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Introduction

Quantum field theories have been for long time one of the most successful areas

of particle physics in the last years, specially since the development of quantum

electrodynamics (QED) and quantum chromodynamics (QCD). The understand-

ing of electromagnetism in terms of photons and fermions have been completed

after the inclusion of the renormalization framework that allowed to treat in a

systematic way the divergences appearing when computing amplitudes associated

to certain diagrams, and to contrast the computations with experimental results.

In the search of new lagrangians that allow us to describe other forces present in

nature, as the strong and weak nuclear forces, the extension of the concept of local

gauge symmetry to other non-abelian Lie groups resulted in the appearance of the

so-called Yang-Mills theories (in which QCD is included). These theories together

with the ideas behind dimensional regularization and the Higgs model gave rise to

the discover of what we now call the Standard Model, that describes the interac-

tions of all known particles trough the electro-weak force and strong nuclear force

within the framework of a relativistic quantum field theory and constitutes one of

the theories with the highest level of experimental agreements. In the Standard

Model, strong interactions are described by QCD which is a non-abelian gauge

theory with quarks in the fundamental representation of SU(3). The fact that

the theory is non-abelian leads to the asymptotic freedom and the confinement of

quarks.

Despite all its achievements, the knowledge of quantum field theories is still some-

what restricted. In fact, mathematically speaking functional integrals are objects

that in most of the cases are hard to compute, and in general one works with

them in terms of perturbative expansions. From a practical point of view, these

expansions in power series of the coupling constant present the problem that the

difficulty to compute them grows exponentially with the perturbative order. From

1



a theoretical point of view, renormalization of gauge theories implies that these

parameters are not constant any more and acquire a dependence with the energy

scale. In QED this does not generates too much problems since at low energies

(including the scale of the experiments that can be performed today) the electron

charge is very small and only grows at very high energies, validating the use of a

perturbative expansion. In non-abelian gauge theories like QCD the behaviour is

the opposite, meaning that the analysis stops to be valid at relatively low energies,

in particular close to the confinement scale of the colour degrees of freedom. One

of the consequences in QCD is the fact that we are dealing with a confining theory.

Under this situation, a set of operators result of particular utility to study QCD

and other non-abelian gauge theories in the non-perturbative regime, these are the

Wilson loops operators. In a Yang-Mils theory describing gauge bosons (Aµ) as-

sociated to the local symmetry of the lagrangian, together with other bosonic or

fermionic fields, the Wilson loop is defined on a contour C as

W [C] =
1

N
TrRP exp

[
−ig

∮
C
dxµAµ(x)

]
(1)

One of the most important properties of the Wilson loop is that it is a gauge

invariant operator. It can be seen as the phase factor associated to the propagation

of a massive quark in the fundamental representation of the gauge group. In this

interpretation, one can consider a rectangular loop of width L and length T that

simulates the propagation of the quark-antiquark pair placed at a distance L. In

the limit T � L the expectation value of the Wilson loop depends only on L and

it is associated with the interaction energy E(L) of the pair:

W ∝ e−T E(L) (2)

This relation between the expectation value of the Wilson loop and the interaction

energy of a quark and antiquark indicates that, in a theory like QCD, the analysis

of these kind of operators allows us to study the confinement phenomenon.

Notwithstanding the great success of the standard model to describe particle

interactions, the inclusion of gravity into this description is still an open problem.

String theory turns out to be an alternative and it is the best candidate for a quan-

tum theory of gravity. The main idea is that one has to replace the notion of point

particles with one-dimensional strings, these strings have oscillation modes that
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describe the spectrum of the standard model and a massless spin-two particle that

is identified with the graviton. A consistent string theory that includes bosonic

and fermionic excitations requires the existence of extra spatial dimensions to the

four known. Furthermore, in order for string theory to be free of inconsistencies it

needs supersymmetry.

Supersymmetry is a space-time symmetry that maps particles of integer spin

(bosons) into particles with half-integer spin (fermions), and viceversa. This sym-

metry is generated by an operator Q that acts as

Q|fermion〉 = |boson〉 Q|boson〉 = |fermion〉 (3)

The generator Q has some properties that follow from (3):

It changes the spin of a particle (meaning that Q transforms as a spin-1/2

particle) and hence its space-time properties. This is why supersymmetry is

not an internal symmetry but a space-time symmetry.

In a theory where supersymmetry is realized, each one-particle state has

a super-partner. Therefore, in a supersymmetric world, instead of single

particle states, one has to deal with super-multiplets of particle states.

A supersymmetric field theory is then a set of fields and a Lagrangian which exhibit

such a symmetry. One can have theories with more than one supersymmetry gen-

erator: QI with I = 1, . . . ,N . The number of supersymmetry generators, however,

cannot be arbitrarily large, the reason is that any super-multiplet in 4 dimensions

contains particles with spin at least as large as N
4

.

Albeit supersymmetry first appeared only as a theoretical tool in the context

of string theory, later it was realized that it could be a symmetry of quantum field

theory describing elementary particles. One of the reasons for this is that radia-

tive corrections to certain quantities remain small as a result of some cancellations

between boson and fermion contributions.

Supersymmetry could solve most of the current problems in theoretical physics

(like the hierarchy problem, or the origin of dark matter). Still it can not be real-

ized in nature, meaning that it must be broken at some energy scale since we do
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not measure all the particles that it predicts. However, models that enjoy super-

symmetry are more constrained that the non-supersymmetric ones, thus they are

easier to solve. Supersymmetric theories can then be used as toy models where

certain analytical results can be obtained and might serve to get predictions on

qualitative aspects of the realistic theories.

Due to the importance of supersymmetry and the Yang-Mills theories in the

study of elementary interactions, it seems natural then to study supersymmetric

Yang-Mills theories. In particular, we are going to study two types of these theories

in four dimensions with gauge group SU(N). One is the maximally supersymmet-

ric one which has N = 4 supersymmetries (for now on we will call this theory as

N = 4 SYM), this theory has been extensively studied in the last years due to

its role in the AdS/CFT correspondence. The other one is a particular case of

a Yang-Mills theory with N = 2 supersymmetries that it is coupled to Nf = 2N

hypermultiplets in the fundamental representation of the gauge group (that we will

call N = 2 SCQCD). For these two theories, the β-function vanish meaning that

the coupling constants do not run.

As is ordinary gauge theories, in N = 4 SYM and N = 2 SCQCD, super-

symmetric Wilson loops (which are the supersymmetric generalization of (1) that

includes additional couplings with some of the scalars of the theory) provide a rich

class of observables that can be computed both by perturbation theory, or exactly

by using supersymmetric localization. Localization has been proven to be one of

the most powerful tools in obtaining non perturbative results in quantum super-

symmetric gauge theories. The idea of this technique is that we can deform the

action in some way that the integration domain of the partition function is reduced

and the integral can be computed by saddle-point procedure. Using this method,

a great number of new exact results have been derived for supersymmetric theories

in different dimensions, mainly when formulated on spheres or ellipsoids.

An interesting quantity that plays an important role when probing quantum

field theories is the so-called Bremsstrahlung function. It is defined as the energy

lost by a heavy quark slowly moving in a gauge background.

When the theory is conformal invariant it is convenient to describe this heavy quark

4



by a Wilson operator: we think of a probe particle that suffers a transition from

a velocity v1 to v2 in an infinitesimal angle, the worldline thus has a cusp and

the vacuum expectation value of the Wilson operator develops a logarithmic UV

divergence that depends on the coupling constant and on the angle of the cusp ϕ.

〈Wϕ〉 ∼ e
−Γcusp(ϕ) log

ΛUV
ΛUV (4)

where ΛUV and ΛUV represent the UV and IR cut-off scales. The quantity that

governs this divergence (Γcusp) is called the cusp anomalous dimension and it is

related to a number of physical observables. In the small angle limit it is related to

the amount of power radiated by a moving quark and it behaves as Γcusp = −Bϕ2,

where B is the Bremsstrahlung function of the theory. The cusp anomalous dimen-

sion can be generalized including an R-symmetry angle θ that controls the coupling

of the scalars on the two sides of the cusp.

In order to use B for probing the theory at different scales, for instance for

precision tests of the AdS/CFT correspondence, it is needed to go beyond the

perturbative regime. This can be done by relating B to quantities that can be

computed holographically and, in superconformal theories, by the use of localiza-

tion techniques. Candidates for these quantities are circular BPS Wilson loops for

which exact results can be obtained from a computable matrix model. For N = 4

SU(N) SYM theory, it was proved that B can be computed as a derivative of the

vacuum expectation value of a 1/2 BPS circular Wilson loop with respect to the ’t

Hooft coupling [1] as we will see in chapter 4.

A similar formula to derive B for N = 2 SU(N) SCQCD from the expectation

value of a 1/2 BPS circular Wilson loop was conjectured in [2]. However this for-

mula has not been proven yet, but only checked for the SU(2) case.

We will show in this thesis how we found the validity of the conjectured for-

mula for general N up to three-loops performing a perturbative calculation of the

cusp anomalous dimension for the supersymmetric Wilson operator, using HQET

techniques [3].

The HQET formalism consists on performing first the integration on the contour

parameters with a proper prescription for regularizing boundary divergences. In

this way, the integrals reduce to ordinary massive momentum integrals, which can
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be written as linear combinations of known Master Integrals by applying integra-

tions by parts. The advantage of this computational framework is that it can be

easily extended to higher loops. From the small angle expansion, we derive the

corresponding Bremsstrahlung function at three loops, matching the matrix model

prediction given in terms of derivatives of the Wilson loop on the ellipsoid.

There are other limits of the cusp anomalous dimension that can be considered,

one of them is the large Minkowskian angles. In this limit the cusp anomalous

dimension behaves linearly in the angle, and the function governing this behaviour

is the so called light-like cusp anomalous dimension. This quantity can be used to

check an universal behaviour of the cusp anomalous dimension: when expressed in

terms of the light-like cusp replacing the coupling constant, the cusp anomalous

dimension gives rise to an universal function that is independent of the number of

fermion or scalar fields in the theory, this was shown to hold up to three-loops in

N = 4 Super Yang-Mills theories [4]. We compute this function and we found that

the universal behaviour is also present up to three loops in N = 2 SCQCD.

The structure of this thesis is the following. The chapter 1 is the introductory

one, where we will study the gauge theories. We will introduce the supersymmetry

and the superconformal symmetry and we will present the basic properties of the

two theories of our interest: N = 4 SYM and N = 2 SCQCD. Chapter 2 is

dedicated to the presentation of the Wilson loops which are the central objects

of study in this thesis. After giving the definition and properties, we will give

explicit examples of the computation of expectation values. In Chapter 3 we define

the Wilson line with a cusp and we discuss the main features of its anomalous

dimension in superconformal theories. In chapter 4 we will study the concept of

supersymmetric localization, which provides a tool for computing the exact value

of some observables. Chapter 5 is based on the original work and it is where we

present the obtained results. At the end, we present the conclusions in 6. Notations

are collected in appendix A and in appendix B we give some of the computational

details.
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Chapter 1

Supersymmetric gauge theories

In this chapter we are going to present the very basic ingredients that we need

for the following chapters: the supersymmetric gauge theories. First we review the

basic symmetries of a quantum field theory and in section 1.1.1 we introduce su-

persymmetry, an additional symmetry that mixes bosons and fermions. In section

1.1.2 and 1.1.3 we will discuss conformal symmetry and how to combine it with

supersymmetry to enlarge the symmetry group. In section 1.1.4 we are going to

study the representations of supersymmetry and how they are organized into mul-

tiplets. In section 1.1.5 we will discuss the quantum properties of a superconformal

theory. In 1.2 and 1.3 we are going to present the two superconformal theories

that we are going to study in the rest of the chapters, describing their field content

and symmetries of the actions. Finally in section 1.4 we give an alternative way to

derive the actions of these theories starting from superspace, which is an extension

of the ordinary space-time that includes additional coordinates that anti-commute.

Gauge theories and supersymmetry

We are going to start by recalling the basic symmetries of a quantum field

theory, these are

Poincarè symmetry: semi-direct product of translations and Lorentz trans-

formations. The algebra is:

[Mµν ,Mρσ] = −i (ηµρMνσ − ηµσMνρ + ηνσMµρ − gνρMµσ)

[Mµν , Pρ] = i (Pµgνρ − Pνgµρ) (1.1)
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1 – Supersymmetric gauge theories

Internal symmetries: with generators Ta obeying a Lie algebra:

[Ta, Tb] = i fab
c Tc (1.2)

Discrete symmetries: C (charge conjugation), P (parity) and T (time

reversal).

Supersymmetry

One may wonder if it is possible that the space-time symmetry groups (Poincarè)

and internal symmetries of a theory can be included in a bigger group that contains

both in a non-trivial way. With this we mean that the Poincarè generators (Pµ and

Mµν) and the generators of internal symmetries (Ta, a = 1, . . . , N2 − 1) satisfy:

[Mµν , Ta] /= 0

[Pµ, Ta] /= 0 (1.3)

The answer to this question is given by the Coleman-Mandula theorem [5] that

states that in a generic quantum field theory, under a number of assumptions

(like locality, causality, positivity of energy, etc.), the only possible continuous

symmetries of the S-matrix are those generated by Poincare group generators, Pµ

and Mµν , plus some internal symmetry group G commuting with them. This

theorem rules out the possibility of having a group satisfying (1.3), meaning that

the most general symmetry group containing the Poincare group and an arbitrary

internal symmetry group, is a direct product

Poincarè × Internal (1.4)

It is possible to evade the Coleman-Mandula theorem if we relax the assump-

tion that the symmetry algebra (1.3) is a Lie algebra containing only commutators,

which means that all the symmetries are bosonic. If we relax this and we allow

to the algebra to have fermionic generators (that will satisfy anti-commutator re-

lations) we could, in principle, include all the generators in a bigger algebra. An

algebra containing generators that satisfy commutation and anti-commutation rules

is called a graded Lie algebra or superalgebra, and the symmetries associated to it

9



1 – Supersymmetric gauge theories

are called supersymmetries. In [6] Haag, Loperzanski and Sohnius found a way

to enlarge the Poincarè algebra to include such fermionic generators forming the

super-Poincarè algebra.

The way this super-algebra is constructed goes as follows: beyond the usual bosonic

generators, the only possibilities are N fermions generators of spin 1/2: Qi
α, with

α = 1,2 and i = 1, . . . ,N , we call these generators the super-charges.

The algebra is then extended:

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ)

[Mµν , Pρ] = i (Pµgνρ − Pνgµρ) [Ta, Tb] = i fab
cTc

{Qi
α, Q

j
β} = CαβZ

ij {Qi
α, Q

j

β̇} = δijσµαα̇Pµ[
Qi
α,Mµν

]
= (σµν)α

βQi
β

[
Qi
α, Ta

]
= (Ba)

i
j Q

j
α (1.5)

where, Zij = Zij
a T

a are bosonic generators that satisfy Zij = −Zji by construction

and commute with all the other operators, they are called the central charges. The

coefficients Bij
a and Zjk

b are related as: Bij
a A

jk
b = −Aijb (Bjk

a )∗.

The supersymmetry algebra (1.5) is left invariant under a global rotation of the

supercharges Qi
α forming a group U(1)R. In addition, when N > 1, the different

supercharges may be rotated into one another under a unitary transformation,

belonging to SU(N )R. These symmetries of the supersymmetry algebra are called

R-symmetries.

Conformal symmetry

A conformal transformation is a transformation of the space-time coordinates

that rescales the line element:

xµ → x
′

µ ⇒ gµν(x)→ Ω(x)gµν(x) (1.6)

where Ω(x) is an arbitrary function of the coordinates. When Ω(x) = constant

we have the scale transformations. In the general case, conformal transformations

rescale the distances locally preserving the angles. Besides the ordinary scale trans-

formations, other examples of conformal transformations are the Poincarè trans-

formations (with Ω(x) = 1). The conformal transformations are then a bosonic

extension of the Poincarè transformations. In order to find all the possible con-

formal transformations we can write an infinitesimal change xµ → xµ + εµ(x) and

10



1 – Supersymmetric gauge theories

impose (1.6) to find constraints on εµ(x). Then εµ(x) is given by

εµ(x) = aµ + Λµ
νx

ν + λxµ + bµx2 − 2(b · x)xµ (1.7)

where each parameter corresponds to a different type of transformation, explic-

itly:

Poincarè transformations: aµ is the parameter of the translations and

Λµ
ν the parameter of the Lorentz transformations, with generators Pµ and

Mµν respectively.

Dilatations: parametrized by λ and generated by the dilatation operator

D.

Special conformal transformations: parametrized by a vector bµ with

generators Kµ.

