of neighbors of xi sampled from the same manifold. Then, we can simplify the previous
formula, obtaining the following full conditional:

P (zi = k|z−i, · · · ) ∝
πkP̂ (µi,L|dk)1{ui<ξk}

ξk · Z (ζ,Nzi=k(z−i) + 1) ×
(

ζ

1− ζ

)nini (zki )+mini (zki )

( Z (ζ,Nzi=k(z−i))
Z (ζ,Nzi=k(z−i) + 1)

)Nzi=k(z−i)
.

(5.21)

See (Facco and Laio, 2017) for a detailed derivation of this result.

4. To sample d| · · · , we use the conjugacy result that links the Gamma and the Pareto
distribution. We obtain dk| · · · ∼ Gamma

(
a0 +Nl, b0 +

∑
i:zi=l logµi

)
, where Nl is the

number of observations assigned to the l-th group.
If G0 is assumed to be a truncated Gamma distribution on (0, D), then

dk| · · · ∼ Gamma

a0 +Nl, b0 +
∑
i:zi=l

logµi

1(·)(0,D).

5. If we assume a Gamma prior on the concentration parameter α we can sample from its
full conditional following the scheme proposed in (Escobar and West, 1995).

5.4.2 Post-processing the MCMC output

We can post-process the rich MCMC output in different ways. We can still estimate the ID of
each observations using the formulas in (5.5). Moreover, we may be interested in recovering a
clustering among the observations and estimate the mean ID in each group along with a repre-
sentative individual (RI) for that group. We will discuss more about the RI in Section 5.6.2. Let
us focus on how to recover meaningful partition. A straightforward way to recover a partition
is to apply the usual minimization of loss functions (Binder, Variation of Information) typical
of the BNP literature (Binder, 1978; Wade and Ghahramani, 2015), computed on the poste-
rior pairwise coclustering matrix between observations. However, the model-based clustering
recovered in this way may suffer from the overlapping among the Paretos in the likelihood and
consequently might be not reliable. Another simple solution is to derive a clustering structure
by inspecting the MCMC posterior median estimates as in (5.5). To estimate an interesting
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partition, we can apply classical clustering algorithms such as k-means, where the optimal num-
ber of groups can be fixed studying the behavior of cluster quality indexes such as Silhouette
(Rosseeuw, 1987) or the Calinski-Harabasz index (Caliński T. and Harabasz J., 1974).

5.5 Applications

5.5.1 Simulation Study

To investigate how the model behaves varying the number n of observations, we simulate inde-
pendent realizations from four Gaussian random variables with different, well-separated centroids
(vectors centered in -5, 0, 5 and 10). The true dimensions of these random variables are 7, 3,
5 and 10, respectively. We vary the size of the samples, distributing equally the observations
across the four distributions.
For each simulation, we run 100000 iterations as a burn-in period and subsequently collect 10000
sweeps as a posterior MCMC sample. We set q = 3, ζ = 0.75 following the directions provided in
Allegra et al. (2019), and consistently with the choice of q we run the model on the first 3 consec-
utive ratios, so L = 3. The hyperparameters are specified as follows: on dk we place a repulsive
Gamma(5, 1) prior ∀k, so that E [dk] = V ar [dk] = 5 ∀k. For the repulsive parameters, we set
τ = 0.5 and ν = 0.001. For the concentration parameter of the DP we choose a Gamma(3,3).
Being the data so well separated, minimizing the Variation of Information criterion (Wade and
Ghahramani, 2015) appears to be sufficient to recover a meaningful partition. To compare the
estimated partition C to the ground truth, we use the Adjusted Rand Index (ARI) (Rand, 1971;
Hubert and Arabie, 1985). We collect the posterior medians for each observation and compute
a mean stratified for the labels of the cluster assignments, to obtain an ID value for each group.
Table 5.1 reports the results. As expected, the classification is almost perfect in all the different
cases. It is interesting to note that many observations are needed to capture the true latent
dimensions of the biggest manifold (true ID = 10). When the number of observations is limited,
the true ID is underestimated.

GT n = 40 n = 100 n = 200 n = 500 n = 1000 n = 5000

d1 7 7.5620 6.1329 6.6556 6.5499 6.9300 7.1707
d2 3 3.8718 2.5988 3.4442 2.9069 3.1045 2.8831
d3 5 4.5988 3.3017 4.9553 5.5028 4.9217 5.0901
d4 10 6.3364 6.4490 7.6904 8.5021 8.5416 9.8264

ARI — 1.0000 1.0000 1.0000 0.9426 1.0000 0.9856

Table 5.1: Simulation Study. The table shows the estimated ID for each of the
estimated clusters, recovered minimizing the Variation of Information as in Wade
and Ghahramani (2015). GT indicates the ground truth, ARI the Adjusted Rand

Index. In these cases, we fix q = 3 and ζ = 0.75

We also study how the results change varying the number of consecutive ratios employed, along
with q. Table 5.2 reveals some interesting insights: on simple data, the model is fairly robust to
the specifications of both L and q. In particular, the only problematic case is encountered when
q = 2: it seems that the local information provided by the additional term in the likelihood is
not sufficient to detect the real data structure. As q becomes higher, the true structure of the
data is recovered. Over, in other practical applications, we found that a level of q over 4 tends to
favor the creation of small, uninteresting clusters, producing “local overfitting”. This behavior
is not observed in this application, due to the usage of the Repulsive prior on dk. We underline
how, practically, L and q can be independent of each other as the last column Table 5.2 shows.
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q=L=2 q=L=3 q=L=4 q=L=5 q=3, L=5

d1 4.7867 6.6490 6.4756 6.3807 6.3808
d2 9.0233 3.0968 3.2008 2.8340 2.9158
d3 — 5.2243 5.0723 4.6628 4.6628
d4 — 7.6249 7.7603 8.0265 7.9882

Table 5.2: Simulation Study. The table shows the estimated ID for each of the
estimated clusters, recovered minimizing the Variation of Information as in Wade
and Ghahramani (2015). The number of observation is fixed, equal to n=500.

We finally assess the reliability of our model applying CRIME to the 5 Gaussians dataset used
also in Allegra et al. (2019). The data consists of 5000 observations in D=10, where the data
are generated, in equal proportions, from Gaussians characterized by different ID (1, 2, 4, 5,
and 9, respectively). Differently from our first application, here the 5 distributions overlap to a
great extent, being their centroids close to each other. Figure 5.D.1 in the Appendix shows the
composition of the data. We run the model with the priors previously specified and obtain the
results reported in Table 5.3. The overall classification is capable to reach an ARI of 0.9306.

d1 d2 d3 d4 d5

GT 1 2 4 5 9
d̂ 1.0095 2.0358 4.2360 4.9681 9.0349
Clust 1020 973 989 999 1019

Table 5.3: Simulation Study. 5 Gaussians dataset. The table shows the esti-
mated ID for each of the estimated clusters.

5.5.2 Application to real data

Leukemia Dataset

We consider the famous Golub dataset, from the microarray study in Golub et al. (1999):
n = 72 leukemia patients, 47 with acute lymphoblastic leukemia (ALL) and 25 with acute myeloid
leukemia (AML – a worse prognosis) have each had genetic activity measured for a panel of
D = 7128 genes. The AML group appears to show greater activity on average (Efron and Hastie,
2016).
We run 100000 iterations discarded as burn-in period, followed by 50000 MCMC sweeps that
we retain as posterior sample. We fix L = q = 3, and we adopt a repulsive Gamma prior
with hyperparameters (a0 = 5, b0 = 1, τ = 0.5, ν = 0.001) for the ID parameters and we set α ∼
Gamma(3, 3) for the DP concentration parameter.
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Figure 5.1: Golub dataset. The graph shows the boxplots of the median IDs
estimated for the 72 patients, stratified by the recovered clusters. The different
colors are associated with prognosis. The different horizontal lines highlight the

median ID per cluster.

The estimated median IDs gather in three clusters, found minimizing the Variation of Infor-
mation. In Table 5.4 we report the stratified mean and the standard deviations of the median
estimates, along with the proportion of AML prognosis. Cluster 1 and 3 contain only ALL patients
whose genes have average ID ≈ 19 and ≈ 16. The mean estimate of the second cluster’s ID
is less representative, being the estimates more variable. As also suggested by Figure 5.1 the
second cluster, characterized by higher average ID ≈ 22, contains all the AML cases. This leads
to the conclusions that the sets of genes of patients with AML lie on a more complex manifold
than the ALL genes. This kind of information could provide valuable insights for subsequent
explorative analyses, differential expression studies, and prognostic tasks.

Cluster 1 Cluster 2 Cluster 3
n 28 28 16
Mean ID 19.65 (0.26) 22.21 (0.59) 16.41 (1.513)
AML% 0.00% 89.28% 0.00%

Table 5.4: Golub Dataset. Average, standard deviation of the median ID and
AML proportion found in each cluster.

Schimtz dataset

The Schmitz dataset is a collection of more than 25000 rna-sequenced genes measured for 564
biopsy samples affected by diffuse large B-cell lymphoma, or DLBCL. DLBCL is a type of cancer
that starts in white blood cells called lymphocytes. Different cases of DLBCL are phenotypically
and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL ac-
cording to the cell of origin that are associated with a differential response to chemotherapy and
targeted agents: activated B-cell–like (ABC), germinal-center B-cell–like (GCB), and unclassi-
fied (Schmitz et al., 2018). It is of paramount importance trying to find biological patterns that
can provide more insights regarding these subgroups.



134 Chapter 5. Bayesian Mixture Models for Intrinsic Dimension Estimation

For our analysis, we consider 481 samples for which additional demographic and medical in-
formation is available, such as gender, age, type of treatment and time until recurrence of the
disease. Led by a field expert, we focus our attention on a subset of 19 genes that are known to
be extremely relevant in DLBCL cases. The list of the codes of the considered genes is reported
in the Appendix. For each sample, the rna-seq counts are normalized according to the relative
library size. Our target is to understand if the different subgroups of DLBCL are characterized
by heterogeneous IDs, similarly as in the application to the Golub dataset. Moreover, since
extra information is available, we also investigate how the different survival times are related to
the estimated IDs.
To fit the model, we employ the same hyperprior values of the previous application and we run
50000 MCMC iterations after a burn-in of double length.

Cluster 1 Cluster 2 Cluster 3
n 267 114 100
Mean ID 10.09 (0.21) 9.69 (0 11) 11.68 (0.06)
ABC% 72.28% 43.85% 0.00 %
GCB% 5.99% 20.17% 99.00%
Unclass% 21.72% 35.96 % 1.00%
Mean Age 62.41 61.57 57.79
Female % 41.57% 39.47% 39.00%

Table 5.5: Schmitz Dataset. Different characteristics of the three estimated
clusters.

Figure 5.2: Schmitz dataset. Survivial curves based on Kaplan-Meier estimates
(top panels) and table of number at risk (bottom panel) in the 3 estimated clusters.

The results provide very interesting insights. Minimizing the Variation of Information we recover
3 clusters. Descriptive statistics of the features of this partition are reported in Table 5.5. The
first cluster is characterized by an higher amount of ABC samples, associated with a mean ID
of ≈ 10 and higher average age. The second cluster, of mean ID of ≈ 9.5, contains similar
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Figure 5.3: Schmitz dataset. Survivial curves based on Kaplan-Meier estimates
(top panels) and table of numbers at risk (bottom panel) in the 3 retrieved clusters.

proportions of ABC, GCB and Unclassified subgroups. Interestingly, the third cluster is almost
entirely composed of GCB subtypes and no ABC. Moreover, it is characterized by the highest
mean ID (≈ 12) and younger patients. The different proportions of subgroups in the various
clusters are evident from the Figure 5.2.
We also study if the different clusters are helpful to discriminate subgroups of patients charac-
terized by different survival times (in months, until death). The estimated Kaplan-Meier curves
(Kaplan and Meier, 1958) and numbers at risk are reported in Figure 5.3. The results are re-
markable: the three curves are well discriminated, with the first cluster being characterized by
patients in worse conditions, being the red curve always below all the others. On the contrary,
the blue curve, relative to the third cluster, shows that patients with higher ID are associate
with longer survival time. This is in line with our expectations, since the first cluster contains
the highest proportion of ABC subtype, the most dangerous one, while the third contains none
of them. An interesting index is this context is the median follow-up time: for the first cluster
it is of almost 6 months, for the second almost 10, while it is not even reached (> 16 months)
in the third cluster.

These two applications showed how the ID can be extremely helpful to obtain prognostic insights
from biomedical dataset.
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5.6 Future Directions and Conclusions

5.6.1 A Dependent Dirichlet Process Approach

The introduction of the adjacency matrix N q is a clever and elegant expedient to inform the
model regarding the distance structure between the data points. However, modeling the extra
information in this manner requires to specify and tune hyper-parameters and may not com-
pletely solve the problem. Generally speaking, we may have access to covariates that help us
to learn about the topology structure of the data, as the introduction of the adjacency matrix
does in the previous case. To incorporate covariates, we can rewrite model (5.19) adopting a
different approach, via Dependent Dirichlet processes (MacEachern, 1999; MacEachern, 2000;
De Iorio et al., 2004; Duan et al., 2007). Suppose that we know the true manifold membership
of our data. We see the data as coming from collections of distributions defined on an appro-
priate space S, where the index represents the actual manifold or any other available covariate.
These models provide additional flexibility by allowing the mixing distribution Gs to change
with s ∈ S while inducing dependence among the members of the collection (Rodríguez and
Dunson, 2011). Specifically, many authors propose DPMM where the dependence is introduced
among the atoms or among the weights of a stick-breaking representation. However, studies
in the literature showed that introducing the dependence only at the level of the atoms is too
limiting. For example, models with non-constant weights have richer support (MacEachern,
2000). Thus, many authors focused on modifying the classical stick breaking formulation to
obtain more flexible models. In a spatial setting, Reich and Fuentes (2007) propose a stick
breaking prior by assigning each location a different, unknown distribution, and smoothing the
distributions in space with a series of kernel functions. Following the directions provided by
Ishwaran and James (2001), Rodríguez and Dunson (2011) build a new stick breaking process
characterized by variables defined as ul = Φ (αl) with αl ∼ N

(
µ, σ2), where the Beta distribu-

tion is substituted with a Normal c.d.f. This approach is easily extendable to the presence of
external variables, which leads to the following Dependent Dirichlet Process Mixture Models via
Probit stick breaking process for the data (y1, . . . , yn):

yi(s) ∼ fs =
∫
K(·|φ)Gs(dφ), Gs(·) =

L∑
l=1

wl(s)δθl(s)(·),

wl(s) = Φ (αl(s))
∏
r<l

(1− Φ (αr(s))) ,
(5.22)

where K(·|φ) is a parametric kernel indexed by φ, {αl(s) : s ∈ S}L−1
l=1 has Gaussian marginals

and {θl(s) : s ∈ S}Ll=1 are independent and identically distributed sample paths from a given
stochastic process. The computational tractability can be simplified if conjugate SUN priors
(Durante, 2019) are adopted for αl. In the same spirit Rigon and Durante (2017) have proposed
a tractable Logistic stick breaking prior of the form:

yi|zi = k,xi ∼ Kxi (yi;φk) ,

P (zi = k|xi) = πk (xi) = νk (xi)
k−1∏
l=1
{1− νl (xi)} ,

νk (xi) =
exp

{
ψ (xi)T αh

}
1 + exp

{
ψ (xi)T αh

} = pr (zi = k|xi)
pr (zi > k − 1|xi)

∀k ≥ 1,

(5.23)

where Kxi (yi;φh) indicates a parametric kernel that can depend on both the covariate values
specific of the i-th individual xi ∈ Rp and on the indexing parameter φh, ψ is a generic transfor-
mation of the covariates and each αh is the vector of regression coefficients. For our application,
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we fix ψ equal to the identity function. This formulation allows each νh (xi) to be interpreted
as the probability of being allocated to component h, conditionally on the event of “surviving”
to the previous 1, . . . , h− 1 components, meaning νh (xi) = pr (zi = h|zi > h− 1,xi) .
Given the Polya-Gamma conjugacy introduced by Polson et al. (2013), the authors propose a
easy-to-implement algorithm that preserves the computational tractability assuming multivari-
ate Normal priors for αh ∼ MVN (0, cIp), where Ip is a p× p unitary diagonal matrix. In this
framework, we can modify (5.19) removing the homogeneity-inducing N q term and incorporate
the external information regarding proximity and other data features obtaining

µi,L|z,d = P̂ (µi,L|dzi) ,

zi|π
ind∼

+∞∑
k=0

πk(xi)δk,
(5.24)

with πk(xi) defined as in (5.23). The covariate information can encode already available mea-
surements or, alternatively, we can extract topological information with previous exploratory
analyses such as the output of a hierarchical clustering procedure.