The set of conformal transformations in d-dimensions forms a group: SO(d,2),

which contains the Poincarè group as a subgroup. The conformal algebra is

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ)

[Mµν , Pρ] = i (Pµgνρ − Pνgµρ) [Mµν , Kρ] = (Kµgνρ −Kνgµρ)

[Pµ, D] = −i Pµ [Kµ, D] = iKµ [Pµ, Kν ] = 2i (Mµν − gµνD) (1.8)

Superconformal symmetry

Now we want to combine the conformal symmetry together with the supersym-

metry. We will study theories that are invariant under supersymmetry and also

under the conformal group, these are called super-conformal field theories. It turns

out that when we want to extend the conformal algebra (1.8) by including the

supersymmetry generators Qi
α, the algebra does not close. For example, using Ja-

cobi identities one can see that the commutator between the supercharges and the

generators of the special conformal transformations is not contained in the alge-

bra. To solve this issue, one needs to introduce another set of fermionic generators

Siα commuting with Kµ that plays the same role of Qi
α for Pµ and generate the

super-conformal symmetries. All these generators enhance the conformal group to

a supergroup which in 4 dimensions is SU(2,2|N ).

11



1 – Supersymmetric gauge theories

In 4d the algebra for the super-conformal symmetry is (including the equation

1.8)

{Qi
α, Q

j

β̇} = δijσµαα̇Pµ {Qi
α, Q

j
β} = CαβZ

ij {Siα, S
j

β̇} = δijσµαα̇Kµ

{Qi
α, S

j
β} = 2Cαβδ

ij D − i (σµν)α
γCγβδ

ijMµν +Bij
a T

a − 4i Cαβδ
ij R[

Qi
α,Mµν

]
= (σµν)α

βQi
β

[
Qi
α, D

]
= i

i

2
Qi
α

[
Qi
α, Kµ

]
= −1

2
(σµ)αα̇S

iα̇ [
Qi
α, Ta

]
= Bi

ajQ
j
α[

Siα,Mµν

]
= (σµν)α

βSiβ
[
Siα, D

]
= − i

2
Siα

[
Siα, Pµ

]
=

1

2
(σµ)αα̇Q

i

α̇

[
Siα, Ta

]
= −Bi

ajS
j
α[

Qi
α, R

]
= −i

(
4−N

4N

)
Qi
α

[
Siα, R

]
= i

(
4−N

4N

)
Siα [Ta, Tb] = i fab

c Tc (1.9)

Multiplets in supersymmetric theories

In supersymmetric field theories, the fields belong to particular representations

of the corresponding symmetry algebra. We are going to study field representations

of the supersymmetry algebra with spin less or equal than 1. For 1 ≤ N ≤ 4 these

consist of spin 1 vector particles (gauge fields), spin 1/2 Weyl fermions fields,

and spin 0 scalar fields. These fields are restricted to enter into multiplets of the

supersymmetry algebra. Two kind of multiplets can occur for 1 ≤ N ≤ 4: gauge

multiplets or matter multiplets. For N = 3, 4 the gauge multiplet which transforms

in the adjoint representation is the only possible one, while for N = 1, 2 we can

also have matter multiplets (for N = 1 is the chiral multiplet and for N = 2 is the

hypermultiplet) transforming in arbitrary representation (R) of the gauge group.

We study these multiplets in terms of their component fields [7]:

N = 1 gauge multiplet (Aµ, ηα): Consists of a gauge field Aµ and a Majo-

rana fermion ηα (gaugino).

N = 1 chiral multiplet (φ, ψα): A complex scalar φ and a Weyl fermion

ψα.

N = 2 gauge multiplet (Aµ, η
±
α , φ): The gauge field Aµ, a Dirac fermion

(which is a direct sum of left and right Weyl fermions η±α ) and a complex

scalar φ.

12



1 – Supersymmetric gauge theories

N = 2 hypermultiplet (ψ±α , φ
±): Two Weyl fermions ψ±α (or equivalently 1

Dirac fermion) and 2 complex scalars φ±.

N = 4 gauge multiplet (Aµ, ψ
A
α , φ

I): The gauge field Aµ, 4 Weyl fermions

ψAα (or equivalently 2 Dirac fermions), and 3 complex scalars φI (or 6 real).

It is also interesting to express the content of the multiplets in terms of the

way their transform under the subalgebras or the corresponding supersymmetry

algebra. So we can split the multiplets in the following way:

(N = 2 gauge) ≡ (N = 1 gauge) ⊕ (N = 1 chiral)adj

(N = 2 hyper)R ≡ (N = 1 chiral)R ⊕ (N = 1 chiral)R

(N = 4 gauge) ≡ (N = 2 gauge) ⊕ (N = 2 hyper)adj

where the subscript “adj” in indicates that the multiplet transform in the ad-

joint representation, and R indicates that it does it in the complex conjugate

representation of R.

Quantization

The fact that a symmetry is present in the classical equations of motion, does

not imply that it will be also present at the quantum level. Ultraviolet (UV) diver-

gences may appear when computing quantum corrections to classical quantities.

However the final result must be finite (because it must correspond to the observ-

ables that one measures at experiments), this means that the divergences must

be cancelled at one of the intermediate steps of the computation leaving the final

result finite.

Since these divergences cannot affect the measurable quantities, we should be able

to remove them by suitable redefinitions of the fields and couplings. When a theory

happens to have this property, it is called to be renormalizable. This procedure

naturally introduces a scale µ in the theory that in principle breaks the conformal

invariance.

In order to control these divergences we first have to regularize them, this can be

done by different ways (regularization schemes) for example by the introduction of

an energy cut-off M that will be taken to infinity at the end, or by shifting the
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1 – Supersymmetric gauge theories

spacetime dimension as d = 4− 2ε.

Imagine that we have a renormalizable theory with one coupling constant g, then

we have the physical observables O which are generally given as power series of the

coupling constant g, and are function of some momentum invariants (p1, . . . , pn)

that characterize the process under consideration. In the computation of the quan-

tum corrections UV divergences can appear, which we regulate by introducing a

cut-off M on which O will also depend. We can write O schematically as:

O = O(g,M, p1, . . . , pn) (1.10)

If the theory is renormalizable, we are allowed to redefine the coupling constant

as gR = f(g,M/µ) in such a way that

O(g(gR,M/µ),M, p1, . . . , pn) = Õ(gR, µ, p1, . . . , pn) (1.11)

where µ is the energy scale of the process. In this way, the divergences that

originally appear in O were reabsorbed in the renormalized coupling gR. This re-

definition of the coupling makes the physical quantities independent on the cut-off,

so with this procedure UV divergent quantities can be made finite. Of course this

redefinition of the coupling will be a function of the energy scale µ, the depen-

dence (which is known as the running) of g with µ is governed by a quantity called

β-function, which is defined as:

β(g) = µ
∂g

∂µ
(1.12)

This is a very important quantity in the study of quantum field theories since it

determines the conditions under we can safely take perturbation theory to be valid.

When β = 0 it means that the coupling g does not flow, in these cases the theory

is free of UV divergences and the classical conformal invariance is also present at

the quantum level. Examples of such theories are N = 4 SYM and N = 2 SCQCD

which we are going to discuss in the next sections.

N = 4 Super Yang-Mills

N = 4 super Yang-Mills (SYM) [8, 9, 10, 11] is a 4-dimensional field theory

with conformal symmetry, both at quantum and classical level, with an additional

14



1 – Supersymmetric gauge theories

local symmetry given by the invariance of the action under some gauge group G.

For now on, we will take the gauge group to be G = SU(N). All the fields in this

theory transform in the adjoint representation of SU(N). The field content is the

following

N2 − 1 gauge bosons described by the field Aµ(x) = Aaµ(x)T a, with Lorentz

index µ = 0, . . . , 3.

3 complex scalar fields φI , with I = 1, 2, 3.

4 Weyl fermions ψA, with A = 1, . . . , 4 and spinor index α = 1, 2.

The fields (Aµ, ψ
A, φI) constitute the gauge multiplet of N = 4 SYM. Under the

global R-symmetry group (SU(4) ∼= SO(6)) the gauge field transform as a singlet,

the fermions transform in the 4 representation and scalars in the 6 representation.

From the gauge field Aµ we can define a covariant derivative (as showed in the

appendix) and the field strength Fµν . Having specified the field content of the

theory, we can now write down the action of the theory 1, defined on the euclidean

space R4.

S =

∫
d4x 2 Tr

[
iψIα(σµ) β̇

α Dµψ̄Iβ̇ + iηα(σµ) β̇
α Dµη̄β̇ −

1

4
F µνFµν + φIDµDµφ̄I

+ ig
√

2 ψ̄Iα̇ [η̄α̇, φI ]− ig
√

2 [φ̄I , ηα]ψαI + ig

√
2

2
εIJK [φI , ψαJ ]ψKα + ig

√
2

2
εIJK [φ̄I , ψ̄α̇J ]ψ̄Kα̇

+ g2[φI , φJ ][φ̄I , φ̄J ]− g2

2
[φI , φ̄I ][φJ , φ̄J ]

]
, (1.13)

where g is the coupling constant, Fµν is the gauge field strength and Dµ is the

usual covariant derivative defined as in the appendix A. The trace is taken on the

gauge index and ensures the gauge invariance of the action.

This action can be seen as the dimensionally reduced action obtained from the

N = 1 SYM theory in 10-dimensions [9] given by

1In order to write the action in a way that will be more convenient for us later, we renamed
one of the fermions as ψ4

α → ηα. In this way this fermion combines with the gauge bosons Aµ
into the N = 1 gauge multiplet, the fermion ηα is called the gaugino.

15



1 – Supersymmetric gauge theories

LN=1 =
1

2g2

(
1

2
FMNF

MN −ΨΓMDMΨ

)
(1.14)

In 10 dimensions with the signature (−,+, . . . ,+), the fields are the gauge field

AM (with M = 0, 1, . . . , 9) and a fermion field Ψ. With this conventions Ψ is a

16-component Majorana-Weyl fermion that takes values in the adjoint representa-

tion of SU(N). We will identify the gauge fields (A0, A5, . . . , A9) of the N = 1

10-dimensional theory with the 6 real scalars (that combine into the 3 complex φI)

of the 4-dimensional theory. The matrices ΓM are related with the 10-dimensional

Dirac matrices (γM). The action (1.14) describes the low energy effective action

coming from type-I superstring theory. After dimensional reduction from 10d→ 4d

we obtain the action (1.13).

We can do some dimensional analysis on 1.13, taking the standard dimensions

for the fields:

[Aµ] = [φI ] = 1[
λiα
]

= 3/2 (1.15)

we see that the coupling has mass dimension zero: [g] = 0, thus the theory is scale

invariant. This, together with Poincarè invariance, makes it invariant under the

full conformal group SO(4,2) ∼= SU(2,2) 2. These considerations are all at the

classical level, to see if these symmetries are also present at the quantum regime

we should calculate the β-function. It turns out that this function is zero to all

loops [12, 13, 14, 15], making the theory N = 4 SYM conformal invariant also at

quantum level.

The action (1.13) it is also invariant under the transformations generated by the

Poincarè supercharges QA
α , Q

A

α̇ thus enlarging the group to the superconformal

group SU(2,2|4). The supersymmetry transformations are characterized by 4

spinors εiα (with i = 0, 1, 2, 3) and are the following:

2This considerations are only valid in 4 dimensions.
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δφI = −εα0 ψIα + εIα η
α − εIJK εα̇J ψKα̇

δφ̄I = −ε̄α̇0 ψ̄Iα̇ + ε̄Iα̇ η̄
α̇ − εIJK εαJ ψKα

δψIα = −i ε̄α̇0∇αα̇φ
I + εIβfβα + . . .

δηα = −i ε̄α̇I∇αα̇φ
I − εβ0fβα + . . .

δAαα̇ = −i
(
ε0α η̄α̇ + ε̄0α̇ ηα − εIα ψ̄Iα̇ + ε̄Iα̇ ψαI

)
, (1.16)

where I = 1,2,3 and we have introduced the spinorial way of writing the covariant

derivatives and the fields, the conventions for doing this are listed in appendix A.

N = 2 Superconformal QCD

We are going to study in this section a class of N = 2 SYM with gauge

group SU(N) and Nf hypermultiplets transforming in the fundamental repre-

sentation of the gauge group. These theories have a global symmetry group

U(Nf )×SU(2)R×U(1)R, where U(Nf ) is the flavour symmetry and SU(2)R×U(1)R

the R-symmetry group 3. If the number of flavours is tuned to be Nf = 2N the

β-function is zero and theory becomes exactly superconformal at any value of g

[17]. When Nf = 2N the theory is called N = 2 super-conformal QCD, we are

going concentrate our study on this particular theory 4.

The field content of N = 2 SCQCD consists of:

N2−1 gauge bosons described by the field Aµ(x), as in the N = 4 SYM case.

1 complex scalar φ transforming in the adjoint representation of the gauge

group.

3We are interested in superconformal field theories that admit a large N limit, a list of these
kind of theories can be found in [16].

4N = 2 SCQCD can be viewed as the limit of a two-parameter family of N = 2 superconfor-
mal field theories. This family of N = 2 theories have gauge group SU(N) × SU(N) and two
fundamental hypermultiplets, they are governed by two coupling constants g and ĝ each of which
is associated with a factor in the gauge group. For ĝ → 0 one recovers N = 2 SCQCD plus
a decoupled free vector multiplet in the adjoint representation of SU(N). For g = ĝ, we have
instead Z2 orbifold of N = 4 SYM. Thus by tuning ĝ we interpolate continuously between N = 2
SCQCD and the N = 4 universality class. [18]

17



1 – Supersymmetric gauge theories

2 Weyl fermions ηα and ψα transforming in the adjoint representation of

SU(N)

Nf = 2N pairs of scalar fields: qI , q̃I (with I = 1, . . . , Nf ) transforming in

the fundamental and anti-fundamental representation of SU(N)

Nf = 2N pairs of Weyl fermions: λIα, λ̃Iα (with I = 1, . . . , Nf ) transforming

in the fundamental and anti-fundamental representation.

The action of this theory is given by:

S =

∫
d4x

{
2 Tr

[
iψα(σµ) β̇

α Dµψ̄β̇ + iηα(σµ) β̇
α Dµη̄β̇ (1.17)

− 1

4
F µνFµν + φDµDµφ̄−

g2

2
[φ, φ̄][φ, φ̄] + ig

√
2 ψ̄α̇[η̄α̇, φ]− ig

√
2 [φ̄, ηα]ψα

]
+ iλ̄I

β̇
(σµ) β̇

α DµλαI + iλ̃αI(σµ) β̇
α Dµ ¯̃λβ̇I + q̄IDµDµqI + q̃IDµDµ ¯̃qI

+ ig
√

2 (λ̄α̇I η̄α̇qI − q̃I η̄α̇ ¯̃λα̇I)− ig
√

2 (q̄IηαλαI − λ̃αIηα ¯̃qI) + ig
√

2 (λ̃αIψαqI − q̄Iψ̄α̇ ¯̃λα̇I)

+ ig
√

2 (λ̃αIφλαI − λ̄α̇I φ̄¯̃λα̇I) + ig
√

2 (q̃IψαλαI − λ̄α̇Iψ̄α̇ ¯̃qI)

− g2
[
2 q̄I φ̄φqI + 2 q̃Iφφ̄¯̃qI + (q̄IqJ)(q̃J ¯̃qI)

]
− g2

4

[
(q̄IqJ)(q̄JqI) + (q̃I ¯̃qJ)(q̃J ¯̃qI)− 2(q̄I ¯̃qJ)(q̃JqI) + 4 q̄I [φ, φ̄]qI − 4 q̃I [φ, φ̄]¯̃qI

]}

The action (1.17) is supersymmetric invariant and the transformation of the

fields are characterized in this case by 2 spinors εiα (with i = 0, 1) and for the

adjoint fields they are

δφ = −εα0 ψα + ε1α η
α

δψα = −i ε̄α̇0∇αα̇φ+ ε1βfβα + . . .

δηα = −i ε̄α̇1∇αα̇φ− εβ0fβα + . . .

δAαα̇ = −i
(
ε0α η̄α̇ + ε̄0α̇ ηα − ε1α ψ̄α̇ + ε̄1α̇ ψα

)
. (1.18)

In view of the discussion of section 1.1.4 we can describe the field content of

N = 4 SYM and N = 2 SCQCD in a convenient way as follows:

N = 4 SYM ≡ 1-(N = 2 gauge) ⊕ 1-(N = 2 hyper)adj
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N = 2 SCQCD ≡ 1-(N = 2 gauge) ⊕ Nf -(N = 2 hyper)fund

So we can see that both theories share the same N = 2 gauge multiplet and

the difference is on the N = 2 matter multiplets. We will exploit this property in

chapter 5 to compute the expectation value of some observables.

Superspace approach

An alternative way to derive the actions (1.13) and (1.17) is given by the N = 1

superspace formalism [19]. The superspace is defined as an extension of the ordi-

nary space by including anti-commuting coordinates θα and θ
α̇
. We can introduce a

compact way to collectively denote a point in superspace and the partial derivatives

as

zA = (xα,α̇, θα, θ
α̇
)

∂A = (∂αα̇, ∂α, ∂α̇) , (1.19)

where we are using again the spinorial way to write the usual coordinates and

derivatives (as explained in appendix A together with the conventions for rais-

ing and lowering indices). In superspace the supersymmetry algebra is obtained

performing translations and rotations involving both the spacetime and the anti-

commuting coordinates.

Representations of the supersymmetry algebra can also be described in superspace,

to do this we introduce superfields which are functions of the space-time coordinates

F (x, θ, θ). These functions can be expanded in Taylor series of the anti-commuting

coordinates. Since you can not have powers of θ higher than 2 because they vanish,

the Taylor expansion is finite and a general superfield can be expanded in terms of

a finite number of fields depending only on xµ, this fields are called the components

of the superfield.