Figure 5.1: Iris dataset - Median Intrinsic Dimension a posteriori obtained
fitting a Dependent Dirichlet Process approached applied to Crime model, K=10

As a preliminary application, we use again the Iris dataset. This time, we employ the Species
variable as a covariate. We truncate the stick-breaking prior in (5.24) at K = 10 and we consider
only the first ratio of distances, setting L = 1. We also set c = 100, and we run 50000 iterations
after a burn-in period of the same length. Figure 5.1 shows promising results: with only the
variable already present in the dataset, we can recover a result that is very similar to the one
presented in Figure 5.3.

5.6.2 The representative individual.

In some applications, once the manifold assignment has been recovered, it might be interesting
to summarise each group with a “representative individual” (RI). A first, simplistic solution
would be to synthesize each cluster taking the considering or the coordinate-wise average or
median of the observations assigned to that group. These euclidean quantities are fast and easy
to compute even for high-dimensional datasets. However, the resulting RI may be different from
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the observed data, substantially ignoring the topological properties of the manifold. Multivari-
ate refinements of the median are available and we refer to Small (1990) for a review. The
medoids, recovered minimizing the average dissimilarity to all the objects in the same cluster,
are known to be a more informative alternative since they are always restricted to be members
of the dataset (Struyf et al., 1996).

Information regarding the topology of the data is included employing the Geodesic distance:
this quantity is computed taking into account the geometry of the latent manifold in which
the data are embedded. Once a (possibly weighted) local graph among the data is built, the
geodesic path between two nodes is defined as the path with the minimum number of edges.
If the graph is weighted, it is a path with the minimum sum of edge weights. The length of a
geodesic path (the sum of its weights) is called geodesic distance or shortest distance. A graph
is usually represented by a distance matrix D, whose non-zero entries indicate the presence of
an edge between two nodes.
Let N̂ q be the symmetric version of N q, such that N̂ q

ij = 1 if N q
ij = 1 ∨ N q

ji = 1. Thus, N̂ q

describes an unweighted undirected graph. We compute D as

Dij = D � N̂ q, (5.25)

where D is the usual euclidean distance matrix and � indicates the element-wise product. We
recover a weighted graph, where every point is connected with its first q-NNs, and the weight
of each connection is exactly the euclidean distance between the two nodes. Once this ma-
trix is available, we apply the Floyd—Warshall’s algorithm (Floyd, 1962) to derive a geodesic
distance matrix DGF . Many other algorithms are available to derive DG: another option is to
make use of the Spherelets Geodesic estimator of Li and Dunson (2019a), a state-of-the-art
method that includes the value of the intrinsic dimension of the data in the computation. We
leave for future research the investigation of how different distances may affect the ID estimation.

Once a geodesic distance matrix is available, we need to select the representative individual. Let
∆d
G (x1, x2) be the geodesic distance between two points x1, x2 ∈ RD, embedded on a potentially

non-linear sub-manifold of dimension d < D. Thus, we can estimate the representative individual
x̂d with

x̂d = arg min
x

n∑
i=1

∆d
G (x, xi) , (5.26)

in the spirit of the definition of Fréchet-mean. However, this proposal does not ensure that the
x̂d is actually a member of the dataset and, for high-dimensional samples, can be extremely
computationally expensive. Instead, we obtain a representative point selecting the observation
of the dataset that minimizes the average geodesic distance from all the other data points.

We apply all the aforementioned approaches to two different samples: the Spiral dataset, a
two-dimensional spiral embedded in a D = 3 dimensional space, and to the Iris dataset. To
obtain a multivariate median we employ the Liu’s method (Liu et al., 1999) on the Spiral
dataset, which is exact for two-dimensional data. Instead, for the Iris dataset we compute
Tukey’s median (Tukey, 1975). We also estimate the overall medoid using the pam algorithm
(Reynolds et al., 2006), fixing the number of groups equal to 1. To obtain DGF we set q = 3.
Applying the algorithm of Li and Dunson (2019a) requires the specification of an integer ID and
the number q̂ of NNs needed to compute the spherelets approximation. For the Spiral dataset
we set d = 2 and we study the results for q̂ = 3, 4, 5. For the Iris dataset, following the insights
provided by Figure 5.3, we separate three clusters according to the Species level and we roughly
set the IDs equal to d1 = 4, d2 = 3 and d3 = 3.
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Figure 5.2: Top panel: Spiral Dataset - 1000 observations (gray dots) of in-
trinsic dimension d = 2, embedded in a D = 3-dimensional space. Bottom panel:
Iris Dataset - Observations (gray dots) of dimension d1 = 4, d2 = 3, and d3 = 3
embedded in a D = 4 dimensional space. The points are projected onto the sec-
ond and the third dimensions. The undirected edges indicates whether or not two
points are connected according to the matrix N̂ q. Representative individuals ob-
tained with different methods are highlighted. In detail: CW-Average, CW-Median
are the coordinate-wise average and median, MV-Median represents the multivari-
ate median, PAM denotes the overall medoid, Floyd and Spher label the RIs found

applying graphical-based methods

From the top panel of Figure 5.2, where the results on the Spiral dataset are reported, it is
immediate to see why the coordinate-wise average and median (CW-Average, CW-Median) have
poor representative importance: the two points are outside the manifold where the data lie,
losing any interpretability. The multivariate median (MV-Median) and the overall medoid (PAM)
coincide. All the graph-based methods (Floyd, Spher) provide similar results, except for the
Spherelets approach when q = 3. The bottom panel of Figure 5.2 shows the RI for the Iris
data, stratified by Species. The data are projected onto the second and third dimensions to
allow a graphical representation. All the methods provide similar results, and we can appreciate
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how the central tendency is captured. In general, methods based on graphical distances are
preferable. In particular, for these simple cases, Floyd—Warshall’s algorithm turns out to be
computationally efficient and clear, providing a reliable RI.