A general superfield is not a reducible representation of supersymmetry, for this

reason we need to impose constraints on them.

Chiral superfields

The simplest example of a constrained superfield which serves as an irreducible

representation of supersymmetry is the chiral superfield defined as:
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Dα̇Φ = 0 (1.20)

where Dα̇ is a fermionic covariant derivative defined in appendix A. The Taylor

expansion of a chiral superfield is

Φ(x, θ, θ) = φ(x)+θα ψα(x)−θ2 F (x)+
i

2
θαθ

α̇
∂αα̇ψβ(x)Cαβ+

θ2θ
2

4
�φ(x) (1.21)

Their components are defined by:

φ(x) = Φ|θ=0

ψα(x) = DαΦ|θ=0

F (x) = D2Φ|θ=0 (1.22)

In the same way we can define anti-chiral superfields that are annihilated by

Dα. Note that Φ is anti-chiral if Φ is chiral.

So a chiral superfield describes the N = 1 chiral multiplet: a complex scalar and a

fermion (the field F is auxiliary).

Vector superfield

A real scalar superfield (V = V †) is called the vector superfield and its expansion

is given by

V (x, θ, θ) = C+θα χα+θ
α̇
χα̇−θ2M−θ2

M+θαθ
α̇
Aαα̇+i θ

2
θα ηα−i θ2θ

α̇
ηα̇+θ2θ

2
D
′

(1.23)

Turns out that the components C, χα and M can be removed by a gauge

transformation. The gauge where all of these components are zero is called Wess-

Zumino gauge. The superfield V is this gauge is given by

V (x, θ, θ) = θαθ
α̇
Aαα̇ + i θ

2
θα ηα − i θ2θ

α̇
ηα̇ + θ2θ

2
D
′
. (1.24)

whose components are defined as:

Aαα̇(x) =
1

2
[Dα̇, Dα]V |θ=0

ηα(x) = iD
2
DαV |θ=0

ηα̇(x) = −iD2Dα̇V |θ=0

D
′
(x) =

1

2
DαD

2
DαV |θ=0 (1.25)
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1 – Supersymmetric gauge theories

This superfield describes in the correct way the N = 1 gauge multiplet, where

the physical fields Aαα̇ and λα are the gauge field and the gaugino, the field D is

auxiliary.

The theories studied before can me conveniently described using this formalism.

N = 4 SYM from superspace

In N = 1 superspace formalism, the field content of N = 4 SYM is organized

into one real vector superfield V (which give rise to the gauge multiplet) and 3

chiral superfields ΦI (I = 1,2,3) that forms the matter multiplet and are endowed

with SU(3) symmetry.

In this language, the superspace action for this theory is then:

S=

∫
d4x d4θTr

(
e−gV Φ̄Ie

gV ΦI
)

+
1

g2

∫
d4x d2θTr

(
WαWα

)
+
ig

3!

∫
d4x d2θ εIJKTr

(
ΦI [ΦJ ,ΦK ]

)
+ h.c. (1.26)

where Wα = iD
2
(e−gV Dα e

gV ) is the superfield strength of V .

The component action (1.13) can be obtained projecting (1.26) down in compo-

nents.

N = 2 SCQCD from superspace

We can do the same for N = 2 SCQCD. In this case the field content of

the gauge multiplet is organized into 1 vector and 1 chiral superfield. The rest

of the matter is described in terms of the quark chiral scalar superfields QI and

Q̃I (I = 1, . . . , Nf ), which transform respectively in the fundamental and anti-

fundamental representation of SU(N) and together form an N = 2 hypermultiplet.

The superfield action is given by [20]:
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S=

∫
d4x d4θ

[
Tr
(
e−gV Φ̄egV Φ

)
+ Q̄IegVQI + Q̃Ie−gV ¯̃QI

]
+

1

g2

∫
d4x d2θ Tr

(
WαWα

)
(1.27)

+ ig

∫
d4x d2θ Q̃IΦQI − ig

∫
d4x d2θ̄ Q̄IΦ̄ ¯̃QI

The component action (1.17) is obtained projecting (1.27).
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Chapter 2

Supersymmetric Wilson loops

Wilson loops are one of the most studied gauge-invariant operators in super-

symmetric gauge theories. Physically, they represent the phase factors associated

to the propagation of a charged particle along a closed path and in some sense they

measure the response of the gauge field to the insertion of an external point-like

source passing around a closed contour.

They were proposed by Wilson in [21] in the context of lattice formulation of quan-

tum chromodynamics but their study became interesting outside of this context by

their relation to relevant observables in QFT (like the bremsstrahlung function or

the quark potential, as we will see in the next chapters).

They form a complete set of observables, which is to say that you can write down

all other observables in terms of them by performing algebraic operations [22].

They can be computed both at weak (by means of perturbation theory) and strong

coupling (using AdS/CFT correspondence). In some cases with a lot of symme-

tries and specific contours, they can be evaluated exactly using supersymmetric

localization, as we will see in chapter 4, this is very useful because it can be used

to test some conjectures of the holographic duality.

In this chapter we are going to introduce these objects both in ordinary gauge

theories and in the supersymmetric gauge theories we studied in chapter (1). After

giving its definition we will study the conditions under which these objects preserve

the original supersymmetries of the theory and give some examples.
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The Wilson loop

The Wilson loop in ordinary gauge theory is defined as:

W [C] =
1

dimR
TrRP exp

[
−ig

∮
C
dxµAµ(x)

]
(2.1)

where R is the representation where the fields are taken and C is the curve that

is parametrized by xµ(τ). The operator P is the path ordering operator and it is

defined as:

P
∮
C
dxµ1

1 . . .

∮
C
dxµnn ≡

∫ 1

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn ẋ
µ1(τ1) . . . ẋµn(τn) (2.2)

Instead of (2.1) we could also consider gauge theories endowed with supersym-

metry where the vector multiplet includes also scalars and fermions. In the next

sections we will extend the definition of the Wilson loop for N = 4 SYM theory

and N = 2 SCQCD. We will study their supersymmetric properties and give some

examples.

Wilson loops in N = 4 Super Yang-Mills

In N = 4 SYM theory the Wilson loop (2.1) is generalized to a supersymmetric

version that includes also couplings with the scalar fields 1. The most general

Wilson loop we can consider for this theory is

W [C] =
1

dimR
TrRP exp

[
−ig

∮
C
dτ L(τ)

]
with L(τ) = ẋµAµ + |ẋ|Θi φ

i
R (2.3)

where φiR are the six real scalar fields of the theory. This is known as the

Maldacena-Wilson loop [23]. With our conventions, working instead with 3 complex

fields, the connection reads

1The additional scalar couplings in 2.3 become natural if we think to the N = 4 SYM as the
dimensional reduction of the N = 1 SYM in ten dimensions.
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L(τ) = ẋµAµ +

√
2

2
|ẋ| (nI φI + nI φ

I
) (2.4)

The couplings with the scalars can vary along the path but they must satisfy

ΘiΘi = nInI = 1 to ensure the cancellation of the 1-loop divergences [24]. To see

this, we first write the connection (2.3) in a more convenient way as:

L(τ) = ẋµAµ +

√
2

2
(ẏI φI + ẏ

I
φ
I
) (2.5)

The expression (2.4) is recovered when ẏI = |ẋ|nI . Let’s compute the ex-

pectation value of the Wilson loop at linear order in the ’t Hooft parameter

λ = g2N and, in order to isolate the divergent terms, replace the propagator

1/|x1 − x2|2 → 1/(|x1 − x2|2 + ε2):

〈W [C]〉 = 1− λ

(2π)2

∮
dτ1

∫ τ1

0

dτ2

ẋµ(τ1) ẋµ(τ2) + 1
2
(ẏI(τ1) ẏI(τ2) + ẏI(τ1) ẏI(τ2))

|x(τ1)− x(τ2)|2 + ε2

(2.6)

The divergence arises when |τ2 − τ2| ∼ ε in the limit ε→ 0, so we can write:

〈W [C]〉 = finite +
λ

(2π)2

∮
dτ1

∫ ε
|ẋ1|

− ε
|ẋ1|

dτ2
ẋµ(τ1) ẋµ(τ1) + ẏI(τ1) ẏI(τ1)

ε2

= finite +
λ

(2π)2

2

ε

∮
dτ1

ẋµ(τ1) ẋµ(τ1) + ẏI(τ1) ẏI(τ1)

|ẋ(τ1)| (2.7)

Then the condition to remove this divergence is:

ẏI ẏI = −ẋµ ẋµ (2.8)

It can be shown that this also cancels higher order divergences [24].

For a time-like curve in Minkowski2 space we have that ẋµ ẋµ = −|ẋ|2, so we obtain

the connection (2.4) with nInI = 1 that parametrizes a vector lying on S5. As we

2We exclude the case when the curve is space-like, since it can be shown that a BPS Wilson
loop in N = 4 SYM must be time-like or null in order to satisfy spinor constraints [25], and null
Wilson loops do not couple to the scalars.
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will see, this condition is also needed to guaranty supersymmetry.

When we work in the Euclidean theory, as we will do in the next chapters when

doing perturbation theory, an extra i factor is produced in the term |ẋ| and the

connection is

L(τ) = ẋµAµ + i

√
2

2
|ẋ| (nI φI + nI φ

I
) (2.9)

Now we are going to study the supersymmetric properties of the Wilson loop.

The supersymmetric variation of (2.4) gives:

δW [C] =
1

dimR
TrRP

∮
C
dτ (−ig δL(τ)) e−ig

∮
dτL(τ) (2.10)

where

δL =
√

2 ẋαα̇δAαα̇ +

√
2

2
|ẋ|
(
nI δφI + nI δφI

)
(2.11)

Remembering that the fields transform according to (1.16), at linear order we

can write:

δL =
√

2 ẋαα̇
[
i (εIα ψ

I

α̇ + εIα̇ ψ
I
α)− i (ε0α̇ ηα + ε0α ηα̇)

]
+

√
2

2
|ẋ|nI

[
−ηα εIα − εIJK εα̇J ψKα̇ − εα0 ψIα

]
+

√
2

2
| ẋ|nI

[
−ηα̇ εIα̇ − εIJK εαJ ψKα − εα̇0 ψ

I

α̇

]
(2.12)

Imposing that δW [C] = 0 we find that:

2i ẋαα̇ ε0α + |ẋ|nI εα̇I = 0

2i ẋαα̇ εIα − |ẋ| εIJK nJ εα̇K − |ẋ|nI εα̇0 = 0 (2.13)

These are the conditions for a locally supersymmetric Wilson loop, this is a

local condition because at every point of the curve the equation is different, so the

condition for supersymmetry preservation varies along the curve. We might wonder
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when this is also a global property: the Wilson loop will be globally supersym-

metric if the equations (2.13) are the same for all τ , this puts restrictions on the

shape of the contour and on the couplings nI . When this happens, a fraction of

the original supersymmetry is globally preserved and the number of linearly inde-

pendent εIα that satisfies (2.13) determines the number of conserved supercharges.

For generic xµ(τ) and nI(τ), (2.13) form an infinite set of equations for all the

components of εIα and ε0α. However, there exist examples of non-trivial solutions for

these equations, like the straight line or the circle with nI constant or the Zarembo

generalizations [26] that we are going to see in the next section.

Examples of SUSY Wilson loops

The simplest examples where the condition (2.13) is preserved along the whole

loop are the straight line and the circular loop (which are the only two globally

supersymmetric trajectories that preserve the maximum amount of supersymmetry

with nI constant) and the Zarembo generalizations [26].

Zarembo loops

In [26] Zarembo proposed a way to classify the supersymmetric Wilson loops,

this analysis selects a class of loops which satisfy the following condition on the

scalar couplings

nI = iM I
µ

ẋµ

|ẋ| with M I
µM

I

ν = −gµν (2.14)

The connection (2.4) becomes:

L(τ) = ẋµ(τ)

(
Aµ + i

√
2

2
(M I

µ φ
I −M I

µ φ
I
)

)
(2.15)

This property reduces (2.13) to an algebraic set of equations that, if consistent,

imply that the Wilson loop is globally supersymmetric. These equations are:
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i ẋµ
[
(σµ)αα̇ εα − M

I

µ ε
α̇
I

]
= 0

i ẋµ
[
(σµ)αα̇ εIα − εIJKMJ

µ ε
α̇
K + M

I

µ ε
α̇
]

= 0 (2.16)

For a generic curve we have 4 independent algebraic equations whose space of

solutions has dimension 1 [26], this means that 1 out of the 16 supercharges is

preserved by the Wilson loop defined by the connection (2.15), we say that the

Wilson loop is 1/16 BPS.

If the contour has a special shape, the supersymmetry is enhanced. If we constrain

the curve to lay in a 3-dimensional subspace (setting for example ẋ0 = 0), we have

3 instead of 4 equations and the number of preserved supersymmetries doubles and

the loop is 1/8 BPS. Going on, when the loop lies inside a dimension-2 subspace

the Wilson loop is 1/4 BPS, and for a dimension-1 curve is 1/2 BPS being the

straight line a particular case of this.

In [26] it has been checked up to order g4 that the expectation value of the loop

(2.15) is 〈W [C]〉 = 1, this is basically due to the equality of the gauge and scalar

propagators. The fact that g2 and g4 terms vanish gives the indication that the

expectation value of this kind of Wilson loops is free of quantum correction. This

conjecture made by Zarembo in his paper was proven in [27] using the AdS/CFT

correspondence.

Circular loop

The best known example of a Wilson loop which does not posses a trivial

expectation value is the circular one with nI constant, discussed in [28]. This

Wilson loop preserve half of the supercharges, thus it is 1/2-BPS.

Let’s compute perturbatively its expectation value. The circle is parametrized in

the following way

xµ(τ) = (sin τ, cos τ, 0, 0) in Euclidean

xµ(τ) = (sinh τ, cosh τ, 0, 0) in Minkowski (2.17)

The propagators that enters in the perturbative expansion are given by
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2 – Supersymmetric Wilson loops

〈La(τ1)Lb(τ2)〉 =
δab

(2π)2

ẋ1 · ẋ2 + |ẋ1||ẋ2|
(x1 − x2)2

=
δab

(2π)2

1− cosh(τ1 − τ2)

2− 2 cosh(τ1 − τ2)
=

δab

8π2
.

(2.18)

Since the propagator is coordinate independent, one can sum all the diagrams

with no internal vertex (the so-called ladder planar graphs). This can be done by

finding the appropriate recurrence relation and then summed up to all the orders.

The problem of summing the ladder graphs on the circle can be mapped to a

matrix-model, this has been conjectured in [29] and proven by Pestun in [30] using

the supersymmetric localization techniques that we are going to explain in chapter

4.

Next we have to look for the diagrams with internal vertex. It is possible to show

that at order g4 the sum of all these diagrams equals to zero [28]. In [28, 29] was

conjectured that this cancellation occurs at all order in perturbation theory, so the

expectation value of the circular Wilson loop is given by the matrix model proposed

in [29].

Wilson loops in N = 2 Super Conformal QCD

The supersymmetric Wilson loop in N = 2 SCQCD is defined analogously to

the N = 4 case with the connection now:

L(τ) = ẋµAµ +

√
2

2
| ẋ| (nφ+ nφ) (2.19)

Since nn = 1, the connection can be parametrized in the following way

L(τ) = ẋµAµ +

√
2

2
| ẋ| (eiθ(τ) φ+ e−iθ(τ) φ) (2.20)

The SUSY variation of the connection takes the form

δL =
√

2 ẋαα̇
[
i (ε1α ψα̇ + ε1α̇ ψα)− i (ε0α̇ ηα − ε0α ηα̇)

]
+

√
2

2
|ẋ| eiθ

[
−ηα ε1α − εα0 ψα

]
+

√
2

2
|ẋ| e−iθ

[
−ηα̇ ε1α̇ − εα̇0 ψα̇

]
(2.21)
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And the equations (2.13) for supersymmetry preservation now are

2i ẋαα̇ εα + |ẋ| e−iθ εα̇1 = 0

2i ẋαα̇ ε1α̇ − |ẋ| eiθ εα = 0 (2.22)

In this case, the equations (2.22) can be solved very easily to give:

εα = 2i e−iθ
ẋαα̇

|ẋ| ε
1
α̇ (2.23)

These constraints fix half of the parameters of the supersymmetry transforma-

tions. Again this condition should hold at every point of the path, so this is a local

condition for supersymmetry. The conditions for the Wilson loop to be globally

supersymmetric are the same as the ones considered for the N = 4 SYM case.
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Chapter 3

The cusp anomalous dimension

In this chapter we are going to study the behaviour of Wilson loops which suffers

from discontinuities. We will study a particular type of discontinuous loops: those

formed by the intersection of two straight lines. We will see that in these cases, the

expectation value of the Wilson loop develops logarithmic divergences and these

divergences are controlled by a quantity called the cusp anomalous dimension. This

quantity is related to many physical observables in the theory and in some cases it

can be systematically computed using perturbation theory or localization. One of

the most interesting aspects of the cusp anomalous dimension is observed when we

take the zero limit of the angle defining the cusp, in this case the cusp anomalous

dimension is related to a quantity that determines the energy radiated by a moving

particle: the Bremsstrahlung function.