5.6.3 Discussion and Conclusions

Dimensionality reduction is one of the most investigated areas of statistics. One of the key
aspects of this field is the estimation of the ID of a dataset, namely the dimension of the non-
linear sub-manifold where the data are postulated to lie. In this work, we have proposed a local,
non-linear probabilistic mixture model that allows for the presence of heterogeneous IDs in the
same dataset. We start proposing two simple modifications to Hidalgo, a finite mixture model
where the IDs are regarded as mixture component parameters: instead of adopting classical
conjugate independent distributions, we propose to consider truncated distributions (especially
useful when the nominal dimension of the dataset D is limited) and repulsive densities. This
would avoid the creation of small clusters characterized by very similar IDs, avoiding overfitting.
Then, we show that the theoretical framework presented in Facco et al. (2017) and Allegra et al.
(2019), where the authors provide a law for the ratio of the distances between the first and second
nearest neighbor of a point, can be easily extended to a general number of consecutive ratios.
With simulations, we underline that including more than one ratio helps to lower the variance
of the estimates, even if the hypothesis of independence and identical distribution adopted in
the MLE case can be too limiting. We exploit the derived results proposing a BNP mixture
model, CRIME, for which we derive a slice sampler to perform posterior inference, applied on
simulated and real datasets. We also showed some preliminary results about the derivation of
a representative individual for the manifold, once a partition of the data reflecting the different
intrinsic manifolds is estimated.
The developed theoretical framework is elegant and contributes to the Homogeneous Poisson
Point process theory, but at the same time contains the major limitation of this model: the
independence among the ratios (or the exchangeability, if we adopt the Bayesian paradigm) is
difficult to justify, especially in cases where the number of data points is limited and the number
of consecutive ratios in high. Models that can handle the covariance among the ratios will be
the focus of future research, as well as models that take into account measurement error. A
second limitation stands in the choice of q, the number of neighbors in the introduced adjacency
matrix. At the moment, we justify its choice by selecting a value equal to the number of ratios
considered, since both are linked to the local homogeneity on the same scale. On one hand, the
model can be extended modeling the adjacency matrix N q more carefully, possibly exploiting
network or graph theory. On the other hand, one can also attempt a different approach, including
the information regarding the local topology as a covariate with a Dependent Dirichlet Process
approach. We discuss some possibilities in the previous section. That being said, many other
exciting future directions are possible. We show how the model works well with functional data.
This suggests that applications on more involved data structures, such as networks or tensors,
as long as we define a proper metric that induces a suitable neighborhood structure among
the points. It would be also interesting to extend the model from a theoretical point of view,
investigating the possibility of including concepts from Extreme Value Theory. Estimating the
IDs can also be useful in many statistical applications other than exploratory procedure and
classification tasks: studying the variations in the IDs of the generated samples in Approximate
Bayesian Computation (ABC, Beaumont et al., 2002) as a function of a distance threshold could
uncover to interesting insights for better tuning that kind of models.
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Appendix

5.A Proofs of theoretical results
The following useful results hold:

1. Let X ∼ Exp (ρ) and Y ∼ Erlang(n, ρ), such that X ⊥⊥ Y . Then, Z = X
Y + 1 ∼

Pareto (1, n).

2. If Z ∼ Pareto(xm, α) then log (Z/xm) ∼ Exp(α).
Proof: recall that fZ(z) = dxdmx

−(d+1) and consider w = log(z/xm) ⇐⇒ z = xm exp(w).
The Jacobian of the (scalar) transformation is dz = xm exp(w)dw.
Then, fW (w) = xm exp(w)dxdm(xmexp(w))−(d+1) = d exp(−dw)) which is the density of a
Exponential random variable with parameter d.

3. If X ∼ Pareto(1, α), then Y = Xq ∼ Pareto(1, α/q).
Proof: If X ∼ Pareto(1, α), then fX(x) = αx−(1+α). Then, since X = Y 1/q and d

dyy
1/q =

1
qY

1/q−1 employing the Jacobian method we obtain:

fY (y) = αy−(1/q+α/q) 1
q
y1/q−1 =

(
α

q

)
y(−α/q+1)

which is the density of a Pareto(1, α/q) random variable.

5.A.1 Proof of Lemma 1

Given the previous results 1. and 3., proving Lemma 1 is straightforward. Consider vj , the
volume of hyperspherical shell computed as ωd

(
rdj − rdj−1

)
, where rj is the distance between an

observation x and its j-th nearest neighbor (NN). We know that vi
i.i.d.∼ Exp(ρ) (Erlang(1, ρ)).

Then, according to 1., v2
v1

+ 1 ∼ Pareto(1, 1). Also, v2
v1

+ 1 = rd2/r
d
1 . We can then conclude that

µ = r2
r1

=
(
v2
v1

+ 1
)1/d

which means that, according to result 3., we have µ ∼ Pareto(1, d).

5.A.2 Proof of Lemma 2

The marginal distributions in (5.9),(5.10) follow from elementary properties of Exponential,
Gamma and Pareto random variables. We drop the observational index i for ease of exposi-
tion. Let us call γl = log

(
rl
rl−1

)
, for l = 2, 3, . . . , L. We want to derive the joint density of

(γ1, γ2, . . . , γL). To do so, we start from the joint density of (v1, v2, v3, . . . , vL), with density
f(v1, v2, v3, . . . , vL) = ρL exp

[
−ρ

∑L
l=1 vl

]
. Consider the following one-to-one transformation:
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γ1 = v1

γ2 = 1
d log

(
1 + v2

v1

)
γ3 = 1

d log
(
1 + v3

v1+v2

)
...

γL = 1
d log

(
1 + vL∑L−1

l=1 vl

)
⇐⇒



v1 = γ1
v2 = γ1 (exp [dγ2]− 1)
v3 = γ1 exp [dγ2] (exp [dγ3]− 1)
...

...
vL = γ1 exp

[
d
∑L−1
l=2 γl

]
(exp [dγL]− 1)

Now, let EL2 = ed
∑L−1

l=2 γl . This transformation has Jacobian:

J =



1 0 0 . . . 0(
edγ2 − 1

)
γ1de

dγ2 0 . . . 0
edγ2

(
edγ3 − 1

)
γ1de

dγ2
(
edγ3 − 1

)
γ1de

dγ2edγ3 . . . 0
...

...
... . . . ...

ded
∑L−1

l=2 γl
(
edγL − 1

)
dγ1E

L
2

(
edγL − 1

)
dγ1E

L
2

(
edγL − 1

)
. . . dγ1E

L
2 e

dγL


whose determinant is |J | = γL−1

1 dL−1∏L
l=2 exp [d · (L− l + 1)γl].

We can write

f(γ1, γ2, . . . , γL) = ρLγL−1
1 dL−1 exp

[
−ργ1E

L
2

] L∏
l=2

exp [d · (L− l + 1)γl]

We then integrate out γ1 to find f (γ2, . . . , γL):

f (γ2, . . . , γL) =dL−1
L∏
l=2

(l − 1) exp [−(l − 1)dγl]

=d exp [−dγ2] · · · d(L− 1) exp [−d(L− 1)γL] .

This result reveals an interesting property. Since f (γ2 . . . , γL) =
∏L
l=2 f (γl), we can conclude

that γ2, . . . , γL are independent exponential random variables.

So we have obtained the following general statement:

(γ2, . . . , γL) ∼ Exp(d)× · · · × Exp((L− 1) d). (5.27)

This holds if when the hypothesis of uniformity of the intensity of the Poisson Process holds
till the L-th NN. Again, we can use this result combined with q, jointly modeling the first q ratios.

5.A.3 Proof of Lemma 3

Let {Xi}ni=1, n ≥ 2, denote a sequence of independent exponential random variables with pair-
wise distinct parameters λi. The sum of n random variables Xi ∼ Exp(λi) is said to follow an
Hypoexponential distribution, with density

fX1+X2+···+Xn(x) =
[
n∏
i=1

λi

]
n∑
j=1

e−λjx∏n
l 6=j
l=1

(λl − λj)
, x > 0
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We want to characterize the distribution of X = µi,n1,n2 = rn2
rn1

, with n2 > n1 integer values.
Notice that

X = rn2

rn1
= rn2

rn2−1
· rn2−1
rn2−2

· · · rn1+1
rn1

,

i.e. X can be rewritten as the product of n2 − n1 independent Pareto distributions. If we
consider instead Y = log(X), we end up with

Y = log(X) = log
(
rn2

rn1

)
= γn2 + . . .+ γn1+1,

i.e. a sum of L = n2 − n1 independent Exponential random variables with integer parameters
ranging from n1d to (n2 − 1)d.
So now we can write the distribution of Y employing an Hypoexponential density:

fY (y) =
[
L∏
i=1

λi

]
L∑
j=1

e−λjy∏L
l 6=j
l=1

(λl − λj)

=d(n2−n1) (n2 − 1)!
(n1 − 1)!

n2−n1∑
j=1

e−(n1+j−1)dy

dn2−n1−1∏n2−n1
l 6=j
l=1

((n1 + l − 1)− (n1 + j − 1))

=d(n2 − 1)!
(n1 − 1)!

n2−n1∑
j=1

e−(n1+j−1)dy∏n2−n1
l 6=j
l=1

(l − j)
, y > 0.

(5.28)

We notice that the following equality holds

n2−n1∏
l 6=j
l=1

(l − j) = (j − 1)!(n2 − n1 − j)!(−1)j+1

Figure 5.A.1 shows some example of the density in (5.28) for different values of d, n1 and n2:
We can also derive the distribution for X = exp(Y ), transforming the last density:

fX(x) =d(n2 − 1)!
(n1 − 1)!