We start in section 3.1 by reviewing some aspects of divergences in Wilson loops

and we will see how the cusp anomalous dimension appears. Then in section 3.1.1

we will study various limits of the cusp anomalous dimension and we will see

how certain physical observables can be obtained from it. In section 3.2 we will

generalize the definition of this quantity to a form applicable to supersymmetric

theories that have Wilson loop operators that include the extra coupling with

scalars. We will see that in these cases it is possible to define another angle, apart

from the geometrical one, that relates the coupling with the scalars at both sides

of the cusp and study the various possible limits of it. In section 3.3 we will

concentrate on the light-like cusp anomalous dimension and we will relate it to the
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3 – The cusp anomalous dimension

possibility of the existence of a universal function of gauge theories.

Cusped Wilson loops

We star by considering the ordinary Wilson loop in a generic gauge theory

W [C] =
1

dimR
TrRP exp

[
−ig

∮
C
dxµAµ(x)

]
(3.1)

The theory can have some UV divergences. As we saw in chapter 1, the fields and

couplings are renormalized by counterterms, these potentially divergent terms are

inherent to the lagrangian of the theory and don’t depend on the contour of the

Wilson loop. Let’s assume that we already performed this renormalization for the

fields and couplings and concentrate our discussion on the type of divergences that

arise due to the particular shape of the loop.

When the loop is a smooth curve (meaning that it doesn’t have discontinuities),

these divergences can be factorized as [31]

〈W [C]〉 = e−
k
a
L[C] × finite (3.2)

where L[C] is the length of the contour and a is the UV cut-off used to regularize

small distances.

Now consider a loop with a cusp, which is a path formed by the intersection of

two straight lines that form an angle ϕ as it is shown in figure 3.1

v1

v2

ϕ

Figure 3.1: A cusped path C characterized by an angle ϕ.
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3 – The cusp anomalous dimension

The cusp is characterized by the euclidean angle ϕ defined as: cosϕ = v1·v2

|v1||v2| .

Alternatively, working in Minkowski space: coshϕM = v1·v2

|v1||v2| .

Due to the presence of the cusp new divergences appear. In [32] was shown that

these divergences can be removed at any order by a multiplicative renormalization

constant

WR[C] = Z−1
cusp(ϕ)W [C] (3.3)

In [33, 32] a renormalization group equation was derived for the cusped Wilson

loop: (
µ
∂

∂µ
+ β(gR)

∂

∂gR
+ Γcusp(ϕ, gR)

)
WR(µ, ϕ, gR) = 0 (3.4)

where µ is the renormalization mass scale, gR is the renormalized coupling

constant, β(gR) is the β-function defined in section 1.1.5 and

Γcusp =
∂ logZ

∂ log µ
(3.5)

is the cusp anomalous dimension. Equation (3.4) together with the definition of

the cusp anomalous dimension imply that the divergent part of the Wilson loop

exponentiates as [31]

〈W [Ccusp]〉 ∝ e−Γcusp(ϕ,g) log L
a (3.6)

where again L is the length of the contour and a is the short-distance cut-off.

Equation (3.6) provides the standard prescription for computing the cusp anoma-

lous dimension at weak coupling. In fact, it is sufficient to compute the cusped

Wilson operator order by order in g, using dimensional or cut–off regularization to

tame UV divergences and introducing a suppression factor to mitigate divergences

at large distances. In dimensional regularization, which consists on shifting the

spacetime dimension as d = 4−2ε, Γcusp can be read from the coefficient of the 1/ε

pole. We will see in chapter 5 explicitly how to do it.

Limits of the cusp anomalous dimension

The cusp anomalous dimension has an interesting dependence on the cusp angle.

The following three limits are of physical importance:
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large angles: In the limit of large Minkowskian angles we obtain

Γcusp(g, ϕM)
ϕM→∞−−−−→ K(g)ϕM +O(ϕ0

M) (3.7)

where K(g) is the anomalous dimension of a null Wilson loop [32]. It was

computed in perturbation theory [34, 35] inN = 4 SYM. It can be determined

exactly by an integral equation [36]. We are going to talk about it in more

detail in section 3.3.

anti-parallel lines: When ϕ ∼ π the cusp anomalous dimension develops a

pole

Γcusp(g, ϕ) = − V (g)

π − ϕ ϕ ∼ π (3.8)

In conformal gauge theories V (g) is related to the the quark - anti quark

potential.

small angles: When ϕ → 0 the cusp divergences disappear and the cusp

anomalous dimension vanishes as

Γcusp(g, ϕ)
ϕ→0−−→ −ϕ2B(g) (3.9)

B(g) is the Bremsstrahlung function of the theory and it is related to the

energy radiated by a moving particle [1]. In some theories it can be computed

exactly using localization, as we will see in chapter 4.

Generalized cusp anomalous dimension

Now we want to study the supersymmetric version of the Wilson loop that was

defined in (2.4) and (2.19) for N = 4 SYM and N = 2 SCQCD respectively as:

〈W [C]〉 =
1

dimR
TrRP exp

[
−ig

∮
C
dτ L(τ)

]
(3.10)

with

LN=4 = ẋµAµ +

√
2

2
|ẋ| (nI φI + nI φ

I
)

LN=2 = ẋµAµ +

√
2

2
| ẋ| (n φ+ n φ) (3.11)
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3 – The cusp anomalous dimension

We can use the couplings nI (and n) as directions in some internal space (S5

for N = 4 and in S1 for N = 2) and, instead of considering the configuration nI

constant along the whole loop, we can take −→n 1 and −→n 2, allowing a change when

the direction v1 changes to v2. Then we can define an internal angle

cos θ =
1

2

[
nI1 n

I
2 + nI1 n

I
2

]
(3.12)

as showed in picture 3.2

ϕ

θ

Figure 3.2: Change in the couplings with the scalars, characterized by an angle θ in the
internal space.

Then the cusp anomalous dimension will depend on both angles: Γcusp(g, ϕ, θ).

This quantity is called generalized cusp anomalous dimension and it shares some

of the properties of the ordinary cusp anomalous dimension. For N = 4 SYM it

has been computed at weak coupling in [24]

in N = 4 SYM it characterizes the planar IR diverges that arise in the

scattering of massive W-bosons on the Coulomb branch of N = 4 SYM [1].

When θ = ±ϕ the configuration is supersymmetric and the cusp anomalous

dimension vanishes. In this case the Wilson loop is BPS, it is a particular

case of the 1/4-BPS loops [26] that we saw in section 2.2.1. We will come

back to this in section 3.2.

In the limit ϕ→ π, the generalized quark-antiquark potential is obtained [37]

and matches the usual one (3.8) when θ = 0.
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BPS configurations

In general the Wilson loop defined by the angle 3.2 is not BPS, except in some

trivial cases. For example, when the the coupling with the scalars doesn’t change

(θ = 0) the Wilson loop is 1/2-BPS for ϕ = 0, which is the straight line studied in

the previous chapter. But turns out that for the situation where θ /= 0 there exist

a non-trivial case for which the loop becomes BPS as well, and it is when θ = ±ϕ.

Around this point the cusp anomalous dimension behaves as

Γcusp(g, ϕ, θ) ' −(ϕ2 − θ2)H(g, ϕ) ϕ ≈ ±θ (3.13)

The very interesting feature of this identity is that the function H(g, ϕ) has the

following property:

H(g, ϕ = 0) = B(g) (3.14)

where B(g) is the bremsstrahlung function for the ordinary loop with θ = 0. This

property trivially implies that

Γcusp(g, ϕ = 0, θ) = θ2B(g) (3.15)

This means that we can compute B(g) either by taking ϕ� 1 with θ = 0, or θ � 1

with ϕ = 0. Making a clever use of this fact, we can reduce a lot the computations

when calculating the bremsstrahlung function.

Let’s illustrate this with a 1-loop example: at this order, the contributions to the

expectation value of the Wilson loop of the type (3.11) will be just the single gluon

and scalar exchange:

Figure 3.3: Gluon and scalar exchange that contributes to the 1-loop order in the Wilson
loop expectation value.

And will produce a factor

〈W 〉(1) ∝
∫
dτ1

∫
dτ2

cosϕ− cos θ

|vµ1 τ1 − vµ2 τ2|2
(3.16)

As we saw before, the 1-loop term in the cusp anomalous dimension can be

obtained directly from this expression after regularizing divergences. In order to
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3 – The cusp anomalous dimension

obtain B(g), we will need to keep track of the coefficient of the quadratic term

ϕ2, but due to the properties (3.13) and (3.14), we can also derive B(g) by setting

ϕ = 0 and taking the θ2 coefficient.

Therefore, from expression (3.16) only the term proportional to cos θ (in this case,

the scalar propagator contribution) will be necessary, so we can ignore all the

diagrams that do not involve cos θ factors (the gluon exchange in figure 3.3).

Light-like Cusp anomalous dimension

The light–like cusp can be used to check an interesting universal behavior of the

cusp anomalous dimension that was found to hold up to three loops in QCD and

in Yang–Mills theories with only adjoint matter [4, 38]. Precisely, when expressed

in terms of the light-like cusp replacing the coupling constant, the cusp anomalous

dimension gives rise to an universal function Ω(K,ϕ) that is independent of the

number of fermion or scalar fields in the theory. This is done in the following way:

Define a new effective coupling constant a = K(g), the universal function is defined

as

Ω(a, ϕ) := Γcusp(g, ϕ) (3.17)

The expansion coefficients of the two functions are related to each other as

Ω(a, ϕ) =
a

K(1)
Γ(1)(ϕ) +

( a

K(1)

)2
[
Γ(2)(ϕ)− K(2) Γ(1)(ϕ)

K(1)

]
(3.18)

+
( a

K(1)

)3
[
Γ(3)(ϕ)− K(3) Γ(1)(ϕ)

K(1)
− K(2) Γ(2)(ϕ)

K(1)
+

(K(2))2 Γ(1)(ϕ)

(K(1))2

]
+ · · ·

This function has been computed for N = 4 SYM, for QCD and for a gen-

eral Yang-Mills theory containing fermions and scalars. Since the cusp anomalous

dimension depends on the particle content of the theory, it is expected to find

different results for Ω(a, ϕ). In [4] it was found that, at least to three loops, the

function is the same in any gauge theory.

ΩN=4(a, ϕ) = ΩQCD(a, ϕ) = ΩYM(a, ϕ). (3.19)

This means that all the dependence on the particular theory stands in K(g2).

Equation (3.17) is valid for any ϕ, in particular

Ω(a, ϕ) = −ϕ2B̃(a) +O(ϕ3) (3.20)
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3 – The cusp anomalous dimension

By construction this means that B̃(a) = B(g) is a universal function up to at

least three loops.

We will come back to this point again at the end of chapter 5 when we will talk

about the existence of a substitution rule relating N = 4 SYM and N = 2 SCQCD

[39, 40, 41].
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Chapter 4

Localization

In this chapter we will introduce the concept of localization. It was originally

studied in the context of equivariant cohomology and topological theories [44, 45],

then its utility was extended within quantum field theories.

This method allow us to compute certain functional integrals as partition func-

tions or expectation values of some operators in supersymmetric theories. If we

see the fields as coordinates in a super-manifold1, the introduction of an opera-

tor that modifies the action in a controlled way permits to restrict the integration

domain to a submanifold called the localization locus, which in general has lower

dimensionality than the original one. The price to pay is the appearance of some

determinants that in general are not easy to compute, except in some cases with a

lot of symmetries.

The localization formula that we are going to derive provides a way to obtain non-

perturbatively the exact results of local and non-local operators (such as Wilson

loops [30] and their correlation functions). Having an exact expression for expecta-

tion values is very powerful since it can be used, for example, to test some aspects

of dualities.

In this chapter we will start in section 4.1 by presenting the basic and intuitive

idea of supersymmetric localization and explain how in some cases this procedure

reduces the functional integral to a zero-dimensional one known as Matrix Model.

In sections 4.2 and 4.3 we will see that this is the case for the theories N = 4 SYM

1A supermanifold is a manifold with both bosonic and fermionic coordinates.
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and N = 2 SCQCD, and we will give the expectation value of a circular Wilson

loop computed by this method. We will also see how we can use localization in a

suitable limit to obtain the exact form of the Bremsstrahlung function.

Supersymmetric localization and Matrix Models

In this section we will explain the concept of localization [30, 46, 47]. Let’s

denote collectively the fields in the theory by Φ and the action by S[Φ]. The

euclidean partition function 2 of this theory is defined as

Z =

∫
DΦe−S[Φ] (4.1)

Suppose that we have a fermionic symmetry of the action generated by Q, this

means that QS[Φ] = 0. In general, Q2 is a bosonic symmetry of the theory.

Let’s assume that we have an operator O that is also invariant under the action

of Q (QO = 0), and assume that the symmetry is not anomalous3, the operator

O could be a local operator or a non-local operator like a supersymmetric Wilson

loop. We want to compute the expectation value of this operator, that is defined

as

〈O〉 =

∫
DΦO e−S[Φ] (4.2)

The localization technique is based in the following idea: we can modify the

action and the partition function in a certain way without affecting 〈O〉. In fact,

let V [Φ] be a fermionic functional constructed in such a way that Q2V = 0 and the

bosonic part of QV being positive semi-definite (the need for this condition will be

clearer later). We can consider a modification of the action given by

S[Φ]→ S
′
[Φ, t] = S[Φ] + tQV (4.3)

where t is a real parameter. In this way, we get a new theory defined by the

action S
′
[Φ, t] which is still invariant under Q. Note that we recover the original

2The same theory defined in Minkowski space-time we replace −S[Φ]→ iS[Φ].
3An anomalous symmetry will produce a change of the integration measure DΦ under the

action of Q, meaning that Q(DΦ) /= DΦ and thus changing the value of the partition function.
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theory for t = 0.

The path integral of the new theory is

Z(t) =

∫
DΦe−S[Φ]−tQV [Φ] (4.4)

We now compute the expectation value of O in the modified theory:

〈O〉(t) =

∫
DΦO e−S[Φ]−tQV [Φ] (4.5)

To see that the expectation value of O is the same in both theories, we take the

derivative with respect to t of the above expression:

d

dt
〈O〉(t) = −

∫
DΦO (QV )e−S[Φ]−tQV [Φ] (4.6)

We know that Q(S + tQV ) = 0 by construction and Q(O) = 0, so we can take

Q outside the whole integrand:

O (QV ) e−S−tQV = Q
(
O V e−S−tQV

)
(4.7)

with this, equation (4.6) is written as

d

dt
〈O〉(t) = −

∫
DΦQ (O V e−S[Φ]−tQV [Φ]) (4.8)

Finally, we can make use of the fact that the measure DΦ is invariant under the

action of Q to say that the integrand of (4.8) is a total derivative in the field

space. So after conveniently fixing the boundary terms, the result is zero. Thus,

the expectation value of the Q-invariant operator O is the same if we compute it

in any of the theories defined by the modified action (4.3):

〈O〉(t) = 〈O〉 ∀t (4.9)

In particular the result will be the same if we compute it in the limit t→∞.

〈O〉 = lim
t→∞
〈O〉(t) (4.10)

This limit is particularly interesting because computations are much more easy

to do, as we will see. In fact, is easy to see that due to the assumptions we made
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on QV , the contributions to the functional integral for large t are exponentially

suppressed, except at the points where QV = 0.

Therefore in the limit t → ∞ the only points contributing to the integral are the

ones that lay in the subset {Φ0 /QV [Φ0] = 0} that we call the localization locus of

QV . We say that the integral localizes in this set of points.

Now we want to evaluate the path-integral (4.4) in the limit t → ∞. To do this,

lets parametrize the fluctuations of the fields around the localization locus as

Φ = Φ0 +
1√
t
δΦ (4.11)

Now expand the deformed action around these field configurations:

S + tQV = S[Φ0] + t

[
(QV )[Φ0] +

∫ (
δ(QV )

δΦ

∣∣∣∣
[Φ0]

δΦ√
t

)

+
1

2

∫ ∫ (
δ(2)(QV )

δΦ δΦ

∣∣∣∣
[Φ0]

(δΦ)2

t

)]
+ O(t−1/2)

= S[Φ0] +
1

2

∫ ∫ (
δ(2)(QV )

δΦ δΦ

∣∣∣∣
[Φ0]

(δΦ)2

)
+ O(t−1/2) (4.12)

where in the last line we have used the fact that Φ0 are zeros and fixed points of

QV . Therefore only the on-shell action S0 and the second order variations of QV
around the fixed points enters in the limit t→∞. We say that the result is 1-loop

exact : meaning that the higher order terms in the expansion around Φ0 vanish in

the t→∞ limit.