1
x

n2−n1∑
j=1

e−(n1+j−1)d log x∏n2−n1
l 6=j
l=1

(l − j)
= d

(n2 − 1)!
(n1 − 1)!

n2−n1∑
j=1

x−(n1+j−1)d−1∏n2−n1
l 6=j
l=1

(l − j)
,

=d(n2 − 1)!
(n1 − 1)!

n2−n1∑
j=1

x−(n1+j−1)d−1

(j − 1)!(n2 − n1 − j)!(−1)j−1

=d(n2 − 1)!
(n1 − 1)!

n2−n1∑
k=1

x−(n2−k)d−1

(k − 1)!(n2 − n1 − k)!(−1)n2−n1−k

= d

xn2d+1
(n2 − 1)!
(n1 − 1)!

n2−n1∑
k=1

xkd(−1)n2−n1−k

(k − 1)!(n2 − n1 − k)!

= d

xn2d+1
(n2 − 1)!
(n1 − 1)!

(n2 − n1 − 1)!
(n2 − n1 − 1)!

n2−n1∑
k=1

xkd(−1)n2−n1−k

(k − 1)!(n2 − n1 − k)!

= d

xn2d+1
(n2 − 1)!
(n1 − 1)!

1
(n2 − n1 − 1)!

n2−n1−1∑
l=0

(
n2 − n1 − 1

l

)
(xd)l+1(−1)n2−n1−l−1

= d

x(n2−1)d+1
(n2 − 1)!
(n1 − 1)!

(xd − 1)n2−n1−1

(n2 − n1 − 1)! = (n2 − n1)
(
n2 − 1
n1 − 1

)
d(xd − 1)n2−n1−1

x(n2−1)d+1 , x > 1.

(5.29)
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Figure 5.A.1: The various panels report the shapes of the density in (5.28) for
different values of d, n1 and n2

Note that at the fourth line we applied the reflection property of the indexes of a sum:
∑K
k=1 ak =∑K

k=1 aK−k+1. In the sixth line, we applied the Newton binomial formula.
Figure 5.A.2 shows some example of the density in (5.29) for different values of d, n1 and n2:

Figure 5.A.2: The various panels report the shapes of the density in (5.29) for
different values of d, n1 and n2
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We can specialize the last density to the case where n1 = n0 and n2 = 2n0. We recover:

fX(x) =d(2n0 − 1)!
(n0 − 1)!

n0∑
j=1

x−(n0+j−1)d−1

(j − 1)!(n0 − j)!(−1)j+1 ,

= (2n0 − 1)!
(n0 − 1)!2 ·

d(xd − 1)n0−1

x(2n0−1)d+1 , x > 1. x > 1.

5.A.4 Distributions of the distances rl
We can also derive the joint distribution of the first L distances {rl} from a point x to its
first L NNs. Recall that f(v1, . . . , vL) =

∏L
l=1 f(vl), where f(vl) = ρ exp(−ρvl), meaning that

vl
i.i.d.∼ Exp(ρ). We can consider the following one-to-one transformation:

r1 =
(
v1
ωd

)1/d

r2 =
(
v1+v2
ωd

)1/d

r3 =
(
v1+v2+v3

ωd

)1/d

...

rL =
(∑L

l=1 vl
ωd

)1/d

⇐⇒



v1 = ωdr
d
1

v2 = ωd
(
rd2 − rd1

)
v3 = ωd

(
rd3 − rd2

)
...
vL = ωd

(
rdL − rdL−1

)

The determinant of the Jacobian of this transformation is |J | = (ωdd)L
∏L
l=1 r

d−1
l . Thus, the

distribution of the first L distances has density:

f(r1, . . . , rL) = (ρωdd)L
(

L∏
l=1

rd−1
l

)
exp

[
−ρωdrdL

]
,

with rl ∈ R+ with the constraint that r1 < r2 < . . . < rL.
It can be particularly interesting to derive the marginal distribution of the generic distance rL.
This can be easily done integrating out the previous distances rl, l = 1, . . . , L− 1.

f(rL) =
∫ rL−1

0

∫ rL−2

0
· · ·
∫ r1

0
(ρωdd)L

(
L∏
l=1

rd−1
l

)
exp

[
−ρωdrdL

]
dr1 · · · drL

= exp
[
−ρωdrdL

]
(ρωd)L

∫ rL−1

0

∫ rL−2

0
· · ·
∫ r1

0

(
L∏
l=1

rd−1
l

)
dr1 · · · drL

= exp
[
−ρωdrdL

]
(ρωd)L

∫ rL−1

0

∫ rL−2

0
· · ·
∫ r1

0

(
L∏
l=1

rd−1
l

)
dr1 · · · drL

= exp
[
−ρωdrdL

]
(ρωd)L rLd−1

L

(L− 1)!dL−1 .

This result is remarkable since we have proven that the generic distance from a point to its L-th
NN follows a Generalized Gamma distribution, whose density is given by

f(x) = p/aq

Γ(q/p)x
q−1e−(x/a)p , x, a, p, q > 0,
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Therefore, f(rL) is a Generalized Gamma density with parameters

p = d, a = 1
d
√
ρωd

, q = Ld.

There is another, much easier way to recover this result. Since vl ∼ Exp(ρ) for each l = 1, . . . , L,
it is easy to see that the volume of the hypersphere of radius rL, defined as VL =

∑L
l=1 vl = ωdr

q
L

follows an Erlang distribution: VL ∼ Gamma(L, ρ). Thus,

VL ∼ Gamma(L, ρ) ⇐⇒ rdL ∼ Gamma(L, ωdρ) ⇐⇒ rL ∼ GenGamma
(
d,

1
d
√
ρωd

, Ld

)
.

5.B A general formula for sampling Interval-truncated random
variables

Consider the real-valued random variable X, characterized by density function f (x), cumulative
density function (c.d.f.) F (x) and support SX = R. Let us consider the simplest case of
a truncated random variable. Suppose we are interested in the probability density of X after
restricting the support to be between two constants: I = (a, b] . In other words, we are interested
in the distribution of X given a < X ≤ b, given by

f(x|a < X ≤ b) =
f(x)1(a,b](x)
F (b)− F (a) .

If a = −∞ or b = +∞, we speak about right and left truncation, respectively. In the statistical
literature, numerous algorithms for sampling from truncated distributions have been proposed.
One of the most used relies on the so-called inverse c.d.f. method. Algorithm 1 lists the steps,
as they are described in Saucier (2000). Of course, the key point in order to exploit such an
algorithm is the clear definition of the c.d.f. of the truncated distribution. For the univariate
case, it is reasonably simple to invert the formula, analytically or numerically. Dealing with the
peculiar form of the repulsive densities introduced in Petralia et al. (2012), we need a method
that is capable to sample from distributions whose supports have been truncated over more than
one interval.
For simplicity, consider the case in which we have two intervals, I1 = (a, b] and I2 = (c, d] where
we assume b < c so that I1 ∩ I2 = ∅. Let us denote with E1 and E2 the events {a < X ≤ b} and
{c < X ≤ d}, respectively. Moreover let P1 = F (b)−F (a), P2 = F (d)−F (c) and T2 = P1 +P2.
The new density is given by

f(x|E1, E2) = f(x)1I1∪I2(x)
P1 + P2

.

The new c.d.f. consequently becomes:

F (x|E1, E2) =



0 if x ≤ a
1
T2

(F (x)− F (a)) if x ∈ (a, b]
P1
T2

if x ∈ (b, c]
P1
T2

+ 1
T2

(F (x)− F (c)) if x ≤ (c, d]
1 if x ≥ d

Once the mechanism is clear, it is straightforward to generalized to the case of n disjoint intervals,
identified by the sequence of real numbers a1

1 < a2
1 < a1

2 < a2
2 < . . . < a1

n < a2
n, where a1

k

and a2
k are the extremes of the k-th interval Ik, k ∈ {1, . . . , n}. Let us denote the (ordered)
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intervals as I1, I2, . . . , In. Let pk = F (a2
k) − F (a1

k), Pk =
∑k
r=1 pr and T =

∑n
r=1 pr. Finally,

let Ek = {a1
k < X ≤ a2

k}, Īk,k+1 = {a2
k < X ≤ a1

k+1} with Ī0,1 = {−∞ < X ≤ a1
1} and

Īn,n+1 = {a2
k < X < +∞}.

Algorithm 1: Basic Algorithm for sampling a truncated distribution with the inverse
c.d.f. method.
Input:
NSIM: number of samples desired, a: left truncation parameter, b: right truncation
parameter
Result: A sample of dimension NSIM from a Truncated Distribution

1 for i ∈ {1, . . . , NSIM} do
2 Generate Ui ∼ U(0, 1).
3 Set Yi = F (a) + [F (b)− F (a)]Ui.
4 Return Xi = F−1(Yi).
5 end

The density in this more general case is given by

f(x|E1, . . . , En) = f(x)1I1∪...,∪In(x)
T

.

The new c.d.f. consequently becomes:

F (x|E1, . . . , En) =



0 if x ∈ Ī0,1
1
T

(
F (x)− F (a1

1)
)

if x ∈ I1
p1
T if x ∈ Ī1,2
p1
T + 1

T

(
F (x)− F (a1

2)
)

if x ∈ I2

. . . . . .
Pk−1
T if x ∈ Īk−1,k

Pk−1
T + 1

T

(
F (x)− F (a1

k)
)

if x ∈ Ik
Pk
T if x ∈ Īk,k+1

. . . . . .

1 if x ∈ Īn,n+1

Despite its verbose formulation, this function is elementary to implement. To use the inverse
c.d.f. method, we first sample a value ui from a U (0, 1) and we then compare the corresponding
quantile x∗i solving the equation F (x∗i ) = ui. This can be easily done in Rcpp using the bisection
method (REF!). As an example, we report four different scenarios: a sample of 100000 instances
from a Gamma(5, 1) and its corresponding c.d.f. and the other three cases, where the random
variable has been truncated on different intervals. In detail, the three collections of intervals are

1. I1 = (4, 9]

2. I1 = (1, 2], I2 = (4, 7], I3 = (10, 12]

3. Ik = (k, k + 0.5], with k ∈ {0, . . . , 15}

Figure 5.B.1 reports the four scenarios. We can appreciate that the algorithm, despite its
simplicity, works well even in cumbersome situations like the third framework (bottom-right
panels).



148 Chapter 5. Bayesian Mixture Models for Intrinsic Dimension Estimation

Figure 5.B.1: Four different applications of the the inverse c.d.f. method based
on interval-truncated c.d.f.s. The plots report the histograms (top panels) sampled

from specific distributions (bottom panels).
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5.C Additional simulation with truncated priors
We also considered a simple simulated dataset to assess the utility of the truncated, uniform and
truncated with point mass priors. We considered four uniform clouds of points, well separated in
the space. The dimension of the dataset is D = 7, while the clouds are of dimension d = 1, 3, 5, 7.
We see how, employing a simple truncation leads to an underestimation of the true ID of the
fourth group.

Figure 5.C.1: Uniform clouds dataset. The top-left panel reports the posterior
means and the 90% credible sets for each observation, after applying Hidalgo with
K=4. The panels on the right show the same output when a truncated Gamma
(top) or a Uniform (bottom) prior on d is adopted. The bottom-left panel shows
the results when a Truncated Gamma is mixed with a point mass in D, with prior
mixture proportion equal to ρ̂ = 0.9. The dashed horizontal lines denote the true

values of the different IDs.
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5.D Five Gaussians Dataset

Figure 5.D.1: The first three coordinates (out of 10) of the 5 Gaussians dataset
used in Allegra et al. (2019). Evidently, the five distributions are overlapping. The

1-dimensional Gaussian is hidden in the main cloud of points.

5.E Schmitz dataset: list of 19 interesting genes
We report the codes of the 19 genes that have been selected by field expert for the analysis.
They are: DENND3, BCL6, LRMP, NEK6, LMO2, ITPKB, SERPINA9, MYBL1, MME,
FUT8, BLNK, BMF, CCND2, SH3BP5, PIM1, IRF4, ENTPD1, ETV6, IL16.
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Chapter 6

Conclusions and Future Directions

“Sono già stato qui; e mi manca, come mi manco anch’io,
smarrito in realtà labili alla coscienza.”

Sono già stato qui – Salvariello Panzatore

“The thing I like best about winter: when it’s over.”
A shop sign in Newport Beach

In this dissertation, we have introduced and discussed several contributions focusing specifically
on Bayesian mixture models, typically in a nonparametric setting. Each method is accompanied
by an algorithm for conducting posterior inference, a simulation study, and real data applica-
tions. We now summarise our main proposals and highlight future directions.

In Chapter 2, we develop a BNP methodology for partially exchangeable data, where the ob-
servations are organized into sub-populations, or units. The proposed Common Atoms Model
(CAM) can be seen as a modification of the nested Dirichlet Process (nDP, Rodríguez et al.,
2008), where the support of the almost surely discrete nonparametric model is constrained to
be the same across all the units. The constraint does not compromise the flexibility of the non-
parametric methodology and, more importantly, leads to a model that does not suffer from the
degeneracy property of the nDP, whereby the posterior collapses to the fully exchangeable case
whenever ties are present in the data (Camerlenghi et al., 2019b). In the nDP, the within-group
clustering still contributes to a compact representation of the data, but unit-level inference across
subgroups is precluded. Instead, the proposed CAM framework naturally allows unit-level in-
ference and clustering of observations across groups, since the structure of the common atoms
allows mapping group-specific distributional patterns onto shared support.
We have studied in detail the properties of the model and have developed a nested version of
the slice sampler to enable fast and efficient computations when conducting posterior inference
with a large number of observations. The proposed framework can also be easily extended to
accommodate several types of data structures. For example, in our application to a microbiome
dataset, we have embedded the CAM into a rounded mixture of Gaussian framework (Canale
and Dunson, 2011), to accommodate for the presence of discrete observations. We have shown
how the estimated clustering structures can be useful for understanding the sources of the het-
erogeneity in microbiome samples, and inform subsequent microbiome analyses.
Many future directions are possible. First, the model can be promptly robustified by employing
Pitman-Yor (PY) priors instead of the more typical DP. Moreover, CAM can be improved into a
model capable of taking into account the presence of covariates and/or data evolving over time,
which are ubiquitous in modern biology. For example, one can construct dependent random
measures with covariate-dependent weights as in MacEachern (2000). Finally, we remark that
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the shared atom structure of CAM makes it particularly suited for the analysis of nested data
sets where the distributions of the units are expected to differ only over a small fraction of the
observations. Of course, this may not always be the case, and more general methods for handling
partially exchangeable data may be needed. More precisely, one can study how to model both
the shared and the idiosyncratic parts of the distributions in a more flexible way. In Chapter
1 we discussed our first attempt, the Mixed nested DP, which is based on the superposition
of random measures. It would be interesting to further investigate this topic, providing more
flexible models and developing tractable and fast algorithms for the estimation of more involved
partially exchangeable structures.