Then we arrive to the localization formula for the path-integral

Z =

∫
DΦ0Z1-loop[Φ0] e−S[Φ0] (4.13)

where Z1-loop[Φ0] is the 1-loop determinant that characterizes the fluctuations

around Φ0 and it is given by

Z1-loop[Φ0] = SDet

[
δ(2)(QV )

δΦ δΦ

]
(4.14)

where “SDet[. . .]” is the ratio of the determinants of the operators appearing

at quadratic orders in the bosonic and fermionic fluctuations in (4.12). The lo-

calization formula (4.13) is a very powerful tool that we can use to drastically
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simplify the path integral that one needs to compute to evaluate expectation val-

ues of Q-invariant observables. Depending on the space-time dependence of the

field configurations belonging to the localization locus, one may be left with the

path integral of a lower-dimensional quantum field theory. In most of the cases

cases, the fields on the locus are independent of the space-time coordinates and we

get a finite-dimensional integral of a zero-dimensional quantum field theory such

as a matrix model [47].

When we derived the formula (4.13) we haven’t had into account the possible

instanton contributions. To give a more accurate expression we should include

their contribution to the path integral in the form of an extra factor in (4.13). The

formula will be then

Z =

∫
DΦ0Z1-loop[Φ0]Zinst[Φ0] e−S[Φ0] (4.15)

where Zinst is the partition function of the instantons [48, 30].

We will apply these results to compute the exact expectation value of the 1/2-

BPS circular Wilson loop in N = 4 SYM theory and in N = 2 SCQCD. [30, 49].

Matrix Models

Matrix models are the simplest examples of quantum field theories, they are

quantum gauge theories in zero dimensions where the basic field is a Hermitian

N ×N matrix a. We will follow the review [50] and we take the action for a to be

of the form:

S[a] =
1

2
Tr(a2) +

∑
p≥3

gp
p

Tr(ap) (4.16)

where gp are p-dependent coupling constants.

The action has the gauge symmetry

a→ U aU † (4.17)

where U is a U(N) matrix. The partition function of this theory is

Z =
1

Vol(U(N))

∫
[da] e−

1
g
S[a] (4.18)
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where g is another coupling constant that gives the correct dimension to the

propagators, each interaction vertex with p-legs gives a power gp/g. The factor

Vol(U(N)) is the usual volume factor of the gauge group.

The measure of the path integral is

[da] = 2
N(N−1)

2

N∏
i=1

daii
∏

1≤i≤j≤N

dRe aij dImaij (4.19)

The simplest example of a Matrix Model is the quadratic one, known as the Gaus-

sian Matrix Model. It is defined by the partition function

Z =
1

Vol(G)

∫
[da] e

− 1
2g2

Tr(a2)
(4.20)

The expectation value of an observable O[a] in this model is given by

〈O[a]〉 =

∫
[da]O[a] e

− 1
2g2

Tr(a2)∫
[da] e

− 1
2g2

Tr(a2)
(4.21)

This model is exactly solvable, meaning that the expectation values (4.21) can

be computed systematically [50].

The partition function of more general matrix models with action (4.16) can be

evaluated by doing perturbation theory around the Gaussian point: one expands

the exponential of
∑

p≥3(gp/g)Tr(ap)/p in (4.18), and computes the partition func-

tion as a power series in the coupling constants gp. The evaluation of each term of

the series involves the computation of Gaussian integrals of the form (4.21).

Matrix Model for N = 4 Super Yang-Mills

In section 2.2.1 we mentioned that in order to compute the expectation value of

the circular Wilson loop only certain type of diagrams (ladder graphs) have to be

considered [28]. Moreover, since each propagator that enters in the loop contributes

with a constant factor, the sum can be done by means of a zero-dimensional field

theory, i.e: a matrix model. In [29] Drukker and Gross proposed that the value

of the circular loop can be calculated exactly with a Gaussian Matrix Model. The

47
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conjecture then states that, at any order, the result is

〈W [C©]〉 =

∫
[da] Tr(e−2πa) e

− 8π2

g2
Tr(a2)∫

[da] e
− 8π2

g2
Tr(a2)

(4.22)

Since this matrix model is Gaussian, it can be solved explicitly. The final exact

result turns out to be

〈W [C©]〉 =
1

N
L1
N−1(−g

2

4
) e

g2

8 (4.23)

where Lij is a Laguerre polynomial, given by

Lij(x) =
1

n!
ex x−i

dj

dx
(e−x xi+j) (4.24)

In [30] Pestun proved this conjecture by using the localization technique that we

saw before and generalized it for N = 2 theories. Looking at the formula (4.13), for

the particular case of N = 4 SYM all the instanton contributions vanish and the

1-loop determinant is exactly 1 (meaning that fermionic and bosonic contributions

cancel). The partition function is then

ZN=4 =

∫
S4

[da] e
− 8π2

g2
Tr(a2)

(4.25)

The Bremsstrahlung function

In the previous chapter we have defined the bremsstrahlung function as the

coefficient of the quadratic term in the small angle expansion of the cusp anomalous

dimension.

Γcusp(g, ϕ)
ϕ→0−−→ −ϕ2B(g) (4.26)

In [1] it was proved that B(g) can be obtained from the expectation value of the

1/2-BPS circular Wilson loop as a derivative with respect to the ’t Hooft coupling

λ = g2N :

BN=4 =
1

2π2
λ ∂λ log〈W [C©]〉 (4.27)

where 〈W [C©]〉 is the expectation value of the circular Wilson that can be

computed via the matrix model at all orders in λ and it is given by (4.23). In the

large N limit the bremsstrahlung function is:
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BN=4 =

√
λ

4π2

I2(
√
λ)

I1(
√
λ)

+ O(1/N2) (4.28)

where In(x) are the modified Bessel function of the first kind. We can expand

this in power series of λ and we get:

BN=4 =
λ

4π2
− λ2

384π2
+

λ3

6144π2
+ O(λ4) (4.29)

which agrees with [37].

We can obtain an alternative expression for the bremsstrahlung function if we

place the circular Wilson loop on the ellipsoid Sb:

x2
0 +

x2
1 + x2

2

l2
+
x2

3 + x2
4

l̃2
(4.30)

The squashing parameter is b =

√
l/l̃, and the case b = 1 corresponds to the sphere

S4. In this case, the expectation value of the circular Wilson loop given by the

matrix model (4.22) is now a function of the squashing parameter b and becomes4:

〈W©〉b =

∫
[da] Tr(e−2πba) e−

8π2N
λ

Tr(a2)∫
[da] e−

8π2N
λ

Tr(a2)
+ O(b− 1)2 (4.31)

Now, working in the ellipsoid, the expression (4.27) is equivalent to

BN=4 =
1

4π2
∂b log〈W©〉b

∣∣∣∣
b=1

(4.32)

It is easy to see that both expressions are equivalent. In (4.31) let’s rescale a =
√
λâ:

〈W©〉b =

∫
[dâ] Tr(e−2πb

√
λâ) e−8π2NTr(â2)∫

[dâ] e−8π2NTr(â2)
(4.33)

then we can see that 〈W©〉b depends on b only trough b
√
λ. So, noting that

∂b[. . .] =
√
λ ∂(b

√
λ)[. . .] = 2λ

b
∂λ[. . .], is automatic to see that

1

4π2
∂b log〈W©〉b

∣∣∣∣
b=1

=
1

2π2
λ ∂λ log〈W©〉b (4.34)

4We can obtain the Wilson loop on the ellipsoid by simply making the substitution g → gb in
the S4 model.
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where we have used that 〈W©〉|b=1 is the circular Wilson loop computed on the

sphere.

Matrix Model for N = 2 Super conformal QCD

In this section we present the matrix model for N = 2 derived by Pestun in

[30]. As in the N = 4 case, the partition function of N = 2 SCQCD on S4 is

computed using localization and it is [30]

ZN=2 =

∫
S4

[da] e
− 8π2

g2
Tr(a2)Z1-loop(a) |Zinst(a, g

2)|2 (4.35)

Note that in this case, the matrix model is not Gaussian as in N = 4. The last

two terms are the one-loop partition function characterizing field fluctuations and

the instanton contribution.

The instanton partition function Zinst(a, g
2) can be found in [48] and it is a very

complicated function of the eigenvalues of a and the Yang-Mills coupling. It is

usually assumed that instantons are not important in the large-N limit.

The matrix a = diag(a1, . . . , aN) is subject to the condition
∑N

i=1 ai = 0. The

one-loop partition function Z1-loop(a) is thus a combination of terms that depend

on (ai− aj)2 and a2
i . The explicit expression was computed by Pestun, and can be

expressed through a single function H(x) defined as

H(x) = e−(1+γ)x2

G(1 + ix)G(1− ix) (4.36)

where G(z) is the Barnes G-function.

The one-loop factor in the partition function is given by [30]

Z1-loop =

∏N
i,j=1 H(ai − aj)∏N
i=1 H(ai)2N

(4.37)

where the numerator is the contribution of the vector multiplet and the denom-

inator is the contribution of 2N hypermultiplets [51].

The function H(x) admits the following product representation

H(x) =
∞∏
n=1

[(
1 +

x2

n2

)n
e−

x2

n

]
(4.38)
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and its logarithm can be expanded as

logH(x) = −(1 + γ)x2 −
∞∑
n=2

ζ(2n− 1)
x2n

n
(4.39)

So we can write the logarithm of (4.37) using (4.39):

logZ1-loop = −
∞∑
n=2

ζ(2n− 1)

n

[∑
i<j

(ai − aj)2n − 2N
∑
i

a2n
i

]
(4.40)

where the x2 part in H(x) was removed due to conformal invariance and only

happens when Nf = 2N . So the first non trivial contribution starts at (Tr(a2))2

and we can schematically write

logZ1-loop
∼=

N∑
i<j=1

log(ai − aj)2 − ζ(3)

[
N∑

i,j=1

(ai − aj)4 −N
N∑
i=1

a4
i

]
+O(a6)

(4.41)

which can be simplified as:

logZ1-loop = −3

4
ζ(3)

(
Tr(a2)

)2
(4.42)

Then, to compute the expectation value of the Wilson loop

〈W©〉 =
1

ZN=2

∫
[da] Tr(e−2πa) e

− 8π2

g2
Tr(a2)Z1-loop (4.43)

In the weak coupling limit one obtains:

〈W©〉 = 1 +
λ

8
+

λ2

192
+ λ3

(
1

9216
− 3ζ(3)

512π4

)
(4.44)

A conjecture for BN=2

In [2] a conjectured formula for the bremsstrahlung of N = 2 SCQCD was

proposed by Fiol, Gerchkovitz and Komargodski inspired by the N = 4 result

BN=2 =
1

4π2
∂b log〈W©〉b

∣∣∣∣
b=1

(4.45)

51



4 – Localization

where 〈W©〉b is the circular Wilson loop on the ellipsoid computed in [30, 52,

53, 54, 51, 55, 56], which is given by

〈W©〉b =

∫
[da] Tr(e−2πba) e

− 8π2

g2
Tr(a2)Z1-loop(a, b)∫

[da] e
− 8π2

g2
Tr(a2)Z1-loop(a, b)

(4.46)

Identity (4.45) has been explicitly checked up to three loop for gauge group

SU(2) by the authors of [2], while for N > 2 only a consistency check of its

positivity has been given there. In chapter 5 we will extend this proof to the

general SU(N) case 5.

In the absence of the Wilson loop the ellipsoid is invariant b↔ b−1 and therefore

the classical, one-loop and, instanton contributions start deviating from their S4

expressions only at second order in b − 1. The Wilson loop insertion in equation

(4.46) is the only factor in the integrand that contains a term linear in b− 1. Since

in (4.45) we have to evaluate at b = 1, we note that after the derivative only the

terms that where linear in b − 1 in 〈W©〉b will contribute to the bremsstrahlung.

So we conclude that BN=2 can be computed using just the 1-loop determinant and

instanton factors of the round S4 matrix model.

5In [2] the authors made another conjecture that states that BN=2 = 3h, where h is the
coefficient of the one–point correlation function for the stress–energy tensor in the presence of
the Wilson line defect. This second conjecture was later proved in [57].
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Chapter 5

The difference method and

perturbative computations

In sections 4.2 and 4.3 we saw that it is possible to compute the bremsstrahlung

function exactly as a derivative of the vacuum expectation value of a circular 1/2-

BPS Wilson loop computed by a matrix model. While forN = 4 SYM that relation

was proved, for N = 2 SCQCD it remained as a conjecture. This conjecture has

been explicitly checked up to three loop for gauge group SU(2), while for N > 2

only a consistency check of its positivity has been given in [2]. In this chapter we

are going to extend this proof to the general SU(N) case.

To do this we will consider a generalized Maldacena–Wilson operator like the

one defined in chapter 2 along a cusped line with geometric angle ϕ and featured by

an internal angle θ which rotates the couplings to the adjoint matter when moving

through the cusp. The corresponding generalized cusp anomalous dimension turns

out to be a function of both angles, as we saw in chapter 3.

For generic SU(N) SCQCD we perform a genuine three–loop calculation of the

cusped operator at generic angles and finite group rank N . From the 1/ε pole of the

dimensionally regularized result we then extract the generalized cusp at three loops

and the corresponding bremsstrahlung function from its small angle expansion. We

find a general result that, remarkably, coincides with the conjectured formula once

we expand the matrix model up to that order.

The chapter is organized as follows. We first describe our computational strat-

egy in Section 5.1, and recall the Matrix Model result in Section 5.1.1. Then the
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5 – The difference method and perturbative computations

novel results are presented, where we report the diagrammatic approach to the

three–loop calculation in section 5.1.2 and the evaluation of the Feynman integrals

in section 5.2. In the last sections we give the main results and we provide an ex-

plicit check of the universal behaviour of the cusp anomalous dimension proposed

in [38, 4], which should work up to three loops that we saw in 3.3. The results of

these computations are summarized in [3].

The difference

We will compute the cusp anomalous dimension and the associated Bremsstrahlung

function ofN = 2 SCQCD by comparing them with the corresponding known quan-

tities of N = 4 SYM. In fact, it is well–known that this trick drastically reduces

the number of new diagrams to be computed, as we will see.

We review now the discussion of section 1.1.4 about the way fields organize into

multiplets. We saw at the end of section 1.3 that in this language the field con-

tent of the N = 2 SCQCD theory with gauge group SU(N) is organized into

one vector and one chiral multiplets transforming in the adjoint representation of

SU(N), which form the N = 2 vector multiplet, together with Nf = 2N chiral

multiplets building up 2N N = 2 hypermultiplets transforming in the fundamental

representation of the gauge group.

Analogously, the N = 4 SYM theory is described by one vector multiplet plus

a SU(3) triplet of adjoint chiral multiplets. Together they build up the N = 2

vector multiplet, combining the N = 1 vector with one of the chiral multiplets in

analogy with the N = 2 SCQCD case, plus one adjoint N = 2 hypermultiplet from

the two remaining adjoint chiral multiplets.

Therefore, the two theories have the same N = 2 gauge sector, while the

difference relies only in the matter content and entails the comparison of two of the

adjoint chiral multiplets in N = 4 SYM as opposed to the pair of 2N fundamentals

in N = 2 SCQCD [58]. This allows to drastically simplify the calculation of any

observableO that is common toN = 2 SCQCD andN = 4 SYM theories if, instead

of computing 〈O〉N=2 directly, one computes the difference 〈O〉N=2 − 〈O〉N=4. In

fact, in the difference all the Feynman diagrams that are common to the two

theories cancel, in particular the ones built with fields belonging to the gauge

sector. The computational strategy of taking the difference was first introduced
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5 – The difference method and perturbative computations

in [59], albeit working with a different description of the field content of the two

theories.

In this context we consider a Maldacena–Wilson operator common to N = 2

SCQCD and N = 4 SYM theories

W =
1

N
TrP e−ig

∫
C dτL(τ) (5.1)

with Euclidean connection

L(τ) = ẋµAµ + i

√
2

2
|ẋ| (φ+ φ̄) (5.2)

where φ, φ̄ are the adjoint scalars entering the N = 2 vector multiplet shared

by the two theories.

We consider a cusp contour C made by two infinite straight lines parametrized

as

xµ(τ1) = vµ1 τ1 0 < τ1 <∞
xµ(τ2) = vµ2 τ2 −∞ < τ2 < 0 (5.3)

The two lines form an angle ϕ, such that cosϕ = v1 · v2 and |v1| = |v2| = 1.

We also allow for two different scalar couplings on the two lines of the contour,

characterized by a relative internal angle θ. Precisely, on the two rays we choose

L1(τ) = vµ1Aµ +
i√
2

(φ eiθ/2 + φ̄ e−iθ/2) (5.4)

L2(τ) = vµ2Aµ +
i√
2

(φ e−iθ/2 + φ̄ eiθ/2) (5.5)

Even if our computation is entirely done in the component formalism, it is worth

to mention that in N = 1 superspace some effective rules to evaluate diagrammatic

difference 〈O〉N=2− 〈O〉N=4 have been derived [68] and later formalized [39] in the

context of the calculation of the SU(2,1|2) spin chain Hamiltonian of N = 2

SCQCD. In that case it was shown that the only source of diagrams potentially

contributing to the difference is given by graphs containing chiral loops cut by

an adjoint line (either vector or chiral). This rule was found later to be valid

also in the context of the computation of the adjoint scattering amplitudes of

56
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N = 2 SCQCD [65]. In particular, topologies containing “empty” chiral loops are

constrained to produce the same result for the two models. In fact, for such type

of diagrams computing the difference is only a matter of counting the number of

possible realizations of the loop in terms of adjoint and/or fundamental superfields.