Chapter 3 and 4 are related since they both discuss improvements of the two-groups model
(Efron, 2004). According to this framework, the test statistics in a multiple testing problem are
modeled as a mixture of two competing densities called null and non-null components, respec-
tively. In both the chapters, we comply to the rationale that the null distribution f0, and the
non-null distribution f1 should be well separated, with the first taking values around the origin
and the second having longer tails.
More specifically, in Chapter 3 we propose a version of the two-groups model where both f0
and f1 are modeled with PY mixture models. The base measures and the hyperparameters are
carefully chosen to ensure flexibility for f1 and to constrain f0 to be close to the theoretical
null distribution, i.e. a standard Gaussian. We develop a marginal sampler and assess its per-
formance against well-established competitors with simulation studies. Moreover, we apply this
method to the test statistics from a Negative Binomial regression in a microbiome study, where
the OTU frequencies are associated with case/control variables. Motivated by the application to
the Prostate cancer dataset, future research for this project will be focused on how to improve
the computational aspects: the marginal algorithm can be extremely costly, especially for large
datasets. We have currently developed a split-merge move for this framework (Dahl, 2005), but
we are planning to investigate also the use of the state-of-the-art importance conditional sampler
described in Canale et al. (2019).
In Chapter 4, we focus on the requirement of separation between f0 and f1 and we employ
non-local distributions (Johnson and Rossell, 2010) to model the non-null densities. More in
detail, we first introduce a general family of weighted densities, that encompasses many known
distributions. Then, we propose to model f1 with a non-local density, i.e. a density function
that vanishes in a neighborhood of the origin. The use of non-local priors to directly model the
non-null likelihood ensures that the overlap among the two competing distributions is greatly
reduced. We propose both a parametric and a nonparametric specification of the model. More-
over, we show that under reasonable assumptions the weighted version of the model leads to
better results than its unweighted counterpart, in terms of false discovery rate, false negative
rate, and statistical power. We compare the model with competitors in an extensive simulation
study and then apply our methodology to publicly available datasets from genomics.
Several future directions are worth pursuing, beyond the multiple testing framework. For exam-
ple, the connection between weighted distributions and penalization methods should be further
investigated, as it may provide a general framework for the development of interesting priors
that can induce particularly desirable results (e.g. shrinkage, sparsity, etc.). Moreover, weighted
and non-local likelihoods can also be employed for classification problems in data-analysis.

In Chapter 5 we examine the notion of Intrinsic Dimension (ID) of a dataset with a local
probabilistic model formulation. The ID of a dataset of dimension D, usually denoted as d, is
the dimension of the hidden, possibly non-linear manifold, where the data are postulated to lie.
Expecting some redundancy among the variables, we can assume d < D. We first proposed
to improve the performance of Hidalgo, the heterogeneous ID estimator introduced in Allegra
et al. (2019) using a more suitable prior specification for the ID parameter. Hidalgo is based on
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the fact that, under mild assumptions, the ratio of the distances between the first two nearest
neighbors (NN) of a point follows a Pareto distribution parameterized only by d. We extend
the above methodology, by providing close form distributions for every consecutive ratio of NN
distances and for ratios between the distances of NN of general order. We also develop CRIME,
a Bayesian nonparametric mixture model to avoid to specify beforehand the number of hidden
manifolds present in a dataset, as required by Hidalgo. We investigate the performances of the
model by means of a set of simulation studies, and we also apply the model to a well-known, real
dataset. We need to underline that this modeling framework is well suited for continuous data,
but is not able to handle discrete realizations, especially when ties are present in the dataset.
Our proposal opens up a variety of different possible directions. First, the developed theoretical
contributions pave the way to the investigation of the dependence between the ID and the scale
at which we observe a dataset. Hidalgo and CRIME are based on a constrained likelihood, where
the additional term imposes local homogeneity in the data and at the same time informs about
their topological structure. We can investigate a different modeling framework considering an
unconstrained likelihood specification and introducing additional information in different ways.
As an example, we showed the possibility of employing a Dependent Dirichlet Process approach.
The concept of ID is extremely general, and we are currently using CRIME to study the hidden
structure of complex data, (e.g. network data, functional data) and inferential methodologies
(e.g. Approximate Bayesian Computation). Lastly, we are researching on how to extend the
model to take into account measurement error.
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“Serve pane e fortuna, serve vino e coraggio,
Soprattutto ci vogliono buoni compagni di viaggio!”

(Manco a farlo apposta) Le Luci d’America – Luciano Ligabue

“It all seems so very arbitrary. I applied for a job at this company because they were hiring.
I took a desk at the back because it was empty. But no matter how you get there or where you end up,

human beings have this miraculous gift to make that place home. Let’s do this.”
The Office, Finale – Creed

Here I am at the only part of my thesis that I will re-read from time to time. I had so much
fun writing the acknowledgments for my master’s thesis and I imagined in a thousand ways of
how I would structure this one. Trying to remember every meeting, every small gesture that
was so important in getting me here. But, like every good academic, I am now very close to
the deadline, finding myself having/wanting to write this section in a hurry. And since the long
analogy with the Bayesian paradigm has already been used, I opt for the more classic and tested
stream of consciousness.
It has always been hard for me to detach my personal life over the past three years from “doing
my Ph.D.”, as in a “work-life” trade-off. Rather, I feel that this career choice (combined per-
haps with a little ambition) has influenced my mood and all my important decisions to a great
extent. Wondering why, I thought about how to explain this feeling and recently I surprised
myself pronouncing: “Have you seen? Look, I’ve done everything by myself, on my own!”. The
lack of truthfulness of this sentence struck me as it came out of my mouth. On my own? Please.
These three years were so unique because of the large number of great people that my Ph.D.
allowed me to meet. I have so much to be thankful for, so many people to acknowledge. These
few lines are for you who have accompanied, inspired, raised and changed me.

“An advisor knows he has done his job well if you hate him a bit towards the end of the doc-
torate” (Anonymous Advisor). I will protect the identity of the author of this sentence, but
perhaps it hides some truth. In any case, I must admit that I might have developed a slight
Stockholm syndrome. So, first of all, a thought to my guides.
Thanks Antonietta, for being a turning point of my Ph.D.. You have not only been an advisor,
but also an excellent mentor and a great manager. And looking at everything I have been able
to accomplish with your boost, it is clear that you are really a bit of a magician as well as a
master illusionist.
Thanks Michele, the right person at the right moment. You made me (re-)discover the beauty
of doing research and (understanding right away how to effectively motivate me) you always
pushed me to do better. I have still got a long way to go, but now I feel I have a solid starting
point, and your example to follow.
Thank you Prof. Mecatti for all your help. If I have felt supported in all my academic choices
during the past years, I also owe it to you. The same goes for the coordinator of my program,
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Prof. Vittadini.

I also feel particularly lucky to have met my colleagues, who shared the Ph.D. journey with
me. Thanks Luca, Riccardo, Nik, and Tia: you have taught me so much, from the powerful
Greek pragmatism to knowing how to distinguish what is measurable from what is disgusting.
Moreover, thanks to Riccardo, Anna, Andrea, Paolo, and Federica. With you all, I shared way
more than just an office.
And thanks to you Cap, who with your enthusiasm and your friendship have literally changed
my way of approaching research, news, and life in general. I can’t express enough how grateful
I am to have found you on my way and how much all the good that happened is owed to you.

An entire paragraph has to be dedicated to the amazing people I met in the U.S., thanks to that
life-changing experience that was visiting Irvine. The UCI Stat. Department will always have a
place in my heart, composed of brilliant students and faculty who are literal statistical rockstars.
It has been an honor growing up there, as a researcher and as a person. In particular, thanks
to Ben, Adam, Maricela, Kyle, Jaylen, Naomi, and Klaus. And to Isaac and Mary, Catherine
and Peter, Bob and Connie, Lori, Carly and Casey, and Martin.
And of course to Wendy: thank you blondie, for your invaluable help with everyday life, for
showing me all the cool places your country has to offer (Panera is definitely one of them!), for
your precious friendship, and for all that we shared.
You all helped this inappropriate Italian to feel at home on the other side of the Ocean.

I want to also thank the countless sources of inspiration that shared a small part of my journey
with me, starting from the brilliant professors and researchers with whom I had the fortune to
collaborate and, more generally, to all the brilliant people that I met in USI, Sissa, Bocconi,
Bicocca, Cattolica, and UCI. You all impressed and stimulated me to do my best: Stefano,
Alessandro, Lucia, Daniele, Tommy, Antonio, Bernardo, Federico C., Federico A., Gaia, Dan,
Hal, Alan, Veronica. Some of you have taught me a course, some others have organized work-
shops, others just told me few, powerful words in a particular moment. To all of you I look with
admiration, in the hope of reaching your level.

Thanks to you, who live in the “real world ”, outside the academy, outside statistics, who made
me feel your support, especially in the moments when everything went wrong. So, thank you Ila,
Mondo, Alberto, Clara, all my fellows from my theater family, my fellow swimmers, in particular
Ale and Simo, and my Little Italy in California.