As a consequence of the condition Nf = 2N , the two models turn out to give the

same result.

One might wonder whether similar rules survive when reducing the theory to

components and if they can be easily applied to the computation of the cusp anoma-

lous dimension. As we are going to show in the next sections, this turns out to be

the case for diagrams involving only minimal gauge matter-couplings up to three

loops, due to the fact that the actions in components display the same flavour

structure of their N = 1 superspace versions. Of course, possible complications in

taking too seriously the parallel with the superfield rules may arise when consider-

ing higher order diagrams involving superpotential vertices. In this case we expect

the component diagramatics to follow different rules with respect to the superspace

version.

Matrix Model result

We start this section by remembering the formulas for the bremsstrahlung func-

tion that we saw in the previous chapter:

B =
1

4π2
∂b log〈W©〉b

∣∣∣∣
b=1

(5.6)

where it is understood that B is applicable to both N = 4 SYM and N = 2

SCQCD and where here 〈W©〉b is the 1/2 BPS circular Wilson loop of the form

(5.1, 5.2) defined on the maximal latitude or the maximal longitudinal circles of

the ellipsoid. For N = 4 SYM this equation was proved in [1], where 〈Wb〉 can be

computed exactly by the matrix model [28, 29, 30]

〈Wb〉 =

∫
da tr(e−2πba) e−

8π2N
λ

tr(a2)∫
da e−

8π2N
λ

tr(a2)
+O

(
(b− 1)2

)
(5.7)

and turns out to be a function of the squashing parameter b =

√
l/l̃.

In order to prove identity (5.6) for N = 2 SCQCD we begin by recalling the

evaluation of its right hand side, where the matrix model in this case is given by
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[51, 52, 53, 54, 55, 56]

〈Wb〉 =

∫
daTr e−2πba e

− 8π2

g2
Tr(a2)

Z1−loop(a, b)|Zinst(a, b)|2∫
da e

− 8π2

g2
Tr(a2)

Z1−loop(a, b)|Zinst(a, b)|2
(5.8)

According to conjecture the only terms in the matrix model which can contribute

to B are the ones linear in (b− 1). As we mention in chapter 4, the classical, one-

loop and instanton contributions start deviating from their S4 counterparts only

at second order in (b− 1), it follows that 〈Wb〉 in (5.8) can be computed using the

one–loop determinant and instanton factors of the round S4 matrix model [2].

Assuming prescription (5.6) to be true for any N and expanding the two matrix

models (5.7, 5.8) up three loops, we obtain the general prediction for the difference

of the Bremsstrahlung function in the two theories

BN=2 −BN=4 = − 3ζ(3)

1024π6

(N2 − 1)(N2 + 1)

N
g6 +O(g8) (5.9)

For N = 2 this expression reduces to

BN=2 −BN=4 = − 45

2048π6
ζ(3) g6 +O(g8) (5.10)

which has been already checked in [2] against a three–loop perturbative calculation.

In the next section we generalize the proof of equation (5.9) to any finite N .

The perturbative result

In order to check equation (5.9) we perform a perturbative three–loop calcula-

tion of its left hand side along the lines described in section 5.1, that is by extracting

the difference of the two bremsstrahlung functions from the small angle limit of the

difference of the corresponding cusp anomalous dimensions, ΓN=2 − ΓN=4.

As a first step we have to evaluate WN=2 −WN=4. At order O(g2) the only

diagrams are the single gluon and single adjoint scalar exchanges, for which the

result is the same in both theories. At this order the difference is therefore zero.

This property extends to all the diagrams built with tree level n–point functions

inserted into the Wilson line, since in this case contributions from the hypermul-

tiplets do not appear. The next order is O(g4), where the only non–tree diagrams
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are the exchange of one–loop corrected propagators. However, it has been shown

that in the difference they still cancel since the contribution from a loop of 2N

fundamental fields is the same as the one from the loop of one adjoint field [59].

The first non–trivial contribution starts at O(g6) where the contributing dia-

grams correspond to the insertion of two–loop corrected gauge/scalar propagators

and one–loop corrected cubic vertices. Here we analyse them separately, and post-

pone the evaluation of the corresponding integrals to section 5.2.

Two–loop propagator diagrams

We begin by considering the diagrams with two–loop corrections to the vector

and adjoint scalar propagators. Taking the difference between the N = 2 and

N = 4 propagators, the diagram topologies which survive are the ones listed in

figure 5.1. Here we neglect topologies that would produce vanishing cusp integrals.

(a) (b) (c)

(e)

(d)

(g) (h)(f )

(j)(i) (k)

Figure 5.1: Diagram topologies that contribute to the difference of the N = 2 and N = 4
propagators at two loops.

For simplicity we are not depicting the insertion of the diagrams into the Wilson

loop contour. We use a double solid, curly and dashed line to represent the ad-

joint scalar, vector and fermion fields, respectively. Instead, we use simple solid

and dashed lines for scalars and fermions, collectively representing diagrams which

admit different specific realizations in terms of both adjoint and fundamental fields

of the two models. For instance, in figure 1(a) the simple solid loop stands gener-

ically for one of the following realizations: In N = 4 SYM it indicates any of the

three adjoint scalar fields φI , I = 1, 2,3, whereas in N = 2 SCQCD it corresponds

to either the adjoint scalar φ or one of the two fundamental sets of fields qI , ¯̃qI
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with I = 1, . . . ,2N . The same happens for diagrams (b), (c), (d). For diagrams

(e), (h), (i), (k) involving a simple fermionic loop we have a parallel counting, this

time in terms of the adjoint fermion fields ψ and the fundamentals λ, λ̃.

We see that, excluding diagrams (f), (g), (j), we are only dealing with mini-

mal gauge–matter couplings, so that the superfield difference selection rules of [39]

still hold and we are left only with diagrams with matter loops cut by an adjoint

line. Instead, diagrams (f), (g), (j) involve interaction vertices from the poten-

tial. Consequently, the list of possible field realizations cannot exactly parallel the

superfield counting any more. For instance, diagram (g) produces non-vanishing

contributions to the difference which include the gaugino field η, while diagram (j)

requires a careful analysis of all possible flavour realizations stemming from the

quartic vertices.

It is interesting to note that diagrams (d), (h), (k), which are generated by the

1–loop corrected fermion and scalar propagators, do not have a correspondent in

N = 1 superspace. In fact, in a N = 1 superspace setup the 1-loop corrections to

the superfield propagators are exactly vanishing for both N = 4 SYM and N = 2

SCQCD. However, in the component formulation this is no longer the case and the

one-loop corrections turn out to be divergent. This is not in contradiction with

conformal invariance and can be interpreted as a consequence of working in the

susy-breaking Wess–Zumino gauge [69]

One–loop three–point vertex diagrams

In principle, other contributions at order g6 may come from the insertion into

the cusp of the one–loop corrections to the three–point vertices [59, 2]. The diagram

topologies potentially contributing to the difference between the N = 2 and N = 4

three–point vertices are depicted in figure 5.2. Again we neglect topologies that

would produce vanishing cusp integrals.
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Figure 5.2: One–loop corrections to the three–point vertices that potentially contribute
to the difference.

In [2, 59] it has been proved that in the SU(2) case the contribution to the

difference WN=2 −WN=4 is vanishing at the conformal point, due to the fact that

for algebraic reasons the result from two adjoint scalars running into the loop is

identical to the result from 2N fundamentals. However, as argued in [59], the result

cannot be immediately generalized to SU(N), since for N > 2 extra contributions

from the adjoint scalar loop may arise, which are proportional to the symmetric

structure constants dabc (see equation (A.4) in the appendix A).

Here we perform a detailed analysis of these diagrams and prove that for symme-

try reasons contributions proportional to dabc can never appear. Therefore, we con-

clude that diagrams in figure 5.2 never contribute to the difference WN=2−WN=4,

for any SU(N) gauge group, so generalizing the result of [2, 59].

We illustrate how the cancellation works by focusing on an explicit example,

that is the first vertex topology in figure 5.2 that corresponds to the scalar loop

corrections to the three–gluon vertex.

In the N = 4 SYM case we have the three adjoint scalars φI , I = 1,2,3 running

into the loop. Using Feynman rules in appendix A the corresponding expression

reads

VN=4 = 3N g3 Tr
(
T a[T b, T c]

) ∫
ddz1/2/3 f

µνρ(z1, z2, z3)× Aaµ(z1)Abν(z2)Acρ(z3)

(5.11)

where the factor 3 stems from the sum over all possible flavour loops, the two

terms building up the colour trace commutator correspond to the two possible

orientations of the adjoint loop cycles, and fµνρ is a function of the vertex points
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z1/2/3 that can be expressed in momentum space as

fµνρ(z1, z2, z3) =

∫
dd(q + k2)

(2π)d

∫
dd(q − k1)

(2π)d

∫
ddq

(2π)d
eiq(z1−z2)ei(q+k2)(z2−z3)ei(q−k1)(z3−z1)

× (2q − k1)µ(2q + k2)ν(2q + k2 − k1)ρ

q2(q − k1)2(q + k2)2
(5.12)

In N = 2 SCQCD the same kind of diagram topology can be constructed using

either the single adjoint scalar φ or the two fundamental sets of fields qI , ¯̃qI with

I = 1, . . . , 2N . The adjoint loop will give exactly the same result as in (5.11),

without the factor 3. Instead, the two sets of fundamental loops yield

V fund
N=2 = 2× 2N g3 Tr

(
T aT bT c

)
fµνρ(z1, z2, z3)× Aaµ(z1)Abν(z2)Acρ(z3) (5.13)

where now we have a single possible colour orientation and the integral is still given

in (5.12). Taking the difference we obtain

VN=2 − VN=4 =
{

4NTr
(
T aT bT c

)
− 2NTr

(
T a[T b, T c]

)}
× g3

∫
ddz1/2/3 f

µνρ(z1, z2, z3) × Aaµ(z1)Abν(z2)Acρ(z3) (5.14)

where for SU(2) the colour structure inside the bracket is identically vanishing,

whereas for SU(N) it is nothing but the totally symmetric dabc tensor (see equation

(A.4)).

It is now easy to see that, independently of the gauge group, this expression

always vanishes. In fact, the string dabcA
a
µ(z1)Abν(z2)Acρ(z3) is symmetric under

the exchange of any pair of gauge fields, but it is contracted with fµνρ which is

antisymmetric under any exchange

fµνρ(z1, z2, z3) = −f νµρ(z2, z1, z3) etc... (5.15)

An alternative reasoning goes as follows. Independently of the gauge group,

once we insert the vertex correction (5.14) into the cusp contour, for symmetry

reasons the two colour trace structures of the commutator term Tr
(
T a[T b, T c]

)
sum up to 2Tr

(
T aT bT c

)
, so that the difference in (5.14) vanishes identically. This

can be loosely summarized stating that each adjoint empty loop counts as twice a

fundamental loop contribution, thus producing a vanishing counting.

It is easy to realize that similar symmetry arguments hold for all the other

topologies in figure 5.2. We then conclude that, against previous expectations,
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there are no contributions to WN=2 − WN=4 coming from one–loop three–point

vertices, for generic SU(N) gauge group.

HQET methods for solving integrals

According to the previous discussion, the only non–trivial contributions to the

difference WN=2−WN=4 come from the insertion of diagrams in figure 5.1. In this

section we focus on the evaluation of the corresponding loop integrals.

We can focus only on insertions which connect the two lines of the cusped Wilson

loop (1PI diagrams in the HQET context) since the ones where the two insertion

points lie both on the same ray can be factorized out and do not contribute to the

evaluation of B [60].

The most efficient way to compute the corresponding loop integrals is the so–

called HQET method [61, 4]. Working in momentum space, it consists in inte-

grating first on the contour parameters with a proper prescription for regularizing

boundary divergences. This reduces the integrals to ordinary massive momentum

integrals, which can be written as linear combinations of known Master Integrals

by applying integrations by parts.

The full list of results for diagrams of figure 5.1 can be found in appendix B.

Here we briefly illustrate the procedure by computing for instance the integral cor-

responding to diagram (e). In the N = 4 SYM case the fermionic loop, represented

in our notation with a simple dashed line, can be constructed with any of the three

adjoint fermions ψI , with I = 1, 2,3. In the N = 2 SCQCD case, instead, the loop

can be realized either with the adjoint fermion ψ or with one of the two sets of fun-

damental fermions λI , λ̃
I , with I = 1, ...,2N . Taking the difference of N = 2 and

N = 4 propagators and inserting it in the Wilson line, the corresponding integral

reads (we neglect a factor g6(N2−1)(N2+1)
2N

)

I(e) = −
∫ ∞

0

dτ1

∫ 0

−∞
dτ2 v

µ
1 v

ν
2 tr(σµσρσξστσνσσσξσ

η)∫
ddk1/2/3

(2π)3d
eik3·(x1−x2) (k1 − k3)ρ(k1)η(k2 − k3)τ (k2)σ

k2
1 k

2
2 k

4
3 (k1 − k2)2 (k1 − k3)2 (k2 − k3)2

(5.16)

where we work in d = 4−2ε dimensions and we have defined xµ1 ≡ vµ1 τ1, xµ2 ≡ vµ2 τ2.

Now the trick consists in changing the order of contour and momentum integrals
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and perform first the contour ones. This amounts to first compute∫ ∞
0

dτ1 e
ik3·v1τ1eδτ1

∫ 0

−∞
dτ2 e

−ik3·v2τ2e−δτ2

=
1

(ik3 · v1 + δ)

1

(ik3 · v2 + δ)
(5.17)

where, following the prescription of [4], a damping factor eδτ with δ < 0 has been

introduced for each contour integral in order to make them well defined at infinity.

Since the final result is expected to be independent of the IR regulator δ, we

conveniently choose δ = −1/2. Absorbing the i factor in a redefinition of the

velocity, v = i ṽ, we are left with

I(e) = 4

∫
ddk1/2/3

(2π)3d

tr(σµσρσξστσνσσσξσ
η)

(1 + 2k3.ṽ1)(1 + 2k3.ṽ2)
× ṽ1µ ṽ2ν (k1 − k3)ρ(k1)η(k2 − k3)τ (k2)σ
k2

1k
2
2k

4
3(k1 − k2)2(k1 − k3)2(k2 − k3)2

(5.18)

Now, using the σ-matrix algebra we can reduce the numerator to a linear combi-

nation of scalar products of momenta and external velocities which can be written

in terms of inverse propagators. Therefore, we end up with a sum of momentum

integrals of the form B.1. These integrals are not all independent and, using inte-

gration by parts, performed with the Mathematica package FIRE [62, 63], they can

be expressed in terms of a finite set of Master Integrals [4, 38]. For our example,

after the FIRE reduction we obtain

I(e) =
[(

32(3d−7)(−480+964d−796d2+335d3−71d4+6d5)
(d−5)(d−4)3(d−3)(d−1)

+32(3d−7)(−4736+8360d−5494d2+1663d3−222d4+9d5) cosϕ
3(d−5)(d−4)3(d−3)(d−1)

+32(3d−7)(−2720+4736d−3196d2+1036d3−159d4+9d5) cos2 ϕ
3(d−5)(d−4)3(d−3)(d−1)

)
× I1

−
(

16(1+cosϕ)2(80−54d+9d2)(96−140d+81d2−21d3+2d4)
(d−5)(d−4)3(d−3)(d−1)

−16(1+cosϕ)2(80−54d+9d2)(272−392d+202d2−43d3+3d4) cosϕ
3(d−5)(d−4)3(d−3)(d−1)

)
× I2

−12(d−3)(10−cosϕ(d−8)−3d)(8−5d+d2)
(d−5)(d−4)2(d−1)

× I3

−2(1+cosϕ)(cosϕ(d−8)−3(d−4))(80−74d+25d2−3d3)
(d−5)(d−4)2(d−1)

× I4

]
(5.19)

where the Master Integrals Ii are defined in Appendix B.
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This technique is known as “Heavy Quark Effective Theory” (HQET) due to

its relation with the theory of scattering of heavy particles. The propagator-like

integrals that we obtain with the method described above formally coincide with

the integrals describing the propagation of heavy quarks. The direction vµ of the

Wilson line is the velocity of the quark, whereas the damping factor δ corresponds

to the introduction of a residual energy for the particle. In the presence of a cusp,

the Bremsstrahlung function controls the energy radiated by the heavy particle

undertaking a transition from a velocity v1 to v2 in an infinitesimal angle ϕ.

Since we are eventually interested in computing the cusp anomalous dimension

that in dimensional regularization can be read from the 1/ε pole of log〈W 〉, it is

convenient to expand the master integrals in powers of ε. Defining the new variable

x = eiϕ, where ϕ is the geometric angle of the cusp, for the I(e) we find

I(e) =
1

ε3
2(1−x2−2(1+x2) log[x])

9(x2−1)

+
2

ε2

(
4−π2−(4+π2)x2+3(1+x2) log[x]2

9(x2−1)
− 2 log[x](5+x(5x−3)+6(1+x2) log[1+x])+12(1+x2)Li2[−x]

9(x2−1)

)
+

1

ε

(
80−7π2+12π2x−(80+33π2)x2

18(x2−1)
− log[x](101−(48−101x)x+7π2(1+x2))

9(x2−1)

+
6 log2[x](5−(3−5x)x−(1+x2) log[x])

9(x2−1)
− 12(3π2(1+x2)+2(5+x(−3+5x)) log[x]−3(1+x2) log[x]2) log[1+x]

9(x2−1)

+ 144(1+x2)(log[−x]−log[x]) log[1+x]2

18(x2−1)
− 48(5+x(−3+5x))Li2[−x]−144(1+x2)Li3[−x]−288(1+x2)Li3[1+x]

18(x2−1)

+
96(−2−x2+log[x]+x2 log[x])ζ[3]

18(x2−1)

)
+O(ε0) (5.20)

The expansions of the integrals corresponding to the rest of the diagrams in figure

5.1 are listed in appendix B. We note that the expansions may contain higher order

poles in ε, up to 1/ε3.

Result

Applying the HQET procedure to every single diagram and summing the results

for the integrals as listed in appendix B, we can distinguish the contribution coming

from the insertion of diagrams (a)− (h) (insertion of a gauge propagator)

[
〈WN=2〉 − 〈WN=4〉

]∣∣∣∣(3L)

gauge

= g6 (N2 − 1)(N2 + 1)

2048π6N
ζ(3)

−1 + x2 + 2(1 + x2) log x

(x2 − 1)ε
(5.21)
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from the contribution arising from diagrams (i)− (k) (insertion of an adjoint scalar

propagator)

[
〈WN=2〉 − 〈WN=4〉

]∣∣∣∣(3L)

scalar

= −g6 (N2 − 1)(N2 + 1)

2048π6N
ζ(3) cos θ

4x log x

(x2 − 1)ε
(5.22)

It is remarkable that, although individually the integrals corresponding to the var-

ious topologies in figure 5.1 exhibit up to cubic poles in ε, in the sum they all

cancel and only a simple pole survives. This has a simple physical explanation and

represents a non–trivial consistency check of our calculation. In fact, according

to equation (3.6), which in dimensional regularization reads 〈W 〉 ∼ exp (Γ(g2)/ε),

higher order ε-poles in the Wilson loop expansion only come from the exponenti-

ation of Γ(g2)
ε

. Since the difference 〈WN=2〉 − 〈WN=4〉 is identically vanishing up

to two loops, at three loops we expect to find only simple poles. Taking into ac-

count that the exponentiation works also when we turn off the scalar coupling,

both the gauge and the scalar contributions have to display the higher order poles

cancellation, independently.

Now, summing the two contributions and defining ξ =
1 + x2 − 2x cos θ

1− x2
, we

obtain

〈WN=2〉 − 〈WN=4〉 = g6 ζ(3)

2048π6

(N2 − 1)(N2 + 1)

N
× (1− 2ξ log x)

1

ε
+O(g8)

(5.23)

The presence of the IR regulator eδτ inside the contour integrals breaks gauge in-

variance. As a consequence, gauge–dependent spurious divergences survive, which

need to be eliminated prior computing the cusp anomalous dimension. As ex-

plained in details in [32, 60], this can be done by introducing a multiplicative

renormalization constant Zopen, which in practice corresponds to remove the value

at ϕ = θ = 0

〈W̃ (ϕ, θ)〉 ≡ Z−1
open〈W (ϕ, θ)〉 =

〈W (ϕ, θ)〉
〈W (0,0)〉 (5.24)

We then obtain the IR–divergence free difference, which reads

〈W̃N=2〉 − 〈W̃N=4〉 = −g6 ζ(3)

1024π6

(N2 − 1)(N2 + 1)

N
× ξ log x × 1

ε
+O(g8)

(5.25)
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Recalling that in dimensional regularization with d = 4 − 2ε we need to rescale

g → gµ−ε where µ is a mass scale, and using definition (3) we can easily read the

difference of the two cusp anomalous dimensions from the aforementioned 1/ε pole,

obtaining

ΓN=2 − ΓN=4 = g6 3ζ(3)

512π6

(N21)(N2 + 1)

N
ξ log x+O(g8) (5.26)

This equation represents the most complete result for the three–loop deviation of

ΓN=2 from ΓN=4. In particular, it is valid for any finite θ, ϕ and N .

Remarkably, we find that at θ = ±ϕ equation. (5.26) vanishes, suggesting that

at these points the cusped Wilson loop of N = 2 SCQCD might become 1/2 BPS

as in the N = 4 SYM case.

Now, re-expressing ξ and x in terms of the original θ, ϕ variables and taking

the small angle limit, 2ξ log x ∼
ϕ,θ�1

(ϕ2 − θ2), we obtain the difference of the corre-

sponding Bremsstrahlung functions

BN=2 −BN=4 = −g6 3ζ(3)

1024π6

(N2 − 1)(N2 + 1)

N
+O(g8) (5.27)

This result remarkably coincides with prediction (5.9) from the matrix model. We

have then found confirmation at three loops that conjecture (5.6) proposed in [2]

is valid for any SU(N) gauge group.

If we insert the known value of BN=4 [34], in the large N limit we find

BN=2 =
g2N

16π2
− g4N2

384π2
+
g6N3

512π2

(
1

12
− 3ζ(3)

2 π4

)
+O(g8) (5.28)

Light–like cusp

Given our previous results, it is interesting to study the limit of large Minkowskian

angles. To this end we substitute ϕ = iϕM , that is x = e−ϕM , and send x → 0.

Remember that in this limit the cusp anomalous dimension behaves linearly in the

angle

Γcusp(g2, ϕ) ∼
ϕ→∞

K(g2)ϕM +O(ϕ0
M) (5.29)

The function K(g2) is the light-like cusp anomalous dimension that we discuss in

section 3.3.
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Using the large–N exact results for the N = 4 SYM case previously found in

the literature ([34] [38]), for N = 2 SCQCD we obtain

KN=2(g2) =
g2N

8π2
− g4N2

384π2
+
g6N3

512π2

(
11

180
− 3ζ(3)

π4

)
+O(g8) (5.30)

We discussed in section 3.3 that when Γcusp is expressed in terms of K(g2) replac-

ing the coupling constant it gave rise to a universal function Ω(K(g2)), ϕ) that was

independent of the number of fermion or scalar fields in the theory. This universal

behaviour was present up to three loops in N = 4 SYM and in QCD.

It is easy to prove that up to three loops the universal behaviour is also present

in N = 2 SCQCD. With respect to the N = 4 SYM case, the cusp anomalous

dimension gets the additional ζ(3) term in equation (5.26) at three loops, which

produces a corresponding term in the light–like cusp expansion (5.30). Then one

can invert (5.30) to express the coupling g2 as a perturbative expansion in K and

substitute this expansion back in the full cusp Γcusp(g2, ϕ) to obtain the function

Ω(K,φ). The additional ζ(3) terms coming from the genuine Γcusp(g2, ϕ) and from

the substitution of the expansion g2(K) trivially cancel, producing the same uni-

versal function as derived in N = 4 SYM. In [42, 43] it was shown that at four

loops the universality is in general violated.

Substitution rules

It has been suggested in [64] and then substantiated in [39] that the closed

SU(2,1|2) subsector of N = 2 SCQCD inherits integrability from N = 4 SYM,

since its Hamiltonian can be essentially obtained from the N = 4 SYM one by

substituting the coupling constant g2 with an effective coupling f(g2). The explicit

form of f(g2) was first derived in [41] by comparing the exact results available from

localization for circular BPS Wilson loops in N = 4 SYM and N = 2 SCQCD. In

the conventions of [41] the first few orders in the weak coupling expansion read 1

f(g2) = g2 − 12ζ(3)g6 + 120ζ(5)g8 +

(
− 1120ζ(7) + 80ζ(2)ζ(5) + 288ζ(3)2

)
g10 + . . .

(5.31)

1In order to compare with our results we should substitute g2 → g2N
16π2 .
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It is an interesting open problem to first understand the origin of this substitu-

tion rule and at the same time to test to what extent it is universal when applied

to other observables that can be entirely built using fields from the N = 2 vector

multiplet.

In [40] it was conjectured that the effective coupling f(g2) could be interpreted

as the relative finite renormalization of the gluon propagator of the two models,

enforcing the argument presented in [39]. This proposal was supported by some

diagrammatic checks of the coefficients of (5.31) up to order g8 [40]. Neverthe-

less, first in [40] and then in [41], it was noticed that this interpretation can be

hardly extended at higher orders, because of the presence of terms that cannot be

generated by purely massless two-point integrals. The ζ(2)ζ(5)g10 contribution in

expansion (5.31) is the first example of such kind of terms, which ask for a clear

interpretation.

Concerning the generalization of the substitution rule to other physical quanti-

ties, in [41] a similar analysis was applied for extracting fB(g2) from the comparison

of the Bremsstrahlung functions of the two models, as computed from the Wilson

loop expectation values on the ellipsoid. In this case the effective coupling fB(g2)

slightly differs from the one in (5.31) starting at order g10. In [41] the discrepancy

was explained as a consequence of scheme dependence in the choice of the relative

infrared regulators. Once again, a term containing ζ(2)ζ(5) appears, which cannot

be explained if fB(g2) has to be interpreted as the finite relative renormalization of

gauge propagators, without resorting to coupling the model to curved space [41].

Moreover, computing the Bremsstrahlung function from the two–point function of

the stress energy tensor and the 1/2 BPS Wilson loop, in [55] it was argued that

in general for N = 2 theories with a single gauge group the substitution rule may

be not working.

The validity of the substitution rule is made even more obscured by the results

on the direct computation of purely adjoint scattering amplitudes in N = 2 SC-

QCD. In fact, it has been shown [65] that the amplitude/Wilson loop duality is

broken already at two loops, displaying a qualitatively different functional depen-

dence on the kinematic variables with respect to the N = 4 SYM amplitude. This

arises even deeper questions about the integrability of the SU(2,1|2) subsector, if

the amplitude/Wilson loop duality has to be considered as direct consequence of
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integrability, like in N = 4 SYM 2.

One way to shed some more light on the validity of the substitution rule and,

in particular, on the actual origin of discrepancy terms of the form ζ(2)ζ(5) would

be a direct computation of the difference of the Bremsstrahlung functions at higher

orders, along the lines introduced in section 5.2. Our SU(N) computation, preceded

by the ones in [59, 2], confirms the validity of the substitution rule (5.31) up to

order g6. From the diagrammatic analysis it is also clear how to associate the

ζ(3)g6 term to diagrams containing propagator corrections.

At higher orders the situation is more intricate, but the use of the HQET

techniques seems to be promising. At first, the HQET integrals arise naturally

as massive integrals, due to the presence of the heavy quark contour propagators.

Indeed using inversion transformations it is easy to map massive on shell propagator

type integrals to HQET integrals, a procedure which has been used for QCD/HQET

matching [66, 67]. We consider for instance, as candidates for the production of

ζ(2)ζ(3) or ζ(2)ζ(5) terms, the massive propagator integrals introduced in [41].

Following for instance [61], inversion relations can be used to map such integrals

to corresponding HQET versions

= ∼ −5ζ(5) + 12ζ(2)ζ(3)

= ∼ −14ζ(7)− 12ζ(3)ζ(4) + 36ζ(2)ζ(5)

Here we indicate the massive propagators with a thick solid line and the Wilson

loop contour with a double line. In this way we are left with two examples of

finite three and four loop HQET integrals containing ζ(2)ζ(3) or ζ(2)ζ(5) terms.

Now the result of the integrals in our examples is finite, thus they cannot directly

produce contributions to the cusp at three and four loops. Nevertheless, it is

easy to embed these HQET topologies in higher order diagrams, producing poles

potentially contributing to the cusp anomalous dimension. For example we could

proceed as follows

2See the conclusions in [41] for a discussion on possible ways out.
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= × 1 + 6ǫ ∼
(
− 5ζ(5) + 12ζ(2)ζ(3)

)1

ε

= × 2 + 8ǫ ∼
(
− 14ζ(7)− 12ζ(3)ζ(4) + 36ζ(2)ζ(5)

)1

ε

The integrals can be evaluated by factorization, reducing them to the product of

our initial integrals and a one loop HQET bubble with a non-trivial index on the

heavy line.

Therefore, we conclude that in the HQET formalism terms such as ζ(2)ζ(3) and

ζ(2)ζ(5) can arise quite naturally in the expansion of the Bremsstrahlung function

from the standard flat space computation of the cusped Wilson loop expectation

value. In particular, there is no need to introduce mass regulators, beside the usual

IR cut-off δ that eventually drops out from the final result. It is also natural to

expect that some of these terms survive once taking the difference between N = 2

SCQCD and N = 4 SYM, as predicted by the matrix model results.

The interesting point is to understand whether these terms in the difference

can be interpreted in terms of the substitution of an effective coupling given by

the finite different renormalization of the two point functions of the models, as

advocated in [39, 40]. Since we are working in component formalism, we expect

that this claim should imply that at least some of these terms should originate

from propagator type insertions into the cusp line. At first glance, integrals such

as the ones discussed above seem to originate from topologies which could hardly be

associated to propagator type diagrams. However, without an explicit derivation

we cannot draw any definite conclusion and therefore a direct calculation of the

Bremsstrahlung function at four and five loops is mandatory.
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Chapter 6

Conclusions

The objective of this thesis was to study Wilson loops operators in N = 4

SYM and N = 2 SCQCD. In particular we have studied a special type of loop,

which is the one formed by two straight lines that meet at a point, namely the

cusped Wilson loop. In this case we have seen that UV logarithmic divergences

appeared in the computation of the expectation value and the quantity govern-

ing this divergences is the cusp anomalous dimension. We dedicated chapter 3 to

study how this quantity arises, some of its properties and various limits that lead

to physical observables. We concentrated in two particular limits: one when the

angle between the two lines is small and the other when the Minkowskian version

of this angle tends to infinity. In the first case, we saw that the cusp anomalous

dimension behaves quadratically with the angle and the coefficient controlling this

dependence is the Bremsstrahlung function of the theory, which is related by the

energy radiated by an accelerating particle [1]. The other limit (large angles) leads

to a linear behaviour, governed by the light-like cusp anomalous dimension that

give rise to a definition of a universal function that is independent on the number

of fermions and scalars [4, 38].

In chapter 4 we studied in detail the appearance of one of the first exact results

in the study of supersymmetric gauge theories: the possibility of computing the

expectation value of a circular Wilson loop using a matrix model due the existence

of a localization process. In [29] it was made one of the first concrete proposals in

this direction, they claimed that for the circular Wilson loop the problem of find-

ing the exact result reduces to a pure combinatorial analysis of a zero-dimensional
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theory and they proposed a Gaussian matrix model for this.

From the perturbative side, in [28] the authors demonstrated that in the compu-

tation of the expectation value of the circular Wilson loop the contributions of

diagrams with internal vertices automatically cancel, therefore it was only neces-

sary to sum the ladder graphs. This conjecture was later proved by Pestun in [30]

and the proof was based on the concept of localization. This technique was first

introduced in the context of topological theories and then extended to quantum

field theories. The idea is basically that, in certain supersymmetric field theories,

there are situations in which the partition function and expectation values only re-

ceive non-vanishing contributions from a subspace of the field configurations, and

in some case this allows us to obtain exact results for some observables.

The exact results of the circular Wilson loops obtained from localization can

be used for probing the theory at different scales, aimed for instance at perform-

ing precision tests of the AdS/CFT correspondence. A physical quantity that can

be obtained using this results is the Bremsstrahlung function that appeared in the

small angle limit of the cusp anomalous dimension. In [1] the authors derived a for-

mula to compute the Bremsstrahlung function of N = 4 SYM as a derivative of the

expectation value of the circular 1/2 BPS Wilson loop (obtained from the matrix

model) with respect to the ’t Hooft coupling. A similar formula for N = 2 SCQCD

was conjectured in [2], this formula has not been proven except for the SU(2) case.

The main purpose of this thesis was the check the conjecture for general SU(N).

In chapter 5 we performed a three–loop calculation of the cusp anomalous dimen-

sion for a generalized Maldacena–Wilson operator, using HQET formalism. This

approach has the great advantage that, by applying a clever chain of integration by

parts, all the integrals can be expressed in terms of a linear combination of a basis

of known three-loop HQET Master Integrals. In addition, it provides a promising

framework where we can attempt higher–loop calculations and speculate about the

origin of some unexpected terms in the higher order expansion of the B function

[41], which can be shown to arise naturally in the HQET context.

We obtained an expression for the cusp anomalous dimension that is valid at generic

geometric and internal angles and finite gauge group rank N . For equal and oppo-

site angles this expression vanishes, proving that at these points the cusp becomes

BPS. From its small angle expansion we derive the corresponding Bremsstrahlung

function at three loops, matching the matrix model prediction given in terms of
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6 – Conclusions

derivatives of the Wilson loop on the ellipsoid.