I am truly grateful to my family. Traveling and leaving home helped me better understand
all the affection and love you feel for me (and you prove to me!) every day, so clear in every
hug at the airport, whether I was leaving or coming back. All the support given to me in ev-
ery moment of difficulty (from the most personal to the most stupid and bureaucratic ones) has
become increasingly evident to me. I owe you a lot: everything I am doing is to make you proud.

I spun like a top across many universities for research, for teaching, for workshops and seminars.
Getting out from the comfort zone of my office in Bicocca made me feel like a diver who is
able to jump from the one-meter springboard but that suddenly realizes the existence of the
ten-meter platform. In these last three years, I have just tried to overcome the fear of vertigo
induced by the ladder. Now that I know how to climb that ladder, there is nothing left to do
but learn how to jump.

They have been three intense years of climbing: I have learned a lot, and of this amount, Statis-
tics is only the smallest part.
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Eccomi arrivato all’unica parte della mia tesi che ogni tanto rileggerò. Ho provato così tanto
gusto a scrivere i ringraziamenti nella mia tesi di laurea magistrale che ho fantasticato in mille
modi come buttare giù quelli per il Ph.D., cercando di salvare ogni incontro, ogni piccolo gesto
per me importante per ricordarli in modo efficace. Ma come ogni buon accademico, arrivo a
pochissimo dalla consegna della tesi trovandomi a dover/voler buttar giù tutto di fretta. E visto
che la lunga analogia con il paradigma Bayesiano me l’hanno già fregata, opto per il più classico
e collaudato stream of consciuosness.

Riflettendoci, mi è sempre risultato difficilissimo distaccare la mia vita personale di questi ultimi
tre anni dal “fare il dottorato”, come in un binomio casa-lavoro. Credo piuttosto che questa
scelta di carriera (combinata forse con un poco di ambizione) abbia permeato ogni istante e
determinato più di una volta il mio mood e scelte importanti. Chiedendomi il perchè, ho pen-
sato come spiegare questa sensazione, fino a che recentemente mi sono sorpreso a pronunciare:
“Hai visto? Guarda che ho combinato da solo, con le mie forze!”. La poca veridicità di quella
frase mi ha colpito non appena è uscita dalla mia bocca. Da solo? Per favore. Cio che è stato
fondamentale è il numero enorme di incontri e conoscenze che questo PhD mi ha permesso di
fare. Ho davvero tanto per cui essere grato, a tanti. Queste righe sono per voi, che mi avete
accompagnato, ispirato, cresciuto e cambiato.

“Un advisor sa di aver fatto bene il suo lavoro se verso la fine del dottorato si arriva ad odiarlo un
po’ ” (Advisor Anonimo). Proteggerò l’indentità dell’autore di questa frase, ma forse nasconde
un po’ di verità. In ogni caso devo ammettere di aver comunque sviluppato una leggera sindrome
di Stoccolma. Quindi, per prima cosa, un pensiero alle mie guide.
Grazie Antonietta, per aver costituito il turning point del mio dottorato. Non sei stata solo una
notevole advisor, ma anche un ottimo mentore e una grande manager. E se riguardo a tutto
quello che sono stato capace di fare grazie alla tua spinta, è evidente che sei davvero pure un
po’ maga oltre che un’abile illusionista.
Grazie Michele, persona giusta al momento giusto. Mi hai fatto riscoprire il piacere di fare
ricerca e (capendo subito come pungolarmi) mi hai spinto a migliorarmi costantemente. Ho
ancora un sacco di strada da fare, ma ora ho basi solide su cui poggiarmi e il tuo esempio da
seguire.
Grazie Prof. ssa Mecatti per tutto il suo aiuto: se mi sono sentito sostenuto in ogni mia scelta
accademica durante gli ultimi due anni lo devo anche a lei. Stesso dicasi per il coordinatore,
Prof. Vittadini.

Ritengo poi di essere stato partciolarmente fortunato ad avere incontrato i colleghi che mi sono
capitati. Grazie Luca, Riccardo, Nik e Tia: mi avete insegnato tanto, dal potente pragmatismo
greco, al saper distinguere cio che è misurabile da cio che è disgustoso. E ancora grazie a Ric-
cardo, Anna, Andrea, Paolo e Federica. Con voi tutti ho condiviso ben più che solo un ufficio.
E soprattutto grazie a te Cap, che con il tuo entusiasmo e la tua amicizia hai cambiato letteral-
mente il mio modo di approcciarmi alla ricerca, alle novità, alla vita in generale. Non posso
esprimere abbastanza quanto sono grato di averti trovato sul mio cammino e quanto ti debba
se questi anni sono andati per il verso giusto.

Un intero paragrafo non può che essere dedidcato alle persone incredibili che ho conosciuto negli
U.S., grazie a quella esperienza di visiting a Irivine che mi ha cambiato la vita. Il dipartimento
di Statistics a UCI avrà sempre un poso nel mio cuore, composto da studenti brillanti e rockstar
statistiche come faculty. E’ stato un onore avere la possibilità di unirmi a voi, per crescere come
ricercatore e come persona. In particolare, grazie a Ben, Adam, Maricela, Kyle, Jaylen, Naomi
e Klaus. E poi a Isaac e Mary, Catherine e Peter, Bob e Connie, Lori, Carly e Casey, Martin.
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E ovviamente a Wendy: grazie bionda, per tutto il prezioso aiuto con la vita di ogni giorno, per
avermi mostrato i posti spettacolari del tuo paese (Panera e’ sicuramente nella lista!), per la tua
preziosa amicizia e per tutto cio che abbiamo condiviso.
Voi tutti avete aiutato questo italiano inappropriato a sentirsi a casa anche dall’altra parte
dell’Oceano.

Grazie alle innumerevoli altre fonti di ispirazione, partendo dai geniali professori e ricercatori
con cui ho avuto la fortuna di collaborare e più in generale a tutti coloro che ho incontrato fra
USI e Sissa, fra Bocconi e Cattolica, che mi hanno colpito e stimolato: Stefano, Alessandro,
Lucia, Daniele, Tommy, Antonio, Bernardo, Federico, Federico e Gaia, Dan, Hal, Alan, Veron-
ica. Qualcuno di voi mi ha insegnato un corso, qualcun altro organizzato workshop, altri ancora
semplicemente condiviso con me poche parole, ma di enorme effetto. A voi tutti guardo con
ammirazione, nella speranza di raggiungere il vostro livello.

Un grazie a voi che vivete nel “mondo reale”, fuori dall’accademia, fuori dalla statistica, che mi
avete fatto sentire il vostro tifo e supporto, specie nei momenti quando tutto andava storto: Ila,
Mondo, Alberto, voi del teatro, Clara, Francesca, Giulia, Alex, voi del nuoto, in particolare Ale
e Simo, e la mia Little Italy in California.
Sono davvero grato alla mia famiglia. Viaggiando e andandomene da casa ho capito ancora
meglio tutto l’affetto che provate (e mi provate!) ogn giorno, così chiaro in ogni abbraccio in
ogni aeroporto. Tutto il sostegno datomi in ogni momento di difficoltà (da quelle più personali
a quelle più stupide e burocratiche) mi è diventato sempre più evidente. Vi devo molto, e ogni
cosa che faccio è per rendervi fieri.

Ho girato come una trottola in molte università per ricerca, per didattica, per workshop e sem-
inari. E questo mettere la testa fuori dalla mia confort zone dell’ufficio in Bicocca mi ha fatto
sentire come un tuffatore abile dal trampolino di un metro che si accorge dell’esistenza della
piattaforma dei dieci.
In questi tre anni ho solamente cercato di superare la paura delle vertigini indotte dalla scala.
Ora che almeno la scala è alle spalle, non rimane che imparare a tuffarsi.

Sono stati tre anni densi, di scalata appunto, per cui devo essere davvero grato. Ho imparato
davvero tanto, e di questo tanto la statistica non è che la minima parte.

“Il testo che avrei voluto scrivere
Non è di certo questo

Perciò dovrò continuare a scrivere
Perchè di certo riesco. Prima o poi.”

Il testo che avrei voluto scrivere - Michele Salvemini
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