The computational framework we have set up in section 5.2 can be arguably ex-

tended to higher loops where some very non–trivial checks can be performed, es-

pecially on the existence of a universal behaviour shared by N = 2 SCQCD and

N = 4 SYM.
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Appendix A

Conventions

For SU(N) gauge group we take the generators normalized as

Tr(T aT b) =
1

2
δab (A.1)

and obey the following identity

(T a)i
j (T a)k

l =
1

2

(
δli δ

k
j −

1

N
δji δ

l
k

)
(A.2)

whereas the structure constants can be read from

[T a, T b] = ifabcT c (A.3)

{T a, T b} =
1

N
δab + dabcT c (A.4)

Spinor and vector indices are raised and lowered according to

ψα = Cαβψβ ψα = ψβCβα ψ
α̇

= C α̇β̇ψβ̇ ψα̇ = ψ
β̇
Cβ̇α̇ (A.5)

where the matrices Cαβ are

Cαβ = C α̇β̇ =

(
0 i

−i 0

)
Cαβ = Cα̇β̇ =

(
0 −i
i 0

)

Coordinates, fields and derivatives can be written using spinor notation as

coordinates: xµ = (σµ)αβ̇ x
αβ̇ xαβ̇ = 1

2
(σµ)αβ̇ xµ

derivatives: ∂µ = 1
2
(σµ)αβ̇ ∂αβ̇ ∂αβ̇ = (σµ)αβ̇ ∂

µ

fields: V µ =
√

2
2

(σµ)αβ̇ V
αβ̇ V αβ̇ =

√
2

2
(σµ)αβ̇ V µ (A.6)
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A – Conventions

Pauli σ matrices satisfy

σαα̇µ σναα̇ = 2δνµ σµαα̇σ
ββ̇
µ = 2δβαδ

β̇
α̇ (A.7)

Superspace spinor covariant derivatives are defined as

Dα = ∂α +
i

2
θ
β̇
∂αβ̇ Dα̇ = ∂α̇ +

i

2
θβ∂βα̇ (A.8)

The covariant derivatives are defined as

DµqI = ∂µqI − ig AµqI (A.9)

Dµφ = ∂µφ− ig [Aµ, φ]

The Fourier transform is defined as∫
d4−2εp

(2π)4−2ε

eip·(x−y)

(p2)s
=

Γ(2− s− ε)
4s π2−ε Γ(s)

1

(x− y)2(2−s−ε) (A.10)

From the actions (1.13) and (1.17) the propagators in momentum space read

〈Aaµ(x)Abν(y)〉 = δab
∫

d4−2εp

(2π)4−2ε
eip·(x−y) δµν

p2
(A.11)

〈φ̄a(x)φb(y)〉 = δab
∫

d4−2εp

(2π)4−2ε
eip·(x−y) 1

p2
(A.12)

〈q̄I(x)qJ(y)〉 =〈¯̃qJ(x)q̃I(y)〉 = δIJ

∫
d4−2εp

(2π)4−2ε
eip·(x−y) 1

p2
(A.13)

〈ψαa(x)ψ̄b
β̇
(y)〉 =〈ηαa(x)η̄b

β̇
(y)〉 = δab

∫
d4−2εp

(2π)4−2ε
eip·(x−y)

(−pµ)(σµ)α
β̇

p2
(A.14)

〈λαJ(x)λ̄I
β̇
(y)〉 =〈λ̃αI(x)¯̃λβ̇J(y)〉 = δIJ

∫
d4−2εp

(2π)4−2ε
eip·(x−y)

(−pµ)(σµ)α
β̇

p2
(A.15)

The vertices entering the three–loop diagrams can be read directly from actions

(1.13) and (1.17).
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Appendix B

Result of diagrams

The three-loop Master Integrals introduced in section 5.2 are defined as follows

Ga1,... ,a12 =

∫
ddk1/2/3

(2π)3d

1

P a1
1 ... P a12

12

(B.1)

With

P1 = 1 + 2ṽ1 · k1 P7 = k2
1

P2 = 1 + 2ṽ2 · k1 P8 = k2
2

P3 = 1 + 2ṽ1 · k2 P9 = k2
3

P4 = 1 + 2ṽ2 · k2 P10 = (k1 − k2)2

P5 = 1 + 2ṽ1 · k3 P11 = (k2 − k3)2

P6 = 1 + 2ṽ2 · k3 P12 = (k1 − k3)2

For specialized sets of a1, . . . , a12 indices these integrals can be computed ana-

lytically by Mathematica packages. Actually, for our purposes only the ε expansion

of the result is necessary. Omitting a common factor e−3εγE

(4π)3d/2 and stopping the

expansion at the required order, the Master Integrals that enter our calculation

read

I1 ≡ G0,0,0,0,1,0,0,1,0,1,0,1 =

= − 1
720ε
− 137

7200
− 12019+325π2

72000
ε− 874853+44525π2−71000ζ[3])

720000
ε2 +O(ε3) (B.2)
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B – Result of diagrams

I2 ≡ G0,0,0,0,1,1,0,1,0,1,0,1 =

=
x(−1−8x+8x3+x4+12x2 log(x))

144(−1+x)(1+x)5ε

+
x(−7+x(−59+3π2x+x2(59+7x))−9x2 log(x)(−6+log(x)−4 log(1+x))+36x2Li2(−x))

72(−1+x)(1+x)5

+ε

[
x((−1+x)(1+x)(499+x(4400+499x))+π2(−13+x(−104+x(216+13x(8+x)))))

576(−1+x)(1+x)5

+
x3(log(x)(207+7π2−6(9−log(x)) log(x))+3(π2+(6−log(x)) log(x)) log(1+x)−6(log(−x)−log(x)) log(1+x)2)

48(−1+x)(1+x)5

+3x3(3Li2(−x)−Li3(−x)−2Li3(1+x)+ζ(3))
2(−1+x)(1+x)5

]
+ε2

[
x(1128π4x2+10π2(−91+x(−767+x(621+13x(59+7x)))))

2880(−1+x)(1+x)5

+
x3 log(x)(648+42π2−log(x)(207+7π2+3(−12+log(x)) log(x)))

32(−1+x)(1+x)5

+
x3(54π2+log(x)(207+7π2+6(−9+log(x)) log(x))) log(1+x)

8(−1+x)(1+x)5

+
x3(72(π2−6 log(−x)−(−6+log(x)) log(x)) log(1+x)2+96(− log(−x)+log(x)) log(1+x)3)

32(−1+x)(1+x)5

+
x(−3671−33586x+33586x3+3671x4+284ζ(3))

576(−1+x)(1+x)5

+
x2(18(207+13π2)xLi2(−x)−648x((3+2 log(1+x))Li3(−x)+6Li3(1+x)−Li4(−x)+4Li4(1+x)+2S2,2(−x)))

144(−1+x)(1+x)5

+ x2(568ζ(3)+x(1944−71x(8+x)−204 log(x)+1296 log(1+x))ζ(3))
144(−1+x)(1+x)5

]
+O(ε3)

(B.3)

I3 ≡ G1,0,0,0,0,0,0,1,1,1,0,1 =

= − 1
18ε2
− 2

3ε
− 16

3
− 13π2

72
− 656+39π2−65ζ[3]

18
ε+O(ε2)

(B.4)
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B – Result of diagrams

I4 ≡ G1,1,0,0,0,0,0,1,1,1,0,1 =

=
x(−1+x2+2x log(x))

3(−1+x)(1+x)3ε2
+

x(−13+x(π2+13x)+x log(x)(14−3 log(x)+12 log(1+x))+12xLi2(−x))
3(−1+x)(1+x)3ε

+
x2(log(x)(132+7π2+6(−7+log(x)) log(x))+12(3π2+(14−3 log(x)) log(x)) log(1+x)+72(− log(−x)+log(x)) log(1+x)2)

6(−1+x)(1+x)3

+
x(444(−1+x2)+π2(−13+x(28+13x)))

12(−1+x)(1+x)3 + 4x2(7Li2(−x)−3Li3(−x)−6Li3(1+x)+3ζ(3))
(−1+x)(1+x)3

+ε

[
x(188π4x+15940(−1+x2)+π2(−845+660x+845x2))

60(−1+x)(1+x)3

+
x2 log(x)(1048+98π2−3 log(x)(132+7π2+log(x)(−28+3 log(x))))

12(−1+x)(1+x)3

+
x2(42π2+log(x)(132+7π2+6(−7+log(x)) log(x))) log(1+x)

(−1+x)(1+x)3

+
x2(72(3π2−14 log(−x)+(14−3 log(x)) log(x)) log(1+x)2+288(− log(−x)+log(x)) log(1+x)3)

12(−1+x)(1+x)3

+
20x2((396+39π2)Li2(−x)−36((7+6 log(1+x))Li3(−x)+14Li3(1+x)−3Li4(−x)+12Li4(1+x)+6S2,2(−x)))

60(−1+x)(1+x)3

+ x(1300ζ(3)+20x(252−65x−22 log(x)+216 log(1+x))ζ(3))
60(−1+x)(1+x)3

]
+O(ε2)

We can now write the contribution of every single diagram in figure 5.1 in

terms of these Master Integrals. Omitting a common factor g6(N2−1)(N2+1)
2N

, from

the insertion of corrected gauge propagators we have

(a) =

[
4(−7+3d)(9d5(1+x(8+x(−2+x(8+x))))−64(35+x(241+x(25+x(241+35x)))))

3(−5+d)(−4+d)3(−3+d)(−1+d)x2

+
4(−7+3d)(−3d4(47+x(388+x(−102+x(388+47x))))+2d3(425+x(3574+x(−830+x(3574+425x)))))

3(−5+d)(−4+d)3(−3+d)(−1+d)x2

+
4(−7+3d)(8d(469+x(3698+x(−190+x(3698+469x))))−4d2(631+x(5264+x(−850+x(5264+631x)))))

3(−5+d)(−4+d)3(−3+d)(−1+d)x2

]
I1

+

[
(80+9(−6+d)d)(1+x)4(224−308d+160d2−37d3+3d4)

3(−5+d)(−4+d)3(−3+d)(−1+d)x3

+
(80+9(−6+d)d)(1+x)4(6(−4+d)(−3+d)(4+(−8+d)d)x+(−2+d)(−112+d(98+d(−31+3d)))x2)

3(−5+d)(−4+d)3(−3+d)(−1+d)x3

]
I2

+

[
12(−3+d)(d(1+6x+x2)−4(2+5x+2x2))

(−5+d)(−4+d)2(−1+d)x

]
I3

+

[
(1+x)2(3d2(1−6x+x2)+80(1−3x+x2)−2d(17−66x+17x2))

(−5+d)(−4+d)2(−1+d)x2

]
I4 (B.5)
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B – Result of diagrams

(b) =

[
8(−7+3d)( 1

x
+x)(3d(1+x(6+x))−2(5+x(28+5x)))

(−4+d)(−3+d)x

]
I1

+

[
2(80+9(−6+d)d)(1+x)4( 1

x
+x)

(−4+d)(−3+d)x2

]
I2 (B.6)

(c) =
[
−4(−7+3d)(9d3(1+x(8+x(−2+x(8+x))))−16(35+x(241+x(25+x(241+35x)))))

(−5+d)(−4+d)2(−3+d)x2

+4(−7+3d)(3d2(35+x(268+x(−30+x(268+35x))))−d(418+2x(1522+x(10+x(1522+209x)))))
(−5+d)(−4+d)2(−3+d)x2

]
I1

+

[
− (80+9(−6+d)d)(1+x)4(3d2(1+x)2+8(7+x(9+7x))−d(25+x(42+25x)))

(−5+d)(−4+d)2(−3+d)x3

]
I2 (B.7)

(d) =

[
−2(−7+3d)(−160(1+x2)(5+x(28+5x))+9d3(1+x(8+x(−2+x(8+x)))))

3(−5+d)(−4+d)2(−3+d)x2

−2(−7+3d)(−6d2(19+x(134+x(6+x(134+19x))))+8d(65+x(406+x(100+x(406+65x)))))
3(−5+d)(−4+d)2(−3+d)x2

]
I1

+

[
− (−10+3d)(−8+3d)(1+x)4(3d2(1+x)2+80(1+x2)−4d(7+x(6+7x)))

6(−5+d)(−4+d)2(−3+d)x3

]
I2 (B.8)

(e) =

[
8(−7+3d)(9d5(1+x(2+x(10+x(2+x))))−3d4(53+x(148+x(390+x(148+53x)))))

3(−5+d)(−4+d)3(−3+d)(−1+d)x2

+ 8(−7+3d)(−32(85+x(296+x(350+x(296+85x))))+16d(296+x(1045+x(1315+x(1045+296x)))))
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

8(−7+3d)(2d3(518+x(1663+x(3046+x(1663+518x))))−4d2(799+x(2747+x(3986+x(2747+799x)))))
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

]
I1

+

[
2(80+9(−6+d)d)(1+x)4(272−392d+202d2−43d3+3d4)

3(−5+d)(−4+d)3(−3+d)(−1+d)x3

+
2(80+9(−6+d)d)(1+x)4(−6(−4+d)(−3+d)(8+d(−7+2d))x+(−2+d)(−136+d(128+d(−37+3d)))x2)

3(−5+d)(−4+d)3(−3+d)(−1+d)x3

]
I2

+
[

6(−3+d)(8+(−5+d)d)(−4(2+x)(1+2x)+d(1+x(6+x)))
(−5+d)(−4+d)2(−1+d)x

]
I3

+

[
(−10+3d)(8+(−5+d)d)(1+x)2(−8+d−6(−4+d)x+(−8+d)x2)

2(−5+d)(−4+d)2(−1+d)x2

]
I4 (B.9)
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B – Result of diagrams

(f) =

[
4(−7+3d)(9d3(1+x)4−3d2(33+x(132+x(166+33x(4+x)))))

3(−5+d)(−4+d)(−3+d)(−1+d)x2

+4(−7+3d)(4d(83+x(316+x(370+x(316+83x))))−4(85+x(296+x(350+x(296+85x)))))
3(−5+d)(−4+d)(−3+d)(−1+d)x2

]
I1

+

[
(80+9(−6+d)d)(1+x)4(34−23d+3d2−6(−4+d)(−3+d)x+(−2+d)(−17+3d)x2)

3(−5+d)(−4+d)(−3+d)(−1+d)x3

]
I2

+
[

6(−3+d)2(−4(2+x)(1+2x)+d(1+x(6+x)))
(−5+d)(−4+d)(−1+d)x

]
I3

+

[
(−3+d)(−10+3d)(1+x)2(−8+d−6(−4+d)x+(−8+d)x2)

2(−5+d)(−4+d)(−1+d)x2

]
I4 (B.10)

(g) =

[
8(−7+3d)(9d3(1+x(8+x(−2+x(8+x))))+8(5+x(−62+x(100+x(−62+5x)))))

3(−5+d)(−4+d)(−3+d)(−1+d)x2

+
8(−7+3d)(−3d2(23+x(196+x(−54+x(196+23x))))+2d(59+x(646+x(−290+x(646+59x)))))

3(−5+d)(−4+d)(−3+d)(−1+d)x2

]
I1

+

[
2(80+9(−6+d)d)(1+x)4(3d2(1+x)2−4(1+(−18+x)x)−d(13+x(42+13x)))

3(−5+d)(−4+d)(−3+d)(−1+d)x3

]
I2

+
[

24(−3+d)(−4(2+x)(1+2x)+d(1+x(6+x)))
(−5+d)(−4+d)(−1+d)x

]
I3

+

[
2(−10+3d)(1+x)2(−8+d−6(−4+d)x+(−8+d)x2)

(−5+d)(−4+d)(−1+d)x2

]
I4 (B.11)

(h) =

[
−64(−7+3d)(9d3(−1+x)2x−2d(1+(−12+x)x)(8+x(−17+8x)))

3(−5+d)(−4+d)2(−3+d)x2

−64(−7+3d)(3d2(1+x(−25+x(52+(−25+x)x)))+4(5+x(−62+x(100+x(−62+5x)))))
3(−5+d)(−4+d)2(−3+d)x2

]
I1

+

[
−16(80+9(−6+d)d)(1+x)4(−2+d+3(−4+d)(−3+d)x+(−2+d)x2)

3(−5+d)(−4+d)2(−3+d)x3

]
I2 (B.12)

Similarly, from the insertion of corrected scalar propagators, omitting a common

factor g6(N2−1)(N2+1)
2N

cos θ we have

(i) =
[
−32(−7+3d)(16+d(−11+2d))(3d(1+x(6+x))−2(5+x(28+5x)))

(−4+d)3(−3+d)x

]
I1

−
[

8(−10+3d)(−8+3d)(16+d(−11+2d))(1+x)4

(−4+d)3(−3+d)x2

]
I2

−
[

96(−3+d)2

(−4+d)2

]
I3 −

[
8(−3+d)(−10+3d)(1+x)2

(−4+d)2x

]
I4 (B.13)
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B – Result of diagrams

(j) =
[
−16(−7+3d)(3d(1+x(6+x))−2(5+x(28+5x)))

(−4+d)(−3+d)x

]
I1

−
[

4(80+9(−6+d)d)(1+x)4

(−4+d)(−3+d)x2

]
I2 (B.14)

(k) =
[
−64(−2+d)(−7+3d)(3d(1+x(6+x))−2(5+x(28+5x)))

(−4+d)2(−3+d)x

]
I1

−
[

16(−2+d)(80+9(−6+d)d)(1+x)4

(−4+d)2(−3+d)x2

]
I2 (B.15)
